arXiv:2506.18053v1 [cs.CR] 22 Jun 2025

Mechanistic Interpretability in the Presence of
Architectural Obfuscation

Marcos Florencio*

INTELI - Institute of Technology and Leadership

marcos.florencio@sou.inteli.edu.br

Abstract—Architectural obfuscation—e.g., permuting hidden-
state tensors, linearly transforming embedding tables, or remap-
ping tokens—has recently gained traction as a lightweight substi-
tute for heavyweight cryptography in privacy-preserving large-
language-model (LLM) inference. While recent work has shown
that these techniques can be broken under dedicated reconstruc-
tion attacks, their impact on mechanistic interpretability has not
been systematically studied. In particular, it remains unclear
whether scrambling a network’s internal representations truly
thwarts efforts to understand how the model works, or simply
relocates the same circuits to an unfamiliar coordinate system.

We address this gap by analyzing a GPT-2-small model trained
from scratch with a representative obfuscation map. Assuming
the obfuscation map is private and the original basis is hidden
(mirroring an honest-but-curious server), we apply logit-lens
attribution, causal path-patching, and attention-head ablation to
locate and manipulate known circuits.

Our findings reveal that obfuscation dramatically alters acti-
vation patterns within attention heads yet preserves the layer-
wise computational graph. This disconnect hampers reverse-
engineering of user prompts: causal traces lose their alignment
with baseline semantics, and token-level logit attributions become
too noisy to reconstruct. At the same time, feed-forward and
residual pathways remain functionally intact, suggesting that
obfuscation degrades fine-grained interpretability without com-
promising top-level task performance.

These results establish quantitative evidence that architectural
obfuscation can simultaneously (i) retain global model behaviour
and (ii) impede mechanistic analyses of user-specific content. By
mapping where interpretability breaks down, our study provides
guidance for future privacy defences and for robustness-aware
interpretability tooling.

Index Terms—Mechanistic Interpretability, Architectural Ob-
fuscation, Large Language Models, Privacy-Preserving Inference,
Attention Mechanisms, Transformer Networks.

I. INTRODUCTION

RTIFICIAL Intelligence (AI) has become one of the most
promising areas of computer science, exerting a profound
impact in both academic and industrial settings thanks to rapid

Marcos Florencio and Thomas Barton are undergraduate students in Soft-
ware Engineering and Computer Science, respectively, graduating in 2025.
This paper is part of an ongoing effort developed within the academic research
path at INTELI — Institute of Technology and Leadership. Source code is
available at https://github.com/themarcosf/mech-interp-paper.

Thomas Barton*

INTELI — Institute of Technology and Leadership

thomas.barton@sou.inteli.edu.br

advances in Machine Learning (ML) and Deep Learning (DL)
[32]. Defined as the ability of machines to simulate human
cognitive processes [13], Al is now embedded in countless
real-world applications. Artificial Neural Networks (ANNs),
abstracting principles of biological cognition, underpin this
progress by solving classification, prediction and pattern-
recognition problems once thought intractable [30].

Within this landscape, the Transformer architecture has
emerged as a disruptive force, displacing recurrent and con-
volutional models through its self-attention mechanism [26, 2,
10]. Flagship families, such as GPT, now dominate natural-
language processing and are steadily migrating into vision,
speech and multi-modal domains, processing ever-larger pa-
rameter counts that already number in the hundreds of billions
[4]. Their predictive power, however, comes at the cost of
opacity: Transformers behave as “black boxes,” making it
difficult to trace how inputs are transformed into outputs—an
obstacle that is increasingly problematic in safety-critical
domains such as healthcare, transportation and finance [21,
34, 36].

To restore trust, two complementary research threads
have flourished. Mechanistic interpretability seeks to reverse-
engineer the learned algorithms inside large models, de-
composing attention heads and MLP pathways into human-
readable circuits [35, 34]. In parallel, secure inference aims to
protect private prompts and proprietary weights when models
are hosted by third parties, a practical necessity given the
hardware demands of state-of-the-art Large Language Models
(LLMs) [31, 20].

Traditional cryptographic defences—secure multi-party
computation and homomorphic encryption—offer strong guar-
antees but impose prohibitive latency and bandwidth over-
heads. Consequently, lighter-weight obfuscation strategies
have gained popularity: they attempt to scramble internal
representations or token identities so that a curious server (or
client) cannot easily recover the original text [14, 6].

Large-scale LLM research is experimenting the feasibility
of architectural obfuscation techniques, such as permutation-
based schemes [39, 37], which shuffle hidden-state tensors
across sequence or feature dimensions, embedding-matrix
transforms such as glide reflections [18], which randomise to-
ken vectors, and token-level manipulations and proxy prompts

https://github.com/themarcosf/mech-interp-paper
https://arxiv.org/abs/2506.18053v1

[16], which disguise the textual interface itself. These ap-
proaches promise privacy with minimal runtime cost and
have become the dominant “lightweight” alternatives to heavy
cryptography.

Simultaneously, a growing body of work highlights their
fragility. A linear-time matching attack recovers =~ 100% of
prompts from permuted hidden states [15], while the algorithm
reconstructs entire vocabularies after glide-reflection obfusca-
tion, effectively nullifying the intended secrecy [16]. These
findings suggest that many current defences merely rearrange
information rather than hide it.

From a mechanistic point of view, the key question is not
whether these techniques satisfy cryptographic definitions of
privacy, but how much of the model’s internal computation
remains intelligible once such obfuscations are applied. Be-
cause permutations and linear transforms preserve algebraic
structure, the causal circuits that copy subject names, route fac-
tual cues or compute logits might persist—merely expressed
in a shuffled coordinate system. Quantifying the extent to
which these circuits survive offers a principled way to gauge
the depth of architectural obfuscation beyond surface-level
security claims.

This work addresses exactly that gap. We do not propose
new security proofs nor audit the privacy guarantees of existing
schemes. Instead, we ask: Can we still locate, characterise
and manipulate the mechanisms that drive model behaviour
once the observable representations have been permuted or
otherwise obfuscated?

To answer this, we trained GPT-2-small under a represen-
tative obfuscation regime and applied state-of-the-art circuit-
finding tools, thereby mapping which interpretability probes
remain effective and where they fail. Our results establish an
empirical upper bound on the mechanistic opacity achievable
with current permutation- and transformation-based defences,
thereby informing both the interpretability community and
designers of future privacy mechanisms.

II. BACKGROUND

Dario Amodei’s recent essay “The Urgency of Interpretabil-
ity” crystallizes a view that has been gaining ground across
industry and academia: understanding what large models are
“thinking” is no longer optional but a prerequisite for safe
deployment [1]. Amodei traces this imperative back to the
systematic programme that Chris Olah began at Google Brain
and later advanced at OpenAl. Olah’s early vision work
showed that deep networks contain individual units whose
activations align with human concepts such as “wheel” or
“car,” mirroring the neuroscientific idea of a “Jennifer Aniston
neuron” [24]. In 2021, a Distill investigation extended this
line of inquiry to multimodal neurons that respond jointly to
text and image cues, illustrating that concept-level structure
survives even in very large, cross-modal settings [11].

