
ar
X

iv
:2

50
6.

17
79

5v
1 

 [
cs

.C
R

] 
 2

1 
Ju

n 
20

25

A TRNG Implemented using a Soft-Data Based
Sponge Function within a Unified Strong PUF

Architecture
Rachel Cazzola∗, Cyrus Minwalla†, Calvin Chan‡, Jim Plusquellic∗

∗Department of Electrical and Computer Engineering, University of New Mexico, New Mexico, USA
†Cloud and Automation Technologies, Bank of Canada, Ontario, Canada

‡Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Colorado, USA
E-mail: jimp@ece.unm.edu, minw@bank-banque-canada.ca, calvin.chan@colorado.edu

Abstract—Hardware security primitives including True Ran-
dom Number Generators (TRNG) and Physical Unclonable
Functions (PUFs) are central components to establishing a root
of trust in microelectronic systems. In this paper, we propose a
unified PUF-TRNG architecture that leverages a combination
of the static entropy available in a strong PUF called the
shift-register, reconvergent-fanout (SiRF) PUF, and the dynamic
entropy associated with random noise present in path delay mea-
surements. The SiRF PUF uses an engineered netlist containing
a large number of paths as the source of static entropy, and a
time-to-digital-converter (TDC) as a high-resolution, embedded
instrument for measuring path delays, where measurement noise
serves as the source of dynamic entropy. A novel data post-
processing algorithm is proposed based on a modified duplex
sponge construction. The sponge function operates on soft data,
i.e., fixed point data values, to add entropy to the ensuing random
bit sequences and to increase the bit generation rate. A post-
processing algorithm for reproducing PUF-generated encryption
keys is also used in the TRNG to protect against temperature-
voltage attacks designed to subvert the random characteristics
in the bit sequences. The unified PUF-TRNG architecture is
implemented across multiple instances of a ZYBO Z7-10 FPGA
board and extensively tested with NIST SP 800-22, NIST SP
800-90B, AIS-31, and DieHarder test suites. Results indicate a
stable and robust TRNG design with excellent min-entropy and
a moderate data rate.

Index Terms—True Random Number Generator, Physical Un-
clonable Function, FPGA Implementation

I. INTRODUCTION

Hardware security plays an increasingly important role in
microelectronic systems, particularly those used to imple-
ment IoT resource-constrained applications and those used in
unsupervised environments with heightened vulnerability to
invasive attacks. The term “hardware security module” (HSM)
is now widely used by security companies as an encapsulation
of hardware security and trust primitives. HSMs build iron-
clad security functions on top of a foundational module that
is capable of generating random bit sequences, which are
used either as keys for encryption, hashing, and authentication
algorithms, as nonces for randomizing execution and authen-
tication messages, or as initialization vectors for encryption.

Physical unclonable functions (PUFs) have emerged as
hardware security primitives capable of serving as the root of

trust within HSMs for key generation. The strong connection
between PUFs and TRNGs has led to the proposal of several
unified architectures. The primary distinction between PUFs
and TRNGs is related to their sources of entropy. PUFs
leverage a static source of entropy, i.e., baked-in manufacturing
variations that are unique to each device and ideally remain
stable throughout the lifecycle of the device. TRNGs target
dynamic entropy, such as jitter, chaos, metastability, and
sources of physical noise (e.g., thermal, shot, 1/f ).

Another important distinction relates to components of the
architecture that are responsible for ensuring reproducibil-
ity of the bitstring. TRNGs have no such requirements, so
these components are typically not needed. However, since
TRNGs are subject to temperature-voltage attacks, we propose
to leverage the PUF’s reliability-enhancing module to add
resilience against such attacks. A third distinction is related
to the number of bits required and the bit generation rate,
where TRNGs need to out-pace PUFs by orders of magnitude.
Last, unlike TRNGs, the static source of entropy leveraged by
PUFs is fixed and limited, significantly reducing the size of the
entropy pool available to a TRNG. Therefore, TRNGs must
be based on an unlimited dynamic source of entropy, or a
combination of static and dynamic entropy, to be capable of
meeting the demands of the HSM.

On the other hand, TRNGs and PUFs also have common
requirements, namely the ability to produce random and
unique bitstrings. Therefore, data post-processing components
that improve the randomness of bitstrings, or improve their
uniqueness across devices, can be used by both security
functions. The common requirements of PUFs and TRNGs
make a unified PUF-TRNG architecture attractive because a
unified architecture can be smaller in size when compared
to the combined sizes of the stand-alone versions. Moreover,
both security functions are required in HSMs to provide a
full range of security services to a wide range of application
environments.

A unified PUF-TRNG hardware security primitive capable
of serving the aforementioned roles is proposed and demon-
strated in this paper. The key generation capability of the shift-
register, reconvergent-fanout (SiRF) strong PUF is leveraged
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here as a source of static entropy that is combined with a
dynamic source of entropy to define a true random number
generator (TRNG). The unified PUF-TRNG architecture re-
uses the data measurement and post-processing functions
implemented within the SiRF PUF algorithm, adding only one
additional module. The size of the expanded architecture is
only approximately 5% larger.

A novel modification to the PUF data post-processing
algorithm is proposed, introducing a functionality akin to the
sponge function used in modern hashing algorithms (ex. SHA-
3). However, instead of operating on bitstrings, the proposed
sponge construction performs permutations on a set of soft-
data values, i.e., fixed point values in the range of ±64. The
soft-data values are propagated from one iteration to the next in
a chaining fashion, where each iteration updates the soft-data
values based on a sample of the path delay measurements and
a set of randomized parameters. This chaining approach has
the advantage of eliminating all correlations that occur when
reusing the path delay measurements over multiple iterations.
Moreover, using soft-data expands the capacity of the internal
state, thereby increasing the size of the entropy pool.

