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1 INTRODUCTION 

In recent years, the rapid development of cloud computing and Internet of Things (IoT) has provided strong support for 

big data applications such as outsourced computing [1], personal information retrieval [2] and distributed deep learning 

[3]. However, the data involved in these applications are often private and can leak personal privacy if leveraged by 

malicious server. Homomorphic encryption (HE) serves as an encryption scheme that establishes a one-to-one mapping 

between operations in the ciphertext domain and those in the plaintext domain, thereby enabling direct computation on 

ciphertext and thus preventing the leakage of plaintext data [4–6]. Therefore, homomorphic encryption is considered as 

one of the most promising techniques for privacy preservation. 

Homomorphic encryption can be primarily categorized into Partially Homomorphic Encryption (PHE), Somewhat 

Homomorphic Encryption (SHE), and Fully Homomorphic Encryption (FHE). Among these, fully homomorphic 

encryption supports arbitrary computational operations on ciphertexts, but most of them also suffer serious ciphertext 

expansion and computational overhead problems [5,7,8]. In contrast, partially homomorphic encryption algorithms such 

as the Paillier algorithm can support infinite additive homomorphic operations with better computational efficiency. 

Currently, the Paillier algorithm has been widely adopted in various fields such as secure multi-party computation, 

threshold signatures, and electronic voting. Nevertheless, its computational speed remains one of the main factors limiting 

its practical application. Especially during its decryption operation, the width of the operands is double that of the plaintext, 

causing significant increase in computational load. Therefore, optimizing and accelerating the decryption operation is 

crucial for the promotion of the Paillier algorithm. 

From the perspective of algorithm, Chinese Remainder Theorem (CRT) is a widely used optimization approach due to 

its property of decomposing modulus values [9]. To accelerate the decryption operation, El Makkaoui et al. [10] proposed 

a Cloud-Paillier fast decryption algorithm (CRT-base Paillier) based on CRT in 2018 and adopted Bézout's lemma to 

optimize the inverse CRT process. Based on this, they proposed a multi-prime modulus Cloud-Paillier decryption scheme 

[11], which uses CRT to split the modulus into multiple prime numbers, achieving further acceleration of decryption. In 

the same year, Ogunseyi et al. [12] introduced a variable k for the parameter-precomputation process of decryption based 

on the work in literature [10]. They reorganized and optimized the k, L function, and CRT process to reduce the 

computational overhead of precomputation, but did not optimize the hardware implementation. Even worse, the number 

of moduli involved in decryptions increases from two to five after its optimization, which lengthens the hardware logic 

chain and increases the complexity of controlling circuits. 

From the perspective of hardware, architecture modification is another effective approach to accelerate Paillier. In 

2016, San et al. designed a high-speed FPGA-based co-processor architecture to perform Paillier homomorphism 

operations [13], which employs high-radix Montgomery modular algorithm and pipeline multiplier to accelerate the 

calculation. In 2019, Cai et al. [14] designed a dedicated Paillier hardware architecture for ASIC, exploiting the parallelism 

of the high-radix arithmetic operations and decryption. Whereas, the works in [13, 14] are both single-core designs, which 

use a single modular multiplication unit to perform modular multiplications and modular exponentiation operations. 

Although this method reduces hardware overhead, it results in stalls during modular exponentiation. Moreover, those 

designs lack fine-grained computation partition, leaving significant room of area optimization for multi-core designs. In 

2020, Bahadori et al. [15] proposed a multi-core Paillier hardware accelerator based on microcode. Similarly, this design 

also has the same drawbacks as the single-core design mentioned above. In 2024, Che et al. [27] proposed a heterogeneous 

Paillier accelerator design for federated learning, incorporating multiple processing elements to achieve Single Instruction 

Multiple Data (SIMD) operations for large numbers. Whereas this design only introduces pipelines into the modular 

multipliers of the processing elements and assigns individual task scheduler to each processing element, the resource 
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overhead and throughput are suboptimal.  

Furthermore, as the bottleneck of the decryption operation, the modular exponentiation is also an exploitable 

optimization for Paillier acceleration. Many researchers use the Montgomery modular multiplication (MM) algorithm [16–

19] to accelerate modular multiplication, which is a key component of modular exponentiation. To pursue high 

performance, some works removed the final judgment steps in the high-radix Montgomery modular multiplication 

algorithm [17,19,20], which may lead to the result of modular multiplier one modulus larger than the theoretical value. 

Although this does not affect intermediate computations during successive modular multiplications, it requires an extra 

step of removing the excess modulus during modulus switching or operation switching, which can lead to large area and 

latency overhead, especially for its CRT version. 

To avoid the above disadvantages, without compromising algorithm security or hardware feasibility, this paper presents 

two methods to shorten the computation chain in CRT-base Paillier decryption. Based on these methods, we propose an 

improved eCRT-Paillier decryption algorithm. Thus, the decryption computation chain is significantly shortened and the 

control logic is simplified. Additionally, we propose a full-pipeline architecture with segment organization of modular 

exponentiation units. Main contributions are highlighted as follows: 

1) An efficient eCRT-Paillier algorithm based on CRT-base Paillier is proposed by combining precomputed parameters 

to shorten the computation chain. Concretely, by combining the precomputed parameter of the two modular 

multiplications after modular exponentiation, two modular multiplications are reduced to one, thus shortening the 

computation chain. Besides, the correctness of the combination of parameters is proved. 

2) The judgment operation, which is used to ensure the correctness of Montgomery modular multiplications, is proved 

removable in our eCRT-Paillier algorithm. We show that only a single judgment operation is required after the final 

modular multiplication operation through formula derivation. This method further reduces the complexity of hardware 

control logic and saves area overhead. 