When Olah and Amodei co-founded Anthropic, they shifted
the spotlight from vision to language and laid down a formal
blueprint for reasoning about Transformers. [10] introduced

algebraic tools—Ilogit-lens factorisations, residual-stream de-
compositions—and used them to expose canonical mecha-
nisms such as induction heads, which copy earlier tokens,
and softmax linear units, single neurons that act as token
detectors [10]. These studies revealed that some neurons are
directly interpretable but most are not; instead, they participate
in dense superpositions where hundreds of features share the
same vector space. Superposition allows the model to encode
more concepts than it has neurons, but it also scrambles human
legibility [5].

Progress stalled until interpretability researchers imported
sparse-coding ideas from signal processing. [19] showed that
dictionary-learning and sparse autoencoders can untangle su-
perpositions into monosemantic features—Ilinear subspaces
whose activations correspond to crisp linguistic or stylistic
concepts. [7] reached a similar conclusion independently,
demonstrating that sparse autoencoders recover highly inter-
pretable features even in production-scale GPT variants. [27,
29] then scaled the technique, mapping more than thirty mil-
lion features in a mid-sized commercial model and introducing
autointerpretability, a bootstrapped procedure in which the
model itself generates natural-language descriptions of the
features it houses. Feature-level control is already practical: by
amplifying a single “Golden Gate Bridge” vector, engineers
produced “Golden Gate Claude,” a model that obsessively
mentioned the bridge in otherwise unrelated contexts [1].

The frontier has now moved from isolated features to
circuits—structured constellations of features that implement
multi-step reasoning. In [28], researchers traced how a prompt
about “the state containing Dallas” activated a Dallas feature,
routed through a located-in circuit to fire Texas, and finally
triggered Austin under a capital-of circuit. Although only a
handful of such circuits have been located manually, the work
hints that a full model might harbour millions of interacting
sub-programs, each susceptible to targeted intervention once
identified.

While mechanistic interpretability has marched ahead, pri-
vacy concerns have pushed practitioners toward architectural
obfuscation as a lightweight defence for cloud-hosted in-
ference. Permutation-based schemes ([39, 37]) randomly re-
order hidden-state tensors, [16] extends the idea with two-
dimensional shuffles and masks, and glide-reflection trans-
forms apply secret linear maps to the embedding matrix [18].
These techniques claim to protect user prompts at wide-
area-network latency, avoiding the severe overheads of ho-
momorphic encryption or secure multi-party computation. Yet
dedicated reconstruction attacks paint a mixed picture: [39]
reverse hidden-state permutations with near-perfect accuracy,
and [15] recover the entire vocabulary after glide-reflection
using the EDNN algorithm. Even if these results undermine
privacy guarantees, they leave open a different and crucial
question inspired by Amodei’s essay: do such transformations
impede our ability to locate and manipulate the model’s
internal mechanisms?

Answering that question is the purpose of this paper. Mech-
anistic interpretability has supplied tools for dissecting unfet-
tered models; the security community has catalogued ways to
obfuscate them. What is missing is a systematic examination of

interpretability under obfuscation. By analysing GPT-2-small
protected with representative permutation and linear-transform
schemes, and by measuring how logit-lens attribution, path
patching, and circuit tracing survive or fail under each trans-
formation, we aim to quantify the interpretability cost—or
resilience—of today’s lightweight privacy defences.

III. METHODOLOGY

This section outlines the methodology adopted to implement
and evaluate the proposed obfuscation technique applied to
a transformer-based language model. The objective was to
adapt an existing large language model architecture to incor-
porate client-specific encoding mechanisms while maintaining
efficiency and performance during training and inference.
The methodology encompasses the design of the model ar-
chitecture, training data selection, optimization procedures,
and evaluation strategies. The implementation of the seeded
tokenizer is described in detail, the training process using the
Fineweb-Edu dataset, the architectural modifications applied to
the Transformer model, and the experimental setup employed
to assess the model’s capabilities.

A. Seeded Tokenizer

The seeded tokenizer follows the implementation proposed
by [39], repackaged as a proof-of-concept tool suitable for ex-
perimentation in an academic setting. The original implemen-
tation shows that if the elements entering every expensive non-
linear block are first shuffled by a secret, fresh permutation,
the model can compute non-linearities locally in plaintext;
afterwards the parties run a second secure shuffle to map
results back. Because the permutation lives only in secret
shares, the model holder never recovers the true order, yet
the cost of cryptographic-based solutions is avoided . The
paper stresses that the security of this shortcut hinges on the
permutation space, with larger spaces making brute-forcing
infeasible in practice.

Our implementation distills the original to the level of the
tokenizer. It first loads GPT-2’s vocabulary with Hugging Face,
then draws a uniformly random permutation of the integers,
thus creating a deterministic seeded mapping that re-indexes
every token. This mapping is stored in a local cache so it
can be used in all subsequent experiments. In effect, any text
encoded through this tokenizer is now expressed in a permuted
space, replicating the insight that a shuffled representation
leaks far less direct information while remaining functionally
equivalent once the model’s embedding and output layers are
reordered accordingly.

[39] regenerates a fresh, hidden permutation for every
forward pass and intertwines it with additive secret sharing, so
that neither party ever learns the other’s weights or prompts;
its correctness relies on running two secure permutation pro-
tocols per non-linear call and homomorphic dot-products at
the output. The seeded-tokenizer code instead fixes a single

permutation at startup and assumes whoever possesses the
mapping is authorized to decode it.

Thus, this lightweight mechanism emulates the permutation
shield idea, allowing the measurement of its impact on model-
quality degradation when embeddings are re-indexed.

B. Model Architecture

In order to test the obfuscation technique, a custom version
of the GPT-2-small model, with 124 million parameters, was
trained [25]. The GPT-2 model is a large-scale language model
developed by OpenAl, which has been widely used for various
natural language processing tasks. The custom version of the
model was modified to include a pre-seeded tokenizer that
transforms input data into client-specific formats, allowing
for further encryption and obfuscation of the data during
inference.

The dataset used to train the original GPT-2 is not publicly
available, but [25] mentions that in order to build the training
dataset, “all outbound links from Reddit, a social media
platform, which received at least 3 karma” were scraped,
totalling 45 million links and 40 GB of text. By contrast,
GPT-3 was trained using a mixture of data from Common
Crawl, WebText2, books, and Wikipedia [3]. For our case,
the custom model was trained on a large corpus of text
data called Fineweb-Edu, available on HuggingFace, which
consists of 10.0 billion tokens extracted from educational
content [22]. The training process involved optimizing the
model’s parameters to minimize the difference between the
predicted and actual outputs, allowing it to generate coherent
and contextually relevant text.

It is worth noting that GPT-2 implements a modified version
of the Transformer model introduced in [33]. In particular, it
does not have the encoder part of the Transformer model,
only the decoder part. The decoder consists of a stack of
N = 12 identical layers. Each layer has two sub-layers:
a multi-head self-attention mechanism and a position-wise
fully connected feed-forward network. Other major departures
from the original Transformer, as described in Section 2.3 of
[25], include moving layer normalization to the input of each
sub-block—similar to a pre-activation residual network—and
adding an additional layer normalization after the final self-
attention block. An important consequence of moving the
layer normalization to the input of each sub-block is that the
normalization is then applied outside of the residual stream,
improving the stability of the residual path during training.

