arXiv:2506.17988v1 [cs.CR] 22 Jun 2025

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

Seongjin Kim"
mmoOck3r@korea.ac kr
Korea University
Seoul, South Korea

ABSTRACT

Emerging crypto economies still hemorrhage digital assets be-
cause legacy wallets leak private keys at almost every layer of the
software stack, from user-space libraries to kernel memory dumps.
This paper solves that twin crisis of security and interoperability by
re-imagining key management as a platform-level service anchored
in ARM TrustZone through OP-TEE. Our architecture fractures the
traditional monolithic Trusted Application into per-chain modules
housed in a multi-tenant TA store, finally breaking OP-TEE’s single-
binary ceiling. A cryptographically sealed firmware-over-the-air
pipeline welds each TA set to an Android system image, enabling
hot-swap updates while Verified Boot enforces rollback protection.
Every package carries a chained signature developer first, registry
second so even a compromised supply chain cannot smuggle mali-
cious code past the Secure World’s RSA-PSS gatekeeper. Inside the
TEE, strict inter-TA isolation, cache partitioning, and GP-compliant
crypto APIs ensure secrets never bleed across trust boundaries
or timing domains. The Rich Execution Environment can interact
only via hardware-mediated Secure Monitor Calls, collapsing the
surface exposed to malware in Android space. End-users enjoy a
single polished interface yet can install or retire Bitcoin, Ethereum,
Solana, or tomorrow’s chain with one tap, shrinking both storage
footprint and audit scope. For auditors, the composition model
slashes duplicated verification effort by quarantining blockchain
logic inside narrowly scoped modules that share formally speci-
fied interfaces. Our threat analysis spans six adversary layers and
shows how the design neutralizes REE malware sniffing, OTA in-
jection, and cross-module side channels without exotic hardware
. A reference implementation on AOSP exports a Wallet Manager
HAL, custom SELinux domains, and a CI/CD pipeline that vet com-
munity modules before release. The result is not merely another
hardware wallet but a programmable substrate that can evolve at
the velocity of the blockchain ecosystem. By welding radical ex-
tensibility to hardware-anchored assurance, the platform closes
the security-usability gap that has long stymied mass-market self-
custody. We posit that modular TEEs are the missing OS primitive
for Web3, much as virtual memory unlocked multi-tasking in clas-
sical computing. Together, these contributions sketch a blueprint
for multi-chain asset management that is auditable, resilient, and
poised for global deployment.

KEYWORDS

Blockchain, Trustzone, wallet, Trusted computing, Domain-specific
security and privacy architectures, Authentication, Mobile platform
security, Embedded systems security

*All authors contributed equally to this research.

Sanguk Yun*
dnwjddld94@korea.ac.kr
Korea University
Seoul, South Korea

Jungho Jang®
jjo30116@korea.ac.kr
Korea University
Seoul, South Korea

1 INTRODUCTION

1.1 Exchange Hacking Incidents

1.1.1 2025 Bybit Hack. Most recently, in February 2025, the By-
bit exchange suffered what is now recorded as the largest single
cryptocurrency theft in history, with approximately USD 1.4 billion
stolen.[1]Based in Dubai, the global exchange Bybit lost 400,000
ETH within a matter of minutes. Investigations revealed that hack-
ers had skillfully exploited the leakage of private keys from the
exchange’s hot wallet.[1] The attackers circumvented security veri-
fication mechanisms by inserting fraudulent smart contracts dis-
guised as legitimate wallet addresses into the multi-signature wallet
transfer process, thereby diverting the funds to external wallets. The
CEO of Bybit promptly acknowledged the breach and announced
a bounty program to recover the stolen assets. Following inter-
national collaborative investigations, on February 26, the FBI offi-
cially identified a North Korean hacking group as responsible for
the attack.[1] This incident was particularly alarming because it
demonstrated that even wallets perceived to be cold wallets could
possess vulnerabilities.[2] In 2025 alone, more than USD 2 billion
worth of cryptocurrencies were stolen in various hacking incidents,
triggering heightened concern among global regulatory bodies and
cybersecurity experts.[3] The Bybit hack severely undermined trust
in exchange security, prompted urgent security reviews across nu-
merous platforms, and emphasized the need for more proactive and
robust security measures throughout the blockchain industry.

1.1.2 2024 DMM Bitcoin Hack. In May 2024, Japan’s mid-sized
cryptocurrency exchange DMM Bitcoin suffered a major security
breach resulting in the theft of 4,502.9 BTC (approximately USD
308 million).[1] The exchange, operated by the IT conglomerate
DMM Group since 2018, had been known for its relatively con-
servative operations. However, hackers managed to penetrate the
wallet system and siphon off large amounts of Bitcoin. Investiga-
tions pointed strongly toward the North Korean Lazarus Group as
the perpetrators, with stolen funds being laundered through corpo-
rate accounts in third-party countries.[4] In response, DMM Bitcoin
secured emergency funding of approximately USD 320 million to
stabilize operations and replenish customer holdings.[4] Despite
these efforts, prolonged service disruptions, including withdrawal
restrictions, made continued operations unsustainable.[4] Conse-
quently, in December 2024, the company officially announced the
cessation of its exchange operations and initiated the transfer of
customer accounts and assets to SBI VC Trade, an exchange under
Japan’s SBI Group. This case served as a sobering example that
a single hacking incident could directly lead to the downfall of a
business and the erosion of customer trust, underscoring the critical
importance of security.

https://arxiv.org/abs/2506.17988v1

Seongjin Kim, Sanguk Yun, and Jungho Jang

Exchange | Year | Attack Method

Amount Stolen Estimated USD Loss (at the time)

Lazarus Group)

Bybit 2025 | Private key leak from hot wallet, 400,000 ETH approx. 1.4 billion USD
forged smart contract
DMM Bitcoin | 2024 | Wallet system breach (suspected 4,502.9 BTC approx. 308 million USD

FTX 2022 | Insider access or abuse of internal

privileges

approx. 477 million USD in crypto

approx. 477 million USD

Coincheck 2018 | Phishing + malware, hot wallet theft

Not disclosed approx. 534 million USD

Mt. Gox 2014 | System vulnerabilities and lack of

version control

Not disclosed approx. 460 million USD

Table 1: Top 5 Cryptocurrency Exchange Hacking Incidents (as of 2025)

1.1.3 2022 FTX Hack. Founded in 2019, the globally renowned
cryptocurrency exchange FTX collapsed in November 2022 due
to financial mismanagement and executive misconduct, filing for
bankruptcy.[1] In the immediate aftermath, a significant hacking
incident occurred, exploiting internal chaos.[5] Approximately USD
477 million in various cryptocurrencies was illicitly transferred out
of FTX wallets. Blockchain transaction analyses indicated that a
substantial portion of these funds were stolen through hacking.[5]
Experts suggested that the attackers had deep access to FTX’s inter-
nal security systems, evidenced by the use of verified accounts on
another exchange, Kraken, to move funds. This led to speculation
that the hack was likely perpetrated by insiders or through the
abuse of privileged access.[1, 5] FTX swiftly transferred remaining
assets to offline cold wallets and issued emergency advisories urg-
ing users not to access the FTX site or app.[5] The new management
team coordinated closely with global law enforcement and other
exchanges to track the stolen funds and mitigate further losses.[5]
The FTX hack demonstrated that even large exchanges were vulner-
able to massive customer asset losses due to poor internal controls
and weak key management, further eroding trust amid the firm’s
bankruptcy proceedings.

1.1.4 2018 Coincheck Hack. In January 2018, Japan’s major cryp-
tocurrency exchange Coincheck was hacked, resulting in the theft
of approximately USD 534 million worth of NEM (XEM) tokens—the
largest known cryptocurrency theft at that time.[1] Coincheck im-
mediately suspended all cryptocurrency deposits and withdrawals
as it assessed the damage.[1] The attackers employed sophisticated
phishing techniques to hijack employee accounts, planting malware
into internal systems.[1] This enabled them to drain significant
amounts of cryptocurrency from internet-connected hot wallets.[6]
The exchange stated that it could not guarantee full compensation
for customer losses, prompting an urgent investigation by Japan’s
Financial Services Agency. At the time, some security experts and
regulatory bodies suspected involvement by North Korea-linked
hacking groups,[3] raising broader concerns about state-sponsored
cyberattacks on financial platforms. The Coincheck hack high-
lighted the severe risks associated with inadequate hot wallet man-
agement and social engineering attacks, spurring stronger regu-
latory oversight and improved security practices within Japan’s
cryptocurrency industry.

1.1.5 2074 Mt. Gox Hack. One of the earliest large-scale hacking
incidents in cryptocurrency history occurred in early 2014, when
the Tokyo-based exchange Mt. Gox lost approximately USD 460 mil-
lion worth of Bitcoin.[1] At the time, Mt. Gox handled nearly 80%
of global Bitcoin trading volume, making it the largest exchange
worldwide. However, repeated security breaches and operational
mismanagement led to cumulative losses, culminating in a bank-
ruptcy filing in 2014 that left around 24,000 customers without their
deposited funds.[1] Post-incident investigations revealed that a lack
of version control in the platform’s source code and other systemic
vulnerabilities facilitated the attackers’ prolonged infiltration.[3]
The case was widely regarded as the first major instance of a cryp-
tocurrency exchange collapse driven by a hacking incident, and
it had a lasting impact on the development of stronger security
regulations and practices across the industry.

1.2 Motivation

Despite more than a decade of academic advances and industry
best-practices, private-key theft remains the dominant root cause
of cryptocurrency losses. Chainalysis reports that hackers stole
roughly USD 2.2 billion worth of digital assets in 2024 alone, mark-
ing a 21 % year-over-year increase and the fifth year in the past
decade to breach the billion-dollar threshold. [7] Detailed incident
analysis further reveals that compromised private keys account
for 43.8 % of all stolen funds, outranking smart-contract bugs and
oracle manipulation. [8] The prevalence of this vector underscores
a systemic weakness in the way keys are generated, stored, and
used across both centralized exchanges and self-custody wallets.

Centralized services remain a lucrative target, with high-profile
breaches such as the USD 245 million wallet drain that culminated
in a kidnapping plot against the perpetrator demonstrating the real-
world stakes of private-key leakage. [9] Even “cold” infrastructures
can be circumvented: the February 2025 Bybit incident showed
that multi-signature cold wallets are still vulnerable via supply-
chain attacks on the hardware used during key generation. [10]
Self-custody is not inherently safer. Hardware wallets like Ledger or
Trezor protect keys at rest, but phishing campaigns and firmware
backdoors continue to siphon seeds once a device is connected
to an online host. [11] Attempts to externalize keys—e.g., storing
them on air-gapped USB drives or physical vaults—ultimately fail

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

to remove the “last-mile” risk: the key must be decrypted inside
a general-purpose CPU when signing a transaction, momentarily
exposing it to rootkits, DMA attacks, or side-channel leakage.
TEEs such as ARM TrustZone provide an attractive isolation
boundary, and prior work has indeed deployed single-purpose wal-
lets (e.g., Bitcoin-only or Ethereum-only) inside such enclaves. How-
ever, a recent survey of TEE deployments finds that these projects
are monolithic, protocol-specific, and rarely interoperable. [12] In
practice, a user who holds assets across ten distinct chains must
install—and keep patched—ten independent wallet applications or
devices, each with its own threat surface and update cadence. This
fragmentation introduces three explicit pain points:

1. Usability overhead - Users juggle multiple seed phrases,
user interfaces, and firmware versions, increasing the like-
lihood of human error and social-engineering success.

2. Delayed support for emerging chains — Niche or rapidly
evolving blockchains often lack the commercial incentive
for vendors to implement dedicated TAs, leaving early
adopters to fall back on insecure hot wallets.

3. Duplicated audit effort — Security analysts must sepa-
rately vet each single-chain implementation, wasting re-
sources and risking inconsistent assurance levels.

Taken together, the evidence indicates a two-fold gap in today’s
key-management landscape:

1. Security Gap — Neither centralized custody nor conven-
tional self-custody reliably prevents private-key exposure
during transaction signing, making large-scale thefts rou-
tine. Hardware isolation solutions reduce—but do not elim-
inate—the attack surface, and they remain vulnerable to
sophisticated supply-chain or side-channel exploits.

2. Interoperability Gap - Existing TEE-based wallets hard-
code support for a single blockchain. This siloed architec-
ture fails to accommodate the multi-asset portfolios com-
mon among modern users and leaves minor networks un-
derserved.

Consequently, there is a pressing need for a unified, extensible, and
verifiably secure framework that (i) confines all key material within
a hardware-backed trusted boundary across its entire life cycle and
(ii) allows dynamic addition of new blockchain support without
compromising the assurance of established modules. The remainder
of this paper addresses precisely this gap by introducing a modular
TEE-centric wallet platform—detailed in Section 3—that reconciles
strong cryptographic isolation with user-driven flexibility.

1.3 Our Approach

1.3.1 Design Goals. The ultimate objective of this study is to pro-
vide a key-management and signing infrastructure that is
both secure and highly scalable in a multi-blockchain envi-
ronment, while simultaneously achieving user convenience and
openness of the wallet ecosystem. To this end, we define the fol-
lowing four top-level goals.

1. Minimize key exposure: Perform every secret-key op-
eration inside the SoC’s ARM TrustZone-based Trusted
Execution Environment (TEE) so that memory-snooping

and code-injection vectors in both the application layer and
the kernel space are fundamentally blocked.

2. Modularity: Depart from the legacy paradigm that forces
multiple protocols into a single monolithic Trusted Applica-
tion (TA); instead, package and distribute chain-specific
TA modules independently, thereby reducing functional
dependencies and build complexity dramatically.

3. User-driven extensibility: Users must be able to select
and install only the network modules they need at any
time, and even new or minor chains must be onboarded
immediately with the same security level.

4. Verifiable supply-chain security: Firmware-Over-The-
Air (FOTA) images used for module distribution must un-
dergo mandatory signature and integrity checks, and the
loading procedure inside the TEE OS is standardized to
prevent trust-on-first-use attacks and post-installation tam-
pering.

1.3.2 Architectural Overview. Figure 1 illustrates the overall struc-
ture of the proposed system. The platform consists of three com-
ponents: (i) a Wallet Application (Client Application, hereafter
CA) located in the Rich Execution Environment (REE) of the user
device; (ii) a set of TA modules residing in the Secure World of
TrustZone; and (iii) a Module Update Server.

e Wallet Platform (Customized Android)

— Based on AOSP, only minimal syscall and HAL modi-
fications are applied to expose an interface capable of
invoking TrustZone Secure Monitor Calls (SMCs).

— The CA serializes user requests and forwards them to
the TEE, then records the returned signatures either
to the network broadcast layer or to local storage.

¢ Trusted Execution Environment

— Independent TAs for each chain are partitioned as the
BTC Module, ETH Module, and so on.

— Each module encapsulates chain-specific logic such
as key generation, address derivation, signing, and
handling of BIP-32/44 parameters.

— Data sharing between TAs is prohibited to suppress
side channels, and the public API is exposed only
through the CA—TEE IPC interface.

e Module Update Server

— Registered developers submit signed module binaries
and metadata (file hash, supported chain ID, interface
version).

— The server runs static and dynamic analysis in a CI/CD
pipeline to detect malicious code, hard-coded private
keys, or excessive memory allocation.

— Upon passing all checks, a signed OTA package is
generated and published to the version registry and
CDN.

1.3.3 Module Lifecycle and Distribution Procedure.

1. Submission: Developer X builds a module supporting
“FooChain,” signs it with a GPG/PKCS #11 developer cer-
tificate, and uploads it to the server.

Seongjin Kim, Sanguk Yun, and Jungho Jang

Request modules that user wants

USL

Specific Blockchain

Method Request
Trusted Execution Environment
Modules downloaded by the user
Wallet Platform Module Update Server

(Customized Android) BTC Module ETH Module Unspecified

TAL TAL Module

TA2 TA2 Update Modules .
‘Wallet Application (CA) . . & TAs in the Combine Modules &

TEE-OS Android

Secure Monitor Call based on ARM TrustZone

Figure 1: Overall solution of Modular Wallet

. Validation: The server automatically performs static anal-
ysis — symbolic execution — fuzzing; packages in violation
of policy are rejected.

