
ar
X

iv
:2

50
6.

17
86

5v
1

 [
cs

.C
R

]
 2

2
Ju

n
20

25

LASA: Enhancing SoC Security Verification with
LLM-Aided Property Generation

Dinesh Reddy Ankireddy, Sudipta Paria, Aritra Dasgupta, Sandip Ray, and Swarup Bhunia
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

{ankired.dineshre, sudiptaparia, aritradasgupta}@ufl.edu, {sandip, swarup}@ece.ufl.edu

Abstract—Ensuring the security of modern System-on-Chip
(SoC) designs poses significant challenges due to increasing
complexity and distributed assets across the intellectual property
(IP) blocks. Formal property verification (FPV) provides the
capability to model and validate design behaviors through secu-
rity properties with model checkers; however, current practices
require significant manual efforts to create such properties,
making them time-consuming, costly, and error-prone. The
emergence of Large Language Models (LLMs) has showcased
remarkable proficiency across diverse domains, including HDL
code generation and verification tasks. Current LLM-based tech-
niques often produce vacuous assertions and lack efficient prompt
generation, comprehensive verification, and bug detection. This
paper presents LASA, a novel framework that leverages LLMs
and retrieval-augmented generation (RAG) to produce non-
vacuous security properties and SystemVerilog Assertions (SVA)
from design specifications and related documentation for bus-
based SoC designs. LASA integrates commercial EDA tool for
FPV to generate coverage metrics and iteratively refines prompts
through a feedback loop to enhance coverage. The effectiveness
of LASA is validated through various open-source SoC designs,
demonstrating high coverage values with an average of ∼88%
denoting comprehensive verification through efficient generation
of security properties and SVAs. LASA also demonstrates bug
detection capabilities, identifying five unique bugs in the buggy
OpenTitan SoC from Hack@DAC’24 competition.

Index Terms—SoC Security, Security Properties, SystemVer-
ilog Assertion (SVA), Assertion Based Verification, Formal Prop-
erty Verification (FPV), Large Language Models (LLMs).

I. INTRODUCTION

Modern bus-based SoCs integrate multiple intellectual prop-
erties (IPs) on a single chip and utilizes a common bus to
facilitate communication between them. With the globalization
of the IC supply chain and adoption of a Zero Trust Model
it becomes crucial to identify and fix vulnerabilities and
protect secure assets in the regime of evolving security threats.
Traditional verification methods including simulation, random-
regression, directed-random testing [1], assertion-based for-
mal verification [2], fuzzing [3], and hybrid techniques [4]
etc. struggle to keep pace with the growing complexity of
SoC designs, highlighting the need for greater automation
in vulnerability detection and remediation. Formal Property
Verification (FPV) provides a rigorous methodology for math-
ematically verifying hardware design correctness using model-
checking. However, the effectiveness of FPV depends on
meticulously crafted security properties that accurately capture
the intended behaviors and uncover potential vulnerabilities.
Assertion Based Verification (ABV) uses assertions that are

derived from its specification by the verification experts. These
assertions are used to statically prove properties using formal
verification tools or dynamically verified using simulation to
identify potential vulnerabilities. Generating relevant security
properties or assertions is a complex task involving substantial
expertise and manual efforts by security experts, making it
error-prone and not scalable for larger designs, highlighting
the need for automation to streamline the verification process.

The rapid evolution of Large Language Models (LLMs)
has extended their capabilities beyond natural language pro-
cessing, making a significant impact in the domain of hard-
ware security and verification. LLMs have shown remarkable
proficiency in automating tasks like HDL code generation,
verification, and bug fixing [5]. Recent studies on LLM-
based generation of SystemVerilog Assertions (SVAs) [6]–[9],
security properties [10], [11] have demonstrated the growing
potential of LLMs in automating such verification tasks. LLM-
based bug fixing [12], [13] aims to generate repairs for fixing
security vulnerabilities involving static analysis and security-
related feedback or policy-based enforcement [14]. However,
these techniques are limited by the complexity of RTL designs
and struggle to effectively incorporate diverse information
sources, such as design specifications, threat models, and other
security requirements, and lack in curating efficient prompts.
Moreover, existing techniques lack vacuity checking, often
resulting in the generation of vacuous or non-meaningful
properties that hinder effective verification. These techniques
also do not incorporate coverage analysis to assess the ef-
fectiveness of the generated properties, leaving ambiguity in
terms of verification completeness. In this paper, we introduce
a novel automated framework LASA (LLM-Aided Security
Property Generation for Assertion-based SoC Verification) for
efficiently generating security properties for comprehensive
SoC verification and identifying bugs. This paper makes the
following major contributions:

• We propose LASA, a novel and efficient framework that
leverages the knowledge base of LLMs to automatically
generate security properties and SVAs, enabling compre-
hensive verification of generic bus-based SoC designs.

• LASA integrates vacuity checking rules for identifying
and discarding vacuous or non-meaningful properties to
enhance verification efficiency and reduce the computa-
tional overhead.

• LASA employs standard FPV tools to perform coverage

https://arxiv.org/abs/2506.17865v1

analysis and incorporates an iterative refinement step
when coverage falls below a threshold, ensuring improved
and comprehensive verification.

• Experimental results demonstrate the effectiveness of
LASA evaluated on open-source SoC benchmarks, achiev-
ing high coverage values that indicate substantial verifi-
cation performance.

• LASA is equipped with bug detection capabilities, as
evidenced by the identification of five bugs in the buggy
OpenTitan benchmark from the HackDAC’24 competi-
tion.