3) Based on the proposed eCRT-Paillier algorithm, a highly parallelized and configurable full-pipeline architecture for 

Paillier acceleration is proposed. Following this architecture, a Paillier accelerator named MESA is implemented. By 

meticulous timing partition, the architecture divides the eCRT-Paillier process into three relatively independent 

phases: preprocessing, modular exponentiation, and postprocessing. Correspondingly, a highly parallel pipeline 

structure is designed to eliminate the stalls in modular exponentiation caused by the reuse of modular multipliers. In 

addition, the exponent is divided into segments to simplify the data flow scheduling of the multi-core modular 

exponentiation units, which helps to achieve high throughput with small area overhead. 

The rest of this paper is organized as follows. Section II introduces the symbols and algorithms, including traditional 

Paillier decryption and CRT-Paillier decryption (CRT-base), the fast modular exponentiation and modular multiplication. 

Section III introduces eCRT-Paillier decryption algorithm as an improved version based on CRT-base Paillier. Section IV 

provides details of the multi-core Paillier acceleration architecture and the MESA accelerator proposed for high-throughput 

applications. Section V evaluates the proposals through hardware implementation on an FPGA and makes a comparison 

with other works. Finally, this paper is concluded in Section VI.  

2 BACKGROUND 

2.1 Theoretical Foundations 

Let 
*

nZ  denote the set of positive integers modulo n, and its complete residual class be  0,1, , 1nZ n= − . The bit width 

of the public key n is denoted as N, serving as the reference for describing the bit widths of other parameters in Paillier. 
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The plaintext is denoted by m, and the ciphertext is denoted by c. The Montgomery domain for mod n is denoted as 0R

and for mod ²n  is denoted as 1R . Montgomery modular multiplication is denoted as MM, and modular exponentiation is 

denoted as ME. The greatest common divisor and the least common multiple are respectively denoted as gcd and lcm. 

Definition 1: The function L is defined over 2{ | mod 1}S x n x n=  =  by:
1

( )n

x
L x

n

−
=  

Theorem 1: [Chinese Remainder Theorem] The Chinese Remainder Theorem provides a solution for the following 

system of linear congruences with one unknown: 

1 1

2 2

(mod )

(mod )

(mod )

             

n n

x a p

x a p

x a p







 

 

The theorem states that when 1 2, ,... np pp  are co-prime, for any 1 2, ,... na a a , the above equations have a solution, and 

a general solution can be constructed by the following steps: 

Step 1: Calculate 
1

, /
n

i i ii
M p M M p

=
= = . 

Step 2: And then calculate the inverse it  of iM module ip , that is: 

1 modi i it M p−=  

Step 3: Finally, we can get the general solution x : 

1
mod

n

i i ii
x a t M M

=
=  

2.2 Traditional Paillier Decryption Algorithm 

In the Paillier cryptosystem, the public key consists of n g、 , and the private key consists of  、 . The algorithm 

parameters ,p q and g are chosen such that p and q are co-primes with equal bit lengths, satisfying

gcd( ,( 1)( 1)) 1pq p q− − = . The value   is set to lcm( 1 1)p q− −， , and n is the product of p and q(i.e., n pq= ). The 

parameter g  must satisfy 2

*

n
g Z and ( )( )2gcd mod , 1  L g n n = . The private key component  is computed as 

( )( )
1

2mod mod L g n n
−

. The Paillier cryptosystem consists of three main parts: encryption, evaluation, and decryption. 

This subsection focuses on the decryption process. For ciphertext 2n
c Z  , the decryption proceeds as follows: 

( ) ( )2mod modm Dec c L c n n = =  (1) 

2.3 CRT-base Paillier Decryption Algorithm 

As shown in Equation (1), the traditional Paillier algorithm performs decryption over 
*

nZ . To ensure sufficient security, 

the bit width of the modulus n is typically as large as several thousand bits, resulting in highly time-consuming modular 

exponentiation operations. This becomes the critical bottleneck that limits the decryption speed of Paillier. To improve the 

efficiency of the algorithm, the CRT can be used to decompose the modulo operation in Paillier algorithm, and the modulo 
2n  operation can be converted into modulo 2p  and modulo 2q  operations, so as to reduce the complexity of modular 

exponentiation operation. 

By applying Theorem 1 to equation (1), we can obtain the CRT-base Paillier decryption algorithm, and the specific 

algorithm steps are as follows: 

Step 1: Precompute the modular inverses 3w and 4w of p and q, with
1

3 modw q p−= ,
1

3 modw p q−= . Let 3 3l w q=  ，
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4 4l w p=  , precompute ,p qe e . 

( )

( )

1
1 2

1
1 2

( mod ) mod

( mod ) mod

p

p p

q

q q

e L g p p

e L g q q

−
−

−
−

=

=

 (2) 

Step 2：And then calculate pm and qm  as, 

( )( )

( )( )

1 2

1 2

mod mod

mod mod

p

p p p

q

q q q

m L c p e p

m L c q e q

−

−

=

=
(3) 

Step 3: Finally, by appyling CRT, we can get plaintext m. 

( )3 4mod mod modp qm m l n m l n n=  +  (4) 

2.4 Fast Modular Exponentiation Algorithm 

In Paillier algorithm, modular exponentiation consumes the most computation time. As one of the most efficient algorithms 

for performing modular exponents, fast modular exponents can reduce the complexity of algorithms from (2 )NO to ( )O N . 

The algorithm also requires only 2N modular multiplications in the worst case. The fast modular exponentiation algorithm 

is categorized into L-R and R-L binary modular exponentiation algorithms according to the different scanning order [21]. 