. Publishing: Approved packages are deployed to the
modules.kms.example.com repository, and the Manifest
JSON is updated.

. Installation: When the user checks the FooChain option
in the Wallet UJ, the CA pulls down the OTA and streams
the package into the Secure World.

. Loading: The TEE OS verifies the RSA-PSS signature and
SHA-256 hash, then maps and executes the TA in an inde-
pendent address space.

. Update: When a new version is posted, the CA downloads
a delta-OTA in the background and hot-swaps it after the
same verification procedure.

1.3.4 Threat Model and Countermeasures.

Attack Vector Legacy Monolithic | Proposed Mitigation
Wallet
REE Malware (sniffing) Key operations exposed | Perform all key opera-

— theft possible tions inside the TA

e Minimal Operator Liability: The server performs only
module verification and metadata distribution; private keys
are never uploaded to the server.

1.3.6 Technical Contributions.

1. Modular TEE stack design: Overcame the single-binary
TA limitation of OP-TEE and implemented a multi-tenant
TA store.

2. Secure OTA pipeline: Combined TA images and Android
packages into a single FOTA image, unifying the user
upgrade procedure.

3. Community-driven extensibility: Demonstrated that
even minor chains can be adopted immediately under the
same security guarantees via a “verified contribution” model.

1.3.7 Summary. This paper re-architects the key-management
weakness of wallets into a TEE-based modular architecture that
(i) fundamentally blocks key-exposure attack surfaces, (ii) provides
multi-chain scalability and user-driven update flows, and (iii) simul-
taneously mitigates supply-chain threats and legacy compatibility

OTA Supply-chain

Malicious update injec-
tion possible

Two-stage signatures (de-
veloper — server), TEE-
OS-level verification

Side-channel (between TAs)

Shared process — leak-
age

TA isolation; L1/L2 cache
partitioning; SG(PAN) en-
abled

Delayed support for new
chains

Wallet vendor patch re-
quired

Community-driven third-
party module submission

issues. Our approach enables a new paradigm— “wallet functionality
as a platform-level service”—and experimentally proves that it can
achieve both interoperability and security at scale in the broader
blockchain ecosystem.

2 BACKGROUND

and verification

2.1 Blockchain

Table 2: Comparison of attack vectors, legacy limitations,
and proposed mitigations.

1.3.5 User Experience and Operational Perspective.

o Single UI, Multi-Chain: Users manage BTC, ETH, Solana,
and FooChain wallets simultaneously within one app, while
the keys are guaranteed by the TEE.

o Selective Installation: Chains used infrequently can be
disabled to reduce storage and memory consumption.

e Backward Compatibility: When importing legacy wal-
lets, the CA feeds WIF/BIP-39 seeds into the TEE via a
secure channel and immediately zero-izes them in memory.

Block N-1

Block N Block N+1

Block Header(Block Hash) Block Header(Block Hash) Block Header(Block Hash)
e | [o] [e | [o] et] [o]
HOo1 H23 [Ha] w1 [a7 []
GO GO G GO GO oo G GO
Tx1 2] [1x3 z| [1x3 0] [1x1 2] [1x3

Figure 2: Structure of Blockchain.

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

Generation Period | Core Concept

Technological Features and
Development Direction

Representative Projects

1st Generation | Since 2009 | Decentralized Digital Currency

Bitcoin
o Consensus algorithm based

on PoW

e Ensures immutability and in-
tegrity of transactions

o P2P transfer system without
central authority

2nd Generation | Since 2015 | Smart Contracts and DApps

Ethereum . .
e Smart contracts using Turing-

complete languages

e Decentralized applications
(DApps)

e Token ecosystem (e.g., ERC-
20)

Since 2018 | Scalability, Interoperability, Sus-

tainability

3rd Generation

Polkadot, Cardano, Solana, etc.

e New consensus structures
such as sharding and DAG

e Adoption of cross-chain tech-
nology

o Transition to PoS for energy
efficiency

Table 3: Blockchain Generational Classification

2.1.1 Concept of Blockchain. A blockchain is a form of distributed
ledger technology that stores transaction records in data bundles
called blocks, which are linked together in a continuous chain[13][14].
Each block is cryptographically connected to the previous block by
including the previous block’s hash value, thereby ensuring a strong
bond and data integrity across the chain[13, 15]. When new transac-
tions occur, they are broadcast to the network, collected into a new
block, and then appended to the existing chain in chronological
order[13]. All participating nodes employ a consensus algorithm to
agree on which candidate block should be added to the blockchain,
and once a block is finalized and added, the transactions it contains
become extremely difficult to alter or remove. This design makes
the blockchain an append-only ledger that is virtually tamper-proof,
since any attempt to modify a recorded block would require redoing
the proof-of-work for that block and every subsequent block[14, 15].
Moreover, a blockchain operates as a decentralized network with-
out a central administrator: the validity of transactions and updates
to the ledger are determined collectively by network participants
through cryptographic protocols[14]. This allows parties to trans-
act and share data in a trustless manner, meaning participants need
not trust each other or any central entity — trust is instead placed in
the blockchain’s cryptographic rules and decentralized consensus
mechanisms[14].

2.1.2 History of Blockchain. The concept of blockchain was first
introduced in 2008 when Satoshi Nakamoto published the Bitcoin
white paper, which outlined a new peer-to-peer electronic cash

system[15]. Nakamoto described an innovative method of times-
tamping transactions by hashing them into an ongoing chain of
proof-of-work, thus forming a record that cannot be changed with-
out redoing the proof-of-work[15]. In 2009, the Bitcoin network
went live as the world’s first public blockchain, demonstrating that
it was possible for participants to transfer digital currency in a P2P
fashion without relying on any central authority[13]. Bitcoin (now
considered the first generation of blockchain technology) proved
the viability of decentralized digital money and laid the foundation
for blockchain development. In 2015, Ethereum launched, introduc-
ing the concept of smart contracts and marking the second genera-
tion of blockchain platforms[13]. With smart contracts, blockchains
could support programmable transactions and decentralized appli-
cations (DApps) beyond simple currency transfers, greatly expand-
ing the use cases of the technology. Subsequently, newer projects
focusing on scalability, interoperability, and other improvements
emerged, often dubbed the third generation of blockchains. These
developments extended blockchain applications into domains like
supply chain, healthcare, and government services. In less than a
decade, blockchain technology rapidly evolved through multiple
generations, and research continues on enhancing performance,
privacy, and sustainability of blockchains. Today, blockchain has
grown from Bitcoin’s niche system into a broad foundational tech-
nology adopted or explored in various industries worldwide[13].

2.1.3 Technical Components of Blockchain. A blockchain is built
from several key technical components working in unison. The

fundamental unit is the block, which groups a set of transactions
along with metadata about those transactions[13]. Typically, a block
consists of a block header and a list of transaction contents. The
block header contains information such as the hash of the previous
block, a timestamp, a nonce or difficulty indicator (for proof-of-
work), and the Merkle root which summarizes all transactions in
the block[13]. Notably, the inclusion of the previous block’s hash in
each header links blocks together and creates the chained structure
of the blockchain, whereby each block “points” to its predecessor.
This hash chaining is critical for security: if any detail in an ear-
lier block is altered, its hash changes and breaks the chain linkage,
alerting the network to tampering. Another core component is
the transaction. A transaction represents a state change or trans-
fer of value initiated by a user. For example, in a cryptocurrency
blockchain, a transaction might transfer coins from one address
to another. Each transaction generally contains the sender’s ad-
dress, the recipient’s address, the amount (or data payload), and
the sender’s digital signature, which proves the transaction was
authorized by the holder of the corresponding private key. New
transactions are broadcast to the entire network and collected into
a pool of pending transactions (often called the mempool) by nodes.
Miners or validators then select pending transactions to form a new
block, which they propose to add to the blockchain[13]. The con-
sensus mechanism is the protocol that network participants use to
agree on the single authoritative ledger state in a distributed, trust-
less environment[14]. In a public blockchain where participants
may be anonymous or malicious, consensus algorithms ensure
that all honest nodes converge on the same valid block to append
next. The most well-known consensus algorithm is Proof of Work
(PoW), used by Bitcoin, which requires nodes (miners) to perform
a computationally intensive puzzle (hash calculation) to earn the
right to create a block[13]. PoW relies on the principle that find-
ing a solution is difficult but verifying it is easy; the first miner
to find a valid hash meeting the network’s difficulty target can
broadcast their block, and other nodes quickly verify the proof-
of-work and accept the block if it’s valid[13]. PoW offers strong
security and decentralization but at the cost of high computation
and energy consumption. To address these costs, Proof of Stake
(PoS) was developed and adopted by platforms like Ethereum, re-
placing brute-force computation with a system where validators
stake cryptocurrency to win block creation rights[13]. In PoS, val-
idators are pseudo-randomly chosen to propose or validate blocks
based on their stake (and other factors), and honest behavior is
enforced by economic incentives (rewarding correct validation and
slashing the stake for malicious behavior)[13]. Numerous other con-
sensus algorithms exist: Delegated Proof of Stake (DPoS), where
stakeholders elect delegates to produce blocks; Practical Byzantine
Fault Tolerance (PBFT), designed for consortium blockchains to
tolerate a limited number of Byzantine (malicious) nodes; Proof of
Activity, Proof of Burn, Proof of Capacity, and hybrid models, each
with trade-offs in terms of speed, security, and decentralization[13].
The choice of consensus mechanism is crucial and is often tailored
to the blockchain’s use case — for example, PoW for permissionless
security, or PBFT for permissioned efficiency. Together, the block
data structure, transactions with cryptographic signatures, and the
consensus protocol form the technical backbone of a blockchain
system.

Seongjin Kim, Sanguk Yun, and Jungho Jang

2.1.4 Security Properties of Blockchain. Blockchain is lauded for
its security and trust characteristics, which stem from its unique
design principles and cryptographic foundations. First, a blockchain
is decentralized, meaning no single entity controls the ledger; in-
stead, control is distributed across many independent nodes that
jointly validate and record data[14]. This decentralization provides
robustness: there is no single point of failure, and the network can
continue to operate correctly even if some nodes are compromised
or offline. Second, blockchains offer immutability — once data is
recorded and confirmed on the chain, it is extremely difficult to alter.
Each block is locked in place by the cryptographic hash linking
it to the next block, so any attempt to change a past block would
require recomputing the hashes of that block and all subsequent
blocks on a majority of nodes, which is computationally infeasible
in a large network([15]. This ensures that transaction records, once
finalized, become tamper-evident and tamper-resistant, providing
a permanent audit trail[15]. Third, blockchains are transparent and
verifiable. In public blockchains, the ledger is openly available for
anyone to inspect, and every node can independently verify the va-
lidity of transactions and blocks using the prescribed cryptographic
checks[4].

This openness promotes trust through verification - partici-
pants do not need to trust a central party, but can trust the system’s
transparency and mathematics[4]. Fourth, blockchain users benefit
from a degree of anonymity or pseudonymity. Identities on the
blockchain are represented by addresses derived from public keys
rather than personal information, so users can transact without
revealing their real-world identity, yet every transaction is still
linkable to a pseudonymous address[4]. This provides privacy for
users to an extent, while still maintaining accountability since all
transactions are traceable on the ledger (address identities can be
audited even if the individuals behind them are not immediately
known)[14]. Lastly, blockchain security relies heavily on crypto-
graphic techniques for integrity and authentication. All transac-
tions must be digitally signed by the owner’s private key, which
means that only the holder of the corresponding private key can
authorize a given action (e.g., spending funds)[4]. Any alteration
to a transaction’s data will invalidate its digital signature, allowing
nodes to detect tampering instantly. This cryptographic validation,
combined with hash linking of blocks and decentralized consen-
sus, eliminates the need to trust intermediaries and instead places
trust in robust algorithms. In summary, the key security properties
of blockchain include decentralization (no single authority con-
trol), immutability of records, transparency and auditability, user
pseudonymity, and cryptographic integrity assurance, all of which
contribute to blockchain’s reputation as a trustworthy and secure
data management solution[14].

2.2 Signature

2.2.1 Bitcoin (secp256k1 / ECDSA). Bitcoin uses the secp256k1
elliptic curve (defined by y? = x® + 7 over a finite field) and the
ECDSA signing scheme. A 256-bit private key d is chosen uniformly
at random, and the 65-byte (uncompressed) public key P = dG is
computed by scalar multiplication of the generator G. To sign a
message hash m, one selects a random nonce k € [1, n—1], computes

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

Network | Key Curve / Size Signature Algorithm Address Format
Bitcoin secp256k1 (256-bit) ECDSA on secp256k1 Base58Check (P2PKH):
RIPEMD160(SHA256(pubkey)) (~20B, “1..” prefix)

Ethereum | secp256k1 (256-bit) ECDSA on secp256k1 Hex (Keccak256(pubkey) low 20 bytes, “0x...” prefix)
Algorand | Curve25519 / Ed25519 EdDSA (Ed25519) Base32 (public key + 4B checksum)

(256-bit) (58-char string)
Polkadot | Curve25519 (256-bit) Schnorrkel / Sr25519 SS58 (Base58 of public key with prefix and check-

(Schnorr on Ristretto) sum) (~48-char)

Table 4: Comparison of Blockchain Key and Signature Schemes

R = kG, then sets
r=(xgmodn), s=k YH(m)+dr)modn,

so the signature is (r, s). The security relies on the Elliptic Curve
Discrete Logarithm Problem. Bitcoin addresses are derived by hash-
ing the public key: for a standard Pay-to-Public-Key-Hash (P2PKH)
address, one computes HASH160(P) = RIPEMD160(SHA256(P))
and encodes it in Base58Check with the network prefix. The result
is a 160-bit address (typically 26-35 characters, starting with “1”
for mainnet) that includes a 4-byte checksum.

2.2.2 Ethereum (secp256k1/ECDSA). Ethereum also uses secp256k1
and ECDSA (with the same signing math as Bitcoin).A 256-bit pri-
vate key yields a point P = dG on the curve y? = x> +7. To generate
an account address, the 64-byte uncompressed public key is hashed
with Keccak-256, and the low-order 20 bytes (160 bits) of the hash
are taken as the address. Formally, Addr = Keccak256(P), yield-
ing the familiar 20-byte hex address (prefixed “0x”). The ECDSA
algorithm allows public-key recovery from the signature (using a
recovery id v), which is why Ethereum stores (r, s, v). In summary,
Ethereum’s address generation and signing mirror Bitcoin’s curve
and signature (ECDSA on secp256k1) but use Keccak-256 hashing
instead of RIPEMD-160.

2.2.3 Algorand (Ed25519 / EADSA). Algorand uses the Ed25519
signature scheme (an instance of EADSA) over the Edwards-form
Curve25519. The private key a and its public key A = aB (where
B is a curve base point) are 32-byte values. The Ed25519 signing
procedure (as described by Bernstein et al.) is: compute r = H(k ||
M) from the private key’s prefix and message M, then R = rB
and S = (r + H(R, A, M), a) mod ¢, yielding signature (R, S). This
yields ~ 256-bit security. Algorand addresses are directly derived
from the public key: one appends a 4-byte checksum to the 32-
byte Ed25519 public key and encodes the result in Base32. Thus
an Algorand address is essentially the public key plus checksum,
typically represented as a 58-character Base32 string.

2.24 Polkadot (5r25519/ Schnorr). . Polkadot (and Substrate chains)
support multiple signature schemes, but their default is Schnorrkel
(often called sr25519). This is a Schnorr-type signature on the same
Curve25519 used by Ed25519. In sr25519, a private key d yields a
public point P = dG, and signing is similar to Schnorr: pick ran-
dom k, compute R = kG, and set s = k + H(R, P,m),d (mod q).
(Polkadot’s implementation includes specific tweaks for cofactor
and hashing, but conceptually it is Schnorr.) The advantage is native

multi-signature support and efficiency. Addresses in Polkadot use
the SS58 format: the public key (32 bytes) is prefixed by a version
byte and checksum, then Base58 encoded. For example, Polkadot
mainnet addresses start with a specific prefix (usually capital “1”
or “D” depending on version) and are 48 characters long. (Ed25519
and ECDSA keys are also supported by Polkadot, but sr25519 is the
recommended scheme.)