The paper is organized as follows: Section II discusses the
relevant background and related works. Section III presents
major stages of the proposed framework. Section IV demon-
strates the experimental results and discussion. Finally, Section
V concludes the paper.

II. BACKGROUND

A. Security Property and Formal Property Verification

Security property is a formal specification or rule describ-
ing an observable behavior that the hardware design must
satisfy to guarantee confidentiality, integrity, and availability
(CIA) requirements [1], [15]. These properties must adhere
to three fundamental principles: Correctness, Consistency, and
Completeness. Designers commonly use languages like PSL
and SVAs, employing logic representations at the temporal
level like LTL and CTL, to describe design behaviors. FPV is
used to rigorously verify that security properties hold under
all possible inputs. Commercial EDA tools employ model
checkers to prove whether a property holds in all cases (safe)
or find a counterexample (violation). By exhaustively proving
or refuting properties, FPV enables security flaws detection
that might evade traditional testing.

B. Vacuity Check Rules/Theorems for Security Properties

Definition: Vacuity in LTL refers to a situation where a
specification (formula) is satisfied in a system (model), but
not in a meaningful way as part of the formula was irrelevant
in the system’s behavior. Vacuous properties usually indicate
weak, trivial, or incorrect specifications for a given system or
design.
Example:
Let us assume the following formula/property in Model M :

φ = G(p→ Fq) (1)
This states “Always, if p holds, then eventually q holds.”
In model M , if p never occurs, then φ is vacuously true
because the implication p → Fq when p is false. Hence, we
can conclude φ is vacuously satisfied in M with respect to p.
Formal Definition: (from [16], [17])
A system M satisfies a formula φ vacuously iff M |= φ
and there is some subformula ψ of φ such that ψ does not
affect φ in M . For example, verifying a system with respect
to the specification φ = AG(req → AFgrant) (“every
request is eventually followed by a grant”), we say that φ is
satisfied vacuously in systems in which requests are never sent.

• Theorems for Vacuity Checking [16]
Theorem 1. (Efficient vacuity checking) For every formula
φ, a subformula ψ of φ, and a system M , the following are
equivalent:
(1) ψ does not affect φ in M .
(2) M satisfies φ[ψ ← true] iff M satisfies φ[ψ ← false].
Theorem 2. (Polynomial time complexity) The problem of
checking whether a system M satisfies a formula φ vacuously
can be solved in time O(CM (|φ|) · |φ|).
Theorem 3. (Complexity of checking vacuity in CTL) For φ
in CTL,a subformula ψ of φ with multiple occurrences, and a
system M , the problem of deciding whether ψ does not affect
φ in M is co-NP-complete.
Theorem 4. (Linearly witnessable CTL formula) Given
a CTL formula φ, deciding whether φ is linearly wit-
nessable is in 2EXPTIME (Double Exponential Time
or O(22p(n)

),where p(n) denotes polynomial function of n)
and is EXPTIME(Exponential Time)-hard.
Theorem 5. (Linearly counterable formula) For a branching
temporal logic formula φ, we have that φ is linearly counter-
able iff ¬φ is linearly witnessable.
Theorem 6. (Branching temporal logic) For a branching
temporal logic formula φ and a system M , we have that
M ⊭ Aφd iff M has a path π such that π ⊭ φ.
Theorem 7. (Linearly Witnessable CTL⋆ formula) For a
CTL⋆ formula φ and a system M , deciding whether φ is
linearly witnessable in M is PSPACE-complete (polynomial
amount of memory).
Theorem 8. (Counterexamples to find interesting witnesses)
For a formula φ and a system M , a counterexample for
¬witness(φ) in M is an interesting witness for φ in M .
Theorem 9. (Complexity of finding an interesting witness)
For an LTL or a CTL⋆ formula φ and a system M , an
interesting witness for φ in M can be generated in polynomial
space. Deciding whether such a witness exists is PSPACE-
complete.

C. Coverage Metrics in FPV

Commercial tools performing FPV offer a range of coverage
metrics to assess the thoroughness and completeness of FPV.
Cadence JasperGold employs three coverage metrics, namely,
stimuli, checker, and formal coverage. Stimuli coverage
indicates how well the input conditions and scenarios are
applied to the DUT during formal verification. It includes
both code coverage (such as branch, statement, expression,
and toggle coverage) and functional coverage (defined by
user-specified covergroups). Checker Coverage assesses the
completeness of the formal assertions in verifying the design
behavior. It includes Cone of Influence (COI) Coverage which
measures the extent to which the logic paths that influence
a given assertion are exercised, and Proof Core Coverage
identifies the minimal set of design elements necessary for
the assertion’s truth value and ensures that these elements are
thoroughly checked. Formal Coverage is a composite metric
that combines both stimuli and checker coverage to provide an
overall assessment of the formal verification’s effectiveness.

D. Existing Verification Techniques and Challenges

The current industry practices predominantly employ two
major methodologies for SoC verification: (i) simulation-
based verification and (ii) assertion-based verification [1],
[18]. Simulation-based techniques rely on generating complex
testbenches that drive inputs and monitor outputs under various
scenarios. Tools such as ModelSim and Synopsys VCS are
commonly employed to validate the functional correctness
of designs. Simulation-based approach is widely used for
its familiarity and ease of deployment, but it offers limited
coverage and struggles with scalability as design complexity
increases. ABV offers a more formal and rigorous frame-
work that employs SVAs specifying intended design behavior
through properties and constraints and verified using FPV. It
provides exhaustive verification within bounded scopes and is
particularly effective in uncovering subtle logic errors/bugs,
or security vulnerabilities. However, it can be limited in
scalability due to the state-explosion problem.

