
ar
X

iv
:2

50
6.

17
62

5v
1

 [
cs

.C
R

]
 2

1
Ju

n
20

25

List-Decodable Byzantine Robust PIR: Lower
Communication Complexity, Higher Byzantine

Tolerance, Smaller List Size

Pengzhen Ke1, Liang Feng Zhang1∗, Huaxiong Wang2, and Li-Ping Wang3

1 School of Information Science and Technology, ShanghaiTech University, Shanghai,
China

{kepzh,zhanglf}@shanghaitech.edu.cn
2 School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore
hxwang@ntu.edu.sg

3 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
wangliping@iie.ac.cn

Abstract. Private Information Retrieval (PIR) is a privacy-preserving
primitive in cryptography. Significant endeavors have been made to ad-
dress the variant of PIR concerning the malicious servers. Among those
endeavors, list-decodable Byzantine robust PIR schemes may tolerate a
majority of malicious responding servers that provide incorrect answers.
In this paper, we propose two perfect list-decodable BRPIR schemes.
Our schemes are the first ones that can simultaneously handle a major-
ity of malicious responding servers, achieve a communication complexity
of o(n1/2) for a database of size n, and provide a nontrivial estimation
on the list sizes. Compared with the existing solutions, our schemes at-
tain lower communication complexity, higher byzantine tolerance, and
smaller list size.

Keywords: Byzantine Robust PIR · List-decoding Algorithms · Mali-
cious Servers · Security.

1 Introduction

Private Information Retrieval (PIR) [10] allows a client to retrieve an element xi

from a database x = (x1, . . . , xn) without disclosing to the servers which specific
element is being accessed. PIR is a fundamental privacy-preserving primitive in
cryptography and has widespread applications in systems such as private media
browsing [18], metadata-private messaging [3] and location-based services for
smartphones [25,39].

The efficiency of a PIR scheme is mainly measured by its communication
complexity, i.e., the total number of bits that have to be exchanged between the
client and all servers in order to retrieve one bit of the database. A trivial PIR
scheme requires the client to download the entire database from a server. Despite
of achieving perfect privacy, it incurs a prohibitive communication complexity

https://arxiv.org/abs/2506.17625v1

2 P. Ke, L. F. Zhang et al.

that scales linearly in the size n of the database. Chor et al. [10] showed that the
trivial PIR scheme is optimal in terms of communication complexity if there is
only one server and perfect privacy is required. In order to achieve the nontrivial
communication complexity of o(n), one has to either give up the perfect privacy
or use multiple servers. One the one hand, by giving up the perfect privacy,
single-server PIR schemes [2,30,31,32] with o(n) communication complexity have
devised under various computational assumptions. On the other hand, a multi-
server PIR model [5,13,14,38,40] is necessary if both perfect privacy and o(n)
communication complexity are desired. In a k-server PIR scheme, the database
x is replicated among k servers and the client retrieves a database element xi by
querying every server once, such that each individual server learns no information
about the retrieval index i. A t-private k-server (t < k) PIR scheme [38] provides
the stronger security guarantee that the retrieval index i is perfectly private for
any t colluding servers.

Compared with the single-server PIR model, the multi-server PIR model
fundamentally differs across three critical dimensions:

– Privacy: Single-server PIR schemes rely on computational hardness assump-
tions, whereas most of the multi-server PIR achieves information-theoretic
privacy assuming non-collusion.

– Computation Complexity: Multi-server PIR schemes are free of the heavy
public-key operations that are required by single-server PIR and thus much
faster (possibly by several orders of magnitude).

– Error Tolerance: While single-server PIR schemes face complete failure un-
der server compromise, multi-server PIR may still guarantee correct retrieval
if some of the servers are controlled maliciously.

These architectural advantages make multi-server PIR an attractive approach,
offering stronger security guarantees alongside practical efficiency. However, the
involvement of more servers also introduces new challenges. As the number
of participating servers increases, so does the risk of receiving incorrect re-
sponses—whether due to network failures, outdated data, or deliberate adversar-
ial behavior. Over the past decade, extensive research [12,16,29,42] has focused
on combating malicious servers that may collude and return incorrect answers,
potentially leading the client to reconstruct a wrong database entry.

Beimel and Stahl [6] introduced the notion of b-Byzantine robust k-out-of-
ℓ PIR (BRPIR) [4,35,42], which allows a client to retrieve the correct value
if any k out of the ℓ servers respond and at most b out of the k responding
servers are malicious (called “Byzantines”) and return incorrect answers. If b = 0,
such schemes are simply called k-out-of-ℓ robust PIR (RPIR) schemes. They
showed that any a-out-of-ℓ RPIR scheme can be used to construct a b-Byzantine
robust k-out-of-ℓ PIR scheme for any a < k < ℓ and b ≤ (k − a)/2. This class
of BRPIR schemes can handle the cases where a minority of the responding
servers (i.e., b < k/2) are malicious and provide incorrect responses. However,
they require the client to execute a reconstruction algorithm whose running
time may be exponential in k, the number of responding servers. For the same
setting of b < k/2, Kurosawa [29] proposed an efficient BRPIR scheme with

List-Decodable Byzantine Robust PIR 3

polynomial time reconstruction, which is based on the RPIR scheme of Woodruff
and Yekhanin [38] and utilizes the Berlekamp-Welch decoding algorithm [37] for
Reed-Solomon codes.