Additionally, we employ Flash Attention [8], a memory-
efficient attention mechanism that reduces the memory foot-
print of the model during training and inference through a
kernel-fusion operation, condensing four different operations
into a single fused kernel. To achieve this, it relies on an
algorithmic rewrite of the softmax function, previously pro-
posed by [17], which computes the softmax function with
fewer memory accesses, allowing for faster and more efficient
training of large-scale language models, enabling efficient
training on limited hardware resources.

C. Activation Function

The activation function used in the feed-forward network
is the GELU (Gaussian Error Linear Units) function. The
GELU function is a smoothed approximation of the rectifier
linear unit (ReLU) function, as proposed by [12]. The GELU
function is defined as:

1 T
GELU(z) =z - ®(x) ==z 5 <1+erf<\/§>)
where ®(z) is the cumulative distribution function of the
standard normal distribution, and erf(x) is the error function.
The GELU function has been shown to outperform other
activation functions, such as ReLU and tanh, in various deep
learning tasks.

D. Parameter Sharing: Token Embeddings and Output Layer

In the Transformer model, the authors propose sharing
parameters between the input and output layers by reusing the
same weight matrix between the embedding layers and the pre-
softmax linear transformation, following the approach of [23].
They propose that using the same embedding matrix for both
the input and output layers reduces the number of parameters
and improves generalization: “We call U the input embedding,
and V the output embedding. In both matrices, we expect rows
that correspond to similar words to be similar: for the input
embedding, we would like the network to react similarly to
synonyms, while in the output embedding, we would like the
scores of words that are interchangeable to be similar.”

E. Weight Initialization

In the code released by OpenAl [25], the weights are
initialized with a standard deviation of 0.02, and the biases
are initialized to zero. The token embeddings are also initial-
ized with a standard deviation of 0.02, while the positional
embeddings are initialized to 0.01. This is consistent with the
recommendations from the original Transformer paper, which
suggests initializing the weights with a normal distribution
with a standard deviation of \/2/(niy + now), Where n;, and
Nnout are the number of input and output units, respectively
[33].

Additionally, [25] mentions using a modified initialization
that accounts for residual path accumulation with model
depth. Specifically, the weights of residual layers are scaled at
initialization by a factor of 1/ V/N, where N is the number of
residual layers.

F. Hardware and Training Schedule

The custom model was trained on four parallel NVIDIA
Tesla L4 GPUs, each with 24 GB of memory, using the DDP
(Distributed Data Parallel) module available in the PyTorch

framework [9]. DDP provides data parallelism by synchroniz-
ing gradients across each model replica. The optimization al-
gorithm used was AdamW, a variant of Adam that incorporates
weight decay and momentum buffers, which helps stabilize
the training and improve convergence [3]. The optimizer was
configured with #; = 0.9, 83 = 0.95, and ¢ = 1078, with
gradient clipping set to a maximum norm of 1.0 to prevent
exploding gradients.

Training used a batch size of 8 samples without replacement
until epoch boundaries to minimize overfitting. The initial
learning rate was 6 x 10, subject to a cosine decay schedule
with 10% warmup, following the guidelines from [3]. Valida-
tion loss was used to monitor progress, and checkpoints were
saved at regular intervals.

To supplement the validation set, HellaSwag was used to
evaluate model performance on a more challenging common-
sense reasoning task [38]. HellaSwag is a benchmark of 10,042
multiple-choice questions with four answer options. The model
was evaluated using token probabilities to compute the cross-
entropy loss for each answer. The original GPT-2-small model
achieved a score of 0.2955, which was used as a baseline for
determining the stopping criteria during training.

IV. RESULTS AND DISCUSSION

This section presents the empirical core of our study, con-
trasting how a baseline GPT-2 small model and its obfuscated
counterpart handle a controlled anaphora-tracking task, first
proposed by [34]. We first formalize the task, then quantify
each model’s ability to single out the correct indirect object
by inspecting the logit gap between competing name tokens.
These results anchor a deeper mechanistic analysis—spanning
residual stream, component and head patching—that illumi-
nates where and how obfuscation alters the network’s internal
representations while preserving output-level performance.

A. Task Definition

The task is to identify the indirect object in a sentence, given
a subject and an indirect object, as proposed in [34], but using
two different versions of the same model: the standard GPT-2
small model and a custom version trained on obfuscated data.
Each prompt is given twice - one with the first name as the
indirect object, one with the second name. These prompts are
composed only of single-token names and the corresponding
names are always in the same token positions. For example:

— When John and Mary went to the shops, John gave
the bag to Mary.

— When Tom and James went to the park, Tom gave the
ball to James.

— When Dan and Sid went to the shops, Dan gave an
apple to Sid.

— After Martin and Amy went to the park, Martin gave
a book to Amy.

This task is meaningful because attention is especially apt
at primitive operations such as looking nearby or copying
information. For example, a simple model could learn a
skip trigram like ”John...to — John”. However, distinguishing
between multiple mentions of the same name requires learning
a more complex internal representation.

The model must learn to predict Mary and not John. For
that, it needs a head that attends to all previous names but
inhibits duplicates. This head then contributes to the logits in
favor of the correct indirect object.

The symmetry can be broken at the second mention of
John. Hence, one might expect a head to detect duplicate
tokens and another to move that information to the token after
to.

Because token positions vary across inputs, language mod-
els use early and late layers to convert from token-level rep-
resentations to internal representations and back, as discussed
in Section III-D. This will be relevant when analyzing early
attention heads acting as duplicate token detectors.

The evaluation metric is the logit difference between the
indirect object and the subject. Since the softmax is translation
invariant, we can center the logits. Therefore, interpreting
output logits reduces to projecting the residual stream onto the
difference vector between the two unembedding directions.

Furthermore, for interpretability, the product WQW§ is
analyzed using SVD: WoWE = USVT. Then Wy = UV/'S
and Wy = V+/S, yielding symmetric and orthogonal repre-
sentations for keys and queries. The same applies to Wy, and
Wo.

B. Logit Attribution

At the heart of transformer-based architectures lies the resid-
ual stream, a central computational structure that accumulates
and propagates information throughout the network. Rather
than passing activations solely from one layer to the next,
transformers use residual connections to aggregate outputs
from multiple layers, effectively building a running summary
of all transformations applied to the input sequence. This
stream is modified at each layer by the outputs of both
attention heads and MLP blocks, and it ultimately determines
the model’s predictions [10].

In the final stage of the forward pass, the model pro-
duces token-level logits by projecting the final residual stream
through the unembedding matrix, denoted as Wy, which maps
internal representations back into the vocabulary space. The
model’s output probability distribution is then computed via
the softmax function applied to these logits.

To assess how the model differentiates between potential
output tokens, the logit difference between the correct and
incorrect choices is analyzed. This difference serves as a
proxy for the model’s confidence and decision-making process.
Formally, if ¥ represents the residual stream at the final token
position, L represents the log probabilities of the outputs, and
p'represents the probabilities of the outputs after the aplication
of the softmax, then the following relations hold:

evi
n T,
D i €%

p; = softmax(¥); =

and

L; = log(pi)
Combining these:

evi

n
L, =log =7 :xi—logZewﬂ'
Zj:l e’ j=1
The sum term on the right is the same for all i:

Li—Lj:.Ii—l‘j

In other words, the logit difference z; —x; is the same as the
log probability difference L; — L;, motivating the use of logit
differences to understand the model’s outputs, since getting an
output logit is equivalent to projecting onto a direction in the
residual stream.