These two modular exponentiation algorithms transform the modular exponentiation operation into an iterative operation 

of modular multiplication and modular square through binary expansion of the exponentiation. Specifically, when the 

exponential bit of the scan is 1, the modular square and modular multiplication operations are performed simultaneously, 

and when the exponential bit of the scan is 0, only the modular square operation is performed. However, this characteristic 

where the number of operations varies with the scanned exponent bit, can lead to data correlation between the two 

algorithms in terms of time and power consumption, which can easily leak key information about the exponent bits. 

To eliminate the data correlation between side-channel information, such as power consumption and time, and the 

exponent, Joye et al. introduced redundant operations in L-R algorithms [22], proposing the Montgomery power ladder 

algorithm shown in Algorithm 1. In this algorithm, regardless of whether the exponent bit is 0 or 1, both modular 

multiplication and modular square operations are performed, thereby avoiding the leakage of key information through 

obvious side-channel information. 

AlGORITHM1:Montgomery Power Ladder Method 

Input: 2 2MM(1, , ), MM( , , )S R p Z a R p= = , p,
-1

-1 -2 0 0
( , , , ) 2

N i

N N ib b b b b= =  

output: modba p  

1: for(i=N-1;i  0;i=i-1)do 

2:   if(bi==1) then 

3:      MM( , , )S S Z p=   

4:      MM( , , )Z Z Z p=  

5:   else 

6:      MM( , , )Z S Z p=      

7:      MM( , , )S S S p=   

8:   endif 
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9: endfor 

10: MM(1, , )S S p=  

11: return S 

2.5 CIOS Montgomery Modular Multiplication Algorithm 

The basic operator for modular exponentiation is modular multiplication. The Montgomery modular multiplication 

algorithm [23] is widely adopted to accelerate large-number modular multiplication. The core idea of this algorithm is to 

use shift, modular addition and multiplication to replace division, thus reducing computational complexity. Depending on 

operand segmentation granularity, Montgomery modular multiplication schemes can be categorized into radix-2 [24] 

(denoted as MMB) and high-radix (denoted as MMH) types. The radix-2 scheme processes data bit-by-bit, implementing 

multiplication operations by AND gates, resulting in smaller area overhead. However, due to its bit-by-bit scanning 

approach, its performance is poor, typically requiring 
2log 2p +    cycles to complete computation, where p is the 

modulus. In contrast, high-radix schemes support processing multiple bits of operands simultaneously, significantly 

improving computational speed. 

In high-radix schemes, the Montgomery modular multiplication algorithm based on Coarsely Integrated Operand 

Scanning (CIOS) [25] is widely adopted due to its feature where data for all multiplication operations arrive 

simultaneously, which facilitates efficient implementation on DSPs (Digital Signal Processors). The specific operational 

steps are shown in Algorithm 2. 

AlGORITHM2: CIOS Montgomery Modular Multiplication 

Input:
( )( )

( )2log 2 / 1

2, , , 2 , 2 , ' mod , log /
word size word size word sizep

a b p R w p p R l R w
 +    − = = = − =      

Output: 1 modabR p−  

Initial: 0t =  

1:for 0 1  i to l= −  do 

2:  ( , [0]) [0] [ ] [0]c s a b i t=  +  

3:  for 1 1  j to l= −  do 

4:    ( , [ ]) [ ] [ ] [ ]c s j a j b i t j c=  + +  

5:  end for 
6:  [ 1]s j c+ =  

7:  [0] 'modm s p w=   

8:  ( , ) [0] [0]c null s m p= +   

9:  for 1 1  j to l= − do 

10:   ( , [ 1]) [ ] [ ]c t j s j m p j c− = +  +  

11:  end for 

12:  [ ] [ 1]t j s j c= + +  

13: end for 

14: return t  

2.6 CRT-Paillier with Montgomery Algorithm 

Algorithm 3 represents the complete process of CRT-base Paillier decryption using the Montgomery modular 

multiplication algorithm and the Montgomery power ladder algorithm. To facilitate subsequent descriptions, this algorithm 
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is divided into four parts: precomputation, preprocessing, modular exponentiation, and postprocessing. In the algorithm, 

the moduli 2p and 2q  correspond to the Montgomery domain and are consistent with the modulus n  ( 2p , 2q , and n  

have the same bit width), while the moduli p and q correspond to the Montgomery domain as 2R . The postprocessing 

phase includes two sections marked with purple (Object 1) and orange boxes (Object 2), which are the targets of the 

optimization proposed. Object 1 integrates precomputed parameters for optimization, while Object 2 eliminates redundant 

elements. The following sections will provide a detailed explanation of these two optimization techniques. 

AlGORITHM3: CRT-base Paillier 

Input: c  Output: m  

Precompute: 2 2

1 modpy R p= , 2 2

1 modqy R q=  

3, 3 0 modRl l R n=  , 4, 4 0 modRl l R n=   

, 2 modp R pe e R p=  , , 2 modq R qe e R q= 
 

Preprocessing: 

1: 2 1 2 2

B 1 1MM ( , , ) mod modp p pS c y p cy R p cR p−= = =
 

2 1 2 2

B 1 1MM ( , , ) mod modq q qS c y q cy R q cR q−= = =
 

Modular Exponentiation: 

2： 2

, ME( , 1, )e p pc S p p= − , 2

, ME( , 1, )e q qc S q q= −  

Postprocessing: 

3:Execution judgment:[object 2] 
2 2

, , ,( ) ? :  p e p e p e pU c p c p c=  −
  

2 2

, , ,( ) ? :  q e q e q e qU c q c q c=  −
 

4: Compute L function: 

   , ( )c p p pL L U= , , ( )c q q qL L U=
 

5: Execution MM:  

B , ,MM ( , , )p c p p Rm L e p= , B , ,MM ( , , )q c q q Rm L e p=  

6: Execution judgment :  

   
( ) ? :  p p p pm m p m p m=  −

 