While conventional BRPIR schemes are only applicable when b < k/2, they
are incapable of addressing scenarios where a majority of the responses are er-
roneous. In practical situations, due to reasons such as (1) outdated databases,
(2) poor or unstable mobile networks, and (3) significant communication chan-
nel noise, it is likely that most responses could be incorrect. Thus, it becomes
imperative to develop a BRPIR scheme that can support higher error toler-
ance. The list-decodable BRPIR schemes of [12,16] represent a class of schemes
that incorporate list-decoding techniques from coding theory into RPIR and
enable one to handle the cases of b ≥ k/2. In list-decodable BRPIR schemes,
the client does not reconstruct a single definitive result but a list that con-
tains the correct result. Goldberg [16] introduced the notion of list-decodable
b-Byzantine-robust t-private k-out-of-ℓ PIR and constructed schemes that can
handle b Byzantine servers for any b < k−

√
kt (Table 1). The b-error correction

achieved by [16] is particularly well-suited for Reed-Solomon code-based PIR
schemes since it reaches the Johnson bound. The Johnson bound is a crucial
threshold that delineates the upper limit of efficient polynomial-time list decod-
ing for error-free recovery, ensuring that the maximum number of correctable
errors in a polynomial-time framework does not exceed this limit. Reaching this
bound indicates highly efficient and reliable error correction in managing er-
roneous responses in the RS code based PIR protocols. Devet, Goldberg, and
Heninger [12] surpassed the Johnson bound with a statistically correct scheme
that allows b < k−t−1 (Table 1). However, the higher robustness is achieved at
the price of statistical correctness, i.e., allowing a non-zero probability of failure
in reconstruction. While the state-of-the-art PIR schemes [9,13] in the honest-
but-curious server model achieve a sub-polynomial communication complexity,
the list-decodable PIR schemes of [16,12] exhibit a relatively high communica-
tion complexity of O(ℓn1/2). Neither [16] nor [12] gives a good estimation on
the maximum size of the list that may be output by the client’s reconstruction
algorithm. In both works, the data block xi ∈ Fp of interest is embedded into a
degree-t polynomial and as the constant term. By Johnson Bound, the number of
polynomials reconstructed by the client’s algorithm is at most pk2. However, the
number of the candidate values for the data block (or equivalently the constant
terms of the reconstructed polynomials) could be as high as p. In the worst-case,
both schemes might output the entire field Fp as the list of the candidate values
for xi, rendering the schemes ineffective.

In most application scenarios of PIR, the database size n is significantly larger
the parameters b, t, k, and ℓ. If we restrict to list-decodable BRPIR schemes that
can handle a majority of malicious responding servers (i.e., b ≥ k/2), the existing
solutions have several limitations. First, they cannot achieve a communication
complexity of o(n1/2). This limitation persists even in scenarios where a minority
of the responding servers are Byzantine (i.e., b < k/2) or when the privacy
threshold t is relatively low (e.g., t = O(1)). Second, they lack a good estimation

4 P. Ke, L. F. Zhang et al.

on the size of the list that contains the block xi of interest. In this paper, we
are interested in list-decodable BRPIR schemes that can simultaneously handle a
majority of malicious responding servers (i.e., b ≥ k/2), achieve a communication
complexity of o(n1/2) , and provide a nontrivial estimation on the list sizes.

Table 1. Comparisons for t-private list-decodable k-out-of-ℓ b-Byzantine-robust PIR
schemes over database in Fn

p

Reference List-decodable Byzantine
Bound

Communication
Complexity

Maximum
List Size

[16] Perfect k −
√
kt O(ℓn1/2) p

[12] Statistical k − t− 1 O(ℓn1/2) p

Γ1 (Fig. 2) Perfect k − 2 O(ℓw1n
1/w1) † (k

k−b
)w1t

Γ2 (Fig. 3) Perfect k −
√
kt O(ℓw2n

1/w2) ‡ 2k

† w1 is a parameter chosen to balance the tradeoff between communication complex-
ity and list size, satisfying w1 < 2k−2b−1

t
.

‡ w2 is a constant defined as w2 =
⌊

(k−b)2

kt

⌋
.

1.1 Our Results

In this paper, we construct two perfect L-list decodable b-Byzantine-robust t-
private k-out-of-ℓ PIR schemes Γ1 and Γ2 (see Table 1). In both schemes, the
Byzantine robustness parameter b can be at least k/2, the communication com-
plexity is o(n), and the list size L solely depends on the number k of responding
servers and the Byzantine robustness b, and is independent of the size p of the
space where each data block is taken from.

Byzantine robustness. The scheme Γ1 has Byzantine robustness b < k−
√
kt,

which is comparable to [16]. The scheme Γ2 has a Byzantine robustness of b ≤
k − 2 and surpasses both the Byzantine robustness b < k −

√
kt of [16] and the

Byzantine robustness b < k − t− 1 of [12].

Communication complexity. Compared with [16] and [12], our schemes achieve
a substantially lower communication complexity of o(n1/2). The communication
efficiency of our schemes is particularly high when the privacy threshold t is low.
For instance, with parameters (k, b, t) = (20, 12, 1), the communication complex-
ity of the schemes Γ1 and Γ2 can be as low as O(n1/14) and O(n1/4), respectively.
In contrast, for the same values of (k, b, t), the communication complexity of [16]
and [12] is O(n1/2). More detailed comparisons are provided in Table. 2.

List size. The scheme Γ1 is L-list decodable for L = (k/(k − b))
w1t, where

w1 < (2k− 2b− 1)/t is a parameter chosen by the client to balance the tradeoff
between the communication complexity and the list size. The scheme Γ2 is L-list
decodable for L = 2k. Furthermore, when b > k/2 is large, the list size of Γ2 can

List-Decodable Byzantine Robust PIR 5

be as small as L = k. Since the size of the finite field p in list-decodable BRPIR
is much larger than k, b, t, compared with the p-list decodable schemes of [16]
and [12], our schemes give substantial improvements.