If the final value in the residual stream for a single sequence
and a position within that sequence is # (i.e., a vector of
length dpogel), then the logits are obtained by multiplying by
the unembedding matrix Wy, (which has shape(dmoder, @vocab)):

output = # Wy

The logit difference direction (or vector) between two
tokens ¢ and j is given by:

logit diff;; = &7 (Wy[:,i] — Wyl 4])

This means that the logit difference direction is the projec-
tion of the residual stream onto the vector Wy [:, 4] — Wy [, j],
because it points in the direction of the largest logit difference
between the two tokens, capturing the axis along which the
model must distinguish between the correct and incorrect
answers. The scalar projection of the residual stream onto this
vector quantifies the model’s preference for one token over the
other.

Crucially, because the softmax operation is translation in-
variant (i.e., shifting all logits by the same scalar does not
change the output probabilities), the only meaningful quan-
tities are differences between logits. This allows us to center
our interpretability analysis on directional contributions within
the residual stream, rather than on absolute values.

To break down the origin of the final prediction, we
employ logit attribution, a technique that decomposes the
residual stream into additive contributions from every prior
component—individual attention heads, MLPs, and residual
connections at each layer. This decomposition enables us to
identify which parts of the network architecture contribute
most significantly to the correct prediction and how the
computation is distributed temporally and hierarchically.

The empirical results (as visualized in Figure 1) reveal
that the model’s ability to perform the task is not uniformly
distributed across layers. Notably:

o Layers 1 through 6 exhibit minimal or noisy contributions
to the final decision.

o Layer 7 marks the onset of meaningful computation.

o Layer 9 stands out as the most influential, generating the
highest positive logit difference.

o Surprisingly, layers 10 and 11 contribute negatively, ac-
tively decreasing the logit gap and potentially introducing
confusion or conflicting signals.

This non-monotonic behavior underscores a key insight in
transformer interpretability: deeper layers do not necessarily
correspond to better or more refined understanding. Some
layers may encode auxiliary heuristics or capture patterns that,
while useful for general language modeling, interfere with
specific task-oriented reasoning.

Logit Diff

|
i

d

paquia
paquiaTso
no~une o
no~djw™o
no~une |
no—djw T
no~une z
no djw—g
no~upe e
no~djug
no~upe Ty
no~djwy
no~upe”s
no—djws
noupe g
no—djw—g
noupe ™,
no—djw—,
no~une g
no djw g
no~une 6
no djw 6
no une o1
o~ djw ot
noTune IT
no~djwTTT

Layer

Fig. 1: Logit difference - by layer

Drilling down into the residual stream further, we examine
attention head-level contributions, as depicted in Figure 2.
This granularity reveals that the model’s predictive power is
not evenly spread across all attention heads but is instead
concentrated in a few specialized units. Specifically:

o Heads 9.6 and 9.9 are identified as the primary positive
contributors, suggesting they are central to the task-
specific computation—likely resolving referential ambi-
guity or transferring relevant information between subject
and indirect object tokens.

o In contrast, heads 10.7 and 11.10 are detrimental, consis-
tently reducing logit confidence in the correct answer.
These may encode features orthogonal or even antag-
onistic to the task, possibly representing overfitting or
misalignment between general and specific objectives.

This division of labor among attention heads emphasizes
the transformer’s modularity: individual components learn to
specialize in different types of processing, and only a subset
becomes critical for any given task.

A particularly illuminating finding emerges when comparing
these results with those from the obfuscated model, which
was trained to operate on transformed input representations for
privacy-preserving inference. Remarkably, the overall pattern
of head behavior remains broadly consistent. The same heads
that dominate decision-making in the standard model continue
to exert similar influence in the obfuscated variant. This
suggests that the high-level circuit structure—i.e., the flow of
information through the model—remains largely intact despite
significant transformations to the input representation.

However, at the neuron-level, internal activations do diverge.
That is, while the macro-level functional roles of heads are
preserved, the micro-level computations—the precise values,

firing patterns, and internal representations—are altered. This
phenomenon indicates that the task-specific circuitry is robust
to input distortions and that transformers can adapt their inter-
nal representations to compensate for obfuscation, preserving
performance and interpretability at a structural level even when
fine-grained details shift.

Logit Diff

Q. 0, 1,1,2,2,3,3, 9, 9,8 8§ 6,6 2 2 & & 9 9 Ipl i I %
Cr i r i Or S r g D r i i r S i i Er i P s
¢

Layer

Fig. 2: Logit difference - accumulated

Note that in both Figures 1 and 2 a layer is the kth layer in
a stack of transformer blocks, but each block consists of an
attention layer and an MLP layer. The output of each attention
layer is the result of the sum of the outputs of each attention
head. In the GPT-2 model, each attention layer consists of
12 heads, which each act independently and additively. The
standard way to compute the output of an attention layer is by
concatenating the mixed values of each head, and multiplying
by the output weight matrix. But, as described in [10], this is
equivalent to splitting the output weight matrix into a per-head
output and adding them up, including an overall bias term for
the entire layer.

Image 3 below shows that only a few heads carry the weight
of inference for the task - heads 9.6 and 9.9 contributing pos-
itively, explaining why attention layer 9 is so important, while
heads 10.7 and 11.10 contribute a lot negatively, explaining
why attention layer 10 and layer 11 are actively harmful.
These correspond to some of the name movers and negative
name movers discussed in [2]. There are also several heads
that matter positively or negatively but less strongly.

Layer
o

|
10 [|

0 5 10
Head

Fig. 3: Logit difference - by head

In other architectures, it would be expected that a given
computing unit would convey information about the token
looked at, maybe accounting for the context of the token.

But attention heads move information from the residual stream
position corresponding to the input token. Especially later on
in the model, there may even be components in the residual
stream that have nothing to do with the input token, e.g.,
the period at the end of a sentence may contain summary
information for that sentence, and the head may solely move
that.

An interesting observation is that no difference can be
seen between the two models in terms of overall behavior of
attention heads and layers, which suggests that the obfuscation
did not affect the model’s ability to solve the task, and that the
model is able to solve it in a way that is robust to obfuscation.
Only by observing a level below the attention heads, at the
neuron level, can differences be seen. This is because the
obfuscation changed the way that the model’s neurons are
activated, but not the way that the model’s attention heads
are used to solve the task.

C. Activation Patching

Activation patching is a diagnostic technique introduced in
the mechanistic interpretability literature [34] for localizing
the internal components of a neural network that are causally
responsible for a given behavior. The goal is to identify where
in the network and at what stage the model encodes the critical
information necessary for solving a specific task.

The fundamental idea behind activation patching is to run
the model under two contrasting conditions:

1) A clean run, where the model receives an input known

to yield the correct prediction, and

2) A corrupted run, where the input is slightly altered (often

syntactically or semantically) so that the model makes
an incorrect prediction.