   
( ) ? :  q q q qm m p m p m=  −

 
7: Execution MM: [object 1] 

B 3,MM ( , , )p p RM m l n= , B 4,MM ( , , )q q RM m l n=
 

8: Execution judgment:  

   
( ) ? :  p p p pM M n M n M=  −

 

   
( ) ? :   q q q qM M n M n M=  −

 
9: Execution ModAdd: 

   
ModAdd( , , )p qm M M n=

 

3 ALGORITHM OPTIMIZATION 

3.1 Shorten the Decryption Chain 

Compared to the traditional Paillier decryption algorithm, the CRT-base decryption algorithm adds one modular 



 

8 

multiplication with precomputed parameters in the post-processing phase, as shown in Step 7 of Algorithm 3 

(corresponding to object 1). Steps 5 and 7 correspond to Equations (3) and (4), respectively. It is observed that parameters 

3 4, , ,qp l e le in Equations (3) and (4) are all obtained through precomputation. To reduce the number of modular 

multiplications in the postprocessing phase, the precomputed parameters pe  and 3l , and qe and 4l , are integrated, resulting 

in the merged precomputed parameters pt and qt . This successfully shifts the additional modular multiplication in the 

postprocessing step of the CRT-base decryption algorithm to the precomputation phase, thus decreasing the number of 

modular multiplications in the postprocessing phase. 

Below is the derivation process for integrating parameters pe  and 3l  (or qe and 4l ) into a single parameter. Equation 

(5) is obtained by substituting the precomputed parameters into Equation (4). 

( )  ( )1 2 1mod mod ( mod ) mod modp

p pm L c p e p q p q n n− − =   +
 

(5) 

Let ( )1 2modp

x pr L c p−= , y pr e= ,
1 modzr q p−= . Where 0t  , and substitute into Equation (5) to obtain Equation (6). 

( )( )

( )

( )

mod mod mod

( )mod mod mod

mod mod mod

mod mod

  

  

  

x y z

xy z

xy z

xy z

m r r p r q n n

p t r p r q n n

r p r q n n

r r q n n

 =   +
 

 =  +   +
 

 =   +
 

 =   + 

(6) 

Given that n pq= , by the properties of modular congruence, we obtain Equation (7): 

( )

( )

( )

( )( )

( )( )

1 2

3

1 2

3

mod mod

mod mod

mod mod

mod mod mod mod

mod ( mod ) mod mod

  

  

  

  

xy z z

xy z

x y z

p

p p

p

p p

m r r q p t r q n n

p t r r q n n

r r r q n n

L c p e l n n n

L c p e l n n n

−

−

 =   +    +
 

 =  +   +
 

 =   +
 

 =   +
 

 =   +
 

(7) 

All transformations from Equation (5) to Equation (7) are equivalent. Therefore, after combining the precomputed 

parameters following the above method, we can let 3 modp pt e l n=  and 4 modq qt e l n=  . Substituting ,p qt t into Equation 

(7), the decryption calculation formula can ultimately be rewritten as Equation (8): 

( ) ( )1 2 1 2mod mod mod mod modp q

p p q qm L c p t n L c q t n n− − =  + 
 

(8) 

3.2 Remove Judgment Operation from Postprocessing 

Modular multiplication, as a subprocess of modular exponentiation, is typically accelerated using the Montgomery 

algorithm. To perform modular exponentiation more efficiently, Li et al.[17] removed the final judgment step in the 

Montgomery modular multiplication algorithm, requiring only one judgment at the end of the modular exponentiation, 

thus saving a significant amount of time on comparisons and subtractions. However, when operations involve switching 

modulus, it is necessary to determine whether the modular multiplication result exceeds the modulus. After optimizing 

decryption with the CRT, the number of modulus types increases from 2 to 5. Specifically, in CRT-base Paillier, there are 

5 types of moduli involved: 
2 2, , , ,p q p q n . Even in our simplified decryption algorithm (Equation (8)), which includes 3 

types of moduli ( 2 2, ,p q n ), the number of modulus switches increases from two to four. If this approach is directly applied 

to compute Equation (8), additional judgment steps will be introduced during postprocessing, such as Step 3 in Algorithm 

3 (object 1) and Step 8 (Step 6 is removed due to the consolidation of Steps 5 and 7). This makes the computation chain 
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quite lengthy and increases the complexity of control logic design and hardware overhead. 

To further shorten the computation chain and simplify control logic while lowering resource overhead, we conducted 

theoretical derivations on the algorithm and proposed a method that saves both time and area overhead without affecting 

the correctness of the results: specifically, by directly removing Step 3 from Algorithm 3. The detailed proof process is as 

follows: 

(1) For cases where the result does not exceed the modulus, it is obvious that the step can be directly removed. 

(2) For cases where the result exceeds the modulus, let: 
2

, ,

,

1 1e p e p

c p

c p c
L p

p p

+ − −
= = +  (9) 

Substituting Equation (9) into Equation (8), we obtain: 

( )

( ) ( )

( ) ( )

,

, 1

, 1 1

, 1 1

, 1

mod

1
( ( mod ) )mod mod

1
( ( mod ) )mod ( mod ) mod mod

1
( ( mod ) )mod ( mod ) mod mod

1
( ( mod ) )mo

p c p p

e p

p

e p

p p

e p

p p

e p

p

m L t n

c
p e q p q n n

p

c
e q p q n p e q p q n n

p

c
e q p q n e q p n n n

p

c
e q p q

p

−

− −

− −

−

= 

− 
= +    
 

− 
=    +    
 

− 
=    +   
 

−
=   ( )d modn n
 
 
 

(10) 

According to Equation (10), the excess modulus value p  will be automatically reduced in subsequent modular 

operations, so no judgment step is necessary and it can be directly removed. 