The specific contributions of this work include:
• A unified PUF-TRNG architecture that reuses more than

95% of the functionality of the stand-alone PUF archi-
tecture. The architecture includes a mode switch that
changes the behavior of the challenge generation and the
data post-processing operations associated with the PUF
and TRNG functions.

• A novel soft-data based sponge construction that enables
the use of both static and dynamic sources of entropy
by the TRNG, while eliminating all traces of correlation
from the static source.

• A Global Process and Environmental Variation
(GPEV) post-processing module that adds resilience to
temperature-voltage attacks.

• Experimental results validating the TRNG design and
acceptance testing in four of the most popular random
number test tools.

The remainder of this paper is organized as follows. Section
II presents an overview of previously proposed unified PUF-
TRNG architectures, and selected works describing stand-
alone TRNG architectures. Section III describes the SiRF
PUF-TRNG architecture and algorithm. Section IV presents
the results of applying the statistical testing tools to the random
bit sequences from multiple Xilinx Zynq SoC devices, and
Section V presents our conclusions.

II. RELATED WORK

A combined PUF-TRNG design using an array of ring
oscillators (ROs) to generate entropy through jitter measure-
ments was introduced in [1]. However, this architecture lacked
mechanisms to counter temperature and voltage fluctuations
and relies solely on noise as a source of entropy for the
TRNG. Building on this foundation, the authors in [2] de-
veloped a calibration method to enhance performance, yet the

underlying RO structure remained susceptible to attacks in-
volving machine learning. In a different approach, the authors
in [3] presented a unified PUF-TRNG architecture built on
embedded flash memory, exploiting both spatial and temporal
current variations. Fabricated using Global Foundries’ 55 nm
process, this design demonstrated resilience against machine
learning-based intrusions. In more recent work, the authors
in [4] implemented a unified PUF-TRNG architecture based
on SRAM. Although this approach is scalable and offers high-
speed operation, it had a significant LSB bit error rate, starting
around 2.0% and increasing to 4.8% under temperature gra-
dients. In contrast, the authors in [5] proposed a hybrid PUF-
TRNG architecture that addresses environmental variability by
testing 1-bit path delay differences, but the algorithm lacks a
predictable runtime, and no bit rate metrics are provided. The
SiRF PUF presented in [6] also uses delay differences, but
it contrastingly computes the delay across an extensive set of
uniquely designed paths. Their approach draws from both fixed
and random entropy sources and applies a distribution-based
adjustment to counter environmental influences on multi-bit
digitized delays. Until now, there have been no investigations
of the SiRF PUF’s ability to generate true random numbers.

The authors of [7] presented a compact, energy-efficient
TRNG and PUF design for securing IoT devices, featuring a
reconfigurable ring oscillator structure with on-chip calibration
to ensure high entropy and reliability, and an authentication
protocol to resist various attacks. Liu et al. [8] introduced
a memristive TRNG with an intrinsic two-dimensional PUF
for tamper-resistance in nanoelectronics, using unique physical
entropy sources analyzed by a neural network to enhance
security against cloning. While the two-dimensional PUF’s
high sensitivity and randomness are beneficial for security,
they might make the system more vulnerable to environmen-
tal variations (e.g., temperature or supply voltage changes),
potentially impacting reliability. Pratihar et al. [9] presented
a dual-mode PUF-TRNG design that leveraged both oscil-
lation frequency and propagation delay, to provide both se-
cure, instance-specific randomness for PUFs and high entropy
for TRNGs. Although the design effectively integrated both
functions with resistance to machine learning attacks, its
reliance on specific Transition Effect Ring Oscillator (TERO)
cell configurations may limit its adaptability to other circuit
architectures or processes. The authors of [10] proposed a
reconfigurable PUF-TRNG module achieving high hardware
efficiency and robust cryptographic properties through ring
oscillators and rigorous statistical testing. While the design
improves hardware efficiency and scalability, the increased
complexity of the configurable PUF-TRNG module may intro-
duce potential challenges in terms of power consumption and
processing overhead, especially in resource-constrained IoT
environments. Satpathy et al. [11] designed a unified entropy
generator combining a 512-bit CMOS entropy source with
FPGA post-processing for secure IoT authentication. They
achieved high throughput, low power, and resistance to power
attacks, with 25% area savings over separate PUF and TRNG.

In other work, Vatajelu et al. [12] designed a unified



Fig. 1: SiRF TRNG algorithm.

PUF using magnetic RAM (MRAM) based on spin-transfer
torque variations, which theoretically achieved zero-bit error
rates. The PUF, however, was not physically realized, and
its error rate remains untested in practice. Following this,
Khan et al. [13] proposed a similar MRAM-based PUF and
successfully fabricated and tested their model. Zalivako et
al. [14] explored the use of a ring oscillator PUF as a source
of randomness for generating true random numbers on an
FPGA. Although the generated sequences demonstrated strong
randomness, additional compression via an LFSR to improve
statistical properties highlighted a limitation in the unpro-
cessed PUF output. Sadr et al. [15] presented a true random
number generator using an Arbiter PUF within an NFSR,
achieving 10 million bits per second with high entropy and low
resource usage. The reliance on Arbiter PUFs however, may
limit stability in environments with significant temperature or
voltage fluctuations. The author of [16] presented a method
for designing TRNGs using memory-based ternary PUFs,
where unpredictable state cells generate multiple sources of
randomness, which were enhanced by an XOR compiler or
modulo-3 addition. Although the approach demonstrated high-
quality randomness, the effectiveness of the XOR compiler is
limited when the initial data stream lacks randomness.