E. Related work on Leveraging LLMs in Verification

The growing use of LLMs is greatly advancing state-of-
the-art hardware security verification [5] by leveraging their
natural language understanding and broad knowledge base to
perform diverse automation tasks. Recent research explores
integrating LLMs into IC design flow to generate complex
testbenches for simulation-based verification and creating pre-
cise, context-specific SVAs for formal verification. LLM-aided
verification enables early detection of vulnerabilities prior to
fabrication. LLM-based SVA generation [6], [7], [22], [24]
at the RTL abstraction level has been explored using natural
language specifications and prompt engineering. Frameworks
like AssertLLM [9] employ specialized LLMs for different
stages of assertion creation, while hybrid methods [20] com-
bine LLM-driven formal verification with mutation testing to
refine design invariants. ChipNeMo [19] showcases versatile
LLM applications, including chat-based assistance, script gen-
eration, and bug summarization, emphasizing domain-specific
adaptation. DIVAS [14] provides an end-to-end toolflow that
automates CWE identification, SVA generation, and security
policy enforcement using [15], highlighting broad applica-
tions of LLMs. Additional frameworks such as FVEval [23],
LASP [11], and NSPG [10] assess and generate security
properties directly from RTL or design documentation. Table I
summarizes the characteristics of existing solutions and also
highlights the features of the proposed LASA framework.

F. Motivation

Current techniques face significant challenges due to the
increasing complexity of SoC designs. They also lack the
capability to curate efficient prompts by extracting relevant
information from the corresponding documentation or design
specifications. Current techniques follow more targeted verifi-
cation and also do not guarantee the generation of non-vacuous
properties that contribute to effective verification. Furthermore,
existing approaches do not incorporate coverage analysis to

evaluate the effectiveness of the generated properties or asser-
tions, leaving gaps in verification completeness and increasing
the risk of undetected errors. These limitations highlight the
need for a more efficient automated framework that overcomes
shortcomings of current approaches and ensures comprehen-
sive verification of complex SoC designs.

III. METHODOLOGY

In this section, we describe the main components of the
LASA framework, starting from prompt creation, followed by
non-vacuous security properties generation and then conver-
sion to SVAs leveraging LLMs, along with coverage analysis
with iterative refinement and bug detection. The overall flow
has been depicted in Fig. 1. The proposed framework can be
categorized into five major stages as described below.

A. Prompt Generation

The prompt generation step includes the extraction of behav-
ioral descriptions from the given RTL code and specification
documents, including block diagrams and textual descriptions.
Current LLMs are constrained by the number of input tokens
they can process, making it difficult for them to effectively
analyze large hardware designs that consist of thousands of
lines of RTL code. LASA breaks down the code into higher-
level abstractions (e.g., modules, functions, or components)
and uses the summarized descriptions in the creation of
prompts. Additionally, LASA employs Retrieval-Augmented
Generation (RAG) techniques to extract and summarize the
relevant information from related documentation or manu-
als at a high level. By combining the summarized design
descriptions and retrieval-based information, LASA generates
more accurate, contextually aware prompts for generating the
relevant security properties in the subsequent steps.

Fig. 1: Major stages in the proposed LASA framework.

B. Security Property Generation

The proposed framework leverages pre-trained LLMs to
generate relevant security properties for the SoC design under

TABLE I: Comparative analysis between LASA and existing LLM-based approaches.

Proposed
Solutions

Baseline
SVA

Generation?
Property/Policy

Generation?
Vacuity

Checking?
Prompt

Engineering?
RAG?

Coverage
Analysis?

Bug
Detection?

Evaluation
Benchmarks

Kande et al. [7] Codex ✓ ✗ ✗ ✓ ✗ ✗ ✗ Hack@DAC21, OpenTitan
NSPG [10] BERT ✗ ✓ ✗ ✓ ✗ ✗ ✗ OpenTitan, RISC-V, MIPS

ChipNeMo [19] LLaMA2 7B/13B/70B ✗ ✗ ✗ ✗ ✓ ✗ ✗ Custom Benchmarks
AssertLLM [9] GPT-3.5, GPT-4 ✓ ✗ ✗ ✓ ✓ ✗ ✗ Custom Benchmarks

Hassan et al. [20] GPT-4 ✓ ✗ ✗ ✗ ✗ ✗ ✗ C432 (ISCAS-85)
Saha et al. [21] GPT-3.5, GPT-4 ✓ ✗ ✗ ✗ ✗ ✗ ✗ CWE, Trust-Hub

Orenes-Vera et al. [6] GPT-4 ✓ ✗ ✗ ✓ ✗ ✗ ✗ RISC-V CVA6 Ariane
SPELL [8] GPT-3.5, GPT-4, Gemini ✓ ✓ ✗ ✓ ✗ ✗ ✗ MIT-CEP SoC, CWE

LAAG RV [22] GPT-4 ✓ ✗ ✗ ✓ ✗ ✗ ✗ OpenTitan
FVEVAL [23] GPT-4o, Gemini-1.5, Llama-3.1 ✓ ✗ ✗ ✓ ✗ ✗ ✗ Custom Benchmarks

LASP [11] Gemini-1.5 ✓ ✓ ✗ ✓ ✗ ✗ ✗ RSA, DES, SHA512, AES
LASA* (This work) GPT4o, Llama-3.1, Gemini-1.5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ CEP, OpenTitan, Hack@DAC’24

test. The security properties are typically expressed in temporal
logic and explore specific or entire state space of the design,
exploring possible states and transitions. The framework also
incorporates vacuous rules checking to improve property gen-
eration and discard trivial or non-interesting properties. We
borrow the standard nine vacuous rules and theorems (de-
scribed in Section II-B) from literature [16], [17] in evaluating
the vacuous properties. Additionally, the framework integrates
k-shot learning for generating valid security properties while
reducing hallucinations and irrelevant outputs from LLMs.