3.3 Algorithm Discussion 

The complete process of eCRT-Paillier decryption, combining the Montgomery modular multiplication algorithm and the 

Montgomery power ladder algorithm, is shown in Algorithm 4. Compared to CRT-base Paillier, the eCRT-Paillier not only 

simplifies the algorithm flow but also decreases the number of modular multiplications and judgments required in 

postprocessing. 

AlGORITHM 4: eCRT-Paillier  

Input: c  Output: 

Precompute: 2 2

1 modpy R p= , 2 2

1 modqy R q=  

, 0 modp R pt t R n=  , , 0 modq R qt e R n=    

Preprocessing: 

1: 2 1 2 2

B 1 1MM ( , , ) mod modp p pS c y p cy R p cR p−= = =
 

2 1 2 2

B 1 1MM ( , , ) mod modq q qS c y q cy R q cR q−= = =
 

Modular Exponentiation: 

2: 2

, ME( , 1, )e p pc S p p= − , 2

, ME( , 1, )e q qc S q q= −
 

Postprocessing: 

3:Compute L function: 

   , ,( )c p p e pL L c= , , ,( )c q q e qL L c=
 

4: Execution MM: 
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   B , ,MM ( , , )p c p p Rm L t n=
 

   B , ,MM ( , , )q c q q Rm L t n=
 

5: Execution judgment:  

   
( ) ? :  p p p pm m n m n m=  −

 

   
( ) ? :  q q q qm m n m n m=  −

 
6: Execution ModAdd: 

   
ModAdd( , , )p qm m m n=

 

For the Paillier decryption algorithm with a public key width of N , the bit widths of the moduli 2 2, , ,p q p q  and n are 

/ 2, / 2, ,N N N N and N , respectively. Considering Montgomery domain conversion and hardware resource reuse, 

operations with different bit widths are converted to 2N-bit width operations, with the conversion rule that a 2N-bit 

operation is equivalent to two N-bit operations. For CRT-base Paillier, the number of modular multiplications required in 

postprocessing is 22 2 2N N N+ =  (where the subscript denotes the bit width), and the number of judgments required is 

/ 2 22 2 2 2.5N N N N+ + = . For the improved eCRT, the number of modular multiplications required in postprocessing is 

22 1N N= , and the number of judgments required is 22 1N N= . The results of the algorithm comparison are shown in Table 

I. 

Table I．Comparison of Postprocessing Modulo and Judgment Counts of Different Decryption Algorithms 

algorithm modular multiplications judgments 

CRT-base 2 2.5 

eCRT 1 1 

Reduction* 50% 60% 

* : ( )1 CRT- base/ eCRT 100%−   

This paper introduces an improvement to the postprocessing phase of the CRT-base Paillier algorithm. By combining 

precomputed parameters and removing redundant judgment steps, the length of the computation chain in postprocessing 

is significantly shortened. Compared with CRT-base Paillier, the improved eCRT algorithm achieves a 50% reduction in 

modular multiplications and a 60% reduction in judgments. 

4 HARDWARE ARCHITECTURE 

4.1 Overall Design 

The proposed full-pipeline architecture employs a reconfigurable design, supporting compile-time configurability. This 

architecture allows for customization of modulus bit-width and the number of pipeline stages in modular exponentiation 

units according to different security requirements. Fig. 1 illustrates the Paillier accelerator MESA implemented based on 

this architecture, employing a 3-stage modular exponentiation pipeline (including preprocessing and postprocessing, 

totaling 5 stages). The accelerator consists of processing elements (PEs), a data path, a configuration unit (Cfg_unit), and 

a control unit. 



 

11 

D
ata p

ath

Preprocessing unit

Control unit
En

:Ctr

c

:I/O :Data flow
C

fg
_

u
in

t

PE

:reg

3-stage pipeline modular 
exponentiation unit

 Postprocessing unit
m

yp

yq

p2

q2

hp

hq

p2

q2

tp,R

tq,R

n

 

Fig. 1 . Top-level architecture of the MESA 

The PE units, as the core processing units of MESA, are used to compute the eCRT-Paillier decryption operation as 

shown in Algorithm 4. The data path is responsible for the input of the ciphertext c and the output of the plaintext m . The 

Cfg_unit, acting as a parameter configuration unit, provides precomputed parameters and corresponding moduli to the PE 

units, primarily implemented via RAM. The control unit performs data path read/write control, enables and resets the PE 

units, and generates read addresses and read control for the Cfg_unit. 

The operation principle of MESA involves accepting the ciphertext c  and enabling signal En as inputs. After being 

enabled, the control unit sequentially loads the corresponding precomputed parameters from the Cfg_unit, according to the 

five pipeline stages of the PE, enabling the decryption of the input ciphertext c  in a pipelined manner. 

4.2 PE Unit 

To simplify the data flow scheduling within the PE unit, we employ an exponential segmentation method to organize 

multiple modular exponentiation units within the unit. To fully leverage the parallel capabilities of the eCRT decryption 

algorithm, the PE is implemented with two completely symmetric branches, p and q . As shown in Fig. 2, the PE unit 

comprises a preprocessing unit, a 3-stage pipelined modular exponentiation unit, and a postprocessing unit. Each 

component serves specific functions, detailed as follows: 

1) Preprocessing Unit: Composed of two MMB modules (radix-2 Montgomery modular multipliers), this unit is 

responsible for converting the input ciphertext c  into the Montgomery domain. 

2) 3-Stage Pipelined Modular Exponentiation Unit: This unit is structured with six ME modules organized through 

exponential segmentation, implementing a pipelined approach for modular exponentiation. This design significantly 

simplifies the data flow management among the ME modules. The ME unit implements the functionality of 

Algorithm 1, with the first two stages of ME only executing lines 1-9 of Algorithm 1, i.e., keeping the operands in 

the Montgomery domain, while the last stage of ME executes the complete algorithm. 

