
ar
X

iv
:2

50
6.

17
79

8v
1

 [
cs

.S
E

]
 2

1
Ju

n
20

25

SAVANT: Vulnerability Detection in Application Dependencies through
Semantic-Guided Reachability Analysis

Wang Lingxiang∗

Independent Researcher
Quanzhi Fu∗

Virginia Tech
Wenjia Song
Virginia Tech

Gelei Deng
Nanyang Technological University

Yi Liu
Nanyang Technological University

Dan Williams
Virginia Tech

Ying Zhang
Wake Forest University

Abstract
The integration of open-source third-party library depen-

dencies in Java development introduces significant security
risks when these libraries contain known vulnerabilities. Ex-
isting Software Composition Analysis (SCA) tools struggle
to effectively detect vulnerable API usage from these libraries
due to limitations in understanding API usage semantics and
computational challenges in analyzing complex codebases,
leading to inaccurate vulnerability alerts that burden develop-
ment teams and delay critical security fixes.

To address these challenges, we proposed SAVANT by lever-
aging two insights: proof-of-vulnerability test cases demon-
strate how vulnerabilities can be triggered in specific contexts,
and Large Language Models (LLMs) can understand code
semantics. SAVANT combines semantic preprocessing with
LLM-powered context analysis for accurate vulnerability de-
tection. SAVANT first segments source code into meaningful
blocks while preserving semantic relationships, then lever-
ages LLM-based reflection to analyze API usage context and
determine actual vulnerability impacts. Our evaluation on 55
real-world applications shows that SAVANT achieves 83.8%
precision, 73.8% recall, 69.0% accuracy, and 78.5% F1-score,
outperforming state-of-the-art SCA tools.

1 Introduction

Software supply chain attacks through vulnerable open-
sourced third-party library APIs pose a growing threat to
Java applications [3, 36, 69]. Although these libraries offer
various APIs to accelerate functionality implementation, they
often contain known vulnerabilities [48, 77] (e.g., log4 shell
vulnerability [11]). These vulnerabilities are publicly doc-
umented [5], making the information accessible to anyone,
including potential attackers. Therefore, when developers inte-
grate these APIs into their projects, they may unintentionally
introduce security weaknesses into their applications, creating
potential attack vectors for system exploitation [34, 36, 75].

*Equal contribution.

Recent studies have shown that more than 80% of Java ap-
plications contain at least one known vulnerability inherited
from their third-party dependencies [48,77]. Moreover, attack-
ers can exploit these vulnerabilities through vulnerable APIs,
propagating the attack through the software supply chain and
further compromising applications built on these dependen-
cies. Such attacks have increased by 1300% [62] since 2020.

Existing Software Composition Analysis (SCA) ap-
proaches detect vulnerabilities in library dependencies to mit-
igate Open Source Software (OSS) supply-chain attacks in
software applications [2, 4, 6, 18, 28, 30, 39, 54, 74, 77]. For
instance, DependencyCheck [52], which analyzes dependency
configuration files and cross-reference library versions against
databases of known vulnerabilities. It flags any found matches
based on the library version without considering the API us-
age in the codebase, which leads to false positives - incorrect
identification of vulnerabilities when vulnerable APIs are not
used. Consequently, these false positives can erode develop-
ers’ trust [33, 75] and delay critical security updates when
vulnerable APIs are not actively used in the codebase.

To address the limitations of version-based vulnerabil-
ity detection, researchers have developed fine-grained ap-
proaches [22, 47, 54, 58, 59, 63, 66, 74] that combine static
and dynamic analysis. Eclipse Steady [22] traces execution
paths from potential vulnerability points to application entry
points to determine if vulnerable APIs are actually reachable.
However, comprehensive data-flow and control-flow analysis
of complex codebases face computational barriers [22, 66],
often causing incomplete analysis or excessive processing
times. These limitations result in critical vulnerabilities being
overlooked in production systems.

Additionally, assessing the impact of vulnerable APIs from
the library extends far beyond theoretical reachability analy-
sis: it requires domain knowledge to understand the API usage
semantics within the client application’s context. For instance,
when a vulnerable API is susceptible to malformed input, eval-
uating the actual risk of an API susceptible to malformed input
requires expert knowledge to determine if proper defensive
mechanisms are implemented downstream. Without consider-

1

https://arxiv.org/abs/2506.17798v1

ing such code semantics, tools may generate security alerts for
non-exploitable scenarios [44, 45]. This combination of com-
putational limitations and semantic analysis gap leads to both
miss-reporting and over-reporting of vulnerabilities [34, 69].
This undermines the credibility of vulnerability assessments
and places a significant burden on developers, who must man-
ually verify each alert while delaying dependency upgrades
due to concerns about breaking changes. Consequently, actual
vulnerabilities can persist in the codebase [71,74], potentially
exposing applications to security risks.

Our work. To overcome the limitations in the existing
approaches, we propose a novel approach SAVANT lever-
aging two key insights. First, proof-of-vulnerability (PoV)
test cases included in security patches represent a not fully
explored yet valuable source that precisely specifies vulner-
able API usage patterns. These test cases explicitly demon-
strate vulnerable conditions and effectively capture the seman-
tic contexts where vulnerabilities can be exploited. Second,
Large Language Models (LLMs) have demonstrated their ca-
pabilities in understanding code semantics and programming
patterns [46, 65, 67, 78], thereby providing a complement-
ing approach to the program analysis approaches. Building
on these insights, SAVANT leverages LLM’s semantic under-
standing and patch-provided PoV tests to assess vulnerable
API impacts in client applications through two phases: Phase
I semantic-preserving preprocessing prepares the applica-
tion for context-aware analysis by chunking source code into
meaningful blocks based on AST structure while preserving
metadata like line numbers and file locations. Each block is
encoded into vector embeddings and stored with metadata
for efficient retrieval, maintaining both semantic and struc-
tural relationships. It helps SAVANT to overcomes the limi-
tations of real-world project sizes and provides an interface
for SAVANT to quickly search the code by semantic. Phase II
reflection-based vulnerability detection analyzes API usage
by combining PoV test and API information as vectors to
locate potential vulnerabilities. It iteratively expands context
through reflection-based queries until sufficient information
is gathered. The LLM then analyzes this program context
with API test functions to determine vulnerability impacts,
enabling precise semantic-guided reachability analysis.

Evaluations. We evaluate SAVANT on a third-party bench-
mark dataset [34] containing 55 Java projects. We test
SAVANT’s detection effectiveness at the project level and
compare it with two state-of-the-art SCA tools, Eclipse
Steady [22] and VAScanner [73]. SAVANT achieves a pre-
cision of 83.8%, recall of 73.8%, accuracy of 69.0%, and
F1 score of 78.5%, outperforming the baselines by at least
14%, 182%, 155%, and 103%, respectively, for these met-
rics. Through extensive ablation studies, we demonstrate that
SAVANT maintains F1 scores between 0.72 and 0.87 across
different LLMs and embedding models, with optimal perfor-
mance achieved at code segment sizes of 2,000-2,500 tokens.

Contributions. In summary, our paper makes the following

contributions as belows:

• We develop SAVANT - a novel two-phase approach
that combines semantic-preserving preprocessing and
reflection-based vulnerability detection. It enables ef-
ficient and accurate vulnerability localization in real-
world projects through semantic-guided reachability
analysis powered by LLM.

• SAVANT supports context-aware analysis of API usage
by maintaining both semantic and structural relation-
ships within the Application. We conduct a comprehen-
sive evaluation of SAVANT on a third-party benchmark
with 55 real-world applications, our approach outper-
forms existing approaches across all evaluated metrics.

• We extensively evaluated various LLMs and embedding
models for vulnerability detection, testing code segments
of different maximum length limits. Our experiments
revealed that CLAUDE-3.5-SONNET with OpenAI em-
beddings achieved the highest F1 score.

2 Threat Model

Our research addresses whether Java applications become
vulnerable when using APIs from libraries with known vul-
nerabilities. When an application uses a vulnerable library
API, the application might still be secure if it implements
proper security checks. However, determining whether these
security checks are adequate requires analyzing the appli-
cation’s implementation. Modern applications are large and
complex, containing millions of lines of code and many library
dependencies, making manual security analysis infeasible.

We assume attackers have access to public vulnerability
information, including library and application source code,
CVEs, and proof-of-concept demonstrations. While current
version checkers and static analysis tools only check library
versions and code patterns, attackers can analyze how vul-
nerable library APIs interact with application-level security
controls to potentially exploit the library vulnerabilities.

Our analysis focuses specifically on vulnerabilities that
arise from insufficient or inconsistent security checks around
vulnerable library APIs. We assume the application code itself
is correctly implemented and not vulnerable to common issues
like injection or unsafe deserialization. Our scope is limited
to cases where attacker-controlled inputs reach vulnerable
library code due to missing or inadequate application checks
rather than vulnerabilities in the application’s implementation.

3 Motivation Example

We illustrate our approach using a real-world vulnerabil-
ity in Spring Security, a widely-used framework that pro-
vides security functionality APIs for Java applications.

2

CVE-2020-5408 [1] reveals that in versions 4.2.x prior to
4.2.16, the BCryptPasswordEncoder.encode method throws an
NullPointerException when given a null input. Since neither
the method’s signature nor its implementation indicates this
exception, developers may be unaware of the need to handle
null inputs, leading to unexpected application crashes that
could be exploited for denial-of-service attacks. This vulner-
ability was later patched in version 5.4.0-M1 by properly
handling null inputs with an IllegalArgumentException.

[!hbtp]

Listing 1: Proof of Vulnerability of Spring Security Library

1 @Test(expected = IllegalArgumentException.class)
2 public void encodeNullRawPassword() {
3 BCryptPasswordEncoder encoder = new

BCryptPasswordEncoder();
4 encoder.encode(null);
5 }

[!hbtp]

Listing 2: Code snippet from Apache Kylin [13] demonstrat-
ing safe usage of BCryptPasswordEncoder.encode due to input
validation.