2.3 Trusted Execution Environment(TEE)

A Trusted Execution Environment (TEE) is a hardware-assisted
secure area of a processor that guarantees code and data loaded
inside it are protected with respect to confidentiality and integrity.
The primary goal of a TEE is to allow sensitive computations to
execute in isolation, even if the host operating system or hypervisor
is compromised. In practice, a TEE creates a programming environ-
ment that keeps critical assets (code, keys, data) safe from certain
attacks which would be difficult to thwart with traditional software
security alone[16]. This is achieved by partitioning hardware and
software resources into protected and unprotected domains, with
hardware-enforced access control between them[16]. In essence,
the TEE forms a “secure world” that normal (untrusted) software
cannot directly access, establishing a strong security perimeter.

TEEs are designed with isolation mechanisms at their core. These
mechanisms ensure that any code running outside the TEE can-
not inspect or tamper with the code and data inside the TEE. This
isolation can be implemented via dedicated hardware privileges,
memory access controls, and often memory encryption. For exam-
ple, Intel’s Software Guard Extensions (SGX) technology creates
protected containers called enclaves in a process’s address space;
these enclaves are opaque to the rest of the system and remain con-
fidential and integer even in the presence of a malicious OS[17]. In
general, the TEE’s hardware will block or encrypt unauthorized ac-
cesses, so that even highly privileged malware (kernel or hypervisor
level) cannot read or modify TEE memory. Many TEEs also support
secure attestation mechanisms: the TEE can produce cryptographic
proof of what software is running inside it. This attestation allows a
remote party to verify the TEE’s contents and establish trust before
provisioning sensitive data. For instance, an application running
in an SGX enclave can prove its identity (enclave code hash) to a
remote server and then receive decryption keys or credentials over
an encrypted channel[17]. In summary, TEEs provide a foundation
for secure computation on untrusted platforms — sometimes termed

confidential computing — by combining hardware-based isolation,
attestation, and minimal trusted code bases.

2.3.1 Intel Software Guard Extensions (SGX). Intel SGX is a promi-
nent TEE technology introduced by Intel for x86 processors (first
available in 2015). SGX extends the CPU instruction set to allow
the creation of protected memory regions called enclaves within
user-level applications. An enclave is a reserved portion of a pro-
cess’s address space that is protected by the CPU such that even
the OS, hypervisor, or BIOS cannot read or alter its contents[17].
Any attempt by external software to access enclave memory is
blocked by hardware, ensuring that enclave code and data enjoy
confidentiality and integrity guarantees even if privileged software
is malicious. The enclave memory is encrypted in DRAM by a
Memory Encryption Engine and checked for integrity (e.g., via
Merkle-tree mechanisms), so that hardware ensures enclave mem-
ory can’t be spoofed or read in plaintext outside the CPU package.
Notably, enclaves are created and managed by the untrusted OS
(which allocates pages and schedules threads), but the OS cannot
violate enclave protections — this design minimizes the Trusted
Computing Base (TCB) to include only the enclave’s own code
and the CPU/hardware. By dramatically reducing the TCB, SGX
limits the attack surface: a compromised operating system may
deny service but cannot extract secrets from an enclave or alter its
execution results.

SGX enclaves are primarily intended to enable secure cloud and
application scenarios where the developer partitions an application
into security-critical components that run inside enclaves. Com-
munication across the enclave boundary is done via well-defined
calls; if an enclave needs to request OS services or perform I/O, it
must exit, which ensures the enclave’s internal state is not directly
exposed. To bolster trust, SGX supports a remote attestation ser-
vice: each enclave can produce a quote (digital signature) over its
measurement (a cryptographic hash of its initial code/data) using
a processor-resident key. Remote clients verify this quote (via In-
tel’s attestation infrastructure) to confirm they are communicating
with a genuine Intel SGX enclave running the expected code, then
provision secrets (e.g. decryption keys) to it[17]. Once provisioned,
the enclave can use those secrets internally, and even “seal” data
to disk encrypted with a hardware-bound key such that only the
same enclave (or enclave author) can unseal it later. In terms of
performance, SGX enclaves incur some overhead (for enclave tran-
sitions and memory encryption) and are limited in secure memory
size (the Enclave Page Cache is on the order of tens of MBs in
early SGX versions). Nevertheless, SGX provides a powerful level
of isolation: even a kernel-level attacker or a malicious cloud admin-
istrator cannot directly read enclave memory contents [17]. This
strong protection has made SGX a key example of fine-grained
application-level TEEs focused on high security for sensitive code.

2.3.2 ARM TrustZone. ~ ARM TrustZone takes a different ap-
proach to TEEs, providing a coarse-grained division of the entire
system into two execution worlds. Introduced in ARM processors
(initially for ARMv6 architecture), TrustZone hardware creates a
Secure world and a Normal world that run in parallel on the same
processor core. The Normal world hosts the rich operating system
(e.g., Android or Linux) and regular applications, while the Secure
world runs a small, trusted OS (often called a Trusted Execution

Seongjin Kim, Sanguk Yun, and Jungho Jang

Environment OS) and secure applications (trustlets). The transition
between worlds is controlled by the processor: a special Secure
Monitor mode mediates switches typically via a secure monitor call
(SMC) instruction. Critically, the hardware enforces that Normal
world code cannot access Secure world memory or devices: all phys-
ical memory and peripherals are tagged as Secure or Non-secure,
and the TrustZone address controller will reject or remap accesses
from the Normal world to secure resources[18]. This means the
Secure world remains isolated from the rich OS, creating a safe
haven for security-sensitive code (like cryptographic key managers,
DRM agents, payment modules, etc).

The TrustZone model essentially provides a privileged isolated
environment for an entire small operating system. In practice, a
typical TrustZone Secure world runs a minimal Trusted OS (such as
ARM’s Trusted Firmware or proprietary solutions like Qualcomm’s
TrustZone TEE OS), and that OS can host multiple trusted applica-
tions. All Normal world software is untrusted and cannot directly
interfere with the Secure world; any interaction (for example, a
banking app requesting a fingerprint authentication handled in se-
cure world) must be done via calls mediated by the secure monitor.
Because the Secure world operates at a higher privilege (secure
supervisor mode) than the Normal world OS, it can also observe or
vet certain normal world operations if needed. The TEE provided by
TrustZone thus allows device manufacturers and OS vendors to im-
plement a range of secure services (secure UL biometric processing,
digital rights management, etc.) that are protected from potentially
compromised normal applications or kernels[18]. One advantage
of TrustZone is its low performance overhead: since the secure
and normal environments time-share the same core (with context
switches on world transitions) and use the same instruction set,
switching worlds is relatively fast and there is no need for duplicate
hardware. Also, existing applications in the Normal world run at
full speed, unaware of TrustZone’s presence unless they invoke
secure services.

However, TrustZone’s approach has some trade-offs. The granu-
larity of isolation is system-wide — there is only one Secure world,
so all trusted components share the Secure world’s resources. This
means the TCB in TrustZone includes the secure kernel and all
secure applications (which could be sizable, potentially millions
of lines of code when a rich TEE OS is used). A vulnerability in
the Secure world could compromise all secure apps. In contrast,
SGX enclaves are isolated from one another at the hardware level;
TrustZone must rely on its secure OS to compartmentalize differ-
ent secure apps. Nonetheless, TrustZone remains very popular in
mobile and embedded devices due to its ease of integration: it does
not require major changes to normal-world apps or OS (aside from
using the API to call secure services), and it leverages the existing
processor with minimal extra silicon. It shines in scenarios like pro-
tecting device unlock mechanisms, payment credentials, or other
localized secrets where the device manufacturer controls the secure
world software. TrustZone can also be used in virtualization sce-
narios (e.g., a hypervisor in secure world and a guest OS in normal
world), but it fundamentally assumes a single trusted realm and
does not target multi-tenant cloud use cases the way SGX or SEV
do.

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

2.3.3 AMD Secure Encrypted Virtualization (SEV). =~ AMD SEV
is a TEE technology from AMD that focuses on isolating entire
virtual machines from a potentially untrusted hypervisor. Debuted
with AMD’s EPYC processors (around 2017), SEV’s design aligns
with cloud computing needs: it allows a guest VM’s memory to be
encrypted such that the cloud provider’s hypervisor cannot read it.
In AMD’s architecture, the memory of each VM is automatically
encrypted by the CPU with a key unique to that VM. The hyper-
visor and host remain responsible for scheduling and managing
VMs, but they only ever see ciphertext when accessing a guest’s
memory. This creates a form of invisible VM to the hypervisor,
enforced by hardware. Concretely, AMD’s memory controller tags
each memory page with an identifier for the VM (ASID), and on
each memory access it uses the tag to determine the appropriate key
for encryption/decryption[19]. If a hypervisor or another VM tries
to read memory not belonging to it, they will get only encrypted
data. In this way, SEV provides strong cryptographic isolation be-
tween VMs and from the hypervisor[19]. The CPU and a secure
co-processor (the AMD Secure Processor) manage the keys and
ensure they remain inaccessible to software, so that even a rogue
hypervisor with full control of the system cannot extract a guest
VM’s memory in plaintext.

The strength of AMD SEV is that it can protect unmodified legacy
applications and operating systems running inside virtual machines
— the guest OS does not need to be rewritten or aware of SEV in most
cases. For cloud customers, this means one can run their workload
in a VM on someone else’s server and be confident that even the
cloud provider’s admins or malware in the host cannot snoop on the
VM’s memory contents. SEV technology evolved through several
generations: the initial SEV provided memory encryption for guest
pages, later SEV-ES extended protection to the VM’s CPU regis-
ter state when the VM is switched out (encrypting CPU registers
on VM exits so the hypervisor can’t capture them), and the latest
SEV-SNP adds hardware-based memory integrity protection and
other enhancements[20]. Memory integrity protection is crucial
because pure encryption does not stop a malicious hypervisor from
altering or replaying encrypted memory content. In fact, early SEV
versions, while preventing the hypervisor from learning plaintext
memory, could be vulnerable to tampering (e.g., replaying an old
encrypted page into the VM). SEV-SNP addresses this by main-
taining integrity checks so that any unauthorized modifications
to encrypted memory are detected, preventing attacks like replay
or memory re-mapping[20]. With SEV-SNP, AMD’s TEE approach
comes closer in security strength to Intel’s enclaves, effectively
creating an isolated execution environment for an entire VM with
both confidentiality and integrity assured against the hypervisor.

The trust model in SEV differs from SGX. In SEV, the guest OS
and applications are all inside the protected boundary (and are
therefore part of the trusted domain from the perspective of an out-
side attacker). The hypervisor and any higher-level host software
are untrusted. This means SEV does not protect an application from
a malicious or compromised kernel within the same VM - if the
guest OS is compromised, the applications in that VM are affected.
In contrast, SGX aims to protect an enclave even from a malicious
host OS. Thus, SEV’s threat model is suitable for scenarios where
the infrastructure (hypervisor, cloud provider) is untrusted, but you

still trust your own VM’s OS. AMD does provide a form of attes-
tation as well: the AMD Secure Processor can generate evidence
of a VM’s initial state (firmware, BIOS, etc., and measurement of
VM image) which a cloud tenant can verify to ensure their VM
was launched correctly on genuine AMD hardware before provi-
sioning secrets. Overall, SEV is a coarse-grained TEE - its unit of
isolation is an entire virtual machine - but it’s very practical for
cloud deployment since it can secure existing software stacks with
minimal performance impact (the encryption/decryption overhead
on modern AMD CPUs is low, typically only a few percent perfor-
mance cost). It complements the finer-grained TEEs like SGX by
addressing a different use case: protecting the confidentiality of
whole VMs in multi-tenant environments with untrusted hosts.

2.3.4 Comparison of TEE Technologies (SGX vs. TrustZone vs. SEV).

Each of the above TEE technologies shares the common goal of
isolating sensitive computations, but they differ in architecture and
strengths:

e Isolation Granularity and Scope: Intel SGX provides process-
level isolation, allowing many independent enclaves (even within
one application) each protecting specific code and data. ARM
TrustZone enforces a system-wide split into only two domains
(secure vs normal), suitable for running an entire trusted sub-
system alongside a normal OS. AMD SEV operates at the VM
level, encapsulating an entire guest OS and its processes within
a protected container (the VM). This means SGX can secure indi-
vidual application modules, TrustZone secures platform services
or drivers, and SEV secures whole OS instances.

o Threat Model and TCB: SGX assumes an attacker may control
everything in the software stack (OS, hypervisor, BIOS) except
the CPU; thus the enclave’s TCB is minimal (mainly the enclave
code itself and CPU microcode)[17]. TrustZone assumes the nor-
mal world OS may be compromised, but the secure world OS
remains trusted — the TCB includes the secure OS and trusted
apps, which can be relatively large. SEV assumes an untrusted
hypervisor/host, but trusts the guest OS; the TCB for an appli-
cation in an SEV-protected VM still includes the entire guest
OS (and hypervisor firmware) even though the underlying hard-
ware/firmware protects the VM from the hypervisor. In short,
SGX offers the smallest TCB (no OS in TCB), TrustZone and SEV
have a larger TCB (they include an OS inside the trusted region,
secure OS for TrustZone, guest OS for SEV).

o Isolation Mechanism: TrustZone primarily uses logical sep-
aration — a CPU mode (secure world) and an NS bit for mem-
ory/peripherals - to enforce isolation[18]. It does not inherently
encrypt secure world memory (it relies on the fact that nor-
mal world simply cannot access it at all). SGX uses a combi-
nation of CPU access control and memory encryption (with
hardware-managed encrypted memory regions for enclaves) to
protect enclave pages even if they reside in regular DRAM[17].
AMD SEV relies on full memory encryption with per-VM keys
to isolate VMs; only authorized hardware can decrypt a VM’s
memory[19]. Initially SEV’s isolation was purely cryptographic
(encrypting memory so the hypervisor can’t read it); with SEV-
SNP it also includes integrity checks to prevent unauthorized
modification[19].

o Attestation and Provisioning: All three technologies provide
ways to attest the secure environment. SGX has a well-defined
remote attestation process for each enclave, allowing remote
parties to verify enclave identity before provisioning secrets[17].
TrustZone-based TEEs historically have had proprietary attes-
tation (e.g., Samsung Knox or Google’s Titan M might attest
certain secure world state), but there isn’t a universal remote
attestation standard for TrustZone across all vendors. AMD SEV
attestation involves the platform’s Secure Processor signing a
statement of the VM’s launch state (covering the hypervisor,
firmware, and VM image measurements) which the VM owner
can verify — ensuring the VM is running under SEV protection
on genuine AMD hardware. In summary, SGX and SEV enable
cloud use-cases with remote attestation, whereas TrustZone’s
attestation is typically used locally or within an ecosystem (e.g.,
phone manufacturer verifying the secure OS).

o Performance and Use Cases: TrustZone has virtually no run-
time performance penalty for normal world code (aside from
the overhead when switching into secure world), making it
ideal for real-time or low-power device scenarios. Its use case
is device-centric (protecting local secrets, secure user interface,
etc.). SGX enclaves incur some performance cost (especially for
I/O-intensive operations or frequent context switches) and have
memory size limitations, but they enable powerful cloud appli-
cations like secure multi-party analytics or blockchain oracles
by protecting small sensitive code chunks on any platform [17].
AMD SEV has a slight performance overhead (memory encryp-
tion and maybe a small cost for cryptographic key use), but it can
secure entire VMs with ease, which is highly valuable for cloud
providers offering confidential VMs to customers. SEV is less
useful if one does not use virtualization, whereas SGX/TrustZone
can protect code in non-virtualized environments. Each TEE has
strengths suited to different scenarios: SGX excels at fine-grained
protection for specific application logic (with maximum trust in
hardware), TrustZone excels at integrating security functions
into devices with minimal disruption, and SEV excels at lifting
and securing large legacy software stacks (whole operating sys-
tems) in cloud environments.