3) Postprocessing Unit: This section includes two div modules (large integer dividers), two MMB modules, one add 

module (adder), and three com/sub modules (comparators and subtractors). The div modules are used to implement 

the L function during decryption. Given the implementation of the restoring division algorithm by Hiasat et al. [26], 

the subtraction by 1 operation within the L  function is eliminated [13]. The modular multipliers are utilized to 

perform step 4 of Algorithm 4. The first com/sub modules are used to determine if the modular multiplication result 

exceeds the modulus. The subsequent add and com/sub modules handle the modular addition operations. To 

minimize hardware resource consumption, the modular multipliers in this unit are shared with the preprocessing unit. 
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Fig. 2 . PE unit 

The operational principle of the PE unit is as follows: Initially, the cfg_unit loads precomputed parameters 
2 2

1 modpy R p= , 2 2

1 modqy R q= , and 2p , 2q , where
2

1R R= . The preprocessing unit performs modular multiplication 

to obtain pS  and qS respectively. Subsequently, the exponents are segmented and loaded sequentially from the cfg_unit 

into the ME modules, adhering to the segmentation relationship: ,3 ,2 ,11 { , , }p p pp h h h− = , ,3 ,2 ,11 { , , }q q qq h h h− = , where curly 

braces denote bit concatenation. After passing through the 3-stage pipelined modular exponentiation unit, the outputs from 

pS  and qS  are 1 2modp

pU c p−=  and 1 2modq

qU c q−= , respectively. During postprocessing, the div modules are first 

used to complete the computation of the L function in the equation, yielding ( )1 2modq

qL c q−
 and ( )1 2modp

pL c p−
. 

Finally, the precomputed parameters ,p Rt  and ,q Rt , as well as the modulus n , are loaded to perform modular 

multiplication, judgment, and modular addition operations, resulting in the plaintext m . The detailed data flow is 

illustrated in Fig. 3. 
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Fig. 3. Decryption Data Flow 
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In Fig. 3, ,0ic  represents the ciphertext ic  undergoing Montgomery domain conversion. ,p ijS  (or ,q ijS ) represents the 

i-th ciphertext ic undergoing modular exponentiation at the j-th stage, specifically , 2

, ( 1) modp jh

p i jS p− ( or , 2

, ( 1) modq jh

q i jS q− ). 

The ciphertext  ic after undergoing a five-stage pipeline, completes the decryption operation to yield the plaintext im . 

4.3 ME Unit 

Fig. 4 illustrates the internal structure of the ME designed in this paper. The ME is mainly composed of a finite state 

machine, two high-radix modular multipliers (MMH), three multiplexers (MUX), and a shift register. The finite state 

machine controls the MUX switching, and enables the MMH and the shift register, while the shift register performs the 

shifting operation of the exponent b , and the MMH is used to complete the modular multiplication and modular square 

operations in Algorithm 1. Among them, the MMH implemented the CIOS high-radix Montgomery modular multiplication 

algorithm, and to more efficiently perform modular multiplication, this unit uses the DSP48E1 block for acceleration. 
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Fig. 4. ME unit 

The ME takes the Montgomery domain conversion parameters  S  , the Montgomery domain representation of the base 

 a (denoted as Z ), the exponent b, and the modulus p as inputs. Under the control of the FSM, it repeatedly performs 

modular multiplication and modular square operations. Upon completion, it outputs the calculation result and a flag. The 

iterative process is shown in Fig. 5. It can be observed that as the exponent ib  alternates between 0 and 1, the modular 

multiplication and modular square operations are correspondingly executed alternately in the upper and lower modular 

multipliers. Therefore, regardless of the value ib , the power consumption information of the ME remains identical. 
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Fig. 5. Iterative process of ME 

4.4 Highly Parallel Pipelined Design 

MESA adopts a full-pipeline structure. Through fine-grained division and organization of the decryption operation logic 

chain, the most time-consuming modular exponentiation operation is designed with a pipeline, eliminating idle waiting 
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between adjacent modular exponentiation operations and thus achieving 100% utilization of the modular exponentiation 

unit (ME). In the following, we will analyze and compare the traditional multi-core architecture with the proposed highly 

parallel fully pipelined structure. 

In previous hardware acceleration designs for Paillier [13–15], pipelining acceleration was typically applied only to the 

modular multiplication operator, lacking a detailed pipelined design for decryption operations. As shown in Fig. 6(a), the 

traditional multi-core architecture reused MMH in both modular exponentiation and modular multiplication to reduce 

hardware overhead, in scheduling operators such as MM and L(x). Although this design reduces the hardware overhead of 

a single operation core, modular exponentiation will be stalled during postprocessing modular multiplication operation, 

thereby reducing decryption efficiency. Additionally, when multi-core is invoked, non-modular multiplication operators 

in each operation core remain idle for more than 95% of the time, reducing hardware utilization. To address this, we 

propose a highly parallel pipelined structure, based on the eCRT algorithm, to eliminate stalls in modular exponentiation. 
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Fig. 6. Comparison of decryption circuit design strategies 

As depicted in Fig. 6(b), we divide the decryption operation chain into preprocessing, modular exponentiation, and 

postprocessing, and employ a dedicated MMB
 unit to perform modular multiplications during preprocessing and 

postprocessing. Given the limited DSP resources in FPGAs, to maximize optimization for the most time-consuming ME 

operation, this paper allocates all DSP resources to ME while implementing MMB exclusively with LUTs. By segmenting 

the modular exponentiation operation into stages and organizing multiple ME units in a pipelined manner, we achieve 

100% utilization of the ME units. Compared to the traditional multi-core design, in this proposed design, as the 

preprocessing and postprocessing units are shared by multiple MEs, the introduction of the MMB unit in preprocessing and 

postprocessing does not incur additional resource overhead. Furthermore, with the segmentation of the operation chain, 

the time for a single modular exponentiation operation in MESA can fully cover the preprocessing and postprocessing 

times, improving overall throughput. 
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5 IMPLEMENTATION AND COMPARISON 

5.1 Implementation Results 

This paper adopted Verilog hardware description language for hardware design and utilized Vivado 2018.3 software to 

experimentally validate the proposed MESA on a Xilinx Virtex-7 xc7vx690t development board. To compare with existing 

work, experiments were conducted under two scenarios with public key widths of 2048 and 1024 bits, respectively. 