1 public EnvelopeResponse save(@RequestBody
PasswdChangeRequest user) {

2 ...
3 ManagedUser existing = get(user.getUsername());
4 checkUserName(user.getUsername());
5 checkNewPwdRule(user.getNewPassword());
6 if (existing != null) {
7 if (!this.isAdmin() && !pwdEncoder.matches(user.

getPassword(), existing.getPassword())) {
8 throw new BadRequestException("pwd update

error");
9 }

10 existing = userService.copyForWrite(existing);
11 existing.setPassword(pwdEncode(user.

getNewPassword()));
12 ...
13 }
14 }
15

16 private String pwdEncode(String pwd) {
17 if (bcryptPattern.matcher(pwd).matches())
18 return pwd;
19 return pwdEncoder.encode(pwd);
20 }

Listing 2 demonstrates a case where CVE-2020-5408 (null
pointer vulnerability in BCryptPasswordEncoder.encode) does
not affect a project despite using the vulnerable API. This
example comes from Apache Kylin [12], a large-scale ana-
lytics project with over 2,000 Java files and 600,000 lines of
code (commit “443c2523"). While Kylin uses Spring Secu-
rity version 4.2.14, which contains this vulnerability, the code
remains secure because Kylin’s implementation guarantees
that all user passwords are initialized with non-null values
before being passed to the encoder, as shown in Listing 2.

However, existing approaches yield unreliable results when
analyzing Kylin’s security. Library version checkers produce
false positives by missing defensive code patterns, while static
analyzers face scalability issues when tracking complex con-
trol and data flows across large codebases.

Applicat ion

Phase I: Semantic-Preserving Code Preprocessing

Phase II: Reflection-Based Detection with LLM

Semantic-preserving
Code Embedding

AST-enhanced
Code Segmentation

Candidata
Identification

Relection-based
Context Retrival

Semantic-guilded
Reachability Analysis

Vulnerable API

 PoV Test

Figure 1: The Overview of SAVANT

Our work. To overcome these limitations, we propose SA-
VANT, which aims to address two fundamental challenges:
(1) efficiently analyzing large codebases without relying on
complete call graph construction, and (2) understanding the
semantic context of API invocations to determine their true
security implications. SAVANT leverages LLMs for seman-
tic code analysis, enabling accurate vulnerability assessment
even in a complex codebase.

4 Design

4.1 Overview

To address the limitations of existing approaches in handling
large-scale projects, accurately identifying vulnerable APIs,
and understanding the semantic context of code, we propose
SAVANT, a novel system that leverages the power of LLMs to
enhance the detection and impact assessment of vulnerable
API usages. As shown in Figure 1, we design a two-phase
process to effectively identify and evaluate the impact of vul-
nerable API usages within an application. Phase I, Semantic-
Preserving Code Preprocessing, addresses the challenges of
large codebases and variable naming conventions by trans-
forming the application’s source code into a structured, seman-
tically rich representation. This involves dividing the code
into blocks and generating vector embeddings that capture the
underlying meaning of each block, regardless of specific iden-
tifiers used. These embeddings, along with the original code
and metadata, are stored in a database for efficient retrieval.
Phase II, Reflection-Based Detection with LLM, tackles the
crucial aspect of semantic understanding by leveraging the
capabilities of LLMs. Given a vulnerable API and the cor-
responding PoV test function, SAVANT uses its vector rep-
resentation to identify potentially relevant code blocks from
the database. It then applies a novel reflection-based querying
mechanism, allowing the LLM to iteratively gather contextual
information and refine its understanding of how the API is
used within the application. This iterative process enables the
LLM to determine whether the identified API usage actually
leads to a vulnerability in the application. The combination of
these two phases allows SAVANT to perform a comprehensive
analysis that goes beyond simple pattern matching, providing
a deeper understanding of the code’s behavior and the true
impact of potential vulnerabilities.

3

The following Sections 4.2 and 4.3 detail our technical
approach and demonstrate how SAVANT addresses these chal-
lenges through its two-phase architecture.

4.2 Phase I: Semantic-preserving Code Prepro-
cessing

In this phase, SAVANT transforms the App’s source code into
a format suitable for effective vulnerability analysis. This
process involves two key steps: (1) AST-enhanced code seg-
mentation to break down the source code into semantically
meaningful blocks, and (2) semantic-preserving code embed-
ding to convert these blocks into dense vector representations.
These steps enable SAVANT to capture and preserve the se-
mantic structure of the code while preparing it for efficient
LLM-based analysis.

4.2.1 AST-enhanced Code Segmentation

Code segmentation is crucial for processing large codebases
with LLMs due to their limited context window size (typi-
cally not more than 200,000 tokens) and the performance
degradation observed with longer sequences [23]. Therefore,
effective code segmentation is essential for maintaining model
performance and ensuring comprehensive code analysis. How-
ever, fixed-size chunking and line-based splitting can disrupt
syntactic units and structural dependencies. By adopting Ab-
stract Syntax Tree (AST)-based segmentation, we preserve
the code’s hierarchical structure and semantic relationships,
enabling analysis of semantically cohesive blocks rather than
arbitrary text segments.

Specifically, SAVANT converts the App’s source code into
an AST represented as G = {g1,g2, . . . ,gn}, where each gi
corresponds to a compilation unit in the AST. A naive ap-
proach might treat each AST node as an independent block.
However, this would lead to an excessive number of small,
fragmented blocks, making it difficult to understand the re-
lationships between them. For instance, a single AST node
representing a complete if-statement block provides more
context than numerous smaller nodes representing individual
components of that same if-statement. This fragmentation
hinders the ability to capture the overall logic and semantic
meaning of the code. Conversely, when nodes are too large
(containing multiple methods or classes), they may include
substantial irrelevant code that obscures the key vulnerability-
related information, potentially causing LLM hallucination.
Additionally, oversized nodes limit the number of code seg-
ments that can fit within the LLM’s context window, reducing
our ability to analyze multiple related code sections simulta-
neously. To identify semantically meaningful code blocks, we
use a heuristic based on node size and inner structure within
each compilation unit. SAVANT segments the AST from the
compilation unit using the following rule:

gi→

 bi, if fsize(gi)< θ,

{bi1,bi2, . . . ,bik}, otherwise.

Here, θ is a predefined maximum size threshold. For larger
nodes (fsize(gi) ≥ θ), SAVANT performs structural segmen-
tation on the compilation unit node, further dividing it
into sub-nodes, specifically focusing on ImportDeclaration,
FieldDeclaration,
MethodDeclaration, and ConstructorDeclaration. Intu-
itively, this approach maintains semantic relationships while
creating blocks suitable for LLM-based analysis. The spe-
cific thresholds used in this process are further discussed in
Section 5.4.

4.2.2 Semantic-preserving Code Embedding:

Following the AST-enhanced code segmentation, SAVANT
transforms the resulting code blocks into a format suitable
for efficient similarity analysis. Given the set of code blocks
B= {b1,b2, . . . ,bm} obtained from the previous step, SAVANT
embeds each block into a dense vector that captures its se-
mantic meaning and functionality. Formally, we define this
embedding process as a function f :

f : B→V,where V = {v1,v2, ...,vm} and vi ∈ Rt (1)

Here, t is the dimensionality of the embedding space. This
transformation ensures that semantically similar code blocks
are positioned closer together in the t-dimensional vector
space. To generate these embeddings, we apply pre-trained
encoders, such as OpenAI V3 embedding models [50], that
process entire code blocks as input:

vi = Encoder(bi), where ||vi||= t for all i (2)

This approach ensures fixed-length embedding vectors regard-
less of the original block size. We chose this fixed-length
block-level embedding over token-level embedding for two
primary reasons: 1) Comprehensive representation: block-
level embedding captures the overall functionality of a code
block. For example, consider the following code snippets:

a) for (int i = 0; i < n; i++) sum += arr[i];

b) total = Arrays.stream(list).sum();

Although these snippets have different tokens, they perform
semantically similar functionality (i.e., summing elements).
Block-level embedding would likely position these blocks
closer together in the vector space compared to token-level
embedding, which might focus more on the syntactic differ-
ences. 2) Standardization for consistent comparisons: Fixed-
length embeddings provide a uniform format for representing
code snippets in a vector space. This standardization enables
direct and consistent comparisons between any pair of code

4

embeddings, regardless of the original code’s length or struc-
ture. By maintaining a constant dimensionality across all
embeddings, this approach avoids additional preprocessing or
size adjustments when computing similarities, thus preserv-
ing the integrity of the encoded semantic information. Finally,
SAVANT stores all processed information in a database D,
represented as: D = {d1,d2, . . . ,dn}, where each entry di is a
tuple containing di = (bi,vi), bi represents the original code
block along with its associated metadata (filename, line num-
ber range, the original source code snippet, and the AST node
type), and vi is its corresponding vector embedding.

4.3 Phase II: Reflection-Based Detection

This phase focuses on accurately identifying and analyzing
vulnerable API usages through a reflection-based approach.
The process consists of three primary steps: (1) Candidate
Identification, which finds code blocks related to the vulner-
able API and the PoV test function; (2) Context-Complete
Code Retrieval, which iteratively expands the context around
each candidate for a comprehensive understanding of its us-
age; and (3) Semantic-Guided Reachability Analysis, where
the LLM, acting as a vulnerability expert, decides if the vul-
nerability can actually be exploited. This approach addresses
a key challenge in vulnerability analysis: the inherent diffi-
culty for static analysis tools to accurately understand code
semantics, particularly in complex and dynamic applications.
Static analysis primarily relies on pattern matching and strug-
gles to interpret the nuanced meaning and relationships within
code. In contrast, our reflection-based method leverages the
LLM’s ability to reason about code semantics and context,
enabling a more accurate assessment of whether a vulnerable
API usage is truly exploitable. This allows SAVANT to iden-
tify vulnerabilities that static analysis might miss, while also
reducing false positives.