After obtaining both forward passes, one iteratively re-
places selected internal activations from the corrupted run
with those from the clean run—at a specific layer and token
position—then observes whether the model’s output improves.
If substituting the clean activation into the corrupted context
restores or improves performance (i.e., increases the logit
difference in favor of the correct output), it suggests that the
patched activation encodes information critical for the task.

Formally, we define the patching effect using the change
in the logit difference (as discussed in Section IV-B) between
the correct and incorrect answer tokens. The metric used to
quantify the effect of a patch is the relative increase in logit
difference caused by substituting in clean activations. This
value provides a direct, interpretable measure of how much
influence a particular component of the network has on the
decision-making process.

Patching Paradigms

Two complementary variants of activation patching exist,
each answering a different causal question about internal
representations:

o Denoising: This involves running the model on a cor-
rupted input (i.e., one that leads to an incorrect output),

and selectively patching in activations from the clean run.
This approach asks: “Is this clean activation sufficient to
fix the model’s behavior?” If performance improves, then
the patched activation is carrying information necessary
for producing the correct output.

« Noising: This is the inverse experiment: the model is run
on a clean input, and corrupted activations are patched
in. This approach asks: “Is this component necessary for
correct behavior?” If patching in corrupted activations de-
grades performance, it implies that the original activation
was crucial to the success of the clean run.

While both approaches provide useful insights, denoising
is generally preferred in mechanistic interpretability research,
particularly in the early stages of circuit discovery. This is
because it directly tests sufficiency: whether the presence of
a given signal at a specific location is enough to restore
correct behavior. By contrast, noising tests necessity, which
can be harder to interpret—especially in cases where multiple
redundant pathways exist in the model.

In practice, activation patching allows researchers to build
causal maps of information flow within the network. By
systematically testing all layer/position pairs, one can visualize
which regions of the model are encoding, transforming, or
propagating information relevant to a specific task or token
prediction. This localization enables the discovery of func-
tional circuits—clusters of attention heads and neurons whose
coordinated activity gives rise to interpretable behavior.

In the context of our study, activation patching serves as a
vital tool for comparing the base model with its obfuscated
counterpart, shedding light on whether and how internal rep-
resentations shift when the input is transformed for privacy. It
allows us to determine not only whether the model still solves
the task, but where in the architecture that solution is im-
plemented, and how those solution pathways may reorganize
under data obfuscation.

1) Residual Stream Patching: To trace how information
flows through the model during inference, we perform residual
stream patching. This method targets the residual stream—the
central vector representation that accumulates updates from
each attention and MLP block—and systematically replaces
the corrupted version of this stream with its clean counterpart.
This is done at the start of each layer and at every token
position, allowing us to identify where in the model’s compu-
tation graph task-relevant information is injected, transferred,
or preserved.

For clarity, the visualization in Figure 4 plots token positions
on the x-axis (taken from a reference prompt such as: “When
John and Mary went to the shops, John gave the bag to Mary”)
and layer depth on the y-axis. Each patching experiment
replaces the residual stream vector at a specific (layer, token)
coordinate in the corrupted run with the corresponding vector
from the clean run. The metric used is the relative change
in logit difference, averaged over all eight prompts. However,
token labels (e.g., “John”, “Mary”, “shops”) are derived from
the first prompt for interpretability.

This analysis yields several key insights into the spatial and
temporal structure of the model’s computation:

o Computation is highly localized. Rather than being dis-
tributed across many tokens and layers, the model’s
decision-making is concentrated at specific layer-token
coordinates. This reveals the presence of a compact and
focused subcircuit dedicated to solving the indirect object
identification task. * The most critical site of information
encoding is the second subject token, corresponding to
the indirect object (e.g., “Mary”). Early in the forward
pass, this token stores distinguishing features necessary
to resolve the recipient of the action.

o As the model progresses through the layers, this infor-
mation is transferred to the final token, often the END
token, where the decision is finalized. This reflects the
model’s need to gather context from earlier mentions
and consolidate it at the generation step, consistent with
transformer-style autoregressive inference.

« Notably, the transition of relevant information occurs
most prominently between layers 6 and 8. After layer
8, the model appears to have already completed the bulk
of its reasoning. Layers 9 through 11, while still active,
do not materially change the residual stream’s direction
along the logit difference axis. Instead, they preserve
and transport the already-computed representation with
minimal interference. This behavior resembles identity
transformations, where deeper layers merely relay useful
information rather than transform it further.

This pattern highlights a useful interpretability property:
transformers often complete meaningful sub-tasks early, with
later layers acting more as memory buffers than as sites of
further reasoning. In the context of indirect object resolution,
the decisive computation is both early and traceable, reinforc-
ing the feasibility of mechanistic reverse-engineering in this
domain.

: u

0.5

Layer
o

8 -0.5

0 I
=1

ey Whe, Yon, Oy M3, W, los e Shy 9 Ip Jop 99, e ba lo
’7‘7%:/:1 7273 My g Mg & > s g 7 005 1e iy 18
Ry
By

Position

Fig. 4: Residual stream patching - base model

When we apply the same patching procedure to the ob-
fuscated version of the model (shown in Figure 5), a similar
overarching structure emerges, but with notable differences in
sharpness and stability:

o The localization of computation remains. The second
subject token still serves as the main site of initial
information storage, and the transfer to the END token is
still visible—suggesting that the overall algorithm imple-
mented by the model is preserved even under obfuscated
conditions.

« However, the signal becomes less sharp and more diffuse
across both token positions and layers. This means the

impact of patching is spread more broadly, implying that
the model may be distributing computation over a larger
number of heads or positions to compensate for the loss
of clarity introduced by input transformation.

e Most critically, later layers in the obfuscated model
remain active in modifying the residual stream. Unlike the
base model, which stabilizes by layer 8, the obfuscated
model continues to transform the internal representation
in layers 9—11. This suggests that the obfuscated model
requires additional computation in deeper layers to recon-
stitute or adapt the encrypted information into a usable
format.

These observations support a key hypothesis: although high-
level circuit structure is conserved under obfuscation, the
burden of computation is redistributed. The model needs
to work harder in later stages, indicating that obfuscation
imposes a representational tax that the model pays via deeper
processing.

In summary, residual stream patching reveals that:

o The indirect object identification task is mediated by a
small number of specific layers and token positions.

o In the base model, most relevant computation concludes
by layer 8, after which information is merely preserved.

o In the obfuscated model, while the computational path
remains recognizable, it becomes less efficient and more
dispersed, especially in the final layers, which actively
modify representations rather than passively retaining
them.

This reinforces the notion that interpretability methods such
as patching remain robust even under transformations aimed at
enhancing privacy—and that the semantic flow of information
through transformer models can survive significant architec-
tural or input-level perturbations.