Specifically, under the premise of maximizing FPGA resource utilization to achieve the highest throughput, 6 ME units 

(i.e., a 3-stage modular exponentiation pipeline) were deployed for the 2048-bit public key width, and 12 ME units (i.e., a 

6-stage modular exponentiation pipeline) were deployed for the 1024-bit public key width. Under both parameter 

configurations, MESA achieved a frequency of 100 MHz. The implementation results of MESA, ME units, and pre-post 

processing units are summarized in Table II. 

As indicated in Table II, lookup table (LUT) and register (Slice register) resources are abundant with low utilization 

rates. Therefore, the primary constraint of this design is the number of DSPs available. By analyzing the implementation 

results, we find that when N=2048, each ME unit consumes 526 DSPs, whereas the xc7vx690t development board only 

provides 3600 DSPs. Consequently, a maximum of 6 ME units can be deployed, achieving a 3-stage modular 

exponentiation pipeline. When N=1024, each ME unit consumes 270 DSPs, allowing for up to 13 ME units to be deployed. 

However, due to the algorithm’s requirement to simultaneously compute two paths (p-branch and q-branch), and the need 

for an even number of ME units, a maximum of 12 ME units are used to implement a 6-stage modular exponentiation 

pipeline. 

Table II．Implementation Result of MESA on XC7VX690T 

Module Name Slice LUTs Slice Registers DSP48E1 

N=2048 
Each ME(6) 18384(4.24%) 21399(2.47%) 526(14.61%) 

Pre & Post 57915(13.37%) 77528(8.95%) 6(0.17%) 

Full MESA 168219(38.83%) 205922(23.77%) 3162(87.33%) 

N=1024 
Each ME(12) 9216(2.13%) 10877(1.26%) 270(7.5%) 

Pre & Post 31049(7.17%) 40350(4.66%) 24(0.67%) 

Full MESA 141641(32.70%) 170874(19.72%) 3264(90.67%) 

Full FPGA 433200 866400 3600 

Table III shows the timing results for each operation in MESA when the public key width is N=1024 and the number of 

ME units is 12. As theoretically analyzed, among the basic operators, the operations of sub, com, add, and MMH are 

relatively fast, taking 18, 1~18, 18, and 87 cycles, respectively. In contrast, MMB and div require significantly more time, 

taking 2087 and 3081 cycles, respectively. For the algorithmic steps: In the preprocessing (Pre), the MMB unit performs 

the Montgomery domain conversion of the ciphertext, consuming a total of 20.87 µs; The intermediate processing involves 

the most time-consuming modular exponentiation operation. After being divided into 6 stages, each stage of modular 

exponentiation takes 75.67 µs, which is also the duration of a single decryption after the pipeline is fully occupied; The 

postprocessing (Post) completes the decryption by performing the inverse CRT operation, taking 52.22 µs. It can be 

observed that the time required for a single stage of modular exponentiation fully covers the preprocessing and 

postprocessing stages, thus achieving full pipeline operation. As a result, under this configuration, the system can achieve 

13,215 decryption operations per second. 
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Table III．Timing Results of each Operation when N=1024, No.of ME=12 

Operation 
Speed 

(cycles) (µs) 

Pre 2087 20.87 

Each ME 7567 75.67 

Post 5222 52.22 

op 7567 75.67 

div 3081 30.81 

sub 18 0.18 

com 1~18 0.01~0.18 

add 18 0.18 

MMH  87 0.87 

MMB 2087 20.87 

Fig. 7 shows the relationship between performance and hardware overhead as the number of ME units increases 

(N=1024). As shown in Fig. 7(a), as the number of ME units doubles, the decryption latency is reduced by nearly half, 

indicating that the performance of MESA is almost doubled.  

 

Fig. 7. The relationship between performance, resource utilization, and the number of MEs 

However, due to the limitations of hardware resources, the number of ME units cannot be increased indefinitely. 

Moreover, when the number of MEs reaches 12, the time consumed by preprocessing and postprocessing is roughly 

equivalent to the time for one stage of modular exponentiation. At this point, the radix-2 modular multiplications (MMB) 

and large integer division operations (div) in the preprocessing and postprocessing stages gradually become another 

limiting factor for increasing the number of ME units. 

In this paper, instead of fully instantiating the entire decryption algorithm hardware for multi-core implementation, we 

only instantiate the most time-consuming ME components multiple times. As a result, as the number of ME units increases 

from 2 to 12 (leading to a 6-fold performance improvement), the DSP, LUT, and FF resources only increase by 6, 3, and 

3 times, respectively, as shown in Fig. 7(b). This means that the proposed approach achieves a performance improvement 

of N times with only N/2 times the LUT and FF resource overhead. This highlights the scalability and efficiency of the 

highly parallel pipeline design strategy proposed in this work. 