4.3.1 Candidate identification

Identifying precise API invocation locations is crucial as they
serve as starting points for subsequent semantic analysis of
vulnerable API usage patterns. SAVANT begins by leveraging
a dual-seed approach: (1) vulnerable APIs and (2) PoV test
cases. Vulnerable APIs provide a direct target for identify-
ing potentially unsafe usage, while security test cases offer
insights into how these APIs are used in practice, especially
in security-sensitive contexts.

Using these seeds, SAVANT employs a two-stage semantic-
guided code matching process to accurately pinpoint where
the API is actually called within the application code. First,
it embeds the code blocks from the project under analysis,
the vulnerable API signatures, and the code from security
test cases into a shared vector space. Then, for each code
block embedding vi, SAVANT calculates its cosine similarity
to each vulnerable API embedding vapi and each security test

case embedding vtest . We select cosine similarity over other
metrics, such as Euclidean distance, as it produces equivalent
results given that embedding vectors are normalized to a unit
length, while the dot product operation in cosine similarity is
more efficient [50].

The similarity between a code block embedding vi and the
vulnerable API embedding vapi is defined as Equation 3:

Sc(vapi,vi) =
vapi · vi

||vapi||||vi||
, (3)

The similarity between a code block embedding vi and a
security test case embedding vtest is defined as Equation 4:

Sc(vtest ,vi) =
vtest · vi

||vtest ||||vi||
, (4)

To ensure we identify actual API invocation points rather
than semantically similar but non-calling code blocks, we
implement two filtering stages:

• (F1) Embedding Similarity Filter Sc(vapi,vi) > τ or
Sc(vtest ,vi) > τ, where τ is the minimum similarity
threshold. This filter considers a code block relevant
if it shows strong semantic similarity to either the API’s
signature or a security test case. This dual-seed approach
broadens the search, increasing the likelihood of captur-
ing relevant code blocks that might be missed by relying
solely on API signatures.

• (F2) LLM-based Source Code Verification For code
blocks that pass (F1), we apply a second filter (F2) that
leverages an LLM grader to verify actual API invoca-
tion at the source code level: LLMgrade(bi,bapi) = "yes".
The LLM grader analyzes the code block bi and API
signature bapi at the source code level to verify actual
API invocation, handling cases where semantic similarity
alone may not accurately reflect API usage.

This two-stage approach combines the efficiency of
embedding-based similarity matching with the precision of
LLM-based source code verification, ensuring accurate iden-
tification of API invocation locations for subsequent vulnera-
bility analysis. By default, SAVANT considers a code block ci
as a candidate for further analysis if:

Ccandidate = {ci = (vi,bi,vapi) | ci ∈ D

∧ (Sc(vapi,vi)> τ∨Sc(vtest ,vi)> τ)

∧LLMgrade(bi,bapi) = "yes"} (5)

Figure 2 illustrates the candidate identification process
for projects using BCryptPasswordEncoder, where the POV
demonstrates a potential null pointer exception in the encode()

method. Starting from the POV, SAVANT retrieves code snip-
pets from its vector database that are semantically related
to both the BCryptPasswordEncoder.encode() method and the

5

Figure 2: An example of context-complete code retrieval for BCryptPasswordEncoder.encode() method.

vulnerability pattern (F1). During the grading and filtering
process (F2), SAVANT identifies that the second snippet con-
tains the core password encoding implementation with seman-
tic checking (marked with a green checkmark), while filter-
ing out unrelated method definitions (marked with red ’X’s).
When the initially retrieved context is insufficient, SAVANT
uses code inference to generate additional queries, ensuring
complete context for vulnerability analysis. This procedure
effectively combines semantic retrieval with targeted code
inference to build a comprehensive code context.

4.3.2 Context-complete Code Retrieval

Accurate vulnerability assessment requires analyzing the com-
plete context of code implementation and API usage patterns.
Incomplete context can lead to misinterpretations and inaccu-
rate assessments. To address this, SAVANT employs an LLM-
powered iterative reflection technique to achieve comprehen-
sive contextual coverage for each candidate. This technique
is inspired by self-reflection methods [14], which iteratively
refine generated responses by learning from prior outputs.
In SAVANT, we adapt this approach to the specific needs of
context-complete vulnerability analysis.

Given a security test case function ftest , a vulnera-
ble API APIvul , and an initial candidate set Ccandidate =
{c1,c2, . . . ,cn}, SAVANT iteratively expands the context
through the following steps:

• Reflection Query: For each candidate ci ∈ Ccandidate,
SAVANT querys
Q(ci,APIvul , ftest) the LLM: Q(ci,APIvul , ftest)
→ ({Yes|No}, reason). “Yes" indicates sufficient context
for vulnerability assessment, while “No" is accompanied
by a reason explaining the missing context. This feed-
back guides subsequent steps.

• Code Inference: If Q(ci,APIvul , ftest) →
(No, reason), SAVANT generates a code infer-
ence query P(ci,APIvul , ftest , reason) to the LLM:
P(ci,APIvul , ftest , reason) → (cmissing,scope). Here,
cmissing represents the inferred code snippet to search
for, while scope defines required metadata constraints,
like class, method, and filepath, ensuring retrieved
code meets both functional similarity and structural
specifications.

• Iterative Context Expansion via Code Retrieval:
While the initial candidate identification in Section 4.3.1
uses only code similarity, here SAVANT conducts re-
trieval using both cmissing for embedding similarity
search and scope to filter results based on structural con-
straints. This enhanced retrieval process yields a new set
of candidates Cmissing that are both syntactically similar
and structurally relevant. This set is then merged with
the existing candidates: C′candidate =Ccandidate∪Cmissing.

These three steps work synergistically to iteratively build
a more complete code context. The LLM’s feedback in the
Reflection Query drives the Code Inference step, which in
turn informs the Context Expansion. This iterative process
continues until one of the termination conditions is met:

• The LLM assesses vulnerability by Q(ci,APIvul , ftest)
and confirms the current context adequacy.

• The candidate identification process yields Cmissing = /0,
confirming no new relevant blocks.

Algorithm 1 provides a detailed outline of this context-
complete code retrieval process. The algorithm initializes
with a set of candidates and iteratively refines the context for
each candidate using the Q (Reflection Query) and P (Code
Inference) functions, along with the Search function (from
Section 4.3.1). The loop continues until the context is deemed
complete or no new candidates are found.

Figure 2 illustrates SAVANT’s iterative context-building
process. Starting with an initial code snippet showing a poten-
tial null pointer exception in BCryptPasswordEncoder.encode(),
SAVANT first identifies a method containing the password en-
coding implementation. Through reflection analysis, SAVANT
determines that this context alone is insufficient to verify
the null-check mechanisms for the pwd parameter. When an
incomplete context is detected, SAVANT generates targeted
queries to retrieve additional code segments, focusing on how
pwd is constructed and validated. This iterative retrieval pro-
cess continues until sufficient context is gathered to perform a
comprehensive vulnerability assessment, as indicated by the
feedback loop in the figure. The analysis proceeds to the next
stage after obtaining complete context.

6

Algorithm 1 Context-Complete Code Reflection-Based Re-
trieval
Require: Ccandidates = {c1,c2, . . . ,cn}, APIvul , ftest
Auxiliary Functions:
Search(code, scope)→ C: Search for similar code and filter

by scope constraints. Return a code set C.
Q(C, APIvul, ftest)→ (boolean, reason): Determines if the code

set C is semantically complete for APIvul and ftest .
P(reason)→ (cmissing,scope): Code Inference function that gen-

erates the code snippet cmissing and structural constraints scope
based on the provided reason.

1: for each ci ∈Ccandidates do
2: C′←{ci}
3: (isComplete,reason)← Q(C′,APIvul , ftest)
4: while not isComplete do
5: (cmissing,scope)← P(reason)
6: C′candidate← Search(cmissing,scope)
7: if C′candidate == /0 then
8: break
9: end if

10: C′←C′∪C′candidate
11: Ccandidates←Ccandidates∪C′candidate
12: (isComplete,reason)← Q(C′,APIvul , ftest)
13: end while
14: end for

4.3.3 Sematic-Guided Reachability Analysis

After obtaining the context-complete candidates, SAVANT per-
forms a semantic-guided reachability analysis to determine if
the identified vulnerabilities are exploitable within the target
application. This phase leverages an LLM’s ability to under-
stand code semantics and reason about potential exploitability,
going beyond traditional static analysis techniques that rely
on pattern matching.

For each context-complete candidate ci in the set C =
{c1,c2...,cn} SAVANT constructs a query for Qi for each can-
didate ci: Qi = (ci,API, ftest ,R,T). Here, ci represents the
candidate code snippet, API is the vulnerable API, and ftest
is the security test case. SAVANT instructs the LLM to act as
a "Java vulnerability analysis expert" (R) and tasks it with
determining if the App is affected by the vulnerability (T).
This query structure provides the LLM with the full context
necessary for accurate assessment, including the vulnerable
API usage, the security test case, and the contextually relevant
code snippets identified during the retrieval phase.

For instance, in the secure code example discussed in
Section 3, the LLM integrates information from Listing 1
(PoV test) and Figure 2 (the context-complete code snip-
pets) into the query Qi to perform the semantic-guided reach-
ability analysis. It evaluates whether the usage of pwd and
encoder.encode(pwd) could potentially allow setting the null
value, as demonstrated in the test function. The LLM provides
insights such as: "The encode method of BCryptPasswordEn-

coder throws an IllegalArgumentException when a null value
is passed as the raw password.". This detailed semantic analy-
sis provides crucial information for both security experts and
developers when conducting vulnerability assessments.

Building on this analysis, SAVANT processes each query
Qi independently, returning a binary decision: 1 (vulnerable)
or 0 (secure). This independent evaluation allows for poten-
tial parallelization, enabling efficient analysis of large-scale
projects. The final vulnerability assessment V D for App is
determined as follows:

V D(App) =

{
1 (vulnerable), if ∃i : LLM(Qi) = 1
0 (secure), if ∀i : LLM(Qi) = 0

(6)

The system assigns a vulnerable label when any query Qi
indicates potential exploitation while requiring all queries to
indicate safety for a secure classification.