2.4 Android Firmware Over-The-Air

2.4.1 FOTA Update System Architecture. Modern Android de-
vices employ a robust Firmware Over-The-Air (FOTA) update sys-
tem to upgrade the operating system and firmware without re-
quiring physical access. The standard Android update process (as
described in AOSP documentation) uses an A/B partition scheme
for seamless updates[21]. In essence, the device has two copies of
critical partitions — usually referred to as slot A and slot B - such as
system, boot, vendor, etc[21]. At any given time, the device boots
and runs from the active slot (say, slot A), while the other slot (slot
B) is inactive/unused. During an OTA update, the new firmware
is written to the inactive slot in the background, while the user
can continue using the device normally on the active slot. This
approach ensures that there is always a known-good system parti-
tion available; if anything goes wrong with the update, the device
can fall back to the old slot, greatly reducing the risk of ending up
with an unbootable device[21]. This dual-partition design is often

Seongjin Kim, Sanguk Yun, and Jungho Jang

called seamless update because the installation can occur without
taking the device offline (aside from a brief reboot), and it provides
fail-safety.

2.4.2 A/B Partition Scheme and Update Flow. In the standard
update flow using A/B partitions, the process unfolds as follows:

(1) Download stage: The device checks for an available update
(usually via a software update client, such as Google Play Ser-
vices on Android One/Pixel devices, or an OEM-specific up-
dater). Once an update is available, the device downloads the
OTA package (archive containing the update payload). The OTA
package is typically a zip file with binary patches or full images
for the target partitions. (Note: Android supports streaming
OTAs, where the update can be applied as it downloads, to
avoid needing large storage space for the whole package.)

(2) Preparation stage: Before applying the update, the system
prepares the slots. The currently running slot (e.g. slot A) is
marked as successful (if it wasn’t already) to ensure the boot-
loader will continue to trust it as a fallback[21]. The inactive
slot (slot B) is marked as unbootable initially[21], because its
contents will be partially updated and thus inconsistent un-
til the process is complete. This prevents the bootloader from
accidentally booting the half-updated slot in case of a reboot
during the update.

(3) Installation stage: The update daemon (Android’s update_engine)

writes the new update payload to the partitions of the inactive
slot (B) without disturbing the active slot (A)[21]. It performs a
series of operations described by the update metadata, such as
patching or replacing blocks of the B partitions with new data.
Throughout this stage, the system on slot A keeps running.
The update_engine carefully coordinates reads from slot A and
writes to slot B, and can pause/resume if the device reboots
or loses power, since slot A is still intact. After all operations,
update_engine verifies the integrity of the updated slot B parti-
tions by computing hashes and comparing with expected values
from the metadata[21], ensuring the write was successful.

(4) Switching stage: Once the new firmware is fully written to
slot B and verified, the device sets slot B as the active slot in
the bootloader’s slot metadata (using the boot control HAL, i.e.,
calling setActiveBootSlot() routine)[21]. However, at this point
slot B is still not marked “successful” - it’s just ready to boot
into. The system then initiates a reboot. (The user is typically
prompted to reboot now to apply the update.)

(5) Reboot and verification stage: On reboot, the bootloader
will load the new updated slot (B) as it has been marked ac-
tive. Android’s Verified Boot process (based on dm-verity) then
checks the cryptographic integrity of the slot B system, boot,
and other partitions before handing control to the OS. If any
corruption or tampering is detected (e.g., a bad flash), the boot
will fail dm-verity verification. Notably, dm-verity guarantees
the device only boots an uncorrupted image[21]. If the new slot
B fails to boot for any reason — whether a verification failure or
aruntime crash - the bootloader will notice that the slot has not
reported a successful boot and can automatically revert to slot
A on the next reboot[21]. (The bootloader uses metadata flags:

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

it gives the new slot a “boot attempt” and if the slot doesn’t
confirm success, it decreases a retry count. After a few failed
tries, it marks the slot unbootable and falls back to the other
slot.)

(6) Post-boot stage: If slot B boots correctly into the new Android
version, a component in the system (often update_verifier or
the update client) will perform final checks and then mark
the new slot B as successful by calling a bootloader interface
(markBootSuccessful())[21]. Marking it successful tells the boot-
loader that the slot is good and can be kept as permanent. At
this point, the update is officially complete. The old slot A re-
mains on disk as a backup until perhaps the next update, or
the system may later use that storage for something else (some
devices may retain the last known-good backup, others might
eventually wipe an old slot when not needed).

Throughout this flow, redundancy and verification are key: the
active slot’s content is never modified during update (so the current
system is safe if update fails), and all updated data is checksummed
and cryptographically verified. The device also records the update
progress so that if the process is interrupted (due to a power loss
or user reboot), it can resume or roll back gracefully on the next
boot. Users experience minimal downtime — the update installa-
tion happens in the background, and the only interruption is the
reboot into the new firmware, which is roughly as fast as a normal
reboot[21].

3 PAPER REVIEW

3.1 OP-TEE Based TEE Framework: Open-TEE
(McGillion et al., 2015)

Trusted Execution Environments (TEEs), leveraging hardware
features such as ARM TrustZone and Intel SGX, provide a secure
execution environment for protecting sensitive data.[22] They are
increasingly used in blockchain wallets, digital certificate manage-
ment, payment systems, and various other domains.

However, despite their strong security guarantees, conventional
hardware-based TEEs suffer from significant limitations in terms
of development accessibility. To address these issues, McGillion
et al. (2015) proposed *Open-TEE*, an open-source virtual TEE
framework. The study implemented a hardware-independent, easy-
to-develop and test TEE environment while strictly adhering to the
GlobalPlatform (GP) standards.

Traditionally, ARM TrustZone-based TEEs imposed high barriers
to entry for developers and researchers due to licensing, develop-
ment kit costs, and restricted access tied to chip vendors. McGillion
et al. designed Open-TEE to lower these barriers, enabling any-
one to develop and test TEE applications by running the platform
entirely in Linux user space. In particular, Open-TEE allows de-
velopers to use familiar tools such as GCC, GDB, and OpenSSL,
thereby significantly enhancing productivity in TEE application
development.

From an architectural standpoint, Open-TEE adopted an An-
droid Zygote-like Launcher to optimize TA loading speed and im-
plemented IPC mechanisms based on Unix Domain Sockets. This
design provided a much faster build-execute feedback loop com-
pared to conventional TEE systems, achieving an average build

[%
" ‘Base
Fork()

Client application
GP Client API

 ~ Manager | ~_“Launcher”

b 'iIO ’ ,Man/a.g/er GP Core API

y logic | Clone()

Trusted Applicatj

Mo TA logic

Trusted Apf;liéa i

1o TA logic

Trusted Apph’éa ion|

"0/ | TA logic

Figure 3: Open-TEE architecture

time of 147 ms and an execution time of 430 ps. Furthermore, while
simulating the Secure Monitor Call (SMC) interface, Open-TEE
provides GP-compliant Client and Core APIs to ensure structural
compatibility when porting TAs to actual hardware-based TEEs.

The study clearly distinguished Open-TEE from existing plat-
forms such as QEMU-based TrustZone emulators, Trusted Little
Kernel (TLK), and OP-TEE. Unlike OP-TEE and TLK, which re-
quire hardware-level porting at the device driver, Secure Monitor,
and bootloader layers, Open-TEE operates entirely in user space,
enabling rapid TEE application development without hardware de-
pendencies. This allows developers to develop and debug TA code
even without access to TrustZone-enabled hardware.

Moreover, McGillion et al. conducted a user study to empirically
validate the usability of Open-TEE. In a study involving 14 devel-
opers with TEE development experience, Open-TEE was shown to
significantly improve usability compared to traditional hardware-
based development environments. While issues such as frequent
device resets and inefficient build-flash-execute cycles were com-
monly cited problems in existing environments, Open-TEE resolved
these issues, improving both development speed and productivity.

In the context of this research — which proposes a dynamic
firmware update architecture that composes and applies TA mod-
ules on the server based on the user’s selected blockchain net-
work — Open-TEE plays a key role. During the development of
blockchain-specific TA modules, Open-TEE enables rapid proto-
typing and testing while maintaining GP-compliant architecture
for seamless migration to OP-TEE or actual TrustZone-based hard-
ware platforms. This offers an effective development methodology
for verifying server-side TA composition processes, automating
new firmware builds, and establishing pre-deployment verification
environments.

In conclusion, McGillion et al’s Open-TEE represents a pioneer-
ing effort in improving TEE application development accessibility

and serves as an essential technical foundation for realizing this
study’s goal of a flexible, multi-blockchain, firmware update-based
architecture.

3.2 TrustZone-based SPV Wallet Design:
SBLWT (Dai et al., 2018)

The most critical security requirements in blockchain wallet
design are the secure storage and usage of private keys, and the
assurance of integrity during transaction signing.[23] However,
software wallets running in conventional mobile environments
operate in the normal OS domain, making them vulnerable to OS-
level malware, memory analysis, and debugging attacks.

On the other hand, hardware wallets offer stronger physical
security and isolation but suffer from usability issues due to the need
for separate devices. To address these challenges, Dai et al. (2018)
proposed *SBLWT (Secure Blockchain Lightweight Wallet based on
TrustZone)” — a lightweight blockchain wallet architecture built
on ARM TrustZone technology.

The study specifically focused on integrating TrustZone-based
TEE protections into SPV (Simplified Payment Verification) wallets,
in order to enhance the security of private keys and transaction
signing. While SPV-based mobile wallets reduce storage and net-
work usage by maintaining only block headers rather than full
blockchain data, the verification process itself typically runs in the
normal OS domain, leaving it vulnerable to memory analysis and
API hooking attacks.

To overcome these limitations, Dai et al. migrated block header
storage, key management, and transaction signing processes into
the TrustZone-based Secure Execution Environment (SEE).

users

l
3

enerator

<— Reliable Switch

Rich OS

-
\\ TrustZone-enabled ARM process

Figure 4: The framework of SBLWT.

The SBLWT architecture is divided into two main domains:

e In the Secure World, private key generation and storage, block
header management, transaction signing, and random number
generation are performed.

o The Normal World handles Ul interactions and network commu-
nications.

Block headers are stored in encrypted form in non-secure storage
and can only be decrypted within the Secure World. Through this
design, SBLWT eliminated the risk of private key exposure during

Seongjin Kim, Sanguk Yun, and Jungho Jang

blockchain verification and implemented protections against MITM
(Man-in-the-Middle) attacks.

In terms of secure U, Dai et al. implemented TrustZone-based Se-
cure Display and Secure Touchscreen drivers to prevent malicious
apps in the normal OS from spoofing or tampering with transac-
tion confirmation screens. This aspect, which had been relatively
neglected in earlier mobile wallet research, greatly improved the
security of user interactions.

The system was implemented using OP-TEE and tested on a
Raspberry Pi 3 Model B board. Performance evaluations demon-
strated that running blockchain verification and transaction signing
in the Secure World did not cause significant degradation and had
negligible impact on the user experience. Furthermore, because no
sensitive data was exposed outside the Secure World during SPV
verification, the system offered significantly higher security than
conventional software wallets.

In their comparative analysis, Dai et al. noted that most prior
TrustZone-based solutions had focused on full node wallets or
cold wallets, with few examples of secure, lightweight SPV wallet
implementations. Whereas commercial products such as Ledger and
Rivetz relied on proprietary APIs or closed TEE implementations,
SBLWT was built on the open-source OP-TEE platform and adhered
to GlobalPlatform (GP) standard APIs, improving portability across
platforms.

In this study’s proposed architecture — which dynamically com-
poses and updates TA modules on the server based on user-selected
blockchain networks — SBLWT offers important insights.

When designing TA modules for different blockchain networks,
SBLWT’s private key isolation model, SPV verification within the
Secure World, and secure UI design strategies can be leveraged.
Moreover, SBLWT demonstrates the feasibility of modular TA de-
sign for handling the differing SPV structures and transaction sign-
ing requirements of various networks.

Importantly, while Dai et al.’s work targeted a single blockchain
network (Bitcoin), this research aims to extend the architecture
to support dynamic firmware updates across multiple blockchain
networks. Unlike SBLWT, this research envisions a server-driven
process that dynamically composes optimized TA modules for differ-
ent blockchain protocols, distributes them via OTA (Over-the-Air)
updates, and securely applies them on OP-TEE-based platforms.

Thus, Dai et al’s SBLWT study represents a practical example
of TEE-based lightweight blockchain wallet design and serves as
an important technical foundation for this study’s multi-network,
TEE-based wallet architecture.

3.3 Security Aspects of Cryptocurrency Wallets
— A Systematic Literature Review (Houy et
al., 2023)

As blockchain technology has rapidly proliferated, cryptocur-
rency wallets have become essential tools for users to manage
digital assets directly.[24] However, cryptocurrency wallets per-
form far more than simple key storage — they incorporate complex
functionalities and are exposed to a wide attack surface with in-
herent structural vulnerabilities. Houy et al. (2023) addressed this
reality by publishing a comprehensive systematic review on the

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

security vulnerabilities and countermeasures of cryptocurrency
wallets.

The paper analyzed over 100 prior studies on cryptocurrency wal-
let security, providing a taxonomy of attack types and an overview
of the entire threat landscape facing cryptocurrency wallets. Unlike
earlier works that had been limited to analyses of key management,
cryptographic modules, or specific protocols, this study provided a
multilayered view of the complex functionality and attack surface
unique to cryptocurrency wallets.

Houy et al. defined cryptocurrency wallets as *“a composite
security domain combining characteristics of password managers,
banking applications, and privacy-focused systems,” highlighting
their broader security requirements beyond simple key storage.
The paper analyzed wallet security from an attacker’s perspective
across six major layers:

(1) Memory & Storage
Vulnerabilities include private key, seed phrase, and PIN theft
through memory analysis and circumvention of encrypted stor-
age.

(2) Operating System
OS-level attacks such as abuse of Android Accessibility features,
USB debugging vulnerabilities, and installation of malicious
apps.

(3) Software Layer
Application-level vulnerabilities including library weaknesses,
bypassing RPC authentication, and leakage of sensitive infor-
mation through logs.

(4) Network Layer
Threats such as Man-in-the-Middle (MITM) attacks, deanonymiza-
tion via packet analysis, and BGP hijacking.

(5) Blockchain Protocol
Protocol-level attacks such as double-spending, 51% attacks,
malleability attacks, and eclipse attacks.

(6) Other attacks
Exchange hacks, side-channel attacks against air-gapped wal-
lets, and other miscellaneous threats.

The study empirically emphasized that OS and software-layer at-
tacks represent the most critical real-world risks — underscoring the
necessity of employing hardware-backed TEEs such as TrustZone
to secure mobile cryptocurrency wallets.

Houy et al. also reviewed the current state of TEE-based wallet
research. Works such as Dai et al. (2018)’s SBLWT and Gentilal et
al. (2017)’s TrustZone-backed Bitcoin Wallet were cited, but it was
noted that these efforts largely focused on single blockchain net-
works (primarily Bitcoin) and lacked firmware-level update mech-
anisms or dynamic TA composition architectures. This finding
strongly supports the differentiation and necessity of this study’s
proposed architecture: a user-selectable blockchain wallet frame-
work based on dynamic firmware updates and server-driven TA
composition.

Furthermore, the paper argued that as the industry moves toward
a mainstream multi-chain environment, cryptocurrency wallets can
no longer remain static — they must evolve to support dynamic

architectures that adapt to different networks as selected by the
user.

This study’s proposed architecture — a server-based dynamic TA
composition and firmware update process enabling OP-TEE-based
wallets to adapt securely to user-selected blockchain networks
— directly addresses the limitations highlighted by Houy et al.,
including:

o fixed single-network wallet designs,
o lack of dynamic updates, and
o insufficient flexibility for user-driven network selection.