5.2 Comparison of Decryption Performance of Paillier 

Table IV presents the resource overhead and performance comparison of the Paillier accelerator. To ensure fairness, the 

comparison is conducted under the same security level. To quantify area efficiency, this paper introduces throughput per 
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unit LUT, DSP, and FF (TP/Area) as the evaluation metric. A higher TP/Area indicates better area efficiency. 

We compare the proposed MESA with [13], [14], [15], and [27] in Table IV. It can be observed that our design achieves 

the shortest latency and the highest throughput under both N=1024 and N=2048 bit widths. Additionally, our design 

achieves the best TP/LUT and TP/FF in terms of area efficiency. Specifically: 

As discussed before, a Paillier encryption processor named PCP was proposed by San et al[13]. In this design, the data 

path within PCP is full-pipelined by exploiting parallelism between operations in Paillier, and independent operations were 

alternated to avoid data dependencies, thereby improving performance. However, since PCP was based on the original 

Paillier algorithm without algorithmic or architectural optimizations, MESA achieves throughputs that are 180.18× and 

192.57× higher than PCP under two different security levels, respectively. In terms of area efficiency for LUTs and DSPs, 

our design also achieves improvements of at least 16.56× and 1.49× over PCP. 

Table IV.Performance comparison of Paillier decryption 

Design Platform N 
Freq 

(MHz) 

Latency 

(ms) 
LUT/DSP/FF/BRAM 

TP 

(kbit/s) 

TP/Area 

TP/LUT TP/DSP TP/FF 

San[13] Virtex-7 1024 323 13.513 13016/27/-/74 74 5.82 2806.52 - 

Cai [14] 65nm FDSOI 1024 62.5 2.740 455000/-/-/- 364.96 0.82 - - 

Che[27] S10 GX2800 1024 257 0.142 709171/461/895795/- 7029.90 10.15 15615.22 8.04 

MESA Virtex-7 1024 100 0.075 141641/3264/170874/- 13333.33 96.39 4183.01 79.9 

San[13] Virtex-7 2048 312 111.111 15472/27/-/- 18 1.19 682.67 - 

Bahad

ori[15] 
Zynq-7020 

2048 122 180.72 1781/16/1933/5 11.07 6.36 708.28 5.86 

2048 122 15.06 42871/192/53328/82 132.80 3.17 708.28 2.55 

Che[27]  S10 GX2800 2048 187 0.672 1213056/922/1866240/- 2976.20 2.51 3305.45 1.63 

MESA Virtex-7 2048 100 0.577 168219/3162/205922/- 3466.20 21.1 1122.52 17.24 

Throughput(TP)=(N×1000/1024)/Latency   TP/Area=TP×1024/Area(bit/s) 

Similar to our design, Cai et al. [14] also employed the Montgomery power ladder algorithm in their design to resist 

simple power analysis and timing attacks. To balance area and computational efficiency, they implemented a modular 

multiplier using a radix-256 high-radix Montgomery algorithm. However, their high-radix Montgomery algorithm retains 

the final judgment step, which hinders performance improvements in modular exponentiation. Additionally, due to the 

high radix used in the modular multiplier, the system frequency was difficult to improve, with their best system frequency 

listed as 62.5 MHz. Furthermore, their design was also based on the original Paillier algorithm, and under the same security 

level, the bit width of the decryption modular exponentiation is twice that of our design, increasing computational overhead. 

Compared to their design, MESA achieves a throughput improvement of 36.53× and a LUT efficiency improvement of 

117.55×. 

Che et al. [27] proposed a heterogeneous accelerator design for federated learning. They also deployed multiple 

processing elements (PEs) in an FPGA, with each PE equipped with a separate task scheduler, and implemented parallel 

computation using a single instruction multiple data (SIMD) approach. To reduce interactions between the FPGA and off-

chip global memory, their design utilized a large amount of on-chip storage resources. As a result, our design achieves 

higher area efficiency for LUTs and FFs, with improvements of 9.5× and 9.94× under a 1024-bit width, and 8.41× and 

10.58× under a 2048-bit width, respectively. Additionally, due to the use of more DSP units to accelerate modular 

multiplication, MESA achieves throughputs that are 1.9× and 1.16× higher than their design under 1024-bit and 2048-bit 
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widths, respectively. However, MESA’s DSP area efficiency is significantly lower than that of Che et al.'s design. 

Bahadori et al. [15] proposed a co-design approach based on a microcode multi-core architecture to accelerate Paillier 

algorithm. Under a 2048-bit width, MESA achieves throughput improvements of 313.21× and 26.1× compared to their 

single-core and 12-core designs, respectively. In terms of area efficiency, MESA simplifies control logic design by 

adopting the eCRT-Paillier decryption algorithm with shortened computation chains, and the highly parallel pipelined 

design significantly improves hardware utilization. Additionally, redundant logic in the computation is removed to reuse 

design elements, greatly reducing hardware resource overhead. Compared to their single-core design, MESA achieves 

improvements in LUT, DSP, and FF efficiency of 3.32×, 1.58×, and 2.94×, respectively, and compared to their 12-core 

design, improvements of 6.66×, 1.58×, and 6.76×, respectively. 

6 CONCLUSION 

This paper proposes two methods to simplify the decryption operations for the Paillier partially homomorphic algorithm: 

(1) combining precomputed parameters in the post-processing, and (2) removing the judgment operations in the decryption 

algorithm. These methods make the control circuit lightweight and shorten the processing delay. Besides, all these 

modifications are theoretically proven. In terms of hardware implementation, this paper proposes a highly parallelized 

architecture based on exponent segmentation, which relieves the scheduling of multiple modular exponentiation units and 

reduces the idle time of modular exponentiation operations. With the above three methods, we designed a high-throughput 

and efficient Paillier accelerator named MESA. The experimental results demonstrate that our design has significant 

advantages over existing works in terms of performance and area efficiency. 
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