A stand-alone TRNG was proposed in [17], based on jitter
noise within a ring oscillator based structure. The embedded
carry chain within an Artix FPGA was used to obtain high-
resolution measurements of three propagating edges launched
simultaneously within the ring oscillator, which are processed
into a random bit sequence. The authors run an extensive
set of statistical tools to evaluate the quality of the random
bit sequence. The authors of [18], also propose a stand-alone
TRNG that used a cellular automata topology to implement an
asynchronous circuit structure capable of generating random
bit sequences. The NIST SP800-90B and AIS-31 statistical test
suites were applied in both publications, allowing for direct
comparisons between their TRNGs and the proposed PUF-
TRNG architecture described in this paper.

III. SYSTEM OVERVIEW

The proposed TRNG uses the SiRF PUF [6] static entropy
source and data post-processing algorithms, as well as the
dynamic entropy generated by the path delay measurement
process. A flowchart of the operations carried out by the
TRNG algorithm are shown in Fig. 1. The algorithm can
be partitioned into a random pattern generation, path timing,
and nonce bit generation phase (Phase 1) and a data post-
processing and random bit generation phase (Phase 2). Op-
erations in Phase 1 are dedicated to measuring a set of path
delays (static entropy) while simultaneously generating a set
of nonce bits (dynamic entropy). These operations provide
digitized timing data and nonce bits for randomizing several
parameters utilized by the state machine modules of Phase 2,
and for the LFSR in Phase I during subsequent iterations.

A. Source of Static and Dynamic Entropy

The key building block of the static source of entropy
for the SiRF PUF is shown in Fig. 2, which consists of
a sequence of shift-registers, non-inverting logic gates, and
MUXs. The elements within the module’s netlist are not fixed
to specific layout positions, as is true for identically designed
PUF architectures, and instead are placed and routed according
to the optimization algorithms within the physical synthesis
tool. We use wire constraints to prevent the place-and-route
tool from modifying the netlist structure, and we design the
netlist to ensure glitch-free propagation of signals.

Challenges to the module, applied to the inputs along
the left in the figure, are used to configure paths through
the shift-registers and MUXs. The TDChlng[0] bit of the
challenge controls whether the rising transitions introduced
by the Launch FFs on the module’s inputs propagate through
the module as rising (0) or falling (1) edges. This bit drives
the low-order bit of the shift registers which determines the
transition direction on the output of the shift registers. Since
our design is based on the original SiRF netlist, additional
details regarding its features are found in [6].

The number of testable paths through each module with 16
primary outputs, as shown in Fig. 1, is 512. The modules



Fig. 2: Basic building block of the SiRF PUF-TRNG architecture.

can be stacked vertically and horizontally. Each vertically
stacked module multiplies the number of testable paths by
a factor of 80. For a composite netlist with three rows and
two columns (3×2), the eight possible combinations of rising
and falling transitions through each row result in 52,428,800
testable paths. The 3× 2 configuration of modules is used as
the netlist configuration in the experiments carried out in this
work.

Dynamic entropy is represented as measurement noise in the
path delay measurements, which is captured in the low-order
bit of the delay value (DV). A full bit of dynamic entropy is
obtained by XOR’ing the low-order bits of 12 consecutive path
delay measurements. The need for 12 consecutive measure-
ments was obtained from experiments carried out on FPGAs.
We show in the Experimental Results section that this type of
distillation process produces bitstrings that pass all statistical
tests. During the path timing phase, a total of 341 nonce bits
are obtained by measuring 4,096 path delays.

The 341 nonce bits, or approximately 42 bytes, are used
for randomizing two parameters in post-processing operations
carried out in Phase II, as described below. The 2048 iterations
of the Sponge Function loop shown in Fig. 1 reuse the 42
nonce bytes every 20 iterations of the loop, and therefore,
the nonce bytes are reused at least 102 times over the 2048
iterations. As we show, the contributions by other sources of
entropy in Phase II eliminate the penalty that can occur when
sources of entropy are reused for multiple purposes.

B. Phase 1 - Boot-Strap and DV Generation Operations

A boot-strap operation labeled as Phase 1 in Fig. 1 is
executed to obtain an initial set of nonce bits. Here, the initial

seed to the 64-bit LFSR used in the Random Chlng Gen.
module to generate pseudo-random challenges is set to 1. The
delay values (DV) measured during the boot-strap operation
are then discarded, and only the nonce bits are retained.

The nonce bits are used to randomize several elements of
the TRNG algorithm. The first 64 bits of the nonce are used to
seed the 64-bit LFSR after the boot-strap operation to enable
the Random Chlng Gen. module to generate a second set
of pseudo-random challenges. The Path Timing operation is
started a second time to measure the delays of 4,096 paths.
But unlike boot-strap, the DV are now stored in the BRAM.

The SiRF PUF-TRNG incorporates an embedded instrument
referred to as the time-to-digital converter (TDC), which is
used to measure path delays at a resolution of approximately
18 ps. The Random Chlng. Gen. module generates a sequence
of 128 random challenges using a 64-bit LFSR, where each
challenge allows the measurement of exactly 32 path delays,
one-at-a-time, for a total of 4,096 path delays. The TDC-
digitized delays are referred to as delay values or DV, and can
vary in value from approximately 300 to 1000 depending on
the length of the path. The DV are stored as 12-bit integer
values in an on-chip block RAM (BRAM) in two distinct
groups of 2,048 elements each, labeled as DVA and DVB

in Fig. 1. Operations are carried out on these values in Phase
2.