0
? I1

0.5

Layer

0

=0.5

-1
10

e, Whe, Yo, g Moy Wy log e Shyt 9 o Jop, 9a, e e, lo
/70/%:/71 no 03 Myg s 6 > "%s o 7y oA 2394 15
*“/Ao

Position

Fig. 5: Residual stream patching - obfuscated model

2) Patching by Block Component: While residual stream
patching gives a high-level view of where important informa-
tion is stored or transferred within the model, a more fine-
grained analysis is necessary to disentangle the contributions
of individual architectural components. To this end, we refine
the patching procedure by intervening at three specific points
within each transformer block: the input to the attention
sublayer, the output of the attention sublayer, and the output
of the MLP sublayer. This methodology allows us to probe not
only where information is processed, but how it is distributed
between attention mechanisms and feedforward transforma-

Residual Stream Attn Output MLP Output
0 1
2 .
0.5
4
x.
S 0
]
g 6
8 | -0.5
-1
A 2 A - A -
A28 22832 0r59388 L2Z25223538 059388 22592283 %0r598398
gm:'g_ S o ® 0 O T < ® 0 . gmja 2 o™ 0 O T < g gm:!'a. S o ® 0 O T e g
n_:s:‘le,-,- N3 S0 = L w 0_33“,'2-* N3 L 7] Q_:::'an N S0 -,
© = N H o0 o Wy QO = N H w0 o W 9 = N | o= W
> -] = N > (=] [> ("] [
(V] [¢] o
X x x
= = =
v v \%
(=1 [=} o

Sequence Position

Sequence Position

Sequence Position

Fig. 6: Component patching - base model

tions, offering a richer understanding of the model’s internal
logic.

The results for the base model (Figure 6) reveal a pattern
of computation that is both sharply localized and semantically
coherent. When patching activations before and after attention
layers, it becomes evident that several attention layers play
a critical role in solving the indirect object identification
task. Specifically, early layers (up through layer 7) exhibit
meaningful activity around the position of the second subject
token, while later layers—especially layers 8 and 9—show
significant contributions at the final token (typically END),
where the prediction is generated. The model exhibits a
striking focus: activations corresponding to all other token
positions and layers are essentially inert, suggesting that only
a narrow subset of the architecture is functionally engaged in
performing the task.

This finding aligns closely with prior residual stream patch-
ing observations and further confirms that the model performs
a deliberate and efficient computation. Initially, the relevant en-
tity (the indirect object) is encoded at the point of its mention;
later, the information is retrieved and moved to the generation
site via specific attention heads. In terms of contribution
polarity, the outputs of attention layers in layers 7, 8, and 9
are predominantly positive, reinforcing the notion that these
heads are actively responsible for transporting meaningful
semantic content across the sequence. In contrast, the outputs
of layers 10 and 11 tend to contribute negatively or not at all,
suggesting that these deeper layers either interfere with or do
not meaningfully enhance the core reasoning path. This pattern
supports the interpretation that layers 7 through 9 are the
computational backbone of the indirect object circuit, and that
deeper layers may serve secondary or even counterproductive
roles in this context.

The behavior of the MLP sublayers stands in stark contrast.
Across the board, MLPs show minimal impact on the model’s
decision-making, with the single and notable exception of
MLPO. This anomaly is consistent with prior observations
across transformer models like GPT-2, where ablating MLPO
has been shown to severely degrade performance even on
unrelated tasks. The prevailing interpretation is that MLPO

functions not as a task-specific processing unit, but rather as
a kind of embedding augmenter—a critical stage in which
raw token embeddings are enriched and made accessible to
later layers. Consequently, even though the first attention layer
performs relatively little logical processing, it benefits from an
enhanced representational substrate courtesy of MLPO. Thus,
the attention heads in later layers can effectively operate on a
more structured and informative input, with the residual stream
serving as the medium for this enriched signal.

When applying this component-level patching technique to
the obfuscated model, a similar yet subtly different picture
emerges (Figure 7). The general architecture of the computa-
tion—starting at the second subject token and ending at the
END token—remains identifiable, but it becomes less efficient
and more distributed. In particular, attention layers in layers
8, 9, and 10 assume greater importance. Notably, the patching
results indicate that these layers exhibit negative contributions
to the residual stream at the END token, suggesting that
these components introduce transformations that degrade the
clarity or fidelity of the stored information. However, this
degradation is counterbalanced by positive contributions at
the second subject token, implying that the model is actively
encoding compensatory representations earlier in the sequence
to offset later interference. The net effect is that the model’s
computation is more prolonged and requires greater post
hoc correction than in the standard model, confirming that
obfuscation adds a layer of representational difficulty that must
be managed internally.

Perhaps most striking is the reversal in attention head
behavior observed in the obfuscated model. Whereas in the
base model the earlier attention heads performed the bulk
of meaningful computation, the obfuscated model exhibits
positive contributions in the later attention heads and negative
contributions in the earlier ones. This reversal suggests a
redistribution of functional responsibility: because the second
subject token is harder to interpret under obfuscation, earlier
heads are less effective at encoding its semantics. As a result,
the burden shifts to later attention heads, which must now per-
form the job of moving and refining the necessary information
closer to the point of output generation. The indirect object still

Residual Stream

Layer

10

A b A
ALeezxzEg32unsngys 25w zsgoe
33 3238 ,00 © I < ™o o 23 Za%8% af 8
as3 =28 ~ 3z I T 235,23 -]
?pi—'“] b5 :;‘-‘-‘b %»—-N F) 5
m o
x x
2 2
v v
o o

Sequence Position

Attn Output

Sequence Paosition

MLP Output
l1
0.5
0
=05
._1
9 gog ASowzsgooe’ o oo
- 5§ 5§ 6C -5 823550 FTHE S
O FJ < 0 g . f:IijQ S o ® B O T ® g
50 n i 3 5 2 A F - 50 o «*
- o w @ -
= o= W R Q = N PN o W
) ES @ =N
@
%
I
v
a

Sequence Position

Fig. 7: Component patching - obfuscated model

triggers attention at the END token, but this process is now
deferred and spread out over a longer sequence of layers.

Finally, the behavior of the MLPs in the obfuscated model
mirrors that of the base model. Once again, MLPO emerges
as the only layer of its type to exhibit significant influence,
presumably continuing to function as a vital extension of
the embedding. Its persistent importance across both models
reinforces the hypothesis that this layer serves as an anchor
point for input representation, one that later layers repeatedly
refer back to for foundational semantic information.

In summary, patching at the component level confirms that
attention mechanisms, especially in mid-to-late layers, carry
the primary computational load for solving the indirect object
identification task. While MLPs generally play a secondary
role, the unique significance of MLPO underscores the layered
dependency of transformer computations. In the presence of
input obfuscation, the task circuit remains intact, but it is
forced to reorganize: computations that were once handled
early now unfold across a broader set of layers, and the
model compensates for reduced clarity by spreading effort
more diffusely across attention heads in deeper blocks.

3) Head Patching: To gain a deeper understanding of the
internal mechanisms through which specific attention heads
contribute to model behavior, we performed fine-grained head
patching. This technique involves individually replacing the
outputs of each attention head at specific layers and token
positions—either with activations from a corrupted run (nois-
ing) or from a clean run (denoising)—to isolate their precise
influence on model predictions.

In the base GPT-2 model, this analysis reveals a clear
functional specialization of certain heads (Figure 8). Specifi-
cally, attention heads 9.9 and 9.6 demonstrate strong positive
contributions to the final logit difference. This means that
their outputs significantly amplify the model’s confidence
in selecting the correct indirect object. Their behavior sug-
gests that they are likely performing higher-level reasoning
operations, such as integrating information across sentence
components, resolving coreference, or suppressing repeated
token mentions—functions essential for correctly attributing
the indirect object in the presence of syntactic ambiguity or

duplication.