1.2 Background

From RPIR to List-Decodable BRPIR. The starting point of our construc-
tion is the robust PIR (RPIR) scheme introduced by Woodruff and Yekhanin [38].
Their work established a powerful framework that reduces the problem of pri-
vate information retrieval to the task of reconstructing a low-degree univariate
polynomial. A detailed description of the Woodruff-Yekhanin RPIR scheme is
provided in Section 2.4. In Woodruff-Yekhanin RPIR scheme, the client obtains
both the values and the derivatives of a polynomial f(λ) at k positions, that is,
{f(λj), f

′(λj)}j∈[k]. The degree of this polynomial is set to be at most 2k − 1,
so that it can be uniquely reconstructed from these evaluations and derivatives.
Moreover, the higher the degree of f(λ), the lower the communication complex-
ity of the scheme, which leads to improved efficiency. A related construction by
Beimel and Stahl [6] addresses the setting with Byzantine servers. When the
number of corrupted servers is at most b, and at least k − b evaluations and
derivatives are correct, their scheme reconstructs a polynomial of degree at most
2(k − 2b) − 1 at each of the k − 2b positions. A voting-like mechanism is then
employed across these reconstructions to recover the correct polynomial f(λ).
However, when b ≥ k/2, unique decoding strategies such as voting are no longer
viable. In this case, one must resort to list decoding.

Sudan list decoding algorithm. When the number of Byzantine servers ex-
ceeds the threshold for unique decoding, list decoding becomes necessary. Su-
dan [34] proposed one of the earliest list decoding algorithms for Reed–Solomon
codes, which can be viewed as a special case of univariate multiplicity codes.
Given k pairs (λj , αj), the algorithm outputs all low-degree polynomials f̃(λ)

such that f̃(λj) = αj for at least k − b indices j ∈ [k], where b is the number of
errors. A detailed description of the Sudan algorithm is provided in Section 2.3.

1.3 Our Approach

Building on the polynomial reconstruction framework by Woodruff and Yekhanin
in [38], we develop two perfect list-decodable PIR schemes that remain effective
even when the fraction of malicious servers exceeds the unique decoding thresh-
old. The term “perfect” indicates that the list produced by this scheme always
contains the queried result. Our goal is to retain the high-degree structure of the
polynomial f(λ), thereby minimizing communication complexity, while extend-
ing the scheme’s robustness through list decoding techniques.

Recall that when the number of Byzantine servers b is less than k/2, unique
decoding remains feasible, and mechanisms like majority voting over polynomial
reconstructions at different positions can correctly recover the polynomial f(λ).

6 P. Ke, L. F. Zhang et al.

However, once b ≥ k/2, unique decoding breaks down, and we must resort to list
decoding—outputting a small list of candidate polynomials that are guaranteed
to contain the correct one.

The challenge in this setting is twofold: first, to design a decoding algorithm
that produces only a constant-size list (or only polynomial-size in k), and second,
to keep the degree of f(λ) as high as possible, so as to preserve the communica-
tion efficiency inherited from the Woodruff-Yekhanin RPIR structure. To address
the challenge, we introduce two distinct decoding strategies in our constructions,
each leading to a perfect list-decodable PIR scheme.

In the first scheme, Γ1, we introduce a method called overinterpolation. This
method imposes a strict upper bound on the degree of any admissible interpo-
lated polynomial, allowing us to discard inconsistent candidates while ensuring
that the correct polynomial remains in the list. For example, we interpolate a
polynomial from each subset of k − b − 1 out of k values and retain only those
polynomials whose degree is at most (k − b)/2. By carefully tuning this degree
threshold, we can effectively bound the list size within a polynomial in k. This
method is conceptually simple and yields both a small list size and low computa-
tional complexity when

(
k
b

)
is small. However, when

(
k
b

)
becomes large—if b and

k− b are both in O(k) —the computational cost grows exponentially with k. To
address such a situation, we further develop an optimized algorithm that reduces
the overall complexity to a polynomial in k, even in such parameter settings.

In the second scheme, Γ2, we propose a new list-decoding algorithm for order-
1 multiplicity codes that follows Sudan list decoding algorithm. Unlike Sudan
list decoding algorithm, which operates on Reed–Solomon codewords consisting
of the point-value pair (λ, f(λ)), our algorithm works with multiplicity code-
words composed of the point-value-derivative tuple (λ, f(λ), f ′(λ)). Given k
tuples (λj , αj , βj), our list decoding algorithm constructs a pair of polynomi-
als: a base interpolating polynomial Qbase(λ, α), and an extended polynomial
Qext(λ, α, β) that encodes additional derivative information. Following a process
analogous to Sudan’s approach, we identify a list of candidate polynomials f̃(λ)
that are consistent with at least k − b of the given evaluations and derivatives.
A key requirement of this approach is that the degree of the target polynomial
f(λ) must not exceed (k − b)2/k. Compared to the Woodruff-Yekhanin RPIR
scheme, where the degree reaches 2k − 1, this constraint results in a higher
communication overhead. Nonetheless, it enables decoding in the environments
where unique decoding is no longer feasible, while ensuring that both the list
size and decoding time remain polynomial in k.

Both constructions can be seen as perfect list-decodable generalizations of the
Woodruff-Yekhanin scheme, and are particularly suited for the environments in
which unique decoding is provably impossible.

1.4 Related Work

The investigation of Byzantine robust PIR (BRPIR) schemes and list-decodable
BRPIR schemes has made significant strides in addressing the challenges posed
by malicious servers in PIR scenarios.