C. Phase 2 - Data Post-Processing and Random Bit Genera-
tion

The SiRF algorithm consists of a sequence of four data post-
processing modules labeled DVDiff, GPEV, SF and BitGen,
as shown in Fig. 1. The functions carried out by these



Fig. 3: Example DVA, DVB and DVD path delay distributions. The DVD are computed by creating differences using all
combinations of elements in the DVA and DVB groups.

modules are described in the following with illustrations to
show the effect that they have on the DV. Each data post-
processing module is executed 2,048 times, with each iteration
producing 2,048 random bits. In tandem, these steps capture
the necessary properties of a sponge function in a novel way.
As shown on the right of 1, we label the iteration of these
post-processing modules as the Sponge Function loop.

The sampled delay values DVA and DVB are combina-
torially expanded into a set of 2048 × 2048 = 222 or 4
million digital value differences (DVDs). DVA and DVB are
reused to accelerate the bit-generation speed. A full analysis
of bit generation rate and resource utilization is provided in
the Experimental Results section.

1) Differencing: The first module, DVDiff module, uses
two 11-bit LFSRs to pseudo-randomly select samples from
the 2,048 DVA and DVB values. The 11-bit LFSRs are
configured with a primitive polynomial enabling them to select
all possible unique combinations of DV from the two sets.
The seeds to the two LFSR at the beginning of each iteration
are incremented and decremented, respectively, over the range
from 0 to 2047 and from 2047 to 0, e.g., the first iteration
assigns LFSR seeds 0 and 2047, the second iteration assigns
1 and 2046, etc. During each iteration, the selected elements
in the DVA and DVB sets are pairwise subtracted to produce
a set of 2,048 DVD, which are signed integers stored in
the BRAM. A benefit of this approach is its simplicity, but,
as we show, the drawback of full reuse is the existence of
correlations between DVD sets. Example DVA, DVB and
DVD distributions are shown in Fig. 3.

2) Temperature and Voltage Compensation: Next, the
Global Process and Environmental Variation (GPEV) step
reads the 2,048 DVD from the BRAM and applies two
linear transformations. The first transformation removes delay
variations introduced by both global process variations and
temperature-supply voltage effects by effectively standardizing
the DVD, while the second restores the DVD distribution
to an integer value range. The horizontal spread (range)
associated with the second transformation is controlled by a
randomized Range Constant (RC) parameter. A 6-bit com-
ponent of the nonces generated during boot-strap in Phase 1

is used to expand the range to values between 128 and 191,
which adds unpredictability to the second transformation. The
transformed DVD are stored in BRAM as DVDc, where ‘c’
refers to compensated.

The first transformation is described in Eqs. 1 through 4. It
defends against temperature attacks, and supply voltage attacks
that change the DC level. Voltage glitching that is applied
during the path delay measurement process will disrupt the
compensation process, but the impact that the attack has on
the DVDc is unpredictable, and may in fact be defeated given
the outlier avoidance method used in GPEV. The mean, µ, of
the DVD, is computed in the standard fashion. The range is
computed as the width of the distribution using Eq. 4, with
offsets defined by Eqs. 2 and 3. Here, the range is measured
at the limits given by -5% and +5% of the maximum and
minimum values, respectively, of elements in the distribution.
The offsets make the range measurement robust to the presence
of outliers. The parameter rand RC in Eq 6 refers to the
randomized Range Constant from Fig. 1.

µ =

|DVD|∑
j=1

DVDj

|DVD|
(1)

max = max(DVD)− 0.05 ∗max(DVD) (2)

min = min(DVD) + 0.05 ∗min(DVD) (3)

range = max
∀j∈|DVD|

DVDj − min
∀j∈|DVD|

DVDj (4)

DVDN =
(DVD − µ)

range
(5)

DVDc = DVDN × rand RC (6)

3) Spread-Factor (SF) Chaining: The Spread-Factor mod-
ule, labeled SF in Fig. 1, is responsible for removing cor-
relations, which occur when the same DVA and DVB are
subtracted under all combinations by the DVDiff module over
the 2,048 iterations of the Sponge Function loop. Spread-
Factors (SF) refer to sets of digital values defined over the
range given by Eq. 7, that are subtracted from the DVDc,



Fig. 4: The randomized Trim Code Constant (TCC) parameter
partitions the DVDc range into intervals shown by the dotted
lines. The SF module processing operations are illustrated
using two example DVDc.

to produce DVDcs. The SF are also updated and re-used
over consecutive iterations of the Sponge Function loop, as
described below.

SF := ±64 (7)

The SF module defines a sequence of operations that are
illustrated in Fig. 4 using two DVDc. The SF module accepts
an input parameter called the Trim Code Constant or TCC,
whose value is randomized using a 3-bit nonce from the boot-
strap operation in Phase 1. The 3-bit nonce is used to select
an even-valued TCC between 8 and 22. The figure shows the
operations carried out when the TCC selected is 20.

The algorithm works as follows: First, the incoming SFx

value is subtracted from the DVDcx value. Second, the SF
module iteratively adds or subtracts the TCC from the DVDc

until it falls with the region ±TCC/2. And third, the number
of subtractions or additions is used to determine if the current
states of the DVDcx and SFx are updated. If the original
DVDc is located in the odd ’O’ region (annotated on the
right side of the figure), an offset is computed that moves
the DVDc to the symmetric position on the opposite side of
the 0 line, and the offset is added to the SFx. This occurs for
DVDc1 in Fig. 4, where the computed offset is -16. Otherwise
neither the DVDcx nor SFx are changed from their current
values, as shown for the DVDc2 example in the figure.