While this LLM-powered approach offers significant ad-
vantages in understanding code semantics, it is important to
acknowledge potential limitations. The accuracy of the assess-
ment depends on the LLM’s ability to comprehend complex
code logic and subtle security nuances, and there is a possi-
bility of false positives or negatives.

5 Evaluation

This section presents a comprehensive evaluation of SA-
VANT’s ability to identify vulnerabilities arising from library
dependencies. We begin by describing the datasets used in
our experiments and the metrics used to quantify the effective-
ness of vulnerability detection (Section 5.1). Subsequently,
we analyze SAVANT’s performance, including comparative
results against State-Of-The-Art (SOTA) tools (Sections 5.3–
5.4). Finally, we present an ablation study investigating the
impact of different model configurations on SAVANT’s perfor-
mance. Our evaluation aims to answer the following Research
Questions (RQs):

• RQ1 (Effectiveness): How effectively does SAVANT
identify vulnerabilities in real-world projects caused by
library dependencies?

• RQ2 (Tool Comparison): How well does SAVANT com-
pare with SOTA solutions?

• RQ3 (Ablation Study): How do different LLMs and
embedding models affect SAVANT’s ability to detect vul-
nerable API usage?

5.1 Benchmark Dataset And Metrics
To evaluate the effectiveness of our tool, we utilized a third-
party benchmark [34] comprising 25 distinct vulnerabilities
across 55 open-source applications. We list the vulnerable
libraries and its corresponding CVEs in Table 1. Within this

7

dataset, 42 applications were identified as vulnerable due to
dependencies on vulnerable libraries, while the remaining 13
were confirmed as unaffected. To enhance the accuracy of
the ground truth labels, we conducted a manual code audit
of all 55 applications. This process involved tracing from the
known vulnerable APIs to identify all potentially vulnerable
execution paths. The project list and label are listed in Table 2.

Following prior work [56], we leverage four metrics to
evaluate SAVANT:

Precision (P): The ratio of correctly identified vulnerable
projects to the total number of projects flagged as vulnerable
by the tool.

P =
of correctly identified vulnerable projects

Total # of projects flagged as vulnerable

Recall (R): The ratio of correctly identified vulnerable
projects to the total number of actual vulnerable projects in
the ground truth dataset.

R =
of correctly identified vulnerable projects

Total # of vulnerable projects in ground truth

Accuracy (A): The ratio of correctly classified projects
(both vulnerable and non-vulnerable) to the total number of
projects in the ground truth dataset.

A =
of correctly classified projects

Total # of projects in ground truth

F-score (F) is the harmonic mean of precision and recall;
it reflects the trade-off between precision and recall.

F =
2×P×R

P+R

5.2 RQ1 (Effectiveness)
To assess the effectiveness of SAVANT in identifying vulner-
abilities stemming from library dependencies in real-world
projects (RQ1), we conducted extensive empirical evaluation
using a comprehensive benchmark dataset of 55 open-source
Java projects [34]. Table 2 presents the vulnerability anal-
ysis results for each project. SAVANT demonstrates strong
detection capability by successfully identifying vulnerabil-
ities in 31 out of 42 vulnerable projects, achieving a recall
of 73.8%. With the default configuration, SAVANT flagged
6 additional projects as potentially vulnerable, resulting in a
precision of 83.8%, indicating its conservative approach to
security assessment.

A representative example of SAVANT’s effectiveness is
its analysis of the HTTPCLIENT-1803 [26] vulnerability in
project gobblin [10]. SAVANT precisely detected a security
flaw where malformed URL paths without a leading forward
slash could override specified host settings in URIBuilder.
Specifically, when analyzing code patterns like new

URIBuilder("@notexample.com/mypath").setHost("example.com"),

SAVANT identified that the host parameter fails to be properly
enforced, potentially enabling unauthorized host redirection.
Through project-wide analysis, SAVANT confirmed that
gobblin’s dependency on this vulnerable API could lead to
security risks in its network access controls.

SAVANT also demonstrates sophisticated security context
analysis, as shown in the Apache Kylin project evaluation.
When analyzing BCryptPasswordEncoder usage, SAVANT
identified potential null pointer exceptions in the encode
method. However, through comprehensive data flow analysis,
SAVANT verified that the project implements null-check mech-
anisms before password encoding operations, ensuring that
null values cannot reach the encoder. This case demonstrates
SAVANT’s ability to consider project-specific implementation
safeguards when assessing potential vulnerabilities.

Further analysis reveals SAVANT’s adaptive handling of
code complexity at the node level. For example, in the find-
bugs project [20], individual classes like BugTreeModel and
methods like branchOperations contain extensive code blocks
within single nodes. SAVANT automatically manages such
dense code concentrations through its hierarchical decom-
position mechanism, though the current tree-sitter parsing
implementation may produce fragmented statements when
processing these exceptionally large single nodes. This obser-
vation provides valuable insights for future optimizations of
SAVANT’s AST-enhanced code segmentation.

Finding 1 (response to RQ1:) With the labeled ground
truth, SAVANT identifies the client project that has been
impacted by vulnerable API with 83.8% precision, 73.8%
recall, and 78.5% F1. SAVANT has the ability to under-
stand the code semantics with the given sufficient context.

5.3 RQ2 (Tool Comparison)

To assess the performance of SAVANT relative to existing
solutions, we compare it against two representative tools from
the domain of traditional SCA:

• VAScanner [66] utilizes call graph analysis to trace the
invocation of vulnerable APIs from library dependen-
cies to the application code. By analyzing the call graph,
VAScanner determines whether vulnerable APIs are ac-
tually reachable and invoked within the application.

• Eclipse Steady [22] combines static and dynamic analy-
sis techniques to perform reachability analysis. It traces
the execution paths from a known vulnerable API (the
root cause) to its potential invocation points within the
application, providing a more detailed assessment of
vulnerability exploitation.

To ensure a fair comparison, we run experiments for all tools
on the same machine. The OS is Ubuntu 24.04.1 LTS with
Intel Xeon Silver 4214R and 64GB memory. We implement

8

CVE ID Library CWE CVE ID Library CWE

CODEC-134 Apache Commons Codec CWE-20 (Improper Input Valida-
tion)

CVE-2020-13973 json-schema-validator CWE-20 (Improper Input Valida-
tion)

CVE-2017-7525 jackson-databind CWE-502 (Deserialization of Un-
trusted Data)

CVE-2020-26217 xstream CWE-78 (OS Command Injec-
tion)

CVE-2017-7957 xstream CWE-20 (Improper Input Valida-
tion)

CVE-2020-28052 bcprov-jdk14 CWE-1025 (Comparison Using
Wrong Factors)

CVE-2018-1000632 Dom4j CWE-91 (XML Injection) CVE-2020-28491 jackson-dataformat-cbor CWE-770 (Resource Allocation
Without Limits or Throttling)

CVE-2018-1000873 jackson-modules-java8 CWE-20 (Improper Input Valida-
tion)

CVE-2020-5408 spring-security CWE-330 (Use of Insufficiently
Random Values)

CVE-2018-1002200 plexus-archiver CWE-22 (Path Traversal) CVE-2021-23899 json-sanitizer CWE-611 (Improper Restriction
of XML External Entity Refer-
ence)

CVE-2018-1002201 plexus-utils CWE-22 (Path Traversal) CVE-2021-27568 spring-security-oauth CWE-287 (Improper Authentica-
tion)

CVE-2018-11761 tika-parsers CWE-611 (Improper Restriction
of XML External Entity Refer-
ence)

CVE-2021-29425 apache-commons-io CWE-22 (Path Traversal)

CVE-2018-12418 junrar CWE-835 (Loop with Unreach-
able Exit Condition)

CVE-2021-30468 Apache CXF CWE-835 (Loop with Unreach-
able Exit Condition)

CVE-2018-1274 spring-data-commons CWE-770 (Resource Allocation
Without Limits or Throttling)

CVE-2022-25845 fastjson CWE-502 (Deserialization of Un-
trusted Data)

CVE-2018-19859 openrefine CWE-22 (Path Traversal) CVE-2022-45688 hutool-json CWE-787 (Out-of-bounds
Write)

CVE-2019-10093 tika-parsers CWE-770 (Resource Allocation
Without Limits or Throttling)

CVE-2023-34454 jackson-databind CWE-502 (Deserialization of Un-
trusted Data)

CVE-2019-12402 commons-compress CWE-835 (Loop with Unreach-
able Exit Condition)

HTTPCLIENT-1803 httpcomponents-client CWE-180 (Incorrect Behavior
Order: Validate Before Canoni-
calize)

CVE-2020-13956 httpcomponents-client CWE-20 (Improper Input Valida-
tion)

TwelveMonkeys-595 twelvemonkeys-imageio CWE-20 (Improper Input Valida-
tion)

Zip4J-263 zip4j CWE-20 (Improper Input Valida-
tion)

Table 1: Library Vulnerabilities Overview

VAScanner based on their published code [66] and fix pro-
gram issues based on the paper’s description, adhering to their
default settings. We run Eclipse Steady version 3.2.5. We set
a 150-minute analysis time limit per project for both Eclipse
Steady and VAScanner.

Table 3 presents a comparative analysis of SAVANT, Eclipse
Steady, and VAScanner across key performance metrics. SA-
VANT achieved the highest precision, recall, accuracy, and
F1-score, indicating a greater ability to identify vulnerabili-
ties caused by library dependencies within the evaluated Java
projects. The lower performance of Eclipse Steady and VAS-
canner is further illustrated in Table 2. SAVANT successfully
analyzed all 55 projects, while Eclipse Steady and VAScanner
failed to analyze 17 and 35 projects, respectively.

For VAScanner, its applicability is limited to Maven
projects with standard classpath configurations, and it fre-
quently encounters out-of-memory errors when analyzing
large codebases. Examination of the source code reveals a
reliance on hard-coded paths for classpath resolution within
a Maven-specific design. These constraints, combined with
insufficient memory management for large-scale analysis, ex-
plain its failure to process a significant portion of the dataset.