In contrast, heads 10.7 and 11.10 consistently produce neg-
ative contributions, implying that their outputs tend to reduce
model accuracy for this specific task. This might indicate
either interference from competing hypotheses or an overfitting
to patterns that are not beneficial in the task context. Their
presence suggests that late-layer heads do not uniformly con-
tribute constructively—some may encode competing heuristics
or noise that degrade performance when not properly aligned
with the task objective.

Interestingly, early-layer heads, such as 3.0 and 5.5, while
not contributing strongly to the final prediction, exhibit behav-
ior consistent with primitive logical operations. These likely
include low-level tasks such as detecting token boundaries,
positional proximity, or duplicated token patterns. Though not
directly tied to the final decision, their role is crucial in setting
up the conditions for downstream attention heads to operate
effectively.

0 0.4
2 I

0.2

g O y
)
8 II IIII -0.2
-0.4
0 5 10
Head

Fig. 8: Head patching - base model

When the same patching analysis is conducted on the
obfuscated version of the model (Figure 9), the observed
patterns differ in notable ways. First, while the overall archi-
tecture remains intact and certain heads still exhibit discernible
influence, the distribution and polarity of contributions shift.
The once clearly helpful heads in layer 9, particularly 9.9
and 9.6, no longer display the same consistent positive signal.
Their influence becomes more diffuse, and the clarity of their
role diminishes.

Moreover, the frequency and magnitude of negative contri-
butions increase across a broader range of heads, particularly
in later layers. This suggests that obfuscation introduces noise
or ambiguity into the internal representations, requiring atten-
tion heads to compensate or reconstruct more information than
in the unmodified case. As a result, these heads may become
overloaded or misaligned with the original circuits that were
effective in the base model.

The shift in behavior supports the hypothesis that obfusca-
tion—while preserving high-level model accuracy—alters the
internal representational topology of the network. Attention
heads, which in the base model act primarily as information
movers (i.e., copying relevant data to critical positions), may in
the obfuscated model take on more processing-intensive roles.
That is, instead of just relocating salient features, they appear
to transform and reinterpret them in a way that is compatible
with downstream expectations, potentially compensating for
the distortion introduced by the encrypted or transformed
inputs.

Overall, this analysis highlights that obfuscation does not
eliminate task-relevant circuits, but reshapes their internal
dynamics. The altered behavior of attention heads suggests a
reorganization of functional responsibilities across the model,
reaffirming the importance of interpretability methods such
as patching to uncover how robust and adaptive transformer-
based models are when confronted with representational dis-

tortions.
0
l0.3
2 0.2

4 0.1

Layer

0

-0.1

I—O.Z
10 -0.3
H H
0 5 10
Head

Fig. 9: Head patching - obfuscated model

V. CONCLUSION

This study set out to determine whether architectural
obfuscation—advertised as a low-overhead privacy de-
fence—destroys the ability of modern mechanistic tools to
explain a Transformer or merely shifts that explanatory task
into a different coordinate system. By applying residual-stream
patching, block-component patching and head patching to
GPT-2-small before and after a representative obfuscation,
we obtained a clear picture. The essential circuit that moves
information from the duplicated-subject token to the END to-
ken survives every transformation; however, activation patterns
become markedly more diffuse, attention roles invert in the
later blocks, and head-level importance is scattered across a

broader set of neurons. These changes make causal tracing
noisier and prompt reconstruction far less precise while leaving
top-line accuracy intact.

From a mechanistic-interpretability perspective, the results
validate obfuscation as a useful—but not absolute—privacy
layer. It hinders fine-grained reverse engineering without eras-
ing the coarse computations that safety or compliance audits
may still need to inspect. Having established that lightweight
scrambling offers real benefits, the next step is to strengthen
security guarantees without forfeiting interpretability. Cryp-
tographic techniques are the natural frontier here. Fully ho-
momorphic encryption is especially promising: it processes
ciphertext end-to-end, neutralising the leakage channels that
permutation schemes cannot close, yet recent progress in
diagonal packing and low-depth polynomial approximations
suggests that the latency penalty is no longer prohibitive
for medium-size models. Bridging architectural obfuscation
with homomorphic or hybrid MPC-HE protocols could yield
systems that are simultaneously private, auditable and efficient.
In short, the road ahead lies in marrying the interpretability-
preserving qualities of obfuscation with the provable security
of modern cryptography.

REFERENCES

[1] Dario Amodei. The Urgency of Interpretability. Ac-
cessed 21 Jun 2025. 2024. URL: https : / / www .
darioamodei.com/post/the-urgency- of - interpretability #
a-brief-history-of-mechanistic-interpretability.

[2] Staphord Bengesi et al. “Advancements in Generative
AL A Comprehensive Review of GANs, GPT, Autoen-
coders, Diffusion Model, and Transformers.” In: IEEe
Access (2024).

[3] Tom Brown et al. “Language models are few-shot learn-
ers”. In: Advances in neural information processing
systems 33 (2020), pp. 1877-1901.

[4] José Campino. “Unleashing the transformers: NLP
models detect Al writing in education”. In: Journal of
Computers in Education (2024), pp. 1-29.

[5] et al. Chris Olah Nelson Elhage. Toy Models of Super-
position. Accessed 22 Jun 2025. Sept. 2022. URL: https:
/ltransformer-circuits.pub/2022/toy_model/index.html.

[6] Mauro Conti, P Vinod, and Alessio Vitella. “Obfus-
cation detection in android applications using deep
learning”. In: Journal of Information Security and Ap-
plications 70 (2022), p. 103311.

[7] Hoagy Cunningham et al. Sparse Autoencoders Find
Highly Interpretable Features in Language Models.
Accessed 21 Jun 2025. 2023. arXiv: 2309 . 08600
[cs.CL]. URL: https://arxiv.org/abs/2309.08600.

[8] Tri Dao et al. “Flashattention: Fast and memory-
efficient exact attention with io-awareness, 2022”. In:
URL https://arxiv. org/abs/2205.14135 (2022).

[9]1 PyTorch Developers. Distributed Data Parallel (DDP)
— PyTorch Documentation. Accessed 21 Jun 2025.
2025. URL: https://docs.pytorch.org/docs/stable/notes/
ddp.html.

https://www.darioamodei.com/post/the-urgency-of-interpretability#a-brief-history-of-mechanistic-interpretability
https://www.darioamodei.com/post/the-urgency-of-interpretability#a-brief-history-of-mechanistic-interpretability
https://www.darioamodei.com/post/the-urgency-of-interpretability#a-brief-history-of-mechanistic-interpretability
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://docs.pytorch.org/docs/stable/notes/ddp.html
https://docs.pytorch.org/docs/stable/notes/ddp.html

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Nelson Elhage et al. “A Mathematical Framework
for Transformer Circuits”. In: Transformer
Circuits Thread (2021). https://transformer-
circuits.pub/2021/framework/index.html.

Gabriel Goh et al. “Multimodal Neurons in Artificial
Neural Networks”. In: Distill (Mar. 2021). Accessed 21
June 2025. por: 10.23915/distill.00030. URL: https:
//distill.pub/2021/multimodal-neurons/.