C. SVA Generation

LASA integrates pre-trained LLMs for translating non-
vacuous security properties into equivalent SVAs. The frame-
work employs re-prompting to correct syntax errors in gener-
ated assertions and produce revised versions. LASA appends
each SVA into the respective .sva file and automates the
process of generating TCL scripts for evaluation using Ca-
dence JasperGold. The evaluation employs FPV using model
checkers to generate counterexamples (CEXs) to identify any
failures that infer potential bugs or vulnerabilities. LASA uti-
lizes k-shot learning by allowing the model to learn from
a small set of example assertions to generate syntactically
accurate and contextually relevant SVAs. This allows LASA to
adapt to diverse design specifications, producing high-quality
assertions that align with the security goals and underlying
threat model.

D. Coverage Analysis

Coverage analysis in FPV quantifies how effectively the
verification process exercises the design under test and the
generated SVAs derived from formal security properties. It
provides quantitative metrics that help evaluate the complete-
ness, effectiveness, and quality of the properties/assertions.
LASA integrates multiple coverage metrics—Formal, Stimuli,
and Checker Coverage—leveraging the Cadence JasperGold
Coverage tool to analyze branch, statement, expression, and
toggle coverage. LASA generates a comprehensive verification
report summarizing assertion coverage and verification results.
If any signals remain uncovered, further analysis can be
performed by reviewing branch, statement, expression, toggle,
and functional coverage reports.

E. Iterative Refinement

LASA employs iterative refinement that enhances the exist-
ing prompts to improve the coverage by generating additional
properties followed by SVAs until the pre-defined coverage
threshold (%) is met. Failed SVAs indicate a potential is-
sue—either due to incorrect formulation by LLM or uncovered
design behavior that leads to potential bugs. The incorrect
assertion generation by LLM necessitates prompt refinement
through an iterative feedback path in LASA to enhance the
assertion generation process and ensure greater accuracy.
Additionally, LASA maintains additional prompts database
and selectively applies relevant prompts aimed at generating
more accurate properties, thereby enhancing coverage and
improving overall verification completeness.

IV. RESULTS AND DISCUSSION

A. Experimental set-up

We performed a comprehensive evaluation of our proposed
LASA framework on two most popular open-source SoC
benchmarks, namely, Common Evaluation Platform (CEP)
from MIT-LL1 and OpenTitan2. The experiments were con-
ducted on a Red Hat Enterprise Linux Server with AMD
Epyc 7713 64-core processor and 1007.6 GiB Memory. FPV
has been performed using Cadence JasperGold (ver. 2020.12).
Our analysis utilizes diverse pre-trained LLMs with their latest
available versions such as OpenAI’s GPT4o, Google’s Gemini-
1.5, and Meta’s Llama-3.1 for generating properties and SVAs.
We evaluated the performance of different pre-trained LLMs
and found GPT4o outperforms other LLMs based on the per-
centage of generated security properties classified as #proved
or #failed averaged on multiple IPs (refer to Fig. 2). Hence,
we selected GPT-4o as our primary LLM for integration with
LASA for automation tasks in different stages.

B. Generation of Initial Prompts and RAG-based Extraction

LASA adopts JSON-based template (<SPEC_FILE>) as
shown partially in Listing 1 that formalize the specifications.
For complex SoCs with multiple IPs involved, LASA processes
each IP individually and uses the corresponding IP-level doc-
umentation and <SPEC_FILE> to generate tailored prompts.
For large hierarchical IPs, LASA identifies the submodules

1https://github.com/mit-ll/CEP.git
2https://opentitan.org/book/hw/ip/index.html

Fig. 2: Comparing LLMs in terms of generating properties.

based on design specifications and performs evaluation at
the submodule level. The initial prompt includes high-level
design specifications extracted from <SPEC_FILE>, either at
the module or submodule level, augmented with contextual in-
formation retrieved via RAG-based techniques. These enriched
prompts are fed sequentially to pre-trained LLMs to facilitate
the generation of relevant security properties while mitigating
the token limitations of LLMs. The example prompts are
included in Appendix A.
"SoC_General":
{

"NAME":"MIT-CEP",
"TYPE":"Open-source",
"BUS":"AXI4",
"NO_OF_IP":"12",
.... // more details

},
"BUS_INTERFACE":
{

"INTERFACE_NAME":"Master/Slave",
"NO_OF_PORTS":"17",
.... // more details

}
"IP_1":
{

"NAME":"AES",
"TYPE":"Slave",
"OPERATION":"Crypto",
.... // more details

}
.... // more IPs
"Assets":
{

"NAME":"aes_key",
"TYPE":"192-bit",
.... // more details

}

Listing 1: CEP SoC Design Specifications in JSON format.