Thus, Houy et al. (2023) serves as a key reference for justify-
ing the multilayered security challenges faced by cryptocurrency
wallets, and provides strong theoretical support for the need for
firmware update and dynamic TA composition architectures — help-
ing to clearly articulate the originality and necessity of this study
compared to existing research.

3.4 OP-TEE Official Documentation (v23.12.3)

Among open-source TEE platforms, OP-TEE is one of the most
widely used, jointly developed by the open-source community,
ARM, and Linaro. It is a standardized Trusted OS that enables
Trusted Applications (TAs) to operate within the ARM TrustZone
Secure World.[25] OP-TEE fully adheres to the GlobalPlatform (GP)
TEE standards, and is regarded as one of the most practical and
popular platforms for implementing and applying TrustZone-based
TEEs in real-world applications.

The OP-TEE Documentation (v23.12.3) serves as the official and
comprehensive reference for OP-TEE architecture, functionalities,
API usage, and system integration — a critical resource for TEE-
based application development, system design, and kernel-to-user
space integration.

This documentation provides an in-depth explanation of OP-
TEE’s architecture, including core functionalities such as:

e Secure Monitor Call (SMC) flow
o Trusted Thread Scheduling

e Shared Memory management

e Secure Paging

e Crypto API architecture

e Secure Boot process

OP-TEE operates on a Dual World architecture, consisting of a
Secure World and a Normal World. The Normal World typically runs
a Linux-based OS (such as Android/Linux), while the Secure World
runs the OP-TEE Trusted OS. This separation ensures that sensitive
operations (such as key generation, signing, and decryption) are
securely performed within the Secure World, protecting critical
assets even against kernel-level compromises or malware in the
Normal World.

A key feature of OP-TEE is its management of SMC flow via
the Secure Monitor Interface, with support for Yielding SMC-based
Trusted Thread suspend/resume mechanisms. This feature is partic-
ularly important for this study’s proposed *server-based dynamic
TA composition and firmware update* architecture, as it allows

updated TAs to be applied without disrupting or conflicting with
existing thread contexts.

OP-TEE also supports non-contiguous Shared Memory manage-
ment, enabling efficient communication with Linux kernel drivers
and meeting diverse application requirements. In this research,
where interaction with various blockchain-specific key-value stor-
age structures is required, leveraging Shared Memory allows for
optimized performance and data consistency.

From a cryptographic perspective, OP-TEE supports a broad
range of algorithms — including SHA, HMAC, ECDSA, RSA, and
AES — via its GP TEE Cryptographic API, and also offers hardware
crypto acceleration. As this research involves dynamic composi-
tion of TA modules to meet varying crypto requirements across
blockchain networks (e.g., ECDSA P-256, Ed25519, KECCAK256),
OP-TEE’s Crypto API abstraction layer provides a highly flexible
and adaptable foundation.

Another noteworthy feature highlighted in the OP-TEE docu-
mentation is Secure Paging. Given the limited memory resources
available in the Secure World, the Secure Pager allows efficient
memory usage — a key capability for this research when flexibly
loading and unloading multiple blockchain-network-specific TA
modules. In the proposed architecture — *where TA modules are
dynamically composed on the server, distributed as firmware up-
dates, and securely applied via OP-TEE-based system updates™ —
the structural principles outlined in the OP-TEE documentation
will be directly incorporated throughout the system design.

Specifically:

e Optimized communication between Linux user space and TAs
via SMC-based RPC flow,

e Stable application of firmware updates through Trusted Thread
Scheduling and suspend/resume mechanisms,

e Flexibility in composing network-specific TA modules through
the Crypto API abstraction layer,

o High-performance data exchange via the Shared Memory archi-
tecture,

will all serve as essential technical components for building a flex-
ible firmware update framework that supports multiple blockchain
networks.

Ultimately, the OP-TEE documentation provides a systematic
technical foundation for this study’s architecture. By adhering to
GP standards and ensuring hardware portability, it will also en-
hance the portability, scalability, and general applicability of this
research’s outcomes.

3.5 TrustZone-backed Bitcoin Wallet (Gentilal
et al., 2017)

In cryptocurrency wallets designed for securely managing blockchain-

based digital assets, the protection of the private key remains the
most critical security requirement.[26] However, software wallets
operating in conventional mobile environments are vulnerable to
OS-level compromises and are exposed to various attacks such as
memory dumps, debugging, and hooking. While hardware wal-
lets offer strong security guarantees, they also suffer from limited
usability and require additional devices.

Seongjin Kim, Sanguk Yun, and Jungho Jang

To address these challenges, Gentilal et al. (2017) designed a
TrustZone-backed Bitcoin Wallet (TBW) architecture that leverages
ARM TrustZone-based Trusted Execution Environment (TEE) to
enhance the core security functions of a Bitcoin wallet.

This study presented a concrete implementation that mitigates
the structural vulnerabilities of mobile wallets by moving private
key protection, transaction signing, and cryptographic operations
into the TrustZone-based Secure World.

The key features of the TBW architecture are as follows:

(1) Private key generation and storage performed within the
Secure World
The Normal World has no access to private keys, protecting
them from memory analysis and OS-level attacks.

(2) Transaction signing executed entirely in the Secure World
Signature operations are performed exclusively in the Secure
World, and only the signature output is exposed externally.

(3) Random number generation conducted within the Secure
World
High-quality random number generation for ECDSA signing is
securely implemented.

(4) Persistent Secure Storage with Write Cache
Performance degradation during key storage is minimized, en-
suring efficient storage performance.

(5) Standard cryptographic algorithms implemented using
GP TEE Crypto APIs
Algorithms such as ECDSA, AES, and SHA-256 are supported
through standardized, secure interfaces.

Gentilal et al. further highlighted that prior TrustZone-based
solutions often relied on proprietary TEEs, limiting their applica-
bility in open-source research. In contrast, TBW was implemented
using OP-TEE, ensuring both platform independence and openness.
Additionally, TBW was built upon the existing BitSafe platform,
further reinforcing its security and portability.

In terms of performance, the study demonstrated that despite
performing cryptographic operations and storage tasks within the
Secure World, key functions such as transaction signing and address
generation exhibited improved performance. Latency increases
from Persistent Secure Storage were effectively mitigated through
the use of a Write Cache.

From a security perspective, TBW demonstrated superior results
compared to conventional software wallets in the following areas:

e Enhanced resistance to dictionary attacks
o Improved side-channel attack resistance

e Secure Multi-TA architecture with robust isolation

The entire implementation was released as open source, making
it available for other researchers to adopt.

In the context of this study’s proposed architecture — where
TA modules are dynamically composed on the server, distributed
as firmware updates, and securely applied through OP-TEE-based
system updates — the TBW architecture serves as an important
reference.

This study intends to actively apply TBW design principles such
as:

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

e Migration of private key management and transaction signing
to the Secure World

e Secure Storage combined with Write Cache strategies
o Standard Crypto API-based modular design

e Multi-TA architecture and inter-TA isolation policies

Furthermore, while TBW was designed for a single blockchain
network (Bitcoin), this study targets dynamic support for mul-
tiple blockchain networks (Ethereum, Solana, EVM-compatible
networks, etc.) by having server-side composed TA modules dis-
tributed via Over-The-Air (OTA) updates. The proposed architec-
ture also aims to extend the security enhancements of TBW to
various blockchain protocol characteristics.

Additionally, it will incorporate Secure Paging and Yielding SMC-
based thread management to ensure efficient operation of multi-
network TA modules.

Thus, Gentilal et al. (2017) represents a highly significant prior
work, both in terms of practical implementation and secure design,
providing valuable technical guidance for this study’s design of a
flexible, multi-blockchain firmware update architecture.

3.6 Conclusion

The prior works reviewed in this study have made substantial
contributions to the design of TEE-based blockchain wallet archi-
tectures, particularly in areas such as private key protection, trans-
action signing integrity, implementation of lightweight SPV wallets,
TrustZone-based security enhancements, and the establishment of
standardized cryptographic operations.

However, several common limitations are evident across existing
studies. First, most implementations are tied to specific blockchain
networks, such as Bitcoin or Ethereum, and do not support dy-
namic selection by users or flexible support for multiple blockchain
protocols.

Second, current TEE-based wallet architectures are generally
static in design, with limited support for firmware-level updates or
modular TA composition. They lack robust mechanisms to flexibly
deliver new functionalities or security patches through OTA-based
firmware updates.

Third, as multi-chain environments become increasingly preva-
lent in the Web3 era, there is a growing need for architectures that
can quickly adapt to evolving network requirements and protocol
changes through server-client coordinated TA composition and
firmware updates. Existing studies have not adequately addressed
this need for flexibility.

To overcome these limitations, this study proposes a novel ar-
chitecture in which:

“When the user selects a blockchain network, the server dynam-
ically composes the necessary TA modules and delivers them as a
new firmware package, which is then applied via OP-TEE-based
OS system updates”

The goal of this architecture is to transcend the limitations of
single-network static wallets and provide:

o User-driven flexibility in blockchain network selection,

e Server-side dynamic composition and distribution of TA mod-
ules,

o High compatibility and portability by leveraging OP-TEE-based
TEE architecture and GP standards.

This approach aims to implement a next-generation TEE-based
wallet architecture capable of securely and flexibly supporting mul-
tiple blockchain networks. Ultimately, it can evolve into a platform
that meets both the security and user experience demands of the
emerging Web3 and multi-chain era.

4 POSSIBLE THREAT MODELING

Blockchain wallets are critical components in the cryptocurrency
ecosystem, responsible for securely managing users’ private keys
and enabling transactions. Despite their importance, these wallets
face a wide range of security threats from both technical and hu-
man attack vectors. Understanding the diverse models of potential
attackers is essential for developing more robust wallet designs
and countermeasures. To this end, we provide a layered catego-
rization of attacker models that target different aspects of wallet
infrastructure, ranging from physical memory access to advanced
protocol-level attacks. Table 5, presents a structured overview of
these attacker models, grouped by layer—memory, operating sys-
tem, software, network, protocol, and others—along with their re-
spective objectives and notable references from the literature. This
layered approach helps highlight how each component of the wallet
stack can be targeted individually or in combination. The attacker
models described go beyond theoretical concerns and are drawn
from real-world incidents and research studies. Moreover, they
demonstrate that even minor vulnerabilities at lower system levels
can lead to catastrophic compromises of cryptographic assets. By
identifying and understanding these threats in a structured manner,
developers, auditors, and users can better anticipate risks. This
analysis sets the foundation for evaluating wallet security holisti-
cally rather than focusing solely on the application logic or user
interface.

4.1 (a) Memory and Storage Threats

Memory and storage attacks focus on extracting or compromising
secret keys from the wallet’s device memory or persistent storage.
Cold boot attacks are a prime example: an attacker with physical
access can freeze the device’s RAM chips to slow memory decay,
then reboot or transplant them to recover whatever was in mem-
ory (including private keys)(a-1). Similarly, if a device is rooted
or infected with malware, an attacker can dump memory or read
files to obtain unencrypted wallet(a-2). Even encrypted wallets are
vulnerable if protected by weak passwords — attackers can perform
brute-force attacks on wallet files, exploiting the relatively short or
low-entropy passwords allowed by some wallet(a-3). In all these
cases, the attacker’s goal is to steal the private keys or seed phrases
that unlock the victim’s funds, thereby gaining control over the
cryptocurrency.

4.2 (b) Operating System Threats

Operating system threats leverage weaknesses in the platform
running the wallet. If the OS itself is compromised, the wallet’s
security can be bypassed. For instance, an attacker might exploit
an OS vulnerability to gain root privileges, effectively removing all
isolation — once they have root, they can directly read or modify

Seongjin Kim, Sanguk Yun, and Jungho Jang

Type ﬁtsg‘er Description Attacker’s Goals | Reference
a-1 Cold Boot Memory Extraction [27]
(a) Memory and Storage a-2 Memory/Storage Dump via Root Steal Creds (28]
a-3 Wallet Encryption Brute-Force [29]
b-1 OS Kernel/Privilege Exploit [30]
(b) Operating System b-2 Abuse of OS Services (Accessibility) Steal Creds [31]
b-3 Keylogging and Screen Capture [30]
c-1 Wallet Application Logic Flaw [32]
() Software Layer c-2 Privacy Leak in SPV Wallet Steal Creds [28]
c-3 Unsolicited Transaction Spam [28]
c-4 Trojan or Malicious Wallet App [33]
d-1 P2P Deanonymization Attack [34]
(@) Network Layer d-2 Eclipse Attack]?ese;nonymize [35]
d-3 BGP/Routing Hijack eal Creds [36]
d-4 DNS Hijacking / MITM on API [30]
e-1 Transaction Double-Spending (Fast Payments) [37]
(e) Blockchain Protocol e-2 Consensus Majority Attack (51% Attack) Create Coins [38]
e-3 Cryptographic Breaks (Weak RNG/Key Reuse) [39]
f-1 Social Engineering & Phishing [40]
(£) Other f-2 Insider Threat (Custodial Wallets) Deanonymize [32]
-3 Physical Coercion (“$5 Wrench Attack”) / Steal Creds [41]
f-4 Hardware Side-Channel Attack [42] [43]

Table 5: Overview of Attacker Models

Table: Overview of threat models for blockchain wallets, categorized by layer. Each entry includes the attack vector, attacker’s

objectives, and references to research.

wallet processes and files(b-1). Attackers also abuse legitimate OS
features: on Android, malware can misuse Accessibility services to
invisibly observe and interact with apps. Research has demonstrated
a stealthy accessibility trojan that can take over a popular mobile
wallet app’s Ul, auto-confirming transactions (even intercepting
2FA prompts) to withdraw funds without the user’s consent(b-
2). Furthermore, keylogging or screen-capture malware operating
at the OS level can record everything the user types or sees on
their screen(b-3) — for example, capturing a seed phrase as it’s
being displayed, or the PIN as it’s entered. The goals of OS-layer
attacks are to get around the wallet’s application-level security by
exploiting the underlying system, allowing attackers to steal keys
or spoof user actions (like transaction approvals).

4.3 (c) Software Layer Threats

Software layer threats target vulnerabilities in the wallet ap-
plication itself (or its supporting libraries). These can range from
classic software bugs to design flaws specific to crypto wallets. For

instance, a logic error in how a wallet verifies transaction signa-
tures or permissions could let an attacker bypass authentication
and spend funds they don’t own(c-1). One well-documented case
is the Bitcoin] library vulnerabilities affecting many Bitcoin wallet
apps: a flaw caused SPV (simplified payment verification) wallets to
leak all their Bitcoin addresses, enabling a network eavesdropper to
deanonymize users(c-2). Another bug in the same library made wal-
lets download excessive transaction data in the background, which
attackers turned into a spamming attack to drain victims’ phone
batteries and data plans(c-3). Beyond unintended bugs, there’s also
the risk of malicious wallet software: for example, attackers have
created fake wallet apps that look legitimate but contain backdoors.
Unsuspecting users who install these essentially hand their private
keys to the attacker. As one researcher noted, users should be cau-
tious because any developer (even a malicious one) can publish a
wallet app on official app stores(c-4). In summary, software-layer
attacks aim to exploit or insert vulnerabilities in the wallet program,

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

either to undermine its security controls (stealing keys, bypassing
checks) or degrade its operation (denial of service).