The SF are set to zero on the first iteration of the Sponge
Function loop (initialization is shown, labeled as Initial values
in Fig. 1) and therefore, they have no effect on the DVDcx

processed during the first iteration. For successive iterations,
the SFx are randomly updated based on the selection of the
TCC parameter and on the magnitude of the compensated
difference values represented by the DVDcx. The high order
bit(s) of the SFx are modified as needed to maintain the SFx

in the range of ±64 as a means of bounding their minimum
and maximum values.

The distributions of the SF over successive iterations of the
Sponge Function loop illustrate an important characteristic of
the SiRF TRNG algorithm. The triangular shape of the dis-
tribution, shown in Fig. 5, are typical of random distributions
that are constructed by adding two discrete random numbers,
e.g., the sums produced in experiments with two random die.
The SF in the current iteration are the sum of the incoming
DVDc and the SF from the previous iteration. The graph
plots the set of 208,896 SF produced over 102 iterations of
the Sponge Function loop under the condition that the Range
Constant and Trim Code Constant are the same (each iteration
produces 2,048 SF , and the same RC and TCC are used every
20 iterations because of the nonce reuse discussed earlier).
Fig. 5 is created by starting with iteration 19 of the Sponge
Function loop. However, the other 19 distributions that can be
created in this fashion are very similar.

Fig. 5: Distribution of SF generated during multiple iterations
of the TRNG algorithm, starting at iteration 19, and then every
20th iteration thereafter where the Range is 168.0 and the TCC
is 18.0.

In contrast, the DVDcs distributions generated as output in
each iteration (and subsequently used to generate the random
stream of bits) are uniformly distributed as shown by Fig.
6. Here, we divided each set of 2,048 DVDcs by the TCC
used during that iteration, i.e., they are normalized to values
in the range between -0.5 and 0.5, to allow the underlying
distribution for all 222 DVDcs to be illustrated. Our analysis
reveals that the number of negative and positive elements are
nearly balanced, with a difference of only 812 elements or
0.02%, across all 222 DVDcs. These two features of the
TRNG function strongly support random statistical behavior,
and explain the high statistical quality presented for the SiRF
TRNG algorithm in the experimental results section.



Fig. 6: Distribution of the 222 normalized DVDcs generated
over all 2,048 iterations of the Sponge Function loop.

4) Bit Generation: Until now, the DVDiff, GPEV, and SF
modules absorbed and transformed fixed point values. The
final step of our Sponge Function loop, BitGen, squeezes
bits from these values, i.e., the DVDcs are processed into
a sequence of 2,048 random bits by the BitGen module. The
BitGen module generates a bit value of 0 if the DVDcs is
negative, a bit value of 1 if the DVDcs is positive, and
alternatives between generating a 0 and 1 in cases where
the DVDcs is 0.0. The Sponge Function loop in Phase 2 is
repeated for 2,048 iterations before Phase 1 operations are
carried out to measure a new set of DVA and DVB .

Fig. 7: Pearson’s correlation coefficients computed using all
combinations of 2,048 element sets of DVDcs generated by
Device C1 over 2,048 iterations of the Sponge Function loop.
The PCCs with SF Chaining are shown above those which do
not use SF at all.

D. Analysis of Correlation With and without SF Chaining

The SF Chaining operation is critical to achieving high
statistical quality in the TRNG bit sequences. We ran NIST and

DieHarder statistical test suites on the bit sequences generated
with and without SF Chaining enabled, and only the bit
sequences with SF chaining passed the tests. The statistical
test results with SF Chaining are provided in Section IV.

To better understand why SF Chaining is beneficial to the
statistical quality of the bit sequences, we use a standard corre-
lation test metric. The Pearson’s Correlation Coefficient (PCC)
measures the degree of similarity between two waveforms, and
expresses that level over a range between -100% to +100%,
where 0% represents no correlation. We use PCC to determine
if correlations exist in the 2,048-element DVDcs data sets.
In order to comprehensively evaluate all possible sources of
correlations, we compute PCCs using all pairing combinations
of the DVDcs data sets. The PCCs are plotted in Fig. 7,
where it is clear that there are many instances of maximum
correlation at 100% without SF Chaining (bottom). In contrast,
with SF Chaining enabled (top), no pairing exceeds the value
of ± 10%, which indicates that SF Chaining is effective at
removing all correlations that occur when the DVA and DVB

are reused under all combinations by the DVDiff module.
The cases of 100% correlation occur because some of the

pairing sequences controlled by the two 11-bit LFSRs produce
DVD sequences that are vertically shifted copies of each other.
An intuitive example is fabricated as follows. Assume one
DV from the DVA set is selected, and then the DVD are
created by subtracting all of the elements of DVDB from
this DVA element. Also, assume a second DVD sequence
is created in the same fashion but using a different DVA

element. The shapes of two DVD curves are identical and
are only different by a vertical offset equal to the difference
in the two DVA set elements. After GPEV is applied, the
shift (DC offset) is removed, making the two curves identical,
and 100% correlated. Although this fabricated example is not
possible when using two LFSRs to select elements, the LFSR
pairing algorithm proposed cannot guarantee that all possible
differences are generated and therefore, identical but shifted
DVD sequences occur.