List-Decodable Byzantine Robust PIR 7

Byzantine Robust PIR (BRPIR) schemes[4,6,29,35,42] enable the client to
both correctly retrieve the desired database element despite the presence of a
limited number of malicious servers but also allow the client to identify which
servers are acting maliciously. Beimel first introduced the idea of Byzantine ro-
bustness in [6]. Given an a-out-of-ℓ robust PIR scheme, they provided a general
construction from an a-out-of-ℓ robust PIR scheme to a k-out-of-ℓ, b-Byzantine-
robust PIR scheme for any a < k < ℓ with b = (k−a)/2. Applying this construc-
tion to the robust PIR scheme proposed by Woodruff and Yekhanin [38], which
retrieves hidden data blocks by interpolating polynomials, one can obtain an
efficient t-private k-out-of-ℓ b-Byzantine-robust PIR scheme, where b < k/2, and
the communication complexity of this scheme is O(n1/⌊(2(k−2b)−1)/t⌋). However,
this scheme requires the client to perform computations that grow exponentially
with the number of responding servers k, leading to high computational complex-
ity for the client. By extending the Berlekamp-Welch algorithm [37], a decoding
algorithm for Reed-Solomon (RS) codes, to the case of first-order derivatives,
Kurosawa [29] reduced the client-side computation of the construction by Beimel
and Stahl to polynomial levels. Nonetheless, the Byzantine tolerance remains
bounded by b < k/2.

List-Decodable BRPIR schemes [12,16] are suitable for scenarios where con-
ventional BRPIR schemes fail to operate, particularly when b ≥ k/2. This idea
of list-decoding in BRPIR was first introduced by Goldberg [16] to improve the
bound of byzantine tolerance b. Goldberg proposed a t-private list-decodable
k-out-of-ℓ b-Byzantine-robust PIR scheme for any b < k −

√
kt. In Goldberg’s

scheme, the database is structured as a matrix. The client retrieves a row of this
matrix from each server in the form of a degree-t RS codeword. The data block
is then reconstructed using the Guruswami-Sudan list decoding algorithm [20],
which is a list decoding algorithm for RS codes, applied to the codewords of RS
codes. For cases where t < k/4, this scheme can achieve b ≥ k/2. Devet, Gold-
berg and Heninger [12] improved the Byzantine bound of list-decodable BRPIR
by proposing a statistical list-decodable BRPIR scheme with byzantine bound
b < k − t − 1. In both works of [16] and [12], the client’s desired data block
xi ∈ Fp is embedded in the constant term of a degree-t polynomial, which is
then subjected to list decoding. According to the bound given by the Johnson
Bound, the number of decoded polynomials is at most pk2. However, the possible
values for the data block are at most p. In the worst-case scenario, both schemes
might output the entire Fp as the candidate list for xi, rendering the schemes
ineffective.

There are other works addressing malicious servers that focus solely on error
detection without aiming to retrieve the correct result. Some of these approaches
achieve higher efficiency and greater Byzantine server tolerance compared to
BRPIR.

Verifiable PIR (VPIR) schemes in both the multi-server model [41] and the
single-server model [43], ensures that the client can identify the byzantine servers,
that is, can tell which server is malicious. However, it does not guarantee the

8 P. Ke, L. F. Zhang et al.

recovery of the correct element, or even a small list of potential candidates. The
security of VPIR is weaker than that of BRPIR. However, this allows VPIR
to accommodate a significantly higher number of malicious servers and greatly
reduces communication complexity.

Error Detecting PIR (EDPIR) [8,11,15,23,24,28,44] schemes allow the client
to detect the existence of incorrect answers provided by malicious servers, though
they do not guarantee identifying which servers are malicious or reconstructing
the correct value.

In our work, we devise a list decoding method for a variant of Reed-Solomon
(RS) codes that consider first-order derivatives. By integrating this list decod-
ing method into the Woodruff-Yekhanin robust PIR scheme, we obtain a list-
decodable BRPIR scheme. This variant of RS codes, which incorporates first-
order derivatives, can be viewed as a special case of univariate multiplicity codes.

Univariate Multiplicity Codes [19] are variants of Reed–Solomon (RS) codes
that are constructed by evaluating a polynomial along with all of its derivatives
up to order s. Notably, RS codes correspond to the special case when s = 0. In
recent years, there has been significant progress in the list decoding of univariate
multiplicity codes [17,21,22,26,27], with the decoding radius—corresponding to
the Byzantine tolerance b/k in our framework—reaching up to 1−R− ϵ for any
ϵ > 0, where R is the code rate. This matches the list decoding capacity 1−R.
However, when restricted to only first-order derivatives and function values, i.e.,
order-1 multiplicity codes, these results no longer apply. We provide a detailed
discussion of these limitations in Section 2.3.

2 Preliminaries

2.1 Notation

We use bold lower-case letters to denote vectors. For any vector v (resp. vj) of
length m and any c ∈ [m], we denote by vc (resp. vj,c) the c-th element of v
(resp. vj), meaning that v = (v1, . . . , vm) (resp. vj = (vj,1, . . . , vj,m)). For any
finite set A, we denote by |A| the cardinality of A. For any integer n > 0, we
denote [n] = {1, 2, . . . , n} and {aj}j∈[n] = {a1, a2, . . . , an}. For any two vectors
u,v of the same length, we denote by ⟨u,v⟩ the inner product of u and v. For
any prime p, we denote by Fp the finite field of p elements and denote by Fn

p

the set of all length-n vectors over Fp. For any polynomial f(λ) ∈ Fp[λ] and any
integer s ≥ 0, we denote by f (s)(λ) the order-s derivative of f with respect to λ
and denote by f (≤s)(λ) = (f (0)(λ), f (1)(λ), ..., f (s)(λ)) the order-s evaluation of
f at λ. In particular, f (0)(λ) = f(λ) and f (1)(λ) = f ′(λ) are the evaluation and
order-1 derivative of f at λ, respectively.

We will use the following variables throughout the paper:

– ℓ: the total number of servers.
– k: the number of responding servers.