Analysis of Eclipse Steady’s results indicates that even
when successfully analyzing projects, Eclipse Steady failed
to identify vulnerabilities in cases where SAVANT succeeded,
such as in the netarchivesuite and PLMCodeTemplate projects.

This observation suggests potential limitations in Eclipse
Steady’s static analysis engine, particularly in accurately con-
structing call graphs and performing comprehensive data flow
analysis, which may limit its ability to detect all vulnerable
API invocations.

Despite its improved performance compared to the baseline
tools, SAVANT still exhibits false positives and false negatives,
highlighting the inherent challenges in automated vulnerabil-
ity detection. These findings emphasize the need for continued
research and development to enhance the precision and recall
of automated vulnerability detection techniques.

Finding 3 (response to RQ2:) SAVANT outperforms
state-of-the-art solutions in the real-world projects bench-
mark as SOTAs has faced challenges with the memory
limitation and the complex dependencies when building
the call graph.

5.4 RQ3 (Ablation Study)
To evaluate the performance of various LLMs within the
SAVANT framework, we selected five state-of-the-art closed-
source models and one open-source model: GPT-4O [51],
GPT-O1 [51], CLAUDE-3.5-SONNET [9], GOOGLE-GEMINI-
2.0-FLASH [29] and LLAMA-3.1-405B [7]. We utilized
voyage-code-3 [8] and OpenAI text-embedding-3-small [49]
as the embedding models. Furthermore, we explored the im-

9

Project Version
Ground
Truth SAVANT

Eclipse
Steady VAScanner

hadoop 0dbe1d32 ✗ ✓ ✗ ✗

pay-java-parent f4f5b8f8 ✗ ✗ ✗ -
druid 078d5ac5 ✗ ✗ ✗ -
pmq 86e2d931 ✗ ✗ - -
ole 9f7e33c6 ✗ ✗ ✓ -
findbugs fd7ec8b5 ✗ ✓ ✓ ✗

netarchivesuite 01b069f8 ✗ ✗ ✓ ✓
tcpser4j 7a3dbd8d ✗ ✗ - -
roubsite 34a2d22d ✗ ✗ ✗ ✗

core-ng-demo-project f5e39ffb ✓ ✓ - -
light-4j 68233ba2 ✗ ✗ ✗ ✗

rtds-test 07e7e175 ✓ ✗ ✓ ✗

elasticsearch-maven-plugin 51706d75 ✗ ✗ ✗ -
tomcat-maven-plugin 32f8302e ✗ ✗ - ✗

tycho a7cdf96c ✗ ✗ ✗ ✗

arraybase 11ac4730 ✗ ✓ - -
jlogstash abe9fb44 ✗ ✗ ✓ -
spring-data-commons 23776034 ✗ ✗ ✗ -
spring-data-mongodb c2fc09e3 ✗ ✗ ✓ -
OpenRefine Authenticator 6ba959d3 ✗ ✗ ✓ -
bysj db19a910 ✓ ✗ - -
library-of-alexandria c22277a1 ✗ ✓ - -
graphicsfuzz 897a7d49 ✓ ✓ ✗ ✗

james-project 056af8c6 ✗ ✓ ✓ ✗

alluxio a16bc958 ✓ ✓ ✗ -
Java-9-Cookbook d3109e55 ✓ ✓ - -
AxonFramework 58fd4d2d ✗ ✗ ✗ ✗

curso-fundamentos-java 4a638622 ✗ ✗ - -
knetbuilder 24cc998e ✗ ✗ - -
PLMCodeTemplate 85b7d744 ✗ ✗ ✓ ✗

powertac-core 1167f29a ✗ ✓ ✗ -
tiny e9180d10 ✗ ✗ - -
communote-server e6a35410 ✗ ✓ - -
Openfire 3cd2f68a ✓ ✓ ✗ ✓
CodeDefenders bdd9ff93 ✗ ✓ ✓ -
kylin 443c2523 ✓ ✓ - ✗

nacos a19d3fd0 ✗ ✓ ✓ -
SpringBoot-Learning fb41583a ✓ ✓ - -
anet 2657f909 ✗ ✗ - -
ets-wfs20 3fdf6e41 ✗ ✗ ✗ -
pmd 411be4ac ✗ ✗ ✓ -
filedossier 2d393042 ✗ ✗ ✓ ✓
commerce 899f81c2 ✗ ✗ ✗ -
wxzm d4aeba96 ✗ ✗ ✗ -
corese 27ad57ca ✓ ✗ ✗ ✓
metersphere 729d7954 ✓ ✗ ✗ -
swim-jumpstart 9a7402cb ✗ ✗ ✓ -
aem-caching 8a5d4dd9 ✗ ✗ ✓ ✓
badlion-src 93a099e7 ✗ ✗ ✓ ✗

cantci 16bef3c6 ✓ ✗ ✓ -
ia-recruiter 95567676 ✓ ✗ ✗ ✗

storm ae259205 ✗ ✗ ✓ ✗

backend 912aa83a ✗ ✓ ✗ -
collect d292f59c ✗ ✓ - -
gobblin 44a7e1a2 ✗ ✗ - -

Table 2: Experiment Results per project. ✓: project is secure;
✗: project is insecure; -: the tool failed to run.

Tool Precision Recall Accuracy F1
SAVANT 0.838 0.738 0.691 0.785
Eclipse Steady 0.700 0.241 0.242 0.359
VAScanner 0.73 0.262 0.271 0.386

Table 3: Performance Metrics of Different Tools

pact of varying the maximum code segment size (θ) by eval-
uating performance with values of 500, 1000, 1500, 2000,
2500, and 3000. Figure 3 presents the comparative results

across four key metrics: precision, recall, accuracy, and F1
score.

Impact of LLMs: Among the tested models, GPT-4O and
GOOGLE-GEMINI-2.0-FLASH consistently demonstrate su-
perior performance across all metrics. Particularly, GPT-4O
achieves highest F1 scores of 0.87 with OpenAI embeddings
at 2,500 tokens, while GOOGLE-GEMINI-2.0-FLASH main-
tains stable performance with F1 scores above 0.85 across
various code lengths. LLAMA-3.1-405B demonstrates com-
petitive precision scores around 0.85 but shows lower recall
rates around 0.60, resulting in F1 scores between 0.64 and
0.74. GPT-O1 shows relatively lower performance, with F1
scores ranging from 0.72 to 0.83.

Embedding Model Comparison: The choice of embed-
ding model shows notable impact on performance. OpenAI
embeddings generally yield marginally better results com-
pared to Voyage embeddings, particularly evident in precision
metrics. This advantage is most pronounced when paired with
GPT-4O and GOOGLE-GEMINI-2.0-FLASH, where OpenAI
embeddings contribute to approximately 2-3% higher preci-
sion scores. However, the performance gap between embed-
ding models narrows at larger code segment sizes, suggesting
that the choice of embedding model becomes less critical with
increased context. For LLAMA-3.1-405B, both embedding
models show similar precision performance, though Voyage
embeddings demonstrate slightly better recall rates at smaller
code segment sizes.

Code Length Analysis: The maximum size of the code
segment (θ) significantly influences the model performance.
We observe that:

• Performance generally improves as θ increases from 500
to 2,500 tokens, with optimal results typically achieved
around 2,000-2,500 tokens.

• Beyond 2,500 tokens, performance plateaus or slightly
decreases, indicating a potential sweet spot for context
window size.

• Smaller code segments (500-1,000 tokens) show
more variance in performance across different model-
embedding combinations, suggesting that larger seg-
ments provide more stable results.

Trade-offs: Our results reveal important trade-offs between
model performance and computational efficiency. While
larger code segments generally improve accuracy, they also
increase processing time and resource requirements. The op-
timal configuration appears to be using GPT-4O or GOOGLE-
GEMINI-2.0-FLASH with OpenAI embeddings at a code
segment size of 2,500 tokens, balancing performance with
computational efficiency. While LLAMA-3.1-405B shows
promising precision metrics, its lower recall rates suggest it
may be better suited for scenarios where precision is priori-
tized over comprehensive vulnerability detection.

10

500 1000 1500 2000 2500 3000
Max Code Length

0.6

0.7

0.8

0.9

Sc
or

e

PRECISION

500 1000 1500 2000 2500 3000
Max Code Length

0.6

0.7

0.8

0.9

Sc
or

e

RECALL

500 1000 1500 2000 2500 3000
Max Code Length

0.6

0.7

0.8

0.9

Sc
or

e

ACCURACY

500 1000 1500 2000 2500 3000
Max Code Length

0.6

0.7

0.8

0.9

Sc
or

e

F1

openAI-4o openAI-o1 openAI-claude openAI-gemini openAI-llama voyage-4o voyage-o1 voyage-claude voyage-gemini voyage-llama

Figure 3: Performance comparison of different LLMs and embedding models across varying maximum code lengths. The legend
follows the format "embedding model-LLM model" (e.g., "openAI-4o" indicates OpenAI embedding model with GPT-4O, and
"voyage-claude" represents Voyage embedding model with CLAUDE-3.5-SONNET). Each subplot shows a different evaluation
metric (precision, recall, accuracy, and F1 score). Different colors represent different LLM models, with green bars indicating
OpenAI embeddings and purple bars indicating Voyage embeddings.

Finding 4 (response to RQ3:) Different LLMs and embed-
ding models show varying performance in SAVANT. Mod-
els achieve F1 scores ranging from 0.64 to 0.87, with GPT-
4O and GOOGLE-GEMINI-2.0-FLASH performing con-
sistently better (F1: 0.82-0.87) than LLAMA-3.1-405B
(F1: 0.64-0.74) and GPT-O1 (F1: 0.72-0.83). The highest
scores are observed at code segment sizes between 2,000-
2,500 tokens, and OpenAI embeddings generally show a
2-3% higher precision compared to Voyage embeddings
for most models.