E. Sponge Construction

The post-processing steps that are chosen and implemented
are deliberate in modeling the behavior of a cryptographic
sponge construction [19]. Specifically, the proposed approach
is a random-permutation sponge based on the iterative nature
of SF-chaining. An ideal sponge construction consists of
absorption and squeezing phases, where absorption consists
of one or more bit-wise operations while squeezing is a
pseudo-random bit-space transformation. The two phases can
be interleaved across subsets of the bitstring in a duplex
operating mode. It can be shown that the proposed TRNG
achieves both absorption and squeezing properties via careful
selection and ordering of the post-processing steps.

The first step which calculates the DVDiff differences
pseudo-randomly selects pairs of DV elements from the
available sets in the BRAM. While this is a soft-data operation,
we can treat them as analogous to one or more bitwise
operations (AND, XOR, etc.) applied in series. Note that



bitwise operators do not preclude the presence of collisions, as
witnessed in Fig. 7. The GPEV step is an additional absorption
step that corrects for temperature and voltage variations. The
SF Chaining step is a pseudo-random transformation that
consumes values generated during the absorption phase. It
is initialized with the original DVDc values that are sub-
sequently permuted over multiple iterations. In each cycle,
the function transforms each DVD by shifting it an arbitrary
amount based on a randomly varying offset. The number of
iterations, which is determined by the high-order bits of the
SF-shifted DVDcx, cannot be predicted a priori because of
the randomized TCC parameter. This crucial property ensures
that the behavior of SF chaining over multiple iterations is
equivalent to a pseudo-random permutation over the bit-space
of DVDcx. This process completely exhausts the underlying
entropy of the stored delay values, while maximizing the
throughput of the random bit generation process.

IV. EXPERIMENTAL RESULTS

In this section, we present a statistical analysis using com-
monly used statistical tests, including NIST SP 800-22 [20],
NIST SP 800-90B [21], AIS 31 [22], and DieHarder [23] test
suites. The data analyzed is collected from a set of five Zynq
7010 SoCs, installed on Digilent ZYBO boards [24]. For the
NIST SP 800-22 tests, we ran the TRNG repeatedly until
each board generated 40 one-million bit (40 Mbit) sequences.
For the NIST SP 800-90B and AIS 31 tests, we collected 10
MByte sequences from the five boards, while for Dieharder,
the amount of data is unknown but in the range of 250
GigaBytes.

A. NIST SP 800-22 Statistical Test Results

The NIST SP 800-22 test suite consists of 15 distinct tests
that measure, e.g., the frequency of 0’s and 1’s across the entire
bitstring and locally over blocks of bits in the bit sequence,
the length of the runs of 0’s and 1’s, the longest runs of 0’s
and 1’s, and others referred to as cumulative sums, serial,
compression, approximate entropy, etc. The 40 one-million
bit TRNG bit sequences collected from each of the five Zynq
devices pass all 15 tests, including all but one of the p-value-
of-the-p-value tests. There was one instance of a failed non-
overlapping template test, where only 36 of the 40 bitstrings
passed, which is one less than the required number of 37.

B. NIST SP 800-90B Statistical Test Results

The NIST SP 800-90B test suite is a more recent addition
that determines the pass-fail status of the random bit sequence.
The 90B test suite evaluates the statistical quality of TRNG
bit sequences using a conservative measure of entropy called
min-entropy, which is traditionally defined as the amount
of uncertainty in predicting the most-likely outcome from an
entropy source. This NIST test suite estimates min-entropy
using tests from two different tracks, the IID-track and the
non-IID track, where TRNGs that sample from an Independent
and Identically Distributed (IID) distribution employ the IID
metrics. To determine the track, NIST recommends applying a

TABLE I: NIST SP 800-90B IID Test Details

Test Name Evaluation Criteria

Excursion Measures how far the running sum of sample values deviates
from its average value at each point in the bit sequence

Number of
Directional Runs

Counts the number of runs of 0s and 1s across
consecutive samples

Length of
Directional Runs

Computes the length of the longest run across
consecutive samples

Number of Increases
and Decreases

Counts the maximum number of increases or decreases
between consecutive sample values

Number of Runs
Based on the Median

Counts the number of runs that are constructed with
respect to the median of the input data

Length of Runs
Based on Median

Determines the length of the longest run that is
constructed with respect to the median of the input data

Average Collision Counts the number of successive sample values until
a duplicate is found

Maximum Collision Counts the maximum number of successive sample values
until a duplicate is found

Periodicity Determine the number of periodic structures in the data

Covariance Measures the strength of the lagged correlation

Compression Length of the compressed sequence (bit sequence
is first encoded)

set of tests to the TRNG bit sequence to determine if evidence
can be found that the samples are not IID. If no evidence is
found, then IID can be assumed.

The IID tests are pass-fail, and use a methodology called
Permutation Testing. Permutation testing tests a statistical
hypothesis in which the test statistic computed on a permuted
version of the TRNG bit sequence is compared to the initial
(un-permuted) sequence. The assumption is that permuting
the initial bit sequence should produce similar test statistics.
If t represents the value of the test statistic on the original
(un-permuted) sequence and t’ represents the test statistic
computed on a permuted version of the original bit sequence,
the IID tests count the number of times, over 10,000 per-
mutations, that the value of t’ is less than t (represented as
C0), and the number of times they are equal (represented
as C1). The IID test fails if the sum C0 + C1 <= 5 or
if C0 >= 9, 995, indicating a significant difference exists
between the permuted sequences and the original sequence.
NIST repeats this evaluation using eleven IID statistical tests,
listed and briefly explained in Table I. A bit sequence passes
the IID tests if and only if all eleven tests pass the count metric,
otherwise the bit sequence is deemed non-IID. We subjected
bit sequences of length of 10 MBytes for each of the five
Zynq devices to the IID test suite and determined that all bit
sequences pass the IID tests.