List-Decodable Byzantine Robust PIR 9

– t: the number of servers that may collude to learn the retrieval index.
– b: the number of servers that may collude to respond incorrectly.
– n: the database size.
– p: the database block size, each entry in the database is an element in Fp.
– x = (x1, . . . , xn): the database, which is a vector in Fn

p .
– w: a degree parameter.
– m: the least positive integer such that

(
m
w

)
≥ n.

– C: a subset of Fm
p and a constant weight code of length m and weight w.

– E: a public 1-to-1 encoding function.
– F : an encoding of the database x such that F (E(i)) = xi.

2.2 Constant-weight Code

A code C of length n over Fp is a subset of Fn
p . For any two codewords u,v ∈ C,

the Hamming distance between u,v is the number of coordinates where u,v
differ and denoted by dH(u,v) = |{i ∈ [n] : ui ̸= vi}|. The minimum distance of
a code C is the least Hamming distance between any two different codewords in
C and denoted by dH(C) = minu,v∈C,u̸=v dH(u,v). For any codeword u ∈ C,
the Hamming weight of u is the number nonzero coordinates of u and denoted
by wt(u) = dH(u,0).

For any integers m, d,w > 0, an (m, d,w) constant-weight code [7] is a binary
code of length m, minimum Hamming distance d, and Hamming weight w. The
maximum size of an (m, d,w) constant weight code is denoted by A(m, d,w). For
any integers m, δ, w > 0, Agrell, Vardy and Zeger[1] showed an upper bound on
A(m, 2δ, w).

Theorem 1. (Agrell, Vardy and Zeger [1], Theorem 12)

A(m, 2δ, w) ≤
(

m
w−δ+1

)(
w

w−δ+1

) .
2.3 Univariate Multiplicity Codes and their List-decoding

Algorithms

For any integer s ≥ 0, an order-s univariate multiplicity code C of length k
for degree-w polynomials over Fp is an error-correcting code that encodes each
polynomial f(λ) ∈ Fp[λ] with deg f ≤ w into the codeword

Cf =
(
f (≤s)(λj)

)k
j=1

,

where λ1, . . . , λk are pairwise distinct elements of Fp. In particular, the renowned
Reed–Solomon codes arise when s = 0. In this work, we specialize to s = 1.

Given a set of k tuples {(λj , α0,j , . . . , αs,j)}kj=1, a list decoding algorithm that
corrects b errors for a univariate multiplicity code C may identify all polynomials
f̃(λ) of degree ≤ w such that f̃ (≤s)(λj) = (α0,j , . . . , αs,j) for at least k−b distinct

10 P. Ke, L. F. Zhang et al.

indices j ∈ [k] and outputs the list of all such polynomials. If the size of the list
is at most L, then the code is called L-list decodable.

For Reed-Solomon codes (i.e., s = 0), Sudan [34] has a list decoding algorithm
that interpolates a bivariate polynomial

Q(λ, α) =

D/w∑
c=0

Qc(λ)α
c (1)

of (1, w)-weighted degree ≤ D by solving k constraints of the form

Q(λj , α0,j) = 0, j ∈ [k],

and then outputs a list of candidate polynomials f̃(λ) such that (α−f̃(λ))|Q(λ, α),
where D is a carefully chosen parameter and deg(Qc(λ)) ≤ D − cw for all
0 ≤ c ≤ D/w.

Recent list decoding algorithms [17,20,21,22,26,27] for the general order-s
univariate multiplicity codes extended the basic idea [34] of interpolating a mul-
tivariate polynomial Q and then factoring Q to find all candidate polynomials
f̃(λ). An early list-decoding algorithm of univariate multiplicity codes given by
Guruswami and Wang [21,22] considered

Q(λ, α0, . . . , αr) = P (λ) +

r∑
c=0

Qc(λ)αc, (2)

an (r + 2)-variate polynomial of degree ≤ D, where r ≤ s and D are carefully
chosen parameters, P (λ) is of degree ≤ D, and Qc(λ) is of degree ≤ D − w +
1 for all c ∈ {0, . . . , r}. In particular, the polynomial Q may be viewed as a
function of λ if α0, . . . , αs are all viewed as functions of λ. They constructed
s − r new polynomials {DcQ(·)}c=1,...,s−r from Q by successively applying a
special operator D that essentially differentiates Q with respect to λ using the
well-known chain rule but requires that D(αc) = αc+1 (instead of D(αc) = α′

c)
for all c = 0, 1, . . . , s− 1. They developed (s− r + 1)k constraints that

Q(λj , α0,j , . . . , αr,j) = 0 and DcQ(λj , α0,j , . . . , αs,j) = 0, c ∈ [s− r], j ∈ [k].

In their construction, the parameter D is prescribed as

D =

⌊
k(s− r + 1)− w

r + 1

⌋
,

which provides resilience against up to b = k−
⌊

D+w
s−r+1

⌋
errors. The advantage of

this construction lies in its ability to achieve a trade-off between computational
complexity and error tolerance by appropriately choosing the parameters r and
D. However, in the special case s = 1, which is crucial for our construction of
list-decodable BRPIR schemes, it can correct at most b < k/2 errors, regardless
of the choice of r = 0 or r = 1.

List-Decodable Byzantine Robust PIR 11

The recent works in [17,27] establish that order-s univariate multiplicity
codes of length k, encoding degree-w polynomials over Fp, are L-list decodable

from up to b =
(
1− w

sk − ϵ
)
k errors, where L =

(
1
ϵ

)O(1
ϵ log 1

ϵ) and ϵ ≥
√

16/s.
When s is large, the list decoding error tolerance b/k of this scheme approaches
the capacity 1−R, where R = w/sk is the code rate. However, for small values
of s, such as s = 1, the constraint ϵ > 1 renders this result inapplicable.