6 Threats to validity

Internal Validity. 1) Parameter Sensitivity: Our approach’s
performance may be sensitive to parameters like similarity
thresholds and LLM settings. While we set the temperature to
0 for reproducibility, other parameters (e.g., similarity thresh-
old) may still influence results. Future work will include com-
prehensive sensitivity analyses. 2) Ground Truth Accuracy:
The manual labeling data requires significant effort. Our evalu-
ation’s accuracy relies on the correctness of ground truth data.
To ensure labeling accuracy, three authors who have industry
experience in security domains labeled the data. However, it is
important to note that this approach might impact the overall
accuracy of the classification. 3) Prompt Template Limitation:
We used only fixed prompt templates for the LLM. This could
limit the range of vulnerabilities detected and affect the ac-
curacy of our results. 4) Implementation Choices: SAVANT’s
effectiveness may be influenced by specific implementation
choices (e.g., parser, encoder models).

External Validity. The generalizability of our findings may
be limited by the following factors: 1) Our observations and
conclusions are based on the third-party datasets [34]. While
these provide valuable insights, they may not include all pos-
sible scenarios or vulnerabilities present in real-world appli-
cations. 2) We evaluated our approach only on Java programs,
motivated by both Java’s widespread adoption in OSS and the

increasing security concerns surrounding Java supply chain
attacks in widely used libraries. Our proposed approach is
theoretically language-agnostic. However, this Java-focused
evaluation limits the generalizability of our findings, as the
effectiveness of our approach may vary across languages with
different syntax structures, programming paradigms, or vul-
nerability patterns. 3) Our current investigation relies on exem-
plar security tests from libraries to demonstrate vulnerability
context. This approach, while effective for our study, may
not capture all of the vulnerability manifestations in diverse
software ecosystems.

7 Related Work

Vulnerable API Detection Researchers and engineers cre-
ated tools to detect the invocation of vulnerable APIs or the
insecure use of APIs [19, 24, 25, 35, 54, 55, 57, 60, 61, 72, 76].
These tools are essential for identifying code that may intro-
duce security risks through flawed API usage patterns, partic-
ularly within Java cryptographic libraries. Specifically, tools
such as FindSecBugs [24], SonarQube [61], Xanitizer [57],
CogniCrypt [35], CryptoGuard [55], CryptoTutor [60], and
SEADER [76] utilize static analysis techniques to verify
whether Java cryptographic APIs are invoked with secure
parameter configurations and correct sequential orders. Fis-
cher et al. [25] and Xu et al. [72] trained models on labeled
code snippets that demonstrate both secure and insecure cryp-
tographic API usage. These models are then applied to detect
potentially insecure API usage patterns in new Java code snip-
pets, learning from examples to identify code that deviates
from secure usage patterns.

Our approach distinguishes itself from prior work in two
key aspects: it generalizes vulnerability detection across di-
verse API types beyond specific cases like cryptographic APIs,
and incorporates broader program context to accurately assess
security implications.

Deep Learning based Software Vulnerability Detec-

11

tion Deep learning-based software vulnerability detector ap-
proaches [16, 27, 37, 38, 40, 41, 63, 79] have been proposed
to automatically learn vulnerability patterns from various
code representations. IVDetect [38] utilized RNN-based mod-
els to generate code representations from source code and
identify vulnerable code patterns. LineVul [27] leverages
CodeBERT, a pre-trained model for programming language,
to generate code vector representations and employs BERT’s
self-attention layers to capture long-term dependencies in
code sequences. DeepDFA [63] encodes dataflow analysis
information into graph neural networks to better capture pro-
gram semantics for vulnerability detection. These methods
often focus on detecting vulnerabilities within individual func-
tions or code snippets rather than considering the dependency
vulnerabilities. Differ from these approaches, SAVANT detects
the vulnerable API usage from library dependency. Further-
more, most of existing deep learning approaches primarily
target C/C++ vulnerabilities [16, 27, 37, 38, 40, 41, 79], SA-
VANT specifically targets vulnerable API usage detection in
Java projects.
LLM for Vulnerability Detection Recent work has explored
LLMs’ capabilities in security tasks [15, 21, 31, 42, 46, 53,
64, 78]. SecLLMHolmes [64] evaluates the ability of various
LLMs to detect security-related bugs under different configu-
rations, concluding that current models is non-deterministic
and not robust. Liu et al. [42] and Deng et al. [21] investigate
LLMs’ potential in vulnerability management and penetration
testing processes, respectively. Several studies have also inves-
tigated vulnerable code repair [17, 32, 43, 53, 68, 70] through
LLMs. For instance, Pearce et al. [53] examine LLMs in re-
pairing vulnerable code in a zero-shot setting, finding that
while models can successfully repair hand-crafted examples,
they struggle with complex, real-world cases.

These studies employ either a single-step approach, query-
ing the LLM once for a decision, or require human interven-
tion. In contrast, SAVANT adopts an iterative, reflection-based
method where LLMs automatically refine contextual informa-
tion through multiple distinct roles. While most works focus
on local code context [32, 43, 53, 64, 68, 70], and RLCE [17]
considers repository-level context, our approach uniquely uses
an LLM reflection-based method for efficient context retrieval
and precise vulnerability detection in complex programs.

8 Conclusion

We created SAVANT —a novel framework to assess vulnerable
API impacts through semantic preprocessing and reflection-
based detection, integrating LLMs for context-aware vulnera-
bility analysis. Compared with existing SCA tools, SAVANT
offers more precise vulnerability assessment by understand-
ing semantic context in large projects and provides develop-
ers with accurate and actionable API impact analysis. Our
evaluation demonstrates SAVANT’s effectiveness in identify-
ing actual vulnerable API usage with high precision, recall,

and accuracy across various codebases and scenarios. In the
future, we will enhance SAVANT’s analysis capabilities by
implementing heuristic-based code block splitting to identify
contextual vulnerability patterns more effectively. We will
also extend support to C and Python codebases, enabling com-
prehensive vulnerability assessment across diverse software
supply chains.

References

[1] CVE-2020-5408 Detail. https://nvd.nist.gov/
vuln/detail/CVE-2020-5408, May 2020. Accessed:
2025-01-19.

[2] OWASP Dependency-Check. https://owasp.org/
www-project-dependency-check/, 2020.

[3] Supply chain attacks show why you should
be wary of third-party providers. https:
//www.csoonline.com/article/3191947/
supply-chain-attacks-show-why-you-should-be-wary-of-third-party-providers.
html, 2021.

[4] npm-audit. https://docs.npmjs.com/cli/v9/
commands/npm-audit, 2023.

[5] NVD. https://nvd.nist.gov, 2023.

[6] Test - Snyk User Docs. https://docs.snyk.io/
snyk-cli/commands/test, 2023.

[7] Meta AI. Meta llama 3.1 announcement. https://ai.
meta.com/blog/meta-llama-3-1/, 2024. Accessed:
2024-10-30.

[8] Voyage AI. Voyage code 3. https://blog.voyageai.
com/2024/12/04/voyage-code-3/. Published: 2024-
12-04, Accessed: 2025-01-20.

[9] Anthropic. Claude sonnet. https://www.anthropic.
com/claude/sonnet, 2024. Accessed: 2024-10-30.

[10] Apache Software Foundation. MySqlJdbcUrl.java.
https://github.com/apache/gobblin/blob/
44a7e1a27cc73387cf309487f45895801984059d/
gobblin-metastore/src/main/java/org/apache/
gobblin/metastore/util/MySqlJdbcUrl.java#
L51, 2023. Accessed: 2024-01-22.

[11] Apache Software Foundation. Apache Log4j™
2. https://logging.apache.org/log4j/2.x/,
2024. Accessed: 2024-01-22.

[12] Apache Software Foundation. Kyli-
nUserService.java - Apache Kylin. https:
//github.com/apache/kylin/blob/
443c2523e27e86ed397c526f741db62a805b95c4/
server-base/src/main/java/org/apache/kylin/

12

https://nvd.nist.gov/vuln/detail/CVE-2020-5408
https://nvd.nist.gov/vuln/detail/CVE-2020-5408
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://www.csoonline.com/article/3191947/supply-chain-attacks-show-why-you-should-be-wary-of-third-party-providers.html
https://www.csoonline.com/article/3191947/supply-chain-attacks-show-why-you-should-be-wary-of-third-party-providers.html
https://www.csoonline.com/article/3191947/supply-chain-attacks-show-why-you-should-be-wary-of-third-party-providers.html
https://www.csoonline.com/article/3191947/supply-chain-attacks-show-why-you-should-be-wary-of-third-party-providers.html
https://docs.npmjs.com/cli/v9/commands/npm-audit
https://docs.npmjs.com/cli/v9/commands/npm-audit
https://nvd.nist.gov
https://docs.snyk.io/snyk-cli/commands/test
https://docs.snyk.io/snyk-cli/commands/test
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://blog.voyageai.com/2024/12/04/voyage-code-3/
https://blog.voyageai.com/2024/12/04/voyage-code-3/
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://github.com/apache/gobblin/blob/44a7e1a27cc73387cf309487f45895801984059d/gobblin-metastore/src/main/java/org/apache/gobblin/metastore/util/MySqlJdbcUrl.java#L51
https://github.com/apache/gobblin/blob/44a7e1a27cc73387cf309487f45895801984059d/gobblin-metastore/src/main/java/org/apache/gobblin/metastore/util/MySqlJdbcUrl.java#L51
https://github.com/apache/gobblin/blob/44a7e1a27cc73387cf309487f45895801984059d/gobblin-metastore/src/main/java/org/apache/gobblin/metastore/util/MySqlJdbcUrl.java#L51
https://github.com/apache/gobblin/blob/44a7e1a27cc73387cf309487f45895801984059d/gobblin-metastore/src/main/java/org/apache/gobblin/metastore/util/MySqlJdbcUrl.java#L51
https://github.com/apache/gobblin/blob/44a7e1a27cc73387cf309487f45895801984059d/gobblin-metastore/src/main/java/org/apache/gobblin/metastore/util/MySqlJdbcUrl.java#L51
https://logging.apache.org/log4j/2.x/
https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/service/KylinUserService.java
https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/service/KylinUserService.java
https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/service/KylinUserService.java
https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/service/KylinUserService.java

rest/service/KylinUserService.java, 2025.
Accessed: 2025-01-19.