4.4 (d) Network Layer Threats

Network threats involve the wallet’s communication with the
outside world - typically the blockchain network or backend servers.
One major category is privacy attacks: by observing the wallet’s
network traffic, attackers can perform network-layer deanonymiza-
tion. For example, analysis of Bitcoin’s peer-to-peer network has
shown that it’s possible to link a user’s Bitcoin addresses to their IP
address by mapping how transactions propagate(d-1). This breaks
the pseudonymity of the wallet, potentially exposing the user’s
identity and transaction history. Other network attacks are more
active. In an eclipse attack, an adversary controls enough nodes
to isolate a wallet’s network connections entirely(d-2). The wallet
becomes trapped behind a set of attacker-controlled peers, causing
it to accept a false version of the blockchain or miss critical up-
dates. An eclipsed wallet can be fed double-spend transactions or
prevented from seeing that it’s underpaid, facilitating fraud. On a
broader scale, attackers can exploit Internet routing — BGP hijacking
can divert the wallet’s traffic to malicious routes(d-3). This might
partition the wallet from the true network or allow the attacker
to interpose themselves as a “man in the middle.” For instance, re-
search shows that BGP-based partitioning can significantly delay
block propagation and even enable confirmed double-spending.
Finally, there are DNS hijacking and MITM attacks targeting web-
based wallets or APIs. If a wallet relies on a domain (for fetching
balance info or sending transactions), an attacker who hijacks that
domain’s DNS can redirect the wallet to a fake server(d-4). In prac-
tice, this has led to phishing pages that trick users into entering
their private keys. Likewise, an attacker on the same network (e.g.,
a public Wi-Fi) could intercept API calls if they’re not encrypted,
altering destination addresses in transit. Network-layer attackers
typically aim to either deanonymize the user or manipulate the data
in transit, with outcomes like privacy loss, fraudulent transactions,
or denial-of-service.

4.5 (e) Blockchain Protocol Threats

Protocol-level threats stem from the underlying rules and de-
sign of the blockchain system that the wallet operates on. One
classic issue is lack of immediate transaction finality, which en-
ables double-spending attacks on fast payments. If a merchant’s
wallet accepts a payment on zero or few confirmations (for speed),
an attacker can exploit that by quickly broadcasting a conflicting
transaction (or even controlling mining of a couple of blocks) to
invalidate the first transaction(e-1). The result is the merchant sees
a payment that later disappears from the ledger, letting the attacker
get goods for free. At a deeper level, if attackers gain control of
the consensus process — notably, more than 50% of the network’s
mining or staking power - they can mount a 51% attack. In this sce-
nario, the adversary can rewrite the blockchain history at will(e-2).
That means they could reverse even long-confirmed transactions
(perhaps double-spending high-value transfers back to themselves)
and censor new transactions from being included. Such majority
attacks have moved from theory to reality on smaller blockchains,
leading to significant losses. Another aspect of protocol security is

the strength of the cryptographic algorithms. Wallet security can
be totally undermined by cryptographic vulnerabilities — for exam-
ple, the infamous 2013 incident where Android’s flawed random
number generator caused wallets to reuse ECDSA signature nonces,
allowing attackers to compute the private keys(e-3). Similarly, if an
attacker ever found a break in the hash function or elliptic curve
used (or had a quantum computer), they could forge transactions or
steal funds directly. In summary, protocol-layer threats involve at-
tacking the rules or math of the system itself - either by exploiting
the way confirmations work (as in double spends and consensus at-
tacks) or by subverting the cryptographic assumptions (as in weak
RNGs or future quantum attacks).

4.6 (f) Other Threats

This category includes threats that don’t neatly fit into the tech-
nical layers but are nonetheless significant. Social engineering is a
major one: instead of hacking software, attackers hack the user’s
trust and habits. Phishing emails, fake support calls, or fraudulent
websites can convince users to divulge their seed phrase or enter
credentials on a malicious site(f-1). Once the attacker has this in-
formation, they don’t need to break any encryption - they simply
log in or import the wallet and drain the funds. Another “out-of-
band” threat is the insider threat when using custodial wallets or
exchanges. In these scenarios, the user’s keys are held by a service.
A dishonest employee or compromised insider can directly access
many users’ keys or the pooled funds. There have been cases where
large exchanges were looted, possibly with insider assistance(f-2).
The attacker’s motive here is straightforward financial gain, but
the attack bypasses all technical defenses by exploiting internal
access. Additionally, physical coercion attacks are a real-world
threat: a robber might target a crypto holder, forcing them at gun-
point to unlock a hardware wallet or reveal a PIN(f-3). This is often
grimly referred to as the “five-dollar wrench attack,” implying that
an inexpensive wrench (used as a weapon) can negate even the
most advanced digital security. Finally, on the more exotic end,
side-channel attacks on hardware wallets are a concern(f-4). These
devices are engineered to be secure, but researchers have shown
that monitoring things like power consumption or electromagnetic
emissions during device operation can leak secrets. For instance, an
attacker with the right equipment could potentially extract a PIN
or even a private key from a hardware wallet without physically
opening it, by analyzing its power usage patterns during a signing
operation. While these attacks require sophistication and some-
times close proximity, they highlight that no system is completely
immune. In essence, the “Other” category reminds us that human
factors, physical security, and hardware quirks are all part of the
threat landscape for blockchain wallets, beyond just software and
network vulnerabilities.

The threat landscape facing blockchain wallets is both multi-
faceted and evolving, encompassing low-level hardware attacks,
OS-level exploits, software vulnerabilities, and sophisticated social
engineering techniques. As shown in Table 5, attackers can leverage
a wide spectrum of methods to extract private keys, deanonymize
users, or bypass wallet protections entirely. Importantly, no single
security mechanism is sufficient on its own; layered defense strate-
gies must be adopted to account for diverse attacker capabilities.

Memory and storage vulnerabilities highlight the importance of
physical security and encryption, while OS- and software-layer
threats stress the need for sandboxing and code audits. Network-
layer exploits and blockchain protocol attacks underscore the signif-
icance of robust cryptographic design and secure communication.
Beyond technical attacks, human-centered threats such as phish-
ing and coercion remind us that end-users are often the weakest
link in the security chain. These findings reinforce the necessity
of considering attacker goals, system layer interactions, and real-
world constraints when designing secure wallets. Future wallet
implementations must prioritize modularity, transparency, and re-
silience to emerging threats. Ultimately, recognizing these attack
models equips stakeholders with the foresight to mitigate vulnera-
bilities before they are exploited. Through this detailed mapping of
attacker models, we aim to contribute to more secure and trustwor-
thy blockchain wallet ecosystems.

5 DESIGN

As the adoption of blockchain technologies continues to grow,
the importance of securing digital assets stored in cryptocurrency
wallets has become increasingly critical. Conventional software
wallets—while convenient—expose users to a variety of threats
ranging from malware in the operating system to side-channel at-
tacks that can extract sensitive information such as private keys.
To mitigate such risks, hardware-backed solutions such as Trusted
Execution Environments (TEEs) have emerged as a promising ap-
proach to isolating sensitive operations and data from potentially
compromised system components.

This paper presents the design of a modular, TEE-based blockchain
wallet platform that leverages ARM TrustZone technology to pro-
tect cryptographic operations and key materials within a secure
execution context. By splitting the system into two distinct do-
mains—the Rich Execution Environment (REE) and the Trusted
Execution Environment (TEE)—the platform ensures that sensitive
tasks like key generation and transaction signing are handled by
isolated Trusted Applications (TAs) running in the secure world,
while the user interface and network interactions remain in the
REE.

A key advantage of this design lies in its modularity: each sup-
ported blockchain network is encapsulated within its own set of
TAs, enabling easy extensibility and minimizing the trusted com-
puting base for any single operation. The system also introduces a
secure firmware update mechanism that allows dynamic deploy-
ment of blockchain-specific TAs, thereby maintaining a minimal
attack surface and enabling scalable support for diverse cryptocur-
rency protocols.

Through a detailed architectural breakdown, secure workflow
analysis, and discussion of TA composition, firmware management,
and security considerations, this paper demonstrates how a well-
structured TEE-based platform can offer both strong protection and
practical adaptability for secure blockchain wallet implementations
on modern Android devices.

5.1 Architecture Overview

Figure 5 shows the architecture of the proposed TEE-based blockchain

wallet platform. The system is divided into two distinct domains:

Seongjin Kim, Sanguk Yun, and Jungho Jang

the Rich Execution Environment (REE) and the Trusted Execution
Environment (TEE). The REE, represented by the Android OS and
normal applications, is where the user interacts with the system
through a Client Application (CA). This client app runs in the nor-
mal (untrusted) world and acts as a bridge between the user and the
secure services. The TEE, leveraging ARM TrustZone technology,
runs in an isolated secure world (e.g., using OP-TEE as the TEE
operating system) and hosts specialized Trusted Applications (TAs)
that handle sensitive operations like cryptographic key manage-
ment and transaction signing. All normal applications, including
the wallet’s CA and other apps, operate in the REE, which has rich
functionality but is considered untrusted from a security perspec-
tive. In contrast, the TEE is a tightly controlled environment that
ensures confidentiality and integrity for code and data within it.

In this architecture, the CA in the REE issues requests to the TEE
whenever a security-critical operation is needed. The boundary
between REE and TEE is enforced by hardware; any interaction
crossing this boundary (from CA to TA and back) occurs through
a Secure Monitor Call (SMC) facilitated by the TrustZone secure
monitor. The CA does not directly access secure resources; instead,
it packages the user’s request and invokes the corresponding TA
in the TEE via the secure TEE driver interface. The TEE’s oper-
ating system receives the request, identifies the target TA (one
of the blockchain-specific modules), and passes along the request
parameters. The figure shows multiple TAs grouped as “TA sets”
for a specific blockchain protocol—highlighting that for each sup-
ported blockchain network, the platform includes a dedicated set
of TAs to perform that chain’s cryptographic functions. A secure
storage component resides in the TEE to hold private keys and
other sensitive data. The Android OS in the REE cannot directly
read or modify this secure storage due to the privilege separation
enforced by TrustZone. Overall, this architecture ensures that all
critical cryptographic operations and key material remain within
the protected TEE, while the REE handles user interface and net-
work communication aspects of the wallet.

5.2 TEE Workflow

When the user initiates a sensitive operation (such as generating
a new key pair or signing a transaction) through the wallet’s client
application in the REE, the request is securely handled through the
following steps:

(1) User Request: The user triggers a blockchain-related request
via the Client Application (e.g., tapping a “Create Key” or “Sign
Transaction” button in the app).

(2) CA Invokes TA: The Client Application packages this request
(including any necessary data, like transaction details) and
invokes the appropriate TA in the TEE. This invocation uses
the device’s TEE driver/API, which under the hood triggers an
SMC instruction to switch the context from the normal world
(REE) to the secure world (TEE).

(3) Dispatch to TA: Upon entering the TEE, the secure world OS
(OP-TEE) dispatches the request to the targeted Trusted Appli-
cation. For instance, if the user requested a new key, the call is
routed to the Key Generation TA (TA1); if the user requested a
signature, it is routed to the Signing TA (TA2).

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

4)

User

Specific Blockchian
Method Request

Rich Execution|Environment

Trusted Execution Environment

2 Receive r
Return Value TA sets for Specific Blockchain Protocol
Client Application(CA)
TAl TA2
CSPRNG [»{ _ Ke¥ Ms Sign Val
> Generator e 0
App App App Ca:)l;i ;vsnh ‘/l T
Private Public Private si
igner
Key Key Key
| Store | T Load H
I I s H
v v |
Android OS Secure Storage

I

Secure Monitor Call based on ARM TrustZone

Figure 5: Overall architecture of the TEE-based wallet

Secure Processing: Inside the TA, the requested operation is
executed in isolation. For key generation, TA1 utilizes a cryp-
tographically secure random number generator (CSPRNG) to
generate a new private—public key pair. The private key is
stored in the TEE’s secure storage, and the public key (or a
derived address) is returned. For a signature request, TA2 re-
trieves the corresponding private key from secure storage, uses
it to compute the digital signature on the provided message or
transaction hash, and then outputs the signature.

Return to REE: The TA completes the operation and returns
the result (e.g., the newly generated public key or the trans-
action signature) back to the REE via the secure monitor. The
result is passed to the waiting Client Application.

Response to User: The Client Application receives the result
and can then proceed to use it in the regular workflow. For
example, it may display a new public address to the user, or
attach the signature to a transaction and broadcast it to the
blockchain network. Throughout this process, the private key
and any sensitive computations never leave the TEE; they re-
main protected by hardware isolation and are invisible to the
REE.

This workflow ensures that even if the REE (Android OS or the

client app) were to be compromised by malware, the attacker cannot
extract keys or forge signatures, because all critical operations are
executed in the secure world by trusted code.

5.3 TA Composition

To accommodate different blockchain protocols and maintain a

clean separation of concerns, the platform’s secure logic is divided
into multiple Trusted Applications. Each supported blockchain
network is implemented with a specific set of TAs, collectively
referred to as a “TA set” for that blockchain. These TAs are modular
components within the TEE, each responsible for a distinct aspect of
the wallet’s functionality. By dividing the functionality, the design
promotes modularity, ease of maintenance, and security through
least privilege (each TA only does what it needs to and has limited
scope).

The core TAs in a typical blockchain TA set include:

o TA1 - Key Generation: This TA is responsible for creating new

cryptographic key pairs for the blockchain. It uses a CSPRNG
in the secure world to generate a private key, derives the cor-
responding public key, and securely stores the private key (for
example, in the TEE’s secure storage, possibly indexed by a key
ID or associated with the blockchain account). It may return the
public key or an address derived from it to the REE so the user
can use it as their wallet address on the blockchain. All cryp-
tographic computations for key generation occur inside TA1,
ensuring the private key is never exposed to the REE.

TA2 - Transaction Signing: This TA handles digital signing
operations for transactions or messages. When the user needs to
authorize a blockchain transaction, the client app invokes TA2
with the transaction data (or a hash of the transaction). TA2 then
loads the appropriate private key from secure storage (the key
that was previously generated by TA1 for this blockchain ac-
count), and uses it to produce a signature using the blockchain’s

required cryptographic algorithm (e.g., ECDSA or EDDSA, de-
pending on the blockchain). The resulting signature is returned
to the REE so that the client app can attach it to the transaction
and send it to the blockchain network. At no point does the
private key leave TA2 or the secure world—only the signature is
output.

o Additional TAs: If a particular blockchain protocol requires
other specialized secure operations, additional TAs can be added
to that blockchain’s TA set. For example, a blockchain might
need a TA for a specialized cryptographic operation or protocol-
specific key derivation beyond simple signing. Each TA is kept
independent and focused on a specific task. This modular ap-
proach means new TAs can be introduced or updated without
affecting the rest of the system, as long as they adhere to the
defined interfaces with clean encapsulation.

Each TA is isolated from others by the TEE’s runtime, which
means a vulnerability in one TA (if ever exploited) should not di-
rectly compromise the code or data of other TAs. The use of distinct
TAs per functionality and per blockchain also allows the platform
to include support for a new blockchain by adding a new set of TAs,
rather than altering existing trusted code. This structure is key to
the platform’s flexibility in supporting multiple cryptocurrencies
securely.

5.4 Firmware Update Mechanism

Figure 6 shows the firmware update mechanism for deploy-
ing blockchain-specific TAs on the device. Supporting multiple
blockchain networks in a secure manner is achieved by dynami-
cally updating the device’s firmware to include the necessary TEE
components for the chosen network. Rather than pre-loading all
possible blockchain TAs (which would increase the attack surface
and device footprint), the platform delivers targeted updates that
package only the required secure components.

The update process works as follows:

(1) Network Selection: On the client side, the user selects the
desired blockchain network through the wallet’s interface (for
instance, choosing between Bitcoin, Ethereum, etc.). This choice
indicates which blockchain’s support the user wants to activate
on the device.

(2) Update Request: The Client Application (running in Android)
sends a firmware update request to the platform’s server in-
frastructure, specifying the chosen blockchain network. This
request can be made over a secure internet connection to a
designated Server Side Application.

(3) Preparing Combined Firmware: On the server side, the sys-
tem prepares a combined firmware image tailored for the re-
quested blockchain. This combined firmware includes three
main parts: the Android OS update (if needed), the TEE compo-
nent (OP-TEE) configured for that device, and the set of TAs
required for the selected blockchain. Essentially, the server
“combines” the necessary TAs with the base firmware. If the de-
vice already has the latest Android OS, the focus might just be
on updating the TEE and adding new TAs. All code (especially

Seongjin Kim, Sanguk Yun, and Jungho Jang

the TAs and TEE changes) is signed or verified by the platform
to ensure its integrity and authenticity.