2.4 Woodruff-Yekhanin RPIR Scheme

({qj}j∈[ℓ], aux)← Γ.Q(n, i):
1. Randomly choose t vectors r1, ..., rt ∈ Fm

p and set G(λ) = E(i) +
∑t

s=1 λ
srs.

2. For each j ∈ [ℓ], set qj = G(λj). Set aux = ({λj}j∈[ℓ], {rs}s∈[t]).
3. Output ({qj}j∈[ℓ], aux).

aj ← Γ.A(x, qj):

1. Compute uj = F (qj). For each c ∈ [m], set vj,c =
∂F (z)

∂zc

∣∣∣∣
qj

.

2. Let vj = (vj,1, ..., vj,m). Output aj = (uj ,vj).

xi ← Γ.R(i, {aj}j∈[ℓ], aux):

1. Parse aux = ({λj}j∈[ℓ], {rs}s∈[t]). Construct the polynomial G(λ) = E(i) +∑t
s=1 λ

srs.
2. Wlog, suppose the first k servers respond and denote aj = (uj ,vj) for all j ∈ [k].

For each j ∈ [k], let αj = uj , βj = ⟨vj , G
′(λj)⟩.

3. Interpolate a polynomial f(λ) of degree at most 2k−1 such that f(λj) = αj and
f ′(λj) = βj for all j ∈ [k].

4. Output xi = f(0).

Fig. 1. Woodruff-Yekhanin (t, k, ℓ)-RPIR scheme Γ .

Woodruff and Yekhanin [38] constructed a t-private k-out-of-ℓ RPIR scheme,
referred to as a (t, k, ℓ)-RPIR scheme, Γ (see Fig. 1) with communication com-
plexityO(kℓt log ℓ·n1/⌊(2k−1)/t⌋), where n is the size of the database x = (x1, . . . , xn).

For a degree parameter w defined as

w = ⌊(2k − 1)/t⌋, (3)

their scheme chooses an integer m = O(wn1/w) such that
(
m
w

)
≥ n, encodes the

indices of the n database elements as binary vectors of length m and weight w
with a public 1-to-1 function

E : [n]→ {0, 1}m,

12 P. Ke, L. F. Zhang et al.

and represents the database x as

F (z) = F (z1, . . . , zm) =

n∑
j=1

xj ·
∏

c:E(j)c=1

zc, (4)

a homogeneous m-variate polynomial of degree w that satisfies

F (E(i)) = xi (5)

for all i ∈ [n]. The client reduces the problem of privately retrieving xi from
ℓ servers to the problem of privately evaluating F (E(i)) with the ℓ servers. To
this end, a prime p > ℓ is chosen and F is interpreted as a polynomial over
the finite field Fp. For each j ∈ [ℓ], the j-th server is associated with a nonzero
field elements λj . In particular, the field elements {λj}j∈[k] are distinct and can
be made public. To retrieve xi, the client chooses t vectors r1, r2, . . . , rt ∈ Fm

p

uniformly at random and generates a vector

G(λ) = E(i) +

t∑
s=1

λsrs (6)

of m polynomials of degree t. It sends a query

qj = G(λj)

to the j-th server for all j ∈ [ℓ] and keeps the information aux = ({λj}j∈[ℓ], {rs}s∈[t])
for later use. The j-th server is expected to compute uj = F (qj) and vj =
(vj,1, . . . , vj,m), where

vj,c =
∂F (z)

∂zc

∣∣∣∣
qj

for all c ∈ [m], and reply with

aj = (uj ,vj).

Wlog, suppose the first k servers respond, the client interpolates the univariate
polynomial

f(λ) = F (G(λ)) (7)

of degree wt ≤ 2k − 1 from the 2k values

f(λj) = uj , f ′(λj) = ⟨vj , G
′(λj)⟩ , j ∈ [k]

and outputs f(0), which is equal to xi as

xi = F (E(i)) = F (G(0)) = f(0).

The scheme is t-private such that any t colluding servers learn no information
about i (or equivalently E(i)), because every element of E(i) is secret-shared

List-Decodable Byzantine Robust PIR 13

among the servers with Shamir’s t-private threshold secret sharing scheme [33],
using the vector G(λ) of m random polynomials.

Note that the client sends a length-m vector in Fp to each server and each
server returns a length-(m + 1) vector in Fp. Given that m = O(wn1/w), if the
prime p is chosen such that ℓ < p ≤ 2ℓ, then the communication complexity of
this scheme is (2m+ 1)ℓ log p = O(kℓ log ℓ

t n1/⌊ 2k−1
t ⌋).

In the default configuration of [38], λj is set to j for all j ∈ [ℓ] and eliminates
the necessity to include {λj}ℓj=1 in aux.

3 List-Decodable BRPIR model

In this section, we formally define a model for list-decodable BRPIR, which
generalizes the standard BRPIR of [6] by allowing the reconstructing algorithm
to output a list that contains the data item being retrieved.

Similar to the standard BRPIR, the list-decodable BRPIR allows a client to
retrieve a data item from a database replicated among multiple servers, even if
some of the servers are silent or malicious, where the silent servers simply fail
to respond and the malicious servers respond incorrectly. While the standard
BRPIR may enable correct retrieval when a minority of the responding servers
are malicious, what really differentiates our list decodable BRPIR from the stan-
dard BRPIR is its ability to handle the much trickier case that a majority of
the responding servers are malicious and thus offer stronger robustness for more
adversarial environments.