[13] Apache Software Foundation. User-
Controller.java - Apache Kylin. https:
//github.com/apache/kylin/blob/
443c2523e27e86ed397c526f741db62a805b95c4/
server-base/src/main/java/org/apache/kylin/
rest/controller/UserController.java, 2025.
Accessed: 2025-01-19.

[14] Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil,
and Hannaneh Hajishirzi. Self-rag: Self-reflective
retrieval augmented generation. arXiv preprint
arXiv:2310.11511, 2023.

[15] Heewon Baek, Minwook Lee, and Hyoungshick Kim.
Cryptollm: Harnessing the power of llms to detect cryp-
tographic api misuse. In European Symposium on Re-
search in Computer Security, pages 353–373. Springer,
2024.

[16] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili
Bo, Bin Li, and Wei Liu. Coca: Improving and explain-
ing graph neural network-based vulnerability detection
systems. In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, ICSE ’24,
2024.

[17] Yuxiao Chen, Jingzheng Wu, Xiang Ling, Changjiang
Li, Zhiqing Rui, Tianyue Luo, and Yanjun Wu. When
Large Language Models Confront Repository-Level
Automatic Program Repair: How Well They Done? .
In 2024 IEEE/ACM 46th International Conference on
Software Engineering: Companion Proceedings (ICSE-
Companion), pages 459–471, April 2024.

[18] Xiao Cheng, Xu Nie, Ningke Li, Haoyu Wang, Zheng
Zheng, and Yulei Sui. How about bug-triggering paths?-
understanding and characterizing learning-based vulner-
ability detectors. IEEE Transactions on Dependable
and Secure Computing, 21(2):542–558, 2022.

[19] Bodin Chinthanet, Serena Elisa Ponta, Henrik Plate, An-
tonino Sabetta, Raula Gaikovina Kula, Takashi Ishio,
and Kenichi Matsumoto. Code-based vulnerability de-
tection in node.js applications: How far are we? In
Proceedings of the 35th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’20,
pages 1199–1203, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

[20] FindBugs Project Contributors.
Bugtreemodel.java. https://github.
com/tonydamage/findbugs/blob/
fd7ec8b5cc0b1b143589674cdcdb901fa5dc0dda/
findbugs/src/gui/edu/umd/cs/findbugs/gui2/
BugTreeModel.java, 2023. Accessed: 2024-10-30.

[21] Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu,
Yuekang Li, Yuan Xu, Tianwei Zhang, Yang Liu, Martin
Pinzger, and Stefan Rass. {PentestGPT}: Evaluating
and harnessing large language models for automated
penetration testing. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pages 847–864, 2024.

[22] Eclipse Foundation. Eclipse Steady. https:
//projects.eclipse.org/projects/technology.
steady, 2024. Accessed: 2024-01-22.

[23] Xiaoning Feng, Xiaohong Han, Simin Chen, and Wei
Yang. Llmeffichecker: Understanding and testing ef-
ficiency degradation of large language models. ACM
Transactions on Software Engineering and Methodol-
ogy, 2024.

[24] Find Security Bugs Project. Find Security Bugs.
https://find-sec-bugs.github.io/, 2021. Ac-
cessed: 2024-01-22.

[25] Felix Fischer, Konstantin Böttinger, Huang Xiao, Chris-
tian Stransky, Yasemin Acar, Michael Backes, and
Sascha Fahl. Stack overflow considered harmful? the
impact of copy&paste on android application security.
In 2017 IEEE Symposium on Security and Privacy (SP),
pages 121–136. IEEE, 2017.

[26] Apache Software Foundation. Jira issue: Httpclient-
1803. https://issues.apache.org/jira/browse/
HTTPCLIENT-1803, 2017. Accessed: 2024-10-24.

[27] Michael Fu and Chakkrit Tantithamthavorn. Linevul:
A transformer-based line-level vulnerability prediction.
In Proceedings of the 19th International Conference on
Mining Software Repositories, pages 608–620, 2022.

[28] Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sun-
shine, and Christian Kästner. Detecting suspicious pack-
age updates. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), pages 13–16. IEEE,
2019.

[29] Google. Gemini ai. https://gemini.google.com/.
Accessed: 2025-01-20.

[30] David Hin, Andrey Kan, Huaming Chen, and M Ali
Babar. Linevd: statement-level vulnerability detection
using graph neural networks. In Proceedings of the 19th
international conference on mining software reposito-
ries, pages 596–607, 2022.

[31] Sihao Hu, Tiansheng Huang, Fatih İlhan, Selim Furkan
Tekin, and Ling Liu. Large language model-powered
smart contract vulnerability detection: New perspectives.
In 2023 5th IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems and Applica-
tions (TPS-ISA), pages 297–306. IEEE, 2023.

13

https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/service/KylinUserService.java
https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/controller/UserController.java
https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/controller/UserController.java
https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/controller/UserController.java
https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/controller/UserController.java
https://github.com/apache/kylin/blob/443c2523e27e86ed397c526f741db62a805b95c4/server-base/src/main/java/org/apache/kylin/rest/controller/UserController.java
https://github.com/tonydamage/findbugs/blob/fd7ec8b5cc0b1b143589674cdcdb901fa5dc0dda/findbugs/src/gui/edu/umd/cs/findbugs/gui2/BugTreeModel.java
https://github.com/tonydamage/findbugs/blob/fd7ec8b5cc0b1b143589674cdcdb901fa5dc0dda/findbugs/src/gui/edu/umd/cs/findbugs/gui2/BugTreeModel.java
https://github.com/tonydamage/findbugs/blob/fd7ec8b5cc0b1b143589674cdcdb901fa5dc0dda/findbugs/src/gui/edu/umd/cs/findbugs/gui2/BugTreeModel.java
https://github.com/tonydamage/findbugs/blob/fd7ec8b5cc0b1b143589674cdcdb901fa5dc0dda/findbugs/src/gui/edu/umd/cs/findbugs/gui2/BugTreeModel.java
https://github.com/tonydamage/findbugs/blob/fd7ec8b5cc0b1b143589674cdcdb901fa5dc0dda/findbugs/src/gui/edu/umd/cs/findbugs/gui2/BugTreeModel.java
https://projects.eclipse.org/projects/technology.steady
https://projects.eclipse.org/projects/technology.steady
https://projects.eclipse.org/projects/technology.steady
https://find-sec-bugs.github.io/
https://issues.apache.org/jira/browse/HTTPCLIENT-1803
https://issues.apache.org/jira/browse/HTTPCLIENT-1803
https://gemini.google.com/

[32] Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wen-
jie Wang, Shuhao Li, and Yuqing Zhang. An Empiri-
cal Study on Fine-Tuning Large Language Models of
Code for Automated Program Repair . In 2023 38th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 1162–1174, September
2023.

[33] Md Mahir Asef Kabir, Ying Wang, Danfeng Yao, and
Na Meng. How do developers follow security-relevant
best practices when using npm packages? In 2022 IEEE
Secure Development Conference (SecDev), pages 77–
83, Los Alamitos, CA, USA, oct 2022. IEEE Computer
Society.

[34] Hong Jin Kang, Truong Giang Nguyen, Bach Le, Co-
rina S Păsăreanu, and David Lo. Test mimicry to assess
the exploitability of library vulnerabilities. In Proceed-
ings of the 31st ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pages 276–288,
2022.

[35] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali,
Mira Mezini, Eric Bodden, Florian Göpfert, Felix Gün-
ther, Christian Weinert, Daniel Demmler, et al. Cog-
nicrypt: supporting developers in using cryptography.
In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 931–936.
IEEE, 2017.

[36] Piergiorgio Ladisa, Henrik Plate, Matias Martinez,
Olivier Barais, and Serena Elisa Ponta. Towards the
detection of malicious java packages. In Proceedings of
the 2022 ACM Workshop on Software Supply Chain Of-
fensive Research and Ecosystem Defenses, pages 63–72,
2022.

[37] Runhao Li, Chao Feng, Xing Zhang, and Chaojing Tang.
A lightweight assisted vulnerability discovery method
using deep neural networks. IEEE Access, 7:80079–
80092, 2019.

[38] Yi Li, Shaohua Wang, and Tien N. Nguyen. Vulner-
ability detection with fine-grained interpretations. In
Proceedings of the 29th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE
2021, page 292–303, 2021.

[39] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu,
and Zhaoxuan Chen. Sysevr: A framework for using
deep learning to detect software vulnerabilities. IEEE
Transactions on Dependable and Secure Computing,
19(4):2244–2258, 2021.

[40] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu,
and Zhaoxuan Chen. SySeVR: A Framework for Us-
ing Deep Learning to Detect Software Vulnerabilities .

IEEE Transactions on Dependable and Secure Comput-
ing, 19(04):2244–2258, July 2022.

[41] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. Vuldeep-
ecker: A deep learning-based system for vulnerability
detection. In Network and Distributed Systems Security
(NDSS) Symposium, 2018.

[42] Peiyu Liu, Junming Liu, Lirong Fu, Kangjie Lu, Yifan
Xia, Xuhong Zhang, Wenzhi Chen, Haiqin Weng, Shoul-
ing Ji, and Wenhai Wang. Exploring {ChatGPT’s} capa-
bilities on vulnerability management. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 811–
828, 2024.

[43] Peng Liu, He Wang, Chen Zheng, and Yuqing Zhang.
Prompt Fix: Vulnerability Automatic Repair Technology
Based on Prompt Engineering . In 2024 International
Conference on Computing, Networking and Communi-
cations (ICNC), pages 116–120, February 2024.