C. Generation of Security Properties and Vacuity Check

LASA employs vacuity check on the LLM-generated prop-
erties to discard all non-vacuous properties that violate at
least one of nine theorems (Section II-B). LASA adopts a
hierarchical analysis approach, treating each submodule in-
dependently to generate localized security properties, which
are subsequently aggregated at the top module level to ensure
comprehensive coverage and consistency. Table II presents
the number of security properties generated for different IPs
from CEP and OpenTitan benchmarks. The column ‘#correct’
denotes the number of properties that are proven to be relevant

and semantically correct, and ‘#non-vacuous’ denotes the
number of properties that pass vacuity check rules. Fig. 3 rep-
resents the number of proved and failed properties generated
for each submodule of AES and FIR designs from CEP.

TABLE II: Number of generated non-vacuous properties and
correct SVAs using LASA.

Design Properties Assertions
#generated #correct #non-vacuous #generated #correct

AES-192▲ 73 43 41 41 40
DES3▲ 37 31 29 29 27
GPS▲ 108 98 93 93 90
FIR▲ 30 24 22 22 22
IIR▲ 38 26 25 25 25
i2c⋆ 78 75 71 71 70

adc_ctrl⋆ 37 33 32 32 32
kmac⋆ 49 47 44 44 42

▲denotes designs from CEP SoC. ⋆denotes designs from OpenTitan SoC.

D. Generation of Valid SVAs

LASA leverages pre-trained LLMs to generate equivalent
assertions for all non-vacuous properties that pass the vacu-
ity check. We found most of the properties were directly
translatable into SVAs (refer to Table II) while some posed
challenges for direct conversion due to the dependence on the
formulation of properties. There were some manual efforts
involved for those properties requiring re-prompting for con-
version to SVAs. LLMs often struggle with generating correct
SVAs due to limited understanding of hardware behavior,
signal timing, and implication semantics (e.g., overlapping
vs. non-overlapping), etc. LLMs may generate SVAs that
are syntactically valid but semantically incorrect such as
using non-boolean expressions in implication, incorrect signal
scopes, or violating reset behavior constraints. LASA integrates
verification through Cadence JasperGold and discards the
syntactically incorrect or semantically invalid SVAs.

Fig. 3: Number of ‘Proved’ and ‘Failed’ Properties Generated
by LASA for AES and FIR Sub-Modules.

Example of Vacuous Property/Assertion:
Listing 3 demonstrates an example property that violates
one of the nine theorems of vacuity checking and will be
treated as a vacuous property, and the corresponding assertion

would also be discarded. This property is potentially vacuous
since the antecedent validCounter > 1 is never true if
validCounter is stuck at 1 or 0.

1 property p_validCounter_decrement;
2 @(posedge clk) disable iff (rst)
3 (validCounter > 1) |=> (validCounter == $past(

validCounter) - 1);
4 endproperty
5 assert property (p_validCounter_decrement);

Listing 2: Example of Vacuous Property/Assertion.

Example of CEX:
Listing 3 illustrates a counterexample generated for an LLM-
generated SVA for DES3 design. This condition violates the
design behavior, and model checking in FPV can generate
a counterexample for the same (refer to Fig. 4), making it
semantically incorrect.

1 property p_k_update;
2 @(posedge clk) disable iff (reset)
3 (!$stable(roundSel)) |=> (K !== $past(K));
4 endproperty
5 assert property (p_k_update);

Listing 3: Example of CEX for DES3 design.

Fig. 4: Timing diagram depicting the counterexample (CEX).

E. Coverage Analysis

LASA integrates Cadence JasperGold to perform FPV on
the generated SVAs in the previous step and generate respec-
tive coverage metrics. LASA follows a configurable coverage
threshold (set to 80% for our experiments), representing
the minimum coverage required for the verification to be
considered acceptable. If coverage falls below this thresh-
old, LASA incoprates a feedback loop to generate additional
relevant SVAs to improve the coverage. Higher coverage %
indicates a more thorough and efficient verification, ensuring
that all relevant states, behaviors, and properties of the design
are fully explored and validated. LASA can also be seam-
lessly integrated with other commercial EDA tool flows to
perform FPV and generate respective coverage metrics. Table
III presents the highest coverage values achieved for eight
different IPs belonging to CEP and OpenTitan SoC. Coverage
values at sub-module level are detailed in Appendix B.

F. Iterative Refinement

LASA includes a feedback path involving prompt engineer-
ing to regenerate more non-vacuous properties and context-
specific SVAs for further improvement of coverage metrics if
it falls below the threshold. Listing 4 shows some example
prompts providing additional semantic context that are in-
cluded with the existing prompts, refining the requirements and

TABLE III: Coverage values (%) for different IPs.

Benchmarks Checker Coverage Stimuli
Coverage

Formal Coverage
COI Proof Core COI Proof Core

AES-192▲ 99.02% 83.59% 99.93% 99.37% 85.05%
DES3▲ 93.97% 91.70% 100% 93.98% 91.71%
GPS▲ 98.48% 83.39% 99.40% 98.63% 84.70%
FIR▲ 92.64% 80.35% 92.82% 91.59% 80.50%
IIR▲ 90.68% 81.07% 99.01% 90.97% 81.42%
i2c⋆ 91.44% 84.40% 99.25% 91.44% 84.40%

adc_ctrl⋆ 86.37% 80.53% 95.18% 86.12% 80.78%
kmac⋆ 89.35% 81.53% 96.79% 90.22% 82.19%
Average % % % % %

▲denotes designs from CEP SoC. ⋆denotes designs from OpenTitan SoC.

generating relevant properties and SVAs. Fig. 5 illustrates the
iterative improvement on coverage metrics across five different
designs from the CEP SoC benchmark. This iterative approach
ensures that LASA enhances formal coverage, leading to more
robust and comprehensive verification outcomes.

prompt_database:
"Enhance coverage by adding reset conditions."
"Add corner case assertions for boundary values."
"Include sequential behavior checks."
"Cover unreachable states if any."
"Extend assertions to multi-cycle paths."