Dan Hendrycks and Kevin Gimpel. “Gaussian error lin-
ear units (gelus)”. In: arXiv preprint arXiv:1606.08415
(2016).

Eun-Jae Lee et al. “Deep into the brain: artificial
intelligence in stroke imaging”. In: Journal of stroke
19.3 (2017), p. 277.

Yu Lin et al. “An Inversion Attack Against Obfuscated
Embedding Matrix in Language Model Inference”. In:
Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing. 2024, pp. 2100—
2104.

Yu Lin et al. “An Inversion Attack Against Obfuscated
Embedding Matrix in Language Model Inference”. In:
Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP 2024).
Miami, Florida, USA: Association for Computational
Linguistics, 2024, pp. 2100-2104. por: 10.18653/v1/
2024 .emnlp-main.126. URL: https://aclanthology.org/
2024.emnlp-main.126.

Jinglong Luo et al. CENTAUR: Bridging the Impossi-
ble Trinity of Privacy, Efficiency, and Performance in
Privacy-Preserving Transformer Inference. v2, 10 Jun
2025. 2024. arXiv: 2412.10652 [cs.LG].

Maxim Milakov and Natalia Gimelshein. “Online nor-
malizer calculation for softmax”. In: arXiv preprint
arXiv:1805.02867 (2018).

Aditya Mishra et al. SentinelLM. Accessed 22 Jun 2025.
2023. arXiv: 2312.17342 [cs.CL]. URL: https://arxiv.
org/abs/2312.17342.

Neel Nanda and Owain Evans. Towards Monoseman-
ticity: Decomposing Language Models With Dictionary
Learning. Accessed 21 Jun 2025. 2023. arXiv: 2309.
16042 [cs.LG]. URL: https://arxiv.org/abs/2309.
16042.

Ayodeji Oseni et al. “Security and privacy for artificial
intelligence: Opportunities and challenges”. In: arXiv
preprint arXiv:2102.04661 (2021).

Felipe Oviedo et al. “Interpretable and explainable
machine learning for materials science and chemistry”.
In: Accounts of Materials Research 3.6 (2022), pp. 597-
607.

Guilherme Penedo et al. “The fineweb datasets: De-
canting the web for the finest text data at scale”. In:
Advances in Neural Information Processing Systems 37
(2024), pp. 30811-30849.

Ofir Press and Lior Wolf. “Using the output embed-
ding to improve language models”. In: arXiv preprint
arXiv:1608.05859 (2016).

Rodrigo Quian Quiroga et al. “Invariant Visual Repre-
sentation by Single Neurons in the Human Brain”. In:

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

(36]

(37]

(38]

[39]

Nature 435.7045 (2005), pp. 1102-1107. por: 10.1038/
nature03687. URL: https://www.nature.com/articles/
nature(03687.

Alec Radford et al. “Language models are unsupervised
multitask learners”. In: OpenAl blog 1.8 (2019), p. 9.
Denis Rothman. Transformers for Natural Language
Processing and Computer Vision: Explore Generative
Al and Large Language Models with Hugging Face,
ChatGPT, GPT-4V, and DALL-E 3. Packt Publishing
Ltd, 2024.

Anthropic Interpretability Team. Mapping the Mind of
a Large Language Model. Accessed 21 Jun 2025. Apr.
2024. URL: https : // www . anthropic . com / research /
mapping-mind-language-model.

Anthropic Interpretability Team. On the Biology of a
Large Language Model. Accessed 21 Jun 2025. Feb.
2025. URL: https ://transformer - circuits . pub /2025 /
attribution- graphs/biology.html.

Anthropic Interpretability Team. Scaling Monoseman-
ticity: Extracting Interpretable Features from Claude
3 Sonnet. Accessed 21 Jun 2025. May 2024. URL:
https : / / transformer - circuits . pub / 2024 / scaling -
monosemanticity/.

Amey Thakur and Archit Konde. “Fundamentals of neu-
ral networks”. In: International Journal for Research
in Applied Science and Engineering Technology 9.VIII
(2021), pp. 407-426.

Rahul Thomas et al. “An Attack to Break Permutation-
Based Private Third-Party Inference Schemes for
LLMs”. In: arXiv preprint arXiv:2505.18332 (2025).
Erico Tjoa and Cuntai Guan. “A survey on explainable
artificial intelligence (xai): Toward medical xai”. In:
IEEE transactions on neural networks and learning
systems 32.11 (2020), pp. 4793-4813.

Ashish Vaswani et al. “Attention is all you need”. In:
Advances in neural information processing systems 30
(2017).

B. et al. Wang. “Interpretability in the wild: A circuit for
indirect object identification in GPT-2”. In: Anthropic
(2022).

Xiao Wen et al. “On the interpretability of machine
learning methods in crash frequency modeling and crash
modification factor development”. In: Accident Analysis
& Prevention 168 (2022), p. 106617.

Fubo Yu et al. “Deep exploration of random forest
model boosts the interpretability of machine learning
studies of complicated immune responses and lung
burden of nanoparticles”. In: Science advances 7.22
(2021), eabf4130.

Mu Yuan, Lan Zhang, and Xiang-Yang Li. Secure
Transformer Inference Protocol (STIP). v2, 8 May
2024. 2024. arXiv: 2312.00025 [cs.CR].

Rowan Zellers et al. “Hellaswag: Can a machine
really finish your sentence?” In: arXiv preprint
arXiv:1905.07830 (2019).

Fei Zheng et al. PermLLM: Private Inference of Large
Language Models within 3 Seconds under WAN. v1, 31
May 2024. 2024. arXiv: 2405.18744 [cs.CR].

https://doi.org/10.23915/distill.00030
https://distill.pub/2021/multimodal-neurons/
https://distill.pub/2021/multimodal-neurons/
https://doi.org/10.18653/v1/2024.emnlp-main.126
https://doi.org/10.18653/v1/2024.emnlp-main.126
https://aclanthology.org/2024.emnlp-main.126
https://aclanthology.org/2024.emnlp-main.126
https://arxiv.org/abs/2412.10652
https://arxiv.org/abs/2312.17342
https://arxiv.org/abs/2312.17342
https://arxiv.org/abs/2312.17342
https://arxiv.org/abs/2309.16042
https://arxiv.org/abs/2309.16042
https://arxiv.org/abs/2309.16042
https://arxiv.org/abs/2309.16042
https://doi.org/10.1038/nature03687
https://doi.org/10.1038/nature03687
https://www.nature.com/articles/nature03687
https://www.nature.com/articles/nature03687
https://www.anthropic.com/research/mapping-mind-language-model
https://www.anthropic.com/research/mapping-mind-language-model
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://arxiv.org/abs/2312.00025
https://arxiv.org/abs/2405.18744

	Introduction
	Background
	Methodology
	Seeded Tokenizer
	Model Architecture
	Activation Function
	Parameter Sharing: Token Embeddings and Output Layer
	Weight Initialization
	Hardware and Training Schedule

	Results and discussion
	Task Definition
	Logit Attribution
	Activation Patching
	Residual Stream Patching
	Patching by Block Component
	Head Patching

	Conclusion