[44] Jeremy Long and contributors. Dependency-
check issue #4629: False positive detection of
cve-2020-5408. https://github.com/jeremylong/
DependencyCheck/issues/4629, September 2023.
Accessed: 2025-01-19.

[45] Jeremy Long and contributors. Dependency-
check issue #6685: False positive detection of cve-
2023-4759. https://github.com/jeremylong/
DependencyCheck/issues/6685, January 2025. Ac-
cessed: 2025-01-19.

[46] Guilong Lu, Xiaolin Ju, Xiang Chen, Wenlong Pei,
and Zhilong Cai. Grace: Empowering llm-based soft-
ware vulnerability detection with graph structure and
in-context learning. Journal of Systems and Software,
212:112031, 2024.

[47] Yisroel Mirsky, George Macon, Michael Brown, Carter
Yagemann, Matthew Pruett, Evan Downing, Sukarno
Mertoguno, and Wenke Lee. VulChecker: Graph-
based vulnerability localization in source code. In
32nd USENIX Security Symposium (USENIX Security
23), pages 6557–6574, Anaheim, CA, August 2023.
USENIX Association.

[48] Marc Ohm, Arnold Sykosch, and Michael Meier. To-
wards detection of software supply chain attacks by
forensic artifacts. In Proceedings of the 15th interna-
tional conference on availability, reliability and security,
pages 1–6, 2020.

[49] OpenAI. Embeddings guide. https://platform.
openai.com/docs/guides/embeddings. Accessed:
2025-01-20.

14

https://github.com/jeremylong/DependencyCheck/issues/4629
https://github.com/jeremylong/DependencyCheck/issues/4629
https://github.com/jeremylong/DependencyCheck/issues/6685
https://github.com/jeremylong/DependencyCheck/issues/6685
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings

[50] OpenAI. Embedding models: Openai docu-
mentation. https://platform.openai.com/docs/
guides/embeddings/embedding-models, 2024. Ac-
cessed: 2024-10-30.

[51] OpenAI. Model overview. https://platform.
openai.com/docs/models, 2024. Accessed: 2024-10-
30.

[52] OWASP Foundation. OWASP
Dependency-Check. https://owasp.org/
www-project-dependency-check/, 2024. Ac-
cessed: 2024-01-22.

[53] Hammond Pearce, Benjamin Tan, Baleegh Ahmad,
Ramesh Karri, and Brendan Dolan-Gavitt. Examining
Zero-Shot Vulnerability Repair with Large Language
Models . In 2023 IEEE Symposium on Security and
Privacy (SP), pages 2339–2356, May 2023.

[54] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta.
Detection, assessment and mitigation of vulnerabilities
in open source dependencies. Empirical Software Engi-
neering, 25(5):3175–3215, 2020.

[55] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad
Shaon, Ke Tian, Miles Frantz, Murat Kantarcioglu, and
Danfeng Yao. Cryptoguard: High precision detection
of cryptographic vulnerabilities in massive-sized java
projects. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2455–2472, 2019.

[56] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad
Shaon, Ke Tian, Miles Frantz, Murat Kantarcioglu, and
Danfeng (Daphne) Yao. Cryptoguard: High precision
detection of cryptographic vulnerabilities in massive-
sized java projects. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’19, page 2455–2472, 2019.

[57] RIGS IT. Xanitizer. https://www.rigs-it.com/
xanitizer/, 2021. Accessed: 2024-01-22.

[58] Miaomiao Shao and Yuxin Ding. FVD-DPM: Fine-
grained vulnerability detection via conditional diffusion
probabilistic models. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pages 7375–7392, Philadel-
phia, PA, August 2024. USENIX Association.

[59] Samiha Shimmi, Ashiqur Rahman, Mohan Gadde,
Hamed Okhravi, and Mona Rahimi. VulSim: Leveraging
similarity of Multi-Dimensional neighbor embeddings
for vulnerability detection. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 1777–1794,
Philadelphia, PA, August 2024. USENIX Association.

[60] Larry Singleton, Rui Zhao, Myoungkyu Song, and Har-
vey Siy. Cryptotutor: Teaching secure coding practices
through misuse pattern detection. In Proceedings of
the 21st Annual Conference on Information Technology
Education, pages 403–408, 2020.

[61] SonarSource. SonarQube. https://www.sonarqube.
org/, 2021. Accessed: 2024-01-22.

[62] Sonatype. State of the software supply chain report
2024: 10-year review. https://www.sonatype.com/
state-of-the-software-supply-chain/2024/
10-year-look, 2024. Accessed: 2024-01-13.

[63] Benjamin Steenhoek, Hongyang Gao, and Wei Le.
Dataflow analysis-inspired deep learning for efficient
vulnerability detection. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engi-
neering, pages 1–13, 2024.

[64] Saad Ullah, Mingji Han, Saurabh Pujar, Hammond
Pearce, Ayse Coskun, and Gianluca Stringhini. LLMs
Cannot Reliably Identify and Reason About Security
Vulnerabilities (Yet?): A Comprehensive Evaluation,
Framework, and Benchmarks . In 2024 IEEE Sympo-
sium on Security and Privacy (SP), pages 862–880, May
2024.

[65] Saad Ullah, Mingji Han, Saurabh Pujar, Hammond
Pearce, Ayse Coskun, and Gianluca Stringhini. Llms
cannot reliably identify and reason about security vulner-
abilities (yet?): A comprehensive evaluation, framework,
and benchmarks. In IEEE Symposium on Security and
Privacy, 2024.

[66] VAScanner Project Contributors. VAScanner. https:
//github.com/VAScanner/VAScanner, 2024. Ac-
cessed: 2024-01-22.

[67] Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang.
Copiloting the copilots: Fusing large language models
with completion engines for automated program repair.
In Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 172–184,
2023.

[68] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier,
Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah.
How effective are neural networks for fixing security
vulnerabilities. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing and
Analysis, ISSTA 2023, page 1282–1294, 2023.

[69] Yulun Wu, Zeliang Yu, Ming Wen, Qiang Li, Deqing
Zou, and Hai Jin. Understanding the threats of upstream
vulnerabilities to downstream projects in the maven

15

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://www.rigs-it.com/xanitizer/
https://www.rigs-it.com/xanitizer/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonatype.com/state-of-the-software-supply-chain/2024/10-year-look
https://www.sonatype.com/state-of-the-software-supply-chain/2024/10-year-look
https://www.sonatype.com/state-of-the-software-supply-chain/2024/10-year-look
https://github.com/VAScanner/VAScanner
https://github.com/VAScanner/VAScanner

ecosystem. In 2023 IEEE/ACM 45th International Con-
ference on Software Engineering (ICSE), pages 1046–
1058. IEEE, 2023.

[70] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang.
Automated Program Repair in the Era of Large Pre-
trained Language Models . In 2023 IEEE/ACM 45th In-
ternational Conference on Software Engineering (ICSE),
pages 1482–1494, May 2023.

[71] Congying Xu, Bihuan Chen, Chenhao Lu, Kaifeng
Huang, Xin Peng, and Yang Liu. Tracer: Finding patches
for open source software vulnerabilities. arXiv preprint
arXiv:2112.02240, 2021.

[72] Zhiwu Xu, Xiongya Hu, Yida Tao, and Shengchao Qin.
Analyzing cryptographic api usages for android appli-
cations using hmm and n-gram. In 2020 International
Symposium on Theoretical Aspects of Software Engi-
neering (TASE), pages 153–160. IEEE, 2020.

[73] Fangyuan Zhang, Lingling Fan, Sen Chen, Miaoying
Cai, Sihan Xu, and Lida Zhao. Does the vulnerability
threaten our projects? automated vulnerable api detec-
tion for third-party libraries. IEEE Transactions on
Software Engineering, 2024.

[74] Lyuye Zhang, Chengwei Liu, Sen Chen, Zhengzi Xu,
Lingling Fan, Lida Zhao, Yiran Zhang, and Yang Liu.
Mitigating persistence of open-source vulnerabilities in
maven ecosystem. In 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), pages 191–203. IEEE, 2023.

[75] Ying Zhang, Md Mahir Asef Kabir, Ya Xiao, Danfeng
Yao, and Na Meng. Automatic detection of java crypto-
graphic api misuses: Are we there yet? IEEE Transac-
tions on Software Engineering, 49(1):288–303, 2022.

[76] Ying Zhang, Ya Xiao, Md Mahir Asef Kabir, Dan-
feng (Daphne) Yao, and Na Meng. Example-based vul-
nerability detection and repair in java code. In Proceed-
ings of the 30th IEEE/ACM International Conference
on Program Comprehension, ICPC ’22, pages 190–201,
New York, NY, USA, 2022. Association for Computing
Machinery.

[77] Lida Zhao, Sen Chen, Zhengzi Xu, Chengwei Liu, Lyuye
Zhang, Jiahui Wu, Jun Sun, and Yang Liu. Software
composition analysis for vulnerability detection: An em-
pirical study on java projects. In Proceedings of the
31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, pages 960–972, 2023.

[78] Xin Zhou, Ting Zhang, and David Lo. Large language
model for vulnerability detection: Emerging results and

future directions. In Proceedings of the 2024 ACM/IEEE
44th International Conference on Software Engineering:
New Ideas and Emerging Results, pages 47–51, 2024.

[79] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and
Hai Jin. muVulDeePecker: A Deep Learning-Based
System for Multiclass Vulnerability Detection . IEEE
Transactions on Dependable and Secure Computing,
18(05):2224–2236, September 2021.

16

	Introduction
	Threat Model
	Motivation Example
	Design
	Overview
	Phase I: Semantic-preserving Code Preprocessing
	AST-enhanced Code Segmentation
	Semantic-preserving Code Embedding:

	Phase II: Reflection-Based Detection
	Candidate identification
	Context-complete Code Retrieval
	Sematic-Guided Reachability Analysis

	Evaluation
	Benchmark Dataset And Metrics
	RQ1 (Effectiveness)
	RQ2 (Tool Comparison)
	RQ3 (Ablation Study)

	Threats to validity
	Related Work
	Conclusion