The NIST SP 800-90B test suite additionally estimates the
min-entropy, using two distinct sets of tests, one for TRNGs
with IID and one for non-IID sources of entropy. For TRNGs
with IID outputs, min-entropy is estimated using the most
common value estimate. Here, the most common value is
determined and then its proportion in the bit sequence-under-
test is computed. The upper bound of the corresponding
confidence interval is used as the min-entropy per sample
estimate. For binary data, the most common value is either
0 or 1 and the proportion is simply the larger fraction of 0s or
1s in the bit sequence. The values obtained for the five Zynq
devices are shown in the first row of Table II, which shows



TABLE II: IID and Non-IID Test Results of the NIST SP 800-
90B Entropy Estimation

Estimator Min Entropy

C58 C60 C61 C62 C63

Most Common Value 0.99949 0.99954 0.99949 0.99947 0.99958

Collision 0.97489 0.97731 0.97237 0.95915 0.97095

Markov 0.99986 0.99995 0.99988 0.99964 0.99984

Compression 0.94808 0.94156 0.94419 0.96217 0.94891

t-Tuple 0.94499 0.94499 0.94219 0.94358 0.94643

LRS 0.99119 0.99895 0.97301 0.99707 0.99845

Multi MCW Prediction 0.99989 0.99978 0.99979 0.99992 0.99958

Lag Prediction 0.99947 0.99964 0.99961 0.99926 0.99926

MultiMMC Prediction 0.99970 0.99984 0.99954 0.99953 0.99941

LZ78Y Prediction 0.96743 0.99983 0.99956 0.99938 0.99948

TABLE III: NIST SP 800-90B Non-IID and AIS 31 Test
Descriptions

Test Name Evaluation Criteria

NIST SP 800-90B

Most Common Value Measures the frequency of the most common value

Collision Measures the frequency of repeated values (collisions)

Markov Measures the degree of predictability based on past
output values

Compression Measures the degree of compression possible

t-Tuple Evaluates how often sequences of t consecutive
symbols repeat

LRS Detects redundancy by finding the longest
repeated substring

MultiMCW Prediction Evaluates predictability by analyzing symbol patterns
using multiple ”Most Common in Window” predictors

Lag Prediction Analyzes the ability to predict output
based on previous outputs at different lags

MultiMMC Prediction Considers multiple Markov chains and evaluates
how well they can predict future values

LZ78Y Prediction Uses the LZ78 compression method to measure
predictability of the sequence

AIS-31

Disjointness Ensures outputs from the entropy source are
independent across multiple tests

Monobit Verifies the balance of 0s and 1s in the bitstream

Poker Analyzes frequency distributions to identify patterns
in the data

Runs Checks the randomness of bit sequences by analyzing
runs of consecutive 0s and 1s

Long Run Identifies overly long runs of consecutive 0s or 1s

Autocorrelation Evaluates the dependency between bits
separated by fixed lags

Uniform Distribution Checks if output values follow a uniform distribution

Homogeneity Tests consistency of symbol distributions
across subsets of data

Entropy Estimation Measures the unpredictability of the source output

that nearly a full bit of entropy is contained in each output
bit.

We also ran the non-IID test suite to estimate min-entropy,
despite the fact that the bit sequences pass the IID tests.
The non-IID test suite conservatively estimates min-entropy
using a diverse battery of tests, which are listed and briefly
explained in the top portion of Table III. The smallest min-
entropy estimate obtained from one of these tests is used as

TABLE IV: Results of the AIS 31 Statistical Test Suite

Test Pass rate Result

T0 - Disjointness test 1/1 Pass

T1 - Monobit test 257/257 Pass

T2 - Poker test 257/257 Pass

T3 - Runs test 257/257 Pass

T4 - Long run test 257/257 Pass

T5 - Autocorrelation test 257/257 Pass

Test Test statistic / Pass condition Result

T6 - Uniform distribution test |P(1) − 0.5| = 0.00235/ < 0.025 Pass
|P(01) − P(11)| = 0.00306/ < 0.020

T7 - Test for homogeneity T [0] = 3.329;T [1] = 2.165; / < 15.13 Pass
T [00] = 1.670;T [01] = 3.281;

T [10] = 0.077;T [11] = 0.022; / < 15.13

T8 - Entropy estimation H1 = 8.00169/ ≥ 7.976 Pass

the estimate for the bit sequence. The results of applying the
non-IID test suite to the 10 MByte bit sequences obtained
from the five Zynq devices are shown in the remaining rows of
Table II, where we have highlighted in bold font the worst-case
min-entropy test results. The worst-case values vary between
0.941 to 0.946, which suggests the SiRF TRNG produces a
high-quality random bit sequence.

C. AIS 31 Statistical Test Results

As part of our evaluation process, we applied the AIS 31
test suite as additional validation of the SiRF TRNG. A brief
description of the AIS 31 tests is provided in the lower portion
of Table III.

The results obtained after applying the AIS 31 tests to the 10
MByte bit sequence generated from one of the Zynq devices
are shown in Table IV, which shows that all tests passed. The
pass-fail results for the other boards are identical. Similar to
the claims made using the NIST SP 800-90B test suite, these
results also validate that the SiRF TRNG produces a high-
quality random bit sequence.