Informally, an L-list-decodable b-Byzantine-robust t-private k-out-of-ℓ PIR
scheme is a protocol between ℓ servers {Sj}j∈[ℓ], each storing a copy of the same
database x = (x1, . . . , xn) ∈ Fn

p , and a client C that is interested in a block xi

of the database. It allows the client to output a list of size ≤ L that contains
xi, as long as at least k out of the ℓ servers respond and at most b out of the
responding servers provide incorrect answers; and

Definition 1 (List-decodable BRPIR). An L-list-decodable b-Byzantine-
robust t-private k-out-of-ℓ PIR scheme Γ = (Q,A,R) for a client C and ℓ servers
S1, . . . ,Sℓ consists of three algorithms that can be described as follows:

– ({qj}j∈[ℓ], aux) ← Q(n, i): This is a randomized querying algorithm for the
client C. It takes the database size n and a retrieval index i ∈ [n] as input,
and outputs ℓ queries {qj}j∈[ℓ], along with an auxiliary information aux.
For each j ∈ [ℓ], the query qj will be sent to the server Sj. The auxiliary
information aux will be used later by the client for reconstruction.

– aj ← A(x, qj): This is a deterministic answering algorithm for the server Sj
(j ∈ [ℓ]). It takes a database x = (x1, . . . , xn) and the query qj as input and
outputs an answer aj.

– output_list← R(i, {aj}j∈[ℓ], aux): This is a deterministic reconstructing al-
gorithm for the client C. It uses the retrieval index i, the answers {aj}j∈[ℓ]

and the auxiliary information aux to reconstruct xi, where aj is set to ⊥ if
a server Sj does not respond. The output is a list of size at most L(= kO(1))
that contains the queried data block xi.

14 P. Ke, L. F. Zhang et al.

Correctness. Informally, the scheme Γ is considered correct if the output_list
generated by the reconstructing algorithm R is always of size ≤ L and includes
the target block xi, provided that at least k out of the ℓ servers respond and at
most b of the responses are incorrect. Formally, the scheme Γ is correct if for
any n, any x ∈ Fn

p , any ({qj}j∈[ℓ], aux) ← Q(n, i), any answers {aj}j∈[ℓ] such
that

|{j ∈ [ℓ] : aj ̸=⊥}| ≥ k,

|{j ∈ [ℓ] : aj ̸∈ {⊥,A(x, qj)}| ≤ b,

and any output_list← R(i, {aj}j∈[ℓ], aux), it holds that

Pr
[
(|output_list| ≤ L) ∧ (xi ∈ output_list)

]
= 1. (8)

t-Privacy. Informally, the scheme Γ is considered t-private if any collusion of
≤ t servers learns no information about the client’s retrieval index i. Formally,
the scheme Γ is t-private if for any n, any i1, i2 ∈ [n], and any set T ⊆ [ℓ] of
size ≤ t, the distributions of QT (n, i1) and QT (n, i2) are identical, where QT

denotes the concatenation of the j-th output of Q for all j ∈ T , i.e., {qj}j∈T

Remark 1. Our correctness property requires the scheme Γ to satisfy Eq. (8).
We call this kind of correctness perfect. By contrast, several existing BRPIR
schemes [12] may satisfy a relaxed correctness property that guarantees

Pr
[
(|output_list| ≤ L) ∧ (xi ∈ output_list)

]
≥ 1− ϵ (9)

for a very small number ϵ. When the failure probability ϵ is sufficiently small
(e.g., negligible in the number of servers), the scheme is statistically reliable and
we call this kind of correctness statistical.
Remark 2. For the ease of exposition, hereafter we denote any L-list-decodable
b-Byzantine-robust t-private k-out-of-ℓ PIR scheme by (L, b, t, k, ℓ)-ldBRPIR. By
default, when t = 1 we simply denote any (L, b, 1, k, ℓ)-ldBRPIR as (L, b, k, ℓ)-
ldBRPIR and refer to the property of 1-privacy as privacy.

The efficiency of an (L, b, t, k, ℓ)-ldBRPIR scheme is mainly measured by its
communication complexity, which is the average number of bits that have to be
communicated between the client and all servers, in order to retrieve one bit
from the database.

Definition 2 (Communication Complexity). The communication complex-
ity of the scheme Γ , denoted by CCΓ (n), is defined as the average number of
bits communicated per bit retrieved between the client and all servers, maximize
over the choices of both the database x ∈ Fn

p and the retrieval index i ∈ [n], i.e.,

CCΓ (n) = max
x,i

 1

⌈log2 p⌉

ℓ∑
j=1

(|qj |+ |aj |)

 .

List-Decodable Byzantine Robust PIR 15

4 Perfect ldBRPIR based on Overinterpolation

In this section, we construct a perfectly correct (L, b, t, k, ℓ)-ldBRPIR scheme
Γ1 with list size L = kO(1) and Byzantine robustness b ≤ k − 2. The proposed
scheme is most suitable for a small number of servers and comparably as efficient
as a t-private (k − b)-out-of-ℓ RPIR scheme.

output_list← Γ1.R(i, {aj}j∈[ℓ], aux):
1. Parse aux = ({λj}j∈[ℓ], {rs}s∈[t]). Construct the polynomial G(λ) = E(i) +∑t

s=1 λ
srs.

2. Wlog, suppose the first k servers respond and denote aj = (uj ,vj) for all j ∈ [k].
For each j ∈ [k], let αj = uj , βj = ⟨vj , G

′(λj)⟩.
3. Initialize a set cp = ∅ to store the candidate polynomials. For any set H ⊆ [k] of

cardinality k − b,
(3.1) Interpolate a polynomial fH(λ) such that for each j ∈ H, fH(λj) =

αj , f
′
H(λj) = βj .

(3.2) If fH(λ) is of degree at most wt, add fH(λ) to the set cp.
4. Output output_list = {fH(0) : fH(λ) ∈ cp}.

Fig. 2. Reconstructing algorithm Γ1.R of the (L, b, t, k, ℓ)-ldBRPIR scheme Γ1.