Listing 4: Example prompts for iterative refinement.

G. Bug Detection

LASA facilitates bug detection by generating context-aware
SVAs that capture the security and functional properties of
the design. For generating tailored SVAs for detecting bugs,
LASA includes additional high-level information into the
prompts, including micro-architectural events, threat models,
secure assets, etc. These improved prompts guide the language
model to produce tailored SVAs that more accurately reflect
the design’s security objectives. When verified, these SVAs can
expose violations that indicate design flaws. This capability
is demonstrated through the detection of five bugs in the
buggy OpenTitan SoC from the Hack@DAC’24 competition
and tabulated in Table IV.

Fig. 5: Improvement on coverage values for different IPs
through iterative refinement in LASA.

TABLE IV: Detected bugs from HackDAC’24 buggy OpenTitan SoC using LASA framework.

Bug# Bug Description Code Reference Security impact SVA for Detection

1
Incorrect parity checks for UART receiver.

The rx_parity_err in uart_rx does not depend
on parity_enable

uart_rx.sv:
Line: 102-103

It can lead to incorrect FIFO sync
(prim_fifo_sync) and false hardware

interrupt (intr_hw_rx_parity_err).

property p_parity_err_without_enable;
@(posedge clk_i) disable iff (!rst_ni)
(!parity_enable && rx_valid_q) |->!rx_parity_err;
endproperty
assert property(p_parity_err_without_enable);

2
Incorrect wr_data is assigned. Assigned q

(reg value) instead of d (hw value)
prim_subreg_arb.sv:

Line: 51
Incorrect assignment leads to
non-clearance of hw value.

property p_w1s_hw_clear_should_use_d;
@(posedge clk_i) disable iff (!rst_ni)
(SwAccess == SwAccessW1S && de && !we)
|->(wr_data === d);
endproperty
assert property(p_w1s_hw_clear_should_use_d);

3 Potential OTP word Overflow
otp_ctrl_lci.sv:

Line: 67
Overflow will cause system interruption

by generating wrong values.

property p_otp_word_check;
@(posedge clk_i) disable iff (!rst_ni)
(LastLcOtpWord != LastLcOtpWordInt[CntWidth-1:0]);
endproperty
assert property(p_otp_word_check);

4
HMAC hashing key leaked through

reg_rdata_next
hmac_reg_top.sv:

Line: 1267-1273; 1343-1345;
Malicious attempt to leak the HMAC

hashing key.

property p_hmac_key_read_blocked;
@(posedge clk_i)
disable iff (!rst_ni)
(addr_hit[8] || addr_hit[9]) |->reg_rdata_next == ’0;
endproperty
assert property(p_hmac_key_read_blocked);

5 Incorrect error detection logic
prim_subreg_shadow.sv:
Line: 76-66; 184-185;

Since error_s is not used hence the error
detection logic will not work correctly

leading to incorrect operation.

property p_error_s_known;
@(posedge clk_i)
disable iff (!rst_ni)
$isunknown(error_s) == 0;
endproperty
assert property(p_error_s_known);

H. Discussion
While LASA demonstrates promising results, further en-

hancements are still possible. Incorporating more robust vacu-
ity checking rules or refining existing ones could help filter out
vacuous properties. LLMs struggle with complex, specialized
tasks and are constrained by a finite set of use cases in
generating SVAs, often leading to incomplete or erroneous
responses. Fine-tuning LLMs on domain-specific datasets can
significantly enhance their performance. Integrating syntax-
checking tools helps minimize errors in generated responses
and significantly reduces manual efforts. Enhancing LLMs
with advanced reasoning capabilities and more sophisticated
prompt engineering could improve the automation tasks. Addi-
tionally, adopting custom coverage metrics would offer a more
accurate representation of verification completeness, guiding
iterative improvements effectively.

V. CONCLUSION

In this paper, we presented LASA, a novel efficient frame-
work for automating security verification for generic bus-
based SoCs. LASA incorporates RAG-based implementation
to extract relevant data from hardware documentation and
formalize SoC specifications for generating effective LLM
prompts. By leveraging pre-trained LLMs and combining
vacuity checking and k-shot learning, LASA efficiently gen-
erates contextually relevant non-vacuous security properties
and then SVAs at both module and sub-module levels. The
experimental results demonstrate higher coverage values (avg.
88%) with iterative refinement, highlighting LASA’s effective-
ness in comprehensive verification. LASA also showcases bug
detection capabilities, enabling the identification of potential

vulnerabilities at the early stages of the design flow. Future
work includes incorporating domain-adapted LLMs with fine-
tuning to improve the performance and also extending to other
SoC interconnect fabrics, e.g., Network-on-Chip (NoC).

REFERENCES

[1] S. Bhunia and M. Tehranipoor, Hardware Security: A Hands-on Learn-
ing Approach, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2018.

[2] H. Witharana, Y. Lyu, S. Charles, and P. Mishra, “A survey on assertion-
based hardware verification,” ACM Comput. Surv., vol. 54, no. 11s, Sep.
2022.