(4) FOTA Delivery: The server then delivers this combined firmware
package to the client device using Android’s Firmware Over-
The-Air (FOTA) update mechanism. The device receives the
update package and, upon user consent, proceeds to install it.
The update process leverages Android’s standard update flow,
which typically involves verifying the package’s cryptographic
signature, then rebooting the device into a recovery or update
mode to apply the new firmware.

(5) Integration of TAs: Once the update is applied and the de-
vice reboots, the new firmware becomes active. The Android
OS is now coupled with an updated OP-TEE environment that
contains the newly added TA set for the requested blockchain.
For example, if the user selected a certain blockchain, the corre-
sponding TA1, TA2 (and any additional TAs for that blockchain)
are now installed in the TEE.

(6) Wallet Ready: After the update, the wallet application on the
device can detect that the new TAs are available (sometimes
the app might verify the presence or version of the TA set). The
user can now use the wallet app to perform operations on the
newly supported blockchain, with all security guarantees in
place. Should the user want to support a different blockchain
later, the process can be repeated to update the firmware with
a different set of TAs.

This firmware update mechanism ensures that the device al-
ways runs a minimal set of trusted code in the TEE - only what
is necessary for the blockchains the user actively uses. It balances
security (smaller attack surface and up-to-date trusted code) with
flexibility (the ability to support many blockchains on the same
device via on-demand updates). Utilizing Android’s built-in FOTA
system provides a trusted and user-friendly way to deliver these
security-critical updates.

5.5 Security Considerations

The design leverages ARM TrustZone-based isolation to achieve
a strong security posture for the wallet. By segregating the execu-
tion environments, the platform ensures that even a compromised
Android OS or malicious app in the REE cannot directly harm the
TEE or extract sensitive data from it. The hardware-enforced mem-
ory separation means that secrets like private keys, which reside in
secure world memory or storage, are inaccessible from the normal
world. Only the secure monitor (via SMC calls) can mediate inter-
actions, and the TEE will only perform operations for authorized
requests coming from the legitimate CA.

o Secure Storage: One of the key security features is the use of
secure storage in the TEE for private keys and other sensitive
information. When a key pair is generated by TA1, the private key
is stored in encrypted form within the TEE’s storage (often tied to
hardware unique keys or the TEE’s root of trust). This means that
even if an attacker obtains physical access to the device’s storage
or if the Android OS is rooted, the raw private key material
cannot be retrieved or decrypted without going through the
TEE. The secure storage, combined with TEE’s enforcement that

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

Client Side

User

Select Blockchain Network
On User Choice

A 4

Server Side

Request Firmware Upflate
Client Side Application Server Side Application
Combine Required TAs
Update v
via Android FOTA . .
Android OS P Combined Firmware

(Android OS + OP-TEE + TAs)

Figure 6: Overall architecture of the platform update method

only the TA that created or is authorized to access that data
can retrieve it, adds a robust layer of protection for the user’s
cryptographic keys. In our design, TA2 can load the private key
only via the secure TEE APIs, ensuring that the key never leaves
the secure world in plaintext form.

Isolation of TAs: Each TA runs in the context of the TEE where
the TEE OS (OP-TEE) provides isolation between different TAs.
This means that even within the secure world, TAs are com-
partmentalized to some extent. A vulnerability in one TA (for
example, a bug in a blockchain-specific TA) should not easily
allow an attacker to breach another TA or the TEE kernel itself.
The principle of least privilege is applied: each TA is given only
the permissions and data access it requires to perform its func-
tion. For instance, TA2 might only have access to the specific
key objects it needs for signing, and not to other keys belonging
to different blockchains or accounts. This minimizes the damage
that any single compromised TA could inflict.

Trusted Firmware Updates: The firmware update mechanism
itself is designed with security in mind. By using Android’s FOTA,
the platform relies on established secure update practices: the up-
date packages are digitally signed by the device/vendor’s private
key, and the device will verify this signature before installing.
This prevents malicious or tampered firmware from being in-
stalled. Thus, when adding new TAs via an update, users (and
the device) can trust that the source is authentic and the code
has not been altered in transit. Additionally, because the updates
include the entire TEE stack, there is less risk of partial updates
or mismatched versions; the TEE and TA code are tested as an
integrated firmware image.

TEE Root of Trust: The security model assumes a hardware
root of trust. TrustZone ensures that on boot, the secure world
(including OP-TEE and the pre-installed TAs) is initialized before

the normal world, and that the bootloader verifies signatures on
the secure world components. This secure boot process means
the TEE code hasn’t been tampered with from power-on. Com-
bined with the runtime isolation and secure update process, the
wallet platform maintains a chain of trust from boot to runtime
operations.

Overall, the platform’s security is anchored in keeping all private
keys and cryptographic operations inside the TEE. Even if an at-
tacker controls the REE, they cannot directly extract keys or make
the TEE sign arbitrary data without going through the proper in-
terfaces (which include necessary authorization, such as the user’s
action in the app). This significantly reduces the attack surface
compared to a conventional software wallet that stores keys in
the normal environment. The use of multiple TAs further compart-
mentalizes the trust boundaries, and the secure update mechanism
ensures the system can be kept up-to-date against vulnerabilities
or expanded to support new algorithms without compromising
security.

5.6 Modularity and Extensibility

A central benefit of this TEE-based design is its modularity and
extensibility to support a wide range of blockchain networks. Be-
cause the functionality for each blockchain is encapsulated in its
own TA set, new blockchains can be added by developing and de-
ploying new TAs rather than redesigning the entire system. This
modular approach makes the platform future-proof and scalable:

e Independent Blockchain Modules: Each blockchain’s logic
(key handling, signing, etc.) lives in its dedicated TAs. This in-
dependence means that adding support for a new blockchain is
as simple as writing the appropriate TAs for that chain’s crypto-
graphic algorithms and transaction formats, and then delivering
them via a firmware update. Existing TAs for other blockchains

remain unchanged and unaffected. The client application can be
designed to recognize which blockchains are available (perhaps
through a registry of installed TAs or a version query to the TEE)
and present the appropriate options to the user.

e Major vs. Minor Blockchain Support: The platform archi-
tects can focus on building TAs in-house for major, widely-used
blockchains to ensure optimal security and performance for
those. For more niche or emerging blockchains (“minor” chains),
the platform can allow third-party vendors or the blockchain’s de-
velopers to supply their own TAs that plug into the system. Such
vendor-supplied TAs would still need to be vetted and signed by
the platform maintainers to be accepted in the firmware update
process, but this approach distributes the development effort.
It allows the wallet to support many different cryptocurrencies
without the core team having to implement every single one,
thus encouraging a broader ecosystem of support.

e Extensibility Through Updates: Whenever a new TA or an up-
dated version of an existing TA is available (be it to support a new
blockchain or to enhance/patch an existing one), the firmware
update mechanism can be utilized to deploy it to users’” devices.
This ensures that the platform can evolve over time — new cryp-
tographic algorithms or blockchain forks can be accommodated
by updating the TAs. Because each TA is a self-contained module,
updates or additions usually do not require changes to the rest
of the system. For instance, if a new signature scheme needs to
be supported for a particular blockchain, a new version of that
blockchain’s signing TA can be deployed without touching the
key generation TA or any other blockchain’s TAs.

o Android-Specific Design: This entire design is built for Android
devices, leveraging Android’s update system and the widespread
availability of TrustZone in modern ARM-based smartphones.
By focusing on Android, the platform can integrate tightly with
the Android OS (for example, using Android system services to
trigger FOTA updates or using Android permissions and key-
stores as an additional layer of security for the CA). While the
concept could in theory be extended to other operating systems
that support a TEE, Android provides a standardized environ-
ment where this design can be implemented and deployed on a
variety of hardware. This makes the solution practical for real-
world use, as many manufacturers and users are familiar with
FOTA updates and Android’s security model.

In summary, the design emphasizes security and modularity. It
ensures that the wallet is secure by design (thanks to TrustZone
isolation and careful separation of duties among TAs) and is also
adaptable to the fast-evolving blockchain landscape. New features
or blockchain supports can be integrated with minimal friction,
simply by adding or updating isolated TAs, all while preserving the
overall security of the system.

6 FUTURE WORKS

6.1 Prototype Implementation

6.1.1 Test on the Open-TEE. Open-TEE is an open-source imple-
mentation of a “virtual TEE” (Trusted Execution Environment)
that fully complies with the GlobalPlatform TEE specifications[44].

Seongjin Kim, Sanguk Yun, and Jungho Jang

According to the official Open-TEE documentation, it is intended
primarily as a development and testing tool for Trusted Applica-
tions: it enables developers and researchers to build and debug TEE-
based systems even without access to hardware-based TEEs[44].
The Open-TEE project further notes that Trusted Applications de-
veloped with this virtual TEE can be compiled and run on any
target that adheres to the same specifications[44]. In our work, we
followed the official Open-TEE build instructions and successfully
compiled the Open-TEE engine (open_engine) and sample Trusted
Applications in a QEMU-based ARM environment(Ubuntu 20.04
on VMware Workstation 17). After launching the engine under
QEMU, we verified that the tee_manager and tee_launcher pro-
cesses started correctly and that the provided conn_test_app client
executed without errors[44].

As a concrete demonstration, we implemented a Trusted Appli-
cation within Open-TEE that performs Bitcoin transaction signing
using ECDSA on the secp256r1 (NIST P-256) curve. This TA uses
the Open-TEE Crypto APL: it initializes an elliptic-curve key pair,
computes the SHA-256 digest of the input transaction, and then
generates an ECDSA signature with the private key. The normal-
world client application invokes this TA via the Open-TEE interface,
and we confirmed that the TA produced valid signatures for our
test vectors. All source code developed in this project is publicly
available on GitHub[45].

6.1.2 Android Build and Vendor Customization. We also built the
Android OS with OP-TEE integration in a QEMU environment.
Using the official AOSP build process, we initialized the Android
source repository and configured the build environment (for ex-
ample, by running source build/envsetup.sh). We then selected a
QEMU-based target that includes TEE support. For reference, the
official Android documentation shows how to build Android with
Trusty support by using a lunch target such as qemu_trusty_armé64-
userdebug and then running make[46]. By analogy, we created a
corresponding lunch target for OP-TEE and invoked the build, pro-
ducing a complete Android system image with the OP-TEE kernel
drivers and libraries included.

On the vendor side, we integrated the OP-TEE Linux kernel dri-
ver and the OP-TEE client libraries into the Android build. This
involved adding the necessary OP-TEE kernel modules (for example,
optee.ko) and the OP-TEE client binaries to the vendor partition,
and modifying the device tree and kernel configuration to enable
OP-TEE support. These vendor-specific modifications follow the
general guidelines in Android’s official documentation for adding
new hardware and services. In our experiments, the modified An-
droid image booted correctly in QEMU with the OP-TEE driver
loaded, and we were able to run simple trusted service tests (for
example, invoking a test TA) on the emulated device.

These platform changes are directly relevant to future secure wal-
let applications. The Android documentation emphasizes that the
presence of a TEE in the system provides hardware-backed strong
security services to Android and its applications[47]. In particu-
lar, Android’s keystore architecture relies on a TEE-based Trusted
Application (KeyMint TA) to perform all sensitive cryptographic
operations[47]. By enabling OP-TEE support at the platform level,
our modifications ensure that cryptographic services such as se-
cure key storage and digital signing can be executed in a trusted

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

environment. This paves the way for wallet applications to use the
Android TEE for secure key management and transaction signing
in future work.

6.2 Overview

This study demonstrated the design validity of the modular wal-
let and the functional and security potential of an initial prototype,
but there remain numerous tasks to be solved for a production-
level deployment. This section concretizes the future research and
development roadmap around four pivotal tasks — 1. building the
update server (software supply chain), 2. customizing the Android
system, 3. implementing expanded Open-TEE-based TAs (Trusted
Applications), and 4. conducting integrated tests after all builds.

6.3 Update Server (Supply Chain)
Implementation

6.3.1 Goal. Establish an end-to-end trust chain that can safely
package and distribute blockchain modules and Android partition
images. Secure transparency and auditability that can funda-
mentally block malicious module injection, version spoofing, and
rollback attacks.

6.3.2 Main Tasks.

(1) CI/CD pipeline construction
Automate static analysis, dynamic instrumentation, and
internal penetration testing in pipelines such as GitLab
CI or GitHub Actions. Formalize chain-specific lint rules
and side-channel patterns as rule sets, scanning every pull
request stage.
(2) OTA signing and version management
Two-stage signing scheme: (i) the module developer’s
PGP signature, (ii) the central registry’s RSA-PSS signature.
Use a transparency log (e.g., Sigstore rekor) to notarize
“who, when, what” was distributed. Defend downgrade
attacks with semantic versioning + rollback index.
Integrity verification and content delivery
Adopt a CDN + edge cache structure, while the client re-
verifies SHA-256/SHA-3 hashes. Compress transfer vol-
ume (< 30%) and shorten application time (< 10 s @ UFS 3.1)
with a delta-OTA generator.
(4) Role-based access control
Separate three roles — administrator, validator, contribu-
tor (module developer) — with RBAC. Final distribution
requires “approval by at least two validators + automatic
test pass”.

(3

=

6.3.3 Expected Challenges and Responses.

o Vulnerability hype cycle: Rapidly rotate rule sets and test
benches to respond to new supply-chain attack techniques
(e.g., DLL planting, cross-compile backdoors).

o Offline signing device management: Complete a key rotation
policy and monitor with transparency logs in the event of
developer HSM token theft or loss.

6.4 Android Customizing

6.4.1 Goal. Mount a wallet-specialized runtime service that
supports TrustZone SMC calls and module installation. Minimize

damage to system security (SELinux, Verified Boot) and user expe-
rience (UI/UX).

6.4.2 Main Tasks.

(1) Wallet system service (“Wallet Manager”)
Add a HAL (or Binder interface) between the Java frame-
work layer and the native system server. Store module states
(installation, version, integrity) in system properties + an
SQLite DB and manage their life cycle.

(2) SELinux policy extension
Create tee_exec, fota_update, and wallet_service do-
mains and granularly allocate privileges under the least-
privilege principle. Tune macros and permissions to pass
CTS /STS/ VTS.

(3) Boot/DM-Verity integration
Dynamically mount a module partition (virtual APEX)
in an A/B partition structure and register its hash tree in
the boot verifier.

(4) UX and internationalization
Separate multilingual (i18n) string resources and display
module download progress and verification status in real
time. Secure compatibility with Android Accessibility Ser-
vice (TalkBack, screen reader).

6.4.3 Expected Challenges and Responses.

o Compatibility variance with existing OEM firmware:
Gradually port from a Treble GSI-based reference device
(e.g., Pixel 6) to multiple chipsets (Exynos, Snapdragon,
MediaTek).

o Potential breakage of module ABI compatibility with kernel
update cycles — write compat shims and automate testing.

6.5 OPEN-TEE TA Implementation

6.5.1 Goal. Provide a TA skeleton that can instantly add major
and minor chains in plug-in form. Minimize build complexity with
E-development / R-runtime separation (dependency injection)
on the same code base.

6.5.2 Main Tasks.

(1) TA SDK and template
Modularize standard layers such as cryptolib.h,bip32.h,
and txserializer.h. Automatically generate the basic
structure (tee_entry.c, param.c, crypto.c) with a code
generator (CLI) by inputting a “foo-chain” schema.

(2) Chain-specific crypto engine
Design a virtual function table (VFT) instead of #ifdef for
secp256k1 / ed25519 / sr25519. Performance target for key
derivation, signing, and validation: within 1 ms (256-bit
ECDSA) @ Cortex-A78 2.8 GHz.

(3) Memory and timing side-channel mitigation

Implement DPA-resistant scalar multiplication (fixed-window

+ constant-time). Enable TEE_Malloc zeroization, stack
canary, L1 cache preload, and partition.