4.1 The Construction

The scheme Γ1 retains the querying and answering algorithms of the Woodruff-
Yekhanin RPIR scheme Γ , (Γ1.Q, Γ1.A) = (Γ.Q, Γ.A). The key differences be-
tween Γ1 and Γ are as follows: (I) The degree parameter w is required to satisfy
Eq. (3) in Γ , whereas in Γ1 it is required to satisfy Eq. (11). (II) The recon-
structing algorithm Γ.R in Γ is replaced by the reconstructing algorithm Γ1.R
in Γ1, as shown in Fig 2.

The scheme Γ1 achieves the expected list size and Byzantine robustness by
invoking a novel reconstructing algorithm, which interpolates the polynomial
f(λ) = F (G(λ)) of Eq. (7) with more server responses than necessary. More
precisely, upon k out of ℓ servers responding, the client interpolates f(λ) of
degree-wt(< 2(k − b) − 1) with any k − b of the responses, determines whether
the interpolated polynomial is a possible candidate of f(λ), and includes it into
output_list when it is indeed a possible candidate. As the crux of this idea, we
require

deg(f(λ)) < 2(k − b)− 1 (10)

such that the k−b evaluations and k−b derivatives deduced from the k−b server
responses are more than necessary and thus enable us to determine whether
each interpolated polynomial is indeed a possible candidate with its degree.

16 P. Ke, L. F. Zhang et al.

We refer to this technique of using more-than-necessary points to do polynomial
interpolation as overinterpolation. In particular, for given k and b, the inequality
(10) is met by choosing a weight parameter w = O(1) in Woodruff-Yekhanin
RPIR scheme (see Section 2.4) such that

w <

⌊
2(k − b)− 1

t

⌋
. (11)

The main observation about our overinterpolation technique includes: (1)
whenever some of the k−b server responses under consideration are incorrect, the
interpolated polynomial will be of degree > deg(f(λ)) with very large probability
and thus be ruled out; and (2) whenever the server responses are all correct, the
interpolated polynomial will be of degree deg(f(λ)) with probability 1 and thus
appear in output_list. In other words, the degree of f(λ) serves as a limit and
gives a filtering process that effectively eliminates numerous erroneous results
while preserving the correct one. By adjusting this limit, we can regulate the
number of polynomials that pass the filtering process. When the limit is set to
an optimal value, the number of polynomials that pass the filtering process will
be kO(1), thereby achieving the expected list size for any admissible Byzantine
robustness parameter b.

4.2 Analysis

In this section, we show that the proposed scheme Γ1 is indeed an (L, b, t, k, ℓ)-
ldBRPIR scheme for L = kO(1) and b ≤ k − 2.

Correctness. To show that the proposed scheme is correct, we start with a
technical lemma that gives an upper bound on the number of the points where
two distinct degree d polynomials have the same order-1 evaluations.

Lemma 1. Suppose that f1(λ) and f2(λ) are two distinct polynomials of degree
d over a finite field Fp. Then there exist at most ⌊d2⌋ field elements λj such that
f1(λj) = f2(λj) and f ′

1(λj) = f ′
2(λj).

Proof. Assume for contradiction that there exist θ ≥ ⌊d2⌋ + 1 distinct field el-
ements λ1, λ2, . . . , λθ such that f1(λj) = f2(λj) and f ′

1(λj) = f ′
2(λj) for all

j ∈ [θ]. Then the nonzero polynomial g(λ) = f1(λ)− f2(λ) is of degree at most
d and satisfies

∀j ∈ [θ], g(λj) = 0 and g′(λj) = 0.

It follows that
∀j ∈ [θ], (λ− λj)

2 | g(λ),

Hence, the nonzero polynomial g(λ) must be of degree ≥ 2θ > d, which gives a
contradiction. □

Note that the candidate polynomials in the set cp generated by our recon-
structing algorithm Γ1.R all have degree ≤ 2(k − b) − 1. Lemma 1 shows that
any two polynomials from cp cannot have the same order-1 evaluations at too

List-Decodable Byzantine Robust PIR 17

many field elements. In the language of multiplicity codes, the polynomials in cp
must be distant from each other. The following theorem shows that by appro-
priately choosing the parameters w, b, t and k, the size L of output_list in our
reconstructing algorithm can be made as small as kO(1).

Theorem 2. The scheme Γ1 is correct with list size L = kO(1) when w <
⌊ 2(k−b)−1

t ⌋ and wt = O(1) with respect to k.

Proof. Let output_list be the list output by Γ1.R. As per Eq. (8), it suffices to
show that (I) xi ∈ output_list, i.e., the list output by Γ1.R always contains the
expected block xi; and (II) |output_list| ≤ kO(1), i.e., the size L of the list output
by Γ1.R is kO(1), under the proposed choices of the parameters w, b, t and k.

(I) Referring to the description of Γ1.R in Figure 2, wlog the first k servers
respond. Consider the degree-wt polynomial

f(λ) = F (G(λ)) = F (E(i) +

t∑
s=1

λsrs).

For every j ∈ [k], it is easy to see that

f(λj) = F (G(λj)) = F (qj),

f ′(λj) =

m∑
c=1

∂F (z)

∂zc

∣∣∣∣
G(λj)

·G′(λj)c

= ⟨vj , G
′(λj)⟩ ,

where G′(λj)c denotes the c-th entry of the vector G′(λj). Let aj = (αj , βj) be
the response of the j-th server for every j ∈ [k]. If at most b of the responses
{aj}j∈[k] are incorrect (where “the response aj is incorrect" means that either
αj ̸= F (qj) or βj ̸= ⟨vj , G

′(λj)⟩), then for at least k − b indices j ∈