[3] R. Saravanan, S. Paria, A. Dasgupta, V. N. Patnala, S. Bhunia, and
S. M. P. D, “Synfuzz: Leveraging fuzzing of netlist to detect synthesis
bugs,” 2025. [Online]. Available: https://arxiv.org/abs/2504.18812

[4] C. Chen, R. Kande, N. Nguyen, F. Andersen, A. Tyagi, A.-R. Sadeghi,
and J. Rajendran, “Hypfuzz: formal-assisted processor fuzzing,” in
Proceedings of the 32nd USENIX Conference on Security Symposium,
ser. SEC ’23. USA: USENIX Association, 2023.

[5] S. Paria, A. Dasgupta, and S. Bhunia, “Navigating soc security landscape
on llm-guided paths,” in Proceedings of the Great Lakes Symposium on
VLSI 2024, ser. GLSVLSI ’24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 252–257.

[6] M. Orenes-Vera, M. Martonosi, and D. Wentzlaff, “Using LLMs to
Facilitate Formal Verification of RTL,” 2023.

[7] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and
J. Rajendran, “(Security) Assertions by Large Language Models,” IEEE
Transactions on Information Forensics and Security, pp. 1–1, 2024.

[8] S. Paria, A. Dasgupta, and S. Bhunia, “SPELL: An End-to-End Tool
Flow for LLM-Guided Secure SoC Design for Embedded Systems,”
IEEE Embedded Systems Letters, vol. 16, no. 4, pp. 365–368, 2024.

[9] W. Fang, M. Li, M. Li, Z. Yan, S. Liu, H. Zhang, and Z. Xie, “As-
sertLLM: Generating and Evaluating Hardware Verification Assertions
from Design Specifications via Multi-LLMs,” 2024.

[10] X. Meng, A. Srivastava, A. Arunachalam, A. Ray, P. H. Silva, R. Psiakis,
Y. Makris, and K. Basu, “Unlocking Hardware Security Assurance: The
Potential of LLMs,” 2023.

[11] A. Ayalasomayajula, R. Guo, J. Zhou, S. K. Saha, and F. Farahmandi,
“LASP: LLM Assisted Security Property Generation for SoC Verifica-
tion,” in 2024 ACM/IEEE 6th Symposium on Machine Learning for CAD
(MLCAD), 2024, pp. 1–7.

[12] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining
Zero-Shot Vulnerability Repair with Large Language Models,” in 2023
IEEE Symposium on Security and Privacy (SP), 2023, pp. 2339–2356.

[13] B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “Fixing Hardware
Security Bugs with Large Language Models,” 2023.

[14] S. Paria, A. Dasgupta, and S. Bhunia, “DIVAS: An LLM-based End-to-
End Framework for SoC Security Analysis and Policy-based Protection,”
2023.

[15] S. Paria, A. Dasgupta, and S. Bhunia, “DiSPEL: A Framework for SoC
Security Policy Synthesis and Distributed Enforcement,” in 2024 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), 2024, pp. 271–281.

[16] O. Kupferman and M. Y. Vardi, “Vacuity detection in temporal model
checking,” in Correct Hardware Design and Verification Methods,
L. Pierre and T. Kropf, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 82–98.

[17] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of
vacuity in actl formulas,” in Computer Aided Verification, O. Grumberg,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 279–290.

[18] D. R. Ankireddy, S. Paria, A. Dasgupta, S. Ray, and S. Bhunia, “Clip:
A structural approach to cut points matching for logic equivalence
checking,” in 2025 IEEE 43rd VLSI Test Symposium (VTS), 2025, pp.
1–7.

[19] M. Liu et al., “ChipNeMo: Domain-Adapted LLMs for Chip Design,”
2024.

[20] M. Hassan, S. Ahmadi-Pour, K. Qayyum, C. K. Jha, and R. Drechsler,
“LLM-guided Formal Verification Coupled with Mutation Testing,”
2024.

[21] D. Saha, S. Tarek, K. Yahyaei, S. K. Saha, J. Zhou, M. Tehranipoor,
and F. Farahmandi, “LLM for SoC Security: A Paradigm Shift,” 2023.

[22] K. Maddala, B. Mali, and C. Karfa, “Laag-rv: Llm assisted assertion
generation for rtl design verification,” 2024. [Online]. Available:
https://arxiv.org/abs/2409.15281

[23] M. Kang, M. Liu, G. B. Hamad, S. Suhaib, and H. Ren,
“FVEval: Understanding Language Model Capabilities in Formal
Verification of Digital Hardware,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.23299

[24] S. Paria, A. Dasgupta, and S. Bhunia, “Towards automated verification
of ip and cots: Leveraging llms in pre- and post-silicon stages,” in 2025
IEEE 43rd VLSI Test Symposium (VTS), 2025, pp. 1–5.

APPENDIX

A. Example Prompts

Prompt 1 : Initial Prompt

You are an expert in Formal Verification and in
generating SystemVerilog Assertions, specializing in
writing comprehensive properties, including liveness,
safety, and fairness constraints. You ensure thorough
coverage by checking for deadlock, livelock, and star-
vation scenarios. To manage state space explosion,
you effectively apply constraints, symbolic tokens, and
assumptions. You also utilize auxiliary code and strive
to write efficient, modular properties in place of overly
complex assertions instead for Hardware Designs.

Prompt 2 : Vacuity checking rules for k-shot learning

– // 9 Rules <give in the text file> or direct in
prompt Here are the 9 vacuity checking rules you
need to memorize. Utilize these 9 theorems to generate
valid and non-vacuous properties for the <module/sub-
module>.

Prompt 3: Vacuity checking of generated properties

Can you evaluate and check if each property generated
is non-vacuous? A property must fail at least one
vacuity condition among the 9 theorems to be non-
vacuous. Property is vacuous or non-vacuous using
the 9 vacuity rules provided, and respond as if Non-
Vacuous True else False.

Prompt 4: Generating Counter Examples (CEXs)

Can you help analyze the Counter Examples (CEXs)
report from formal verification runs. Please analyze
and explain the failure in the given CEXs and generate
or modify the corresponding Assertions.

Prompt 5: Fixing SVA errors

There is an error in the properties generated by you.
Check for Syntax or Semantics errors and correct it
accordingly. Here is the error [ERROR (error code:
VERI-1137)] <.sva> syntax error near <>

Prompt 6: Generating corrected SVAs through iterative
refinement

Based on this coverage report <statement, toggle,
expression, branch> analysis, so the following cases
<?> are not covered, can you generate more property-
based system verilog assertions to cover all the cases.

Prompt 7: Design specs.

You need to generate Properties for the hardware
verification of some designs. Here is the Hardware
specification <SPEC FILE>. Based on this, you need
to use the RAG model to prepare a module description
at a high level such that I need to give the described
design specification to the LLM model to generate
some properties-based assertions. For each signal, ex-
tract the following information: 1. Signal name 2. Port
Declearation:-Output, Input 3. Description: Definition,
bit width, Signal type 4. Functionality 5. Any inter-
connects with other signals 6. Additional information
required for assertions 7. Microarchitecture design

B. Coverage Analysis at Sub-module level

Coverage analysis at the sub-module level involves assess-
ing the checker, stimuli and formal coverage generated using
Cadence JasperGold integrated with LASA framework. This
approach enhances the overall verification efforts, allowing for
a more granular exploration of design behavior at sub-module
level and ensuring greater accuracy in identifying potential
issues. Additionally, this approach also enhances scalability
by enabling targeted testing of sub-modules, which can be
independently verified and then aggregated for comprehensive
verification of the overall design.

Table V presents the coverage metrics at the sub-module
level for various IPs from the OpenTitan and CEP SoC
benchmarks. The results highlight high coverage values for
the generated properties using the LASA framework, demon-
strating the effectiveness of the proposed approach.

TABLE V: Coverage values for different IPs at sub-module level.

Checker Coverage Settings Formal CoverageBenchmarks Sub module
COI Proof Core

Stimuli Coverage
COI Proof Core

AES_192_top 97.94% 81.25% 99.56% 97.52% 85.50%
Expand_key_type_A 95.26% 81.23% 100% 98.16% 83.16%
Expand_key_type_B 100% 81.35% 100% 100% 81.44%
Expand_key_type_C 100% 81.20% 100% 100% 82.35%
Expand_key_type_D 100% 96.25% 100% 100% 96.25%

AES-192▲

final_round 100% 80.23% 100% 100% 81.60%
des3_top 99.82% 93.03% 100% 99.82% 93.03%

CRP 99.34% 99.34% 100% 99.34% 99.34%DES3▲

key_sel3 82.74% 82.72% 100% 82.78% 82.75%
gps_top 100% 85.34% 100% 100% 83.67%

AES_192_top 97.94% 81.25% 99.56% 97.52% 85.50%
Expand_key_type_A 95.26% 81.23% 100% 98.16% 83.16%
Expand_key_type_B 100% 81.35% 100% 100% 81.44%
Expand_key_type_C 100% 81.20% 100% 100% 82.35%
Expand_key_type_D 100% 96.25% 100% 100% 96.25%

final_round 100% 80.23% 100% 100% 81.60%
pcode 94.62% 80.86% 97.01% 94.78% 82.54%

GPS▲

cacode 100% 84.75% 99% 98.61% 84.75%
fir_top 90.58% 87.56% 94% 90.60% 87.89%

fir_filter_block_left 96.89% 83.56% 89.23% 95.54% 83.73%
fir_filter_block_left_multiply block 92.85% 71.65% 88.94% 90.23% 71.78%

fir_filter_block_right 94.30% 86.70% 96.24% 94.35% 86.82%
FIR▲

fir_filter_block_right_multiply block 88.56% 72.29% 95.71% 87.25% 72.29%
iir_top 91.78% 88.54% 98.65% 92.62% 89.34%

iir_filter_block_left 94.65% 80.03% 100% 94.65% 80.03%
iir_filter_block_left_multiply block 89.02% 75.18% 99% 89.27% 75.58%

iir_filter_block_right 87.89% 72.76% 98% 88.24% 73.32%
IIR▲

iir_filter_block_right_multiply block 90.05% 88.82% 100% 90.05% 88.82%
bus_monitor 91.20% 81.40% 98.20% 91.20% 81.40%

controller module 92.65% 84.40% 99.54% 92.65% 84.40%i2c⋆

target module 90.47% 87.40% 100% 90.47% 87.40%
adc_ctrl_fsm 85.58% 79.63% 93.83% 85.02% 79.18%
adc_ctrl_intr 90.02% 82.08% 94.86% 89.58% 82.72%adc_ctrl⋆

adc_ctrl_core 83.52% 79.89% 96.84% 83.76% 80.45%
keccak_round 90.52% 85.33% 99.56% 90.52% 85.50%

sha3_top 86.57% 78.23% 95.42% 87.16% 79.45%
kmac core 87.54% 81.35% 97.45% 89.43% 81.44%

kmac⋆

kmac_entropy 92.76% 81.20% 94.72% 93.76% 82.35%
▲denotes designs from CEP SoC. ⋆denotes designs from OpenTitan SoC.