(4) Cross-module IPC
Use the GP TEE internal core’s message forwarder instead
of direct TA-to-TA calls, and control session keys with an
Argon2 KDF.

6.5.3 4.4.3 Expected Challenges and Responses.

o Non-standard signature schemes of niche chains (e.g., BLS12-
381 fast aggregate) — need to optimize multiple-precision
multiplication in the built-in library.

o Efficient cache strategy required when deriving deep HD
wallets (BIP-44) under a memory constraint (1 MB TA heap
limit).

6.6 Entire Build and Test

6.6.1 Goal. Fully automate functional, security, performance,
and compatibility tests in the CI/CD stage. Secure deployment trust
with field-scenario-based verification, not just laboratory-level
testing.

6.6.2 Test-suite Design.

(1) Function (unit & integration)
Achieve 100% coverage for normal and abnormal input sce-
narios on each CA-TA IPC path using Google Test / Catch2.
Stress-test multi-module simultaneous calls (simultaneous
50 TPS).

(2) Security (penetration test & fuzzing)
Perform dumb fuzzing with AFL++ /libFuzzer and grammar-
aware fuzzing (raw transaction hex). Conduct side-channel

Seongjin Kim, Sanguk Yun, and Jungho Jang

6.8 Conclusion

By systematically accomplishing the four practical tasks outlined
above, the modular wallet platform proposed by this study can
establish itself not merely as a simple prototype but as a refer-
ence architecture that simultaneously satisfies safety, flexibility,
and operational convenience even in large-scale environments. In
particular, securing supply-chain transparency and automating the
TA skeleton will be the key to allowing minor chains to enjoy the
same security level as the mainstream ecosystem, which is expected
to catalyze the evolution of the digital-asset management paradigm
into “wallet = platform service.

REFERENCES

[1] Crystal Intelligence, “The 10 biggest crypto hacks in history,” 2025, accessed: 2025-
06-22. [Online]. Available: https://crystalintelligence.com/investigations/the-10-
biggest-crypto-hacks-in-history/

[2] R.Mazza, “Bybit’s 1.4 billion hack: The race to recover stolen crypto from lazarus
group,” https://www.fintechweekly.com/magazine/articles/bybit-ceo-ben-zhou-
says-most-funds-are-still- traceable, Mar. 2025, accessed: 2025-06-22.

[3] Reuters, “Crypto’s biggest hacks and heists after 1.5 billion theft from by-
bit,” https://www.reuters.com/technology/cybersecurity/cryptos-biggest-hacks-
heists-after-15-billion- theft-bybit- 2025-02-24/, Feb. 2025, accessed: 2025-06-22.

[4] D. Chavda, “Dmm bitcoin ends operations after hack, transfers funds to
sbi ve,” https://www.cryptotimes.io/2024/12/02/dmm-bitcoin-to-wind-down-
operations-following-305m-hack/, Dec. 2024, accessed: 2025-06-22.

analysis by collecting event counters (PMU) with arm-hpc-toolkit[5] The Washington Post, “Ftx reports 415 million in hacked crypto, bankman-fried

and applying t-test and TVLA.

(3) Performance (benchmark)
Measure signature latency, module load time, OTA applica-
tion time, and battery consumption (mWh). Target: average
1.5 ms + 0.2 ms for signing five chains concurrently, OTA
(10 MB) < 15 s @ Wi-Fi 6.

(4) Compatibility (device farm)
Use Firebase Test Lab and AWS Device Farm to test 40
devices including custom ROMs such as Android 11-15/One
UL, MIUI Measure physical devices (bare metal) for real
network and power profiles, not just emulators.

6.6.3 Result Analysis and Continuous Improvement. Aggregate test
results in an allure-report; if critical regressions or vulnerabil-
ities are found, issue a GitLab ticket and send a Slack webhook
alert. “Bug severity — hotfix SLA” matrix: Critical 24 h, High 72
h, Medium 7 d, Low 30 d. Comply with the coordinated vulnera-
bility disclosure (CVD) process for CVEs; vendor patch diffs and
PoCs are published 90 days later.

6.7 Long-term Research Extension Directions

(1) Cross-device key-migration protocol
Exchange session keys with QR-code-based OOB channels
+ P256 ECDH, and implement multi-device recovery using
Shamir secret sharing.

(2) Confidential computing integration
Compare performance and security with ARM CCA (Confi-
dential Compute Architecture) and Intel TDX, and draft a
multi-TEE orchestration specification.

(3) On-device formal verification
Prototype a TEE Proof Assistant thatlinks to the Tamarin
prover and Coq, and automatically prove safety invariants
of transaction signatures.

says it’s misleading,” https://www.washingtonpost.com/technology/2022/11/12/
ftx-crypto-hack/, Nov. 2022, accessed: 2025-06-22.

[6] BBC News, “India fake news: Facebook-whatsapp jail warning as lynchings rise
in india,” https://www.bbc.com/news/world-asia-42845505, Aug. 2018, accessed:
2025-06-22.

[7] C. Team, “2.2 billion stolen from crypto platforms in 2024 Blog post
on Chainalysis, Dec. 2024, accessed 2025-06-22. [Online]. Available: https:
//www.chainalysis.com/blog/crypto-hacking-stolen-funds-2025/

[8] ——, “2025 crypto crime trends from chainalysis,” Blog post on Chainalysis, Feb.
2025, accessed 2025-06-22. [Online]. Available: https://www.chainalysis.com/
blog/2025-crypto-crime-report-introduction/

[9] Newstimes, “Chetal: Bitcoin & crypto theft in danbury kidnap-
ping, Online news article, 2025, accessed 2025-06-22. [Online]. Avail-
able: https://www.newstimes.com/news/article/chetal-bitcoin-crypto- theft-
danbury-kidnapping-20387392.php

[10] Cointelegraph, “Multisig & cold wallets — how secure are they really?” Online
news article, 2024, accessed 2025-06-22. [Online]. Available: https://cointelegraph.
com/explained/multisig- cold-wallets-how-secure-are-they-really

[11] ——, “Multisig & cold wallets — how secure are they really?” Online news
article, 2024, accessed 2025-06-22. [Online]. Available: https://cointelegraph.
com/explained/multisig-cold-wallets-how-secure-are-they-really

[12] A.Paju, M. O. Javed, J. Nurmi, and J. Savim, “Sok: A systematic review of tee
usage for developing trusted applications,” in ARES 2023 — 18th International
Conference on Availability, Reliability and Security, Proceedings. ACM, Aug. 2023,
accessed 2025-06-22.

[13] G. Tripathi, M. A. Ahad, and G. Casalino, “A comprehensive review of blockchain
technology: Underlying principles and historical background with future chal-
lenges,” Decision Analytics Journal, vol. 9, no. 1, p. 100344, 2023.

[14] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of blockchain
technology: architecture, consensus, and future trends,” in Proc. IEEE 6th Int.
Congress on Big Data, 2017, pp. 557-564.

[15] S.Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” White paper, 2008,
online; Bitcoin.org.

[16] V. Costan and S. Devadas, “Intel sgx explained,” IACR Cryptology ePrint Archive,
pp. 1-118, 2016.

[17] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,
and U. R. Savagaonkar, “Innovative instructions and software model for isolated
execution,” in Proc. 2nd Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2013, p. 10.

[18] ARM Ltd., “Arm security technology: Building a secure system using trustzone
technology,” White Paper, 2009.

[19] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” AMD White
Paper, Oct. 2021.

[20] AMD, “Sev-snp: Strengthening vm isolation with integrity protection and more,”
White Paper, 2020.

https://crystalintelligence.com/investigations/the-10-biggest-crypto-hacks-in-history/
https://crystalintelligence.com/investigations/the-10-biggest-crypto-hacks-in-history/
https://www.fintechweekly.com/magazine/articles/bybit-ceo-ben-zhou-says-most-funds-are-still-traceable
https://www.fintechweekly.com/magazine/articles/bybit-ceo-ben-zhou-says-most-funds-are-still-traceable
https://www.reuters.com/technology/cybersecurity/cryptos-biggest-hacks-heists-after-15-billion-theft-bybit-2025-02-24/
https://www.reuters.com/technology/cybersecurity/cryptos-biggest-hacks-heists-after-15-billion-theft-bybit-2025-02-24/
https://www.cryptotimes.io/2024/12/02/dmm-bitcoin-to-wind-down-operations-following-305m-hack/
https://www.cryptotimes.io/2024/12/02/dmm-bitcoin-to-wind-down-operations-following-305m-hack/
https://www.washingtonpost.com/technology/2022/11/12/ftx-crypto-hack/
https://www.washingtonpost.com/technology/2022/11/12/ftx-crypto-hack/
https://www.bbc.com/news/world-asia-42845505
https://www.chainalysis.com/blog/crypto-hacking-stolen-funds-2025/
https://www.chainalysis.com/blog/crypto-hacking-stolen-funds-2025/
https://www.chainalysis.com/blog/2025-crypto-crime-report-introduction/
https://www.chainalysis.com/blog/2025-crypto-crime-report-introduction/
https://www.newstimes.com/news/article/chetal-bitcoin-crypto-theft-danbury-kidnapping-20387392.php
https://www.newstimes.com/news/article/chetal-bitcoin-crypto-theft-danbury-kidnapping-20387392.php
https://cointelegraph.com/explained/multisig-cold-wallets-how-secure-are-they-really
https://cointelegraph.com/explained/multisig-cold-wallets-how-secure-are-they-really
https://cointelegraph.com/explained/multisig-cold-wallets-how-secure-are-they-really
https://cointelegraph.com/explained/multisig-cold-wallets-how-secure-are-they-really

Secure User-friendly Blockchain Modular Wallet Design
Using Android & OP-TEE

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Android Open Source Project, “A/b (seamless) system updates,” Android Devel-
oper Documentation, 2025, https://source.android.com/docs/core/ota/ab.

B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-tee - an open
virtual trusted execution environment,” in 14th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom),
Helsinki, Finland, 2015, author’s version of the article to appear in TrustCom
2015, August 20-22, 2015. [Online]. Available: https://open-tee.github.io

W. Dai, J. Deng, Q. Wang, C. Cui, D. Zou, and H. Jin, “Sblwt: A secure blockchain
lightweight wallet based on trustzone,” IEEE Access, vol. 6, pp. 40 638—40 648,
2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2856864

S. Houy, P. Schmid, and A. Bartel, “Security aspects of cryptocurrency wallets—a
systematic literature review,” ACM Computing Surveys, vol. 56, no. 1, pp. 4:1-4:31,
2023. [Online]. Available: https://doi.org/10.1145/3596906

“Op-tee documentation,” Linaro & OP-TEE Project, Tech. Rep., 2023, version
retrieved from https://optee.readthedocs.io/en/latest/. [Online]. Available:
https://optee.readthedocs.io/en/latest/

M. Gentilal, P. Martins, and L. Sousa, “Trustzone-backed bitcoin wallet,”
in Proceedings of CS2 2017 (International Workshop on Cryptocurrencies and
Blockchain Technology). Stockholm, Sweden: ACM, 2017. [Online]. Available:
http://dx.doi.org/10.1145/3031836.3031841

J. A.Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we remember: Cold boot
attacks on encryption keys,” in Proc. 17th USENIX Security Symposium, 2008.

Y. Hu, J. Park, J. Byun, and H. Lee, “Wallitiq: Smart wallet threat analysis and
design,” in Proc. ACM CODASPY, 2021.

J. Byun, J. Park, and H. Lee, “A secure mobile cryptocurrency wallet based on
smart threat analysis,” Electronics, vol. 13, no. 13, 2024.

WallitIQ, “Wallitiq whitepaper,” 2023.

B. Leguesse, K. Li, and W. Enck, “An analysis of android cryptocurrency wallet
apps,” in Proc. DIMVA Workshop, 2020.

T. Erinle, J. Park, and H. Lee, “Blockchain wallet threat model and architecture,”
arXiv preprint arXiv:2504.10123, 2025.

TechXplore (MSU), “Msu researchers identify vulnerabilities in crypto wallets,
2021, techXplore News.

A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation of clients in
bitcoin p2p network,” in Proc. ACM CCS, 2014.

E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on bitcoin’s
peer-to-peer network,” in Proc. USENIX Security Symposium, 2015.

M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing attacks on
cryptocurrencies,” in Proc. IEEE Symposium on Security and Privacy (S&P), 2017.
D. Karame, E. Androulaki, and S. Capkun, “Double-spending fast payments in
bitcoin,” in Proc. ACM CCS, 2012.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008, bitcoin
whitepaper.

V. Buterin, “Ethereum: A next-generation smart contract and decentralized
application platform,” 2013, bitcoin Magazine.

M. Vasek and T. Moore, “There’s no free lunch, even using bitcoin: Tracking the
popularity and profits of virtual currency scams,” in Proc. Financial Cryptography,
2015.

trderft, “The 5 wrench attack explained: What is it and how to protect yourself;”
2024, accessed: Jun. 22, 2025, https://trdcrft.com/the-5-wrench-attack-explained/.
D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, “Ecdsa key extraction from
mobile devices via nonintrusive physical side channels,” in Proc. CHES, 2015.
H. Security, “Top threats facing cryptocurrency hardware wallets,” 2021.
Open-TEE Project, “Open-tee documentation,” https://open-tee.github.io/
documentation, 2025, accessed: 2025-06-22.

mmOck3r, “test-for-opentee: Minimal test setup for open-tee,” https://github.com/
mmOck3r/test-for-opentee, 2025, accessed: 2025-06-22.

Android Open Source Project, “Trusty tee — download and build,” https://source.
android.com/docs/security/features/trusty/download-and-build, 2025, accessed:
2025-06-22.

——, “Android keystore system overview,” https://source.android.com/docs/
security/features/keystore, 2025, accessed: 2025-06-22.

https://source.android.com/docs/core/ota/ab
https://open-tee.github.io
https://doi.org/10.1109/ACCESS.2018.2856864
https://doi.org/10.1145/3596906
https://optee.readthedocs.io/en/latest/
http://dx.doi.org/10.1145/3031836.3031841
https://open-tee.github.io/documentation
https://open-tee.github.io/documentation
https://github.com/mm0ck3r/test-for-opentee
https://github.com/mm0ck3r/test-for-opentee
https://source.android.com/docs/security/features/trusty/download-and-build
https://source.android.com/docs/security/features/trusty/download-and-build
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore

	Abstract
	1 Introduction
	1.1 Exchange Hacking Incidents
	1.2 Motivation
	1.3 Our Approach

	2 Background
	2.1 Blockchain
	2.2 Signature
	2.3 Trusted Execution Environment(TEE)
	2.4 Android Firmware Over-The-Air

	3 Paper Review
	3.1 OP-TEE Based TEE Framework: Open-TEE (McGillion et al., 2015)
	3.2 TrustZone-based SPV Wallet Design: SBLWT (Dai et al., 2018)
	3.3 Security Aspects of Cryptocurrency Wallets — A Systematic Literature Review (Houy et al., 2023)
	3.4 OP-TEE Official Documentation (v23.12.3)
	3.5 TrustZone-backed Bitcoin Wallet (Gentilal et al., 2017)
	3.6 Conclusion

	4 Possible Threat Modeling
	4.1 (a) Memory and Storage Threats
	4.2 (b) Operating System Threats
	4.3 (c) Software Layer Threats
	4.4 (d) Network Layer Threats
	4.5 (e) Blockchain Protocol Threats
	4.6 (f) Other Threats

	5 Design
	5.1 Architecture Overview
	5.2 TEE Workflow
	5.3 TA Composition
	5.4 Firmware Update Mechanism
	5.5 Security Considerations
	5.6 Modularity and Extensibility

	6 Future Works
	6.1 Prototype Implementation
	6.2 Overview
	6.3 Update Server (Supply Chain) Implementation
	6.4 Android Customizing
	6.5 OPEN-TEE TA Implementation
	6.6 Entire Build and Test
	6.7 Long-term Research Extension Directions
	6.8 Conclusion

	References