D. DieHarder Statistical Test Results

For completeness, we generate random bit sequences from
the five Zynq board and use them as input to the DieHarder test
suite [23]. The DieHarder tests are applied by redirecting the
SiRF PUF-TRNG bit sequences directly to the DieHarder test
tool. Given the bit generation rate is 2.67 Mbits per second,
the five Zynq devices used in the experiments ran for more
than 20 days before enough bits were generated to run all 116
DieHarder tests. No test failures occurred for any test and for
any of the five bit sequences generated by the Zynq devices,
and only 18 ’WEAK’ results were observed. For comparison,
we also subjected the random bit sequences generated by the
OpenSSL pseudo-random number generator to the DieHarder
test suite in five separate experiments and observed no failures,
and only 19 ’WEAK’ results. Therefore, the quality of the
SiRF TRNG bit sequences is similar to those produced by
OpenSSL.



Fig. 8: Box plots showing the NIST SP 800-90B Non-IID min-
entropy values from 25 boards. The horizontal axis represents
the different configurations of Range Constant (RC) and Trim
Code Constant (TCC), indicating whether each is turned ON
or OFF. The median value for each configuration is displayed
above the corresponding boxplot.

E. Statistical Analysis of Dynamic Entropy

As indicated earlier, the nonces used to randomize param-
eters to the 64-bit LFSR Challenge generator and Sponge
Function modules represent the dynamic entropy component
of the TRNG. We collected 10 sequences of 100,000 bits from
the five devices and ran the NIST SP 800-22 test suite on
the sequences. All applicable NIST statistical tests passed,
as well as the p-value-of-the-p-value tests. Therefore, the
distillation operation, which XORs 12 consecutive low-order
bits of the path delay measurements, is capable of generating
bit sequences of high statistical quality.

F. Analysis of RC and TCC SiRF PUF-TRNG Parameters

We carry out a special set of tests that evaluate the benefit
of randomizing two parameters used by the Sponge Function
loop shown in Fig. 1, namely, the Range Constant (RC) in the
GPEV module and the Trim Code Constant (TCC) in the SF
module. The DV used in these evaluations are held constant
across the experiments while the RC and TCC parameters are
either randomly varied, e.g., RC = 1 or held constant, e.g.,
RC = 0, as shown by the labels along the bottom of the box
plot graph shown in Fig. 8. The box plot characterizes the
min-entropy results from the NIST SP 800-90B test suite for
bit sequences generated by the SiRF PUF-TRNG algorithm
using DV collected from 25 devices. The best result is obtained
when both RC and TCC are randomly varied, as exemplified
by the larger median value for the right-most box plot when
compared with the others. From the results, it is clear that the
improvement is marginal, suggesting that most of the min-
entropy is obtained by the SF Chaining operation. Despite
the small improvement, randomizing these parameters adds
uncertainty to the processing operations within the Sponge
Function loop, and therefore, improves attack resilience.

TABLE V: Comparison with Other FPGA TRNG Designs

Design Device Entropy
Est. Area ThrPut

[Mbps]
Power
[mW]

SiRF Zynq
7010 ≥ 0.999

5842 LUTs
4377 FFs

32 CARRY4s
2.5 27

TROT
[17]

Zynq
7000 ≥ 0.999

32 LUTs
55 FFs

17 CARRY4s
12.5 9.5

CHAOS
[18] Virtex-6 ≥ 0.983

53 LUTs
22 FFs 1600 2.05

G. Comparison with other TRNGs

In this section, we compare the statistical test results of the
SiRF PUF-TRNG with two stand-alone TRNGs proposed in
[17] and [18]. These particular TRNGs are referenced because
the authors apply the NIST SP 800-90B and AIS 31 test suites
to their bit sequences. We were not able to find any unified
PUF-TRNG architecture papers that provided a comprehensive
evaluation using these test suites. The comparison in Table V
shows that the SiRF PUF-TRNG has a smaller bit generation
rate, but compares favorably in terms of the other metrics. The
larger footprint associated with the SiRF PUF-TRNG is due
to the inclusion of the PUF security function.

H. SiRF PUF-TRNG Bit Generation Rate and Resource Uti-
lization

The path timing operation carried out in Phase 1 (from Fig.
1) takes approximately 50 milliseconds using a 50 MHz clock
frequency, while the linear operations carried out in Phase
2 by the four post-processing modules are able to execute
in approximately 600 microseconds per iteration, yielding a
bit generation rate of approximately 2.67 Mbits per second.
Note that increasing the clock frequency would increase the
bit generation rate proportionally, e.g., 100 MHz would double
the rate.

The SiRF PUF-TRNG implementation on the Zynq FPGAs
utilizes 5,842 LUTs and 4,377 FFs, and requires two DSP
primitives to implement multiplication in two modules of the
PUF-TRNG algorithm. Resource utilization is nearly identical
(within 5%) to the utilization required for the SiRF PUF stand-
alone. The BRAM utilization is 24 KBytes, which is 4,096
bytes larger than that required by SiRF PUF stand-alone. The
additional 4,096 bytes are needed to accommodate the SF
Chaining operation.

V. CONCLUSIONS

In this paper, we present a unified SiRF PUF-TRNG ar-
chitecture that utilizes static entropy from a strong PUF and
dynamic entropy derived from path delay noise. The novel
inclusion of a soft-data sponge function enhances randomness
and efficiency, while resilience against temperature-voltage
attacks is achieved through the GPEV post-processing module.
Extensive evaluation using the NIST SP 800-22, NIST SP
800-90B, AIS 31, and DieHarder test suites demonstrates the
TRNG’s robust statistical performance and high min-entropy.



The architecture demonstrates a compact and resource-efficient
approach, reusing over 95% of the SiRF PUF’s components,
with a bit generation rate of 2.67 Mbps and minimal resource
overhead. The proposed approach advances the integration of
PUF and TRNG capabilities, providing a reliable and scalable
solution for secure hardware systems.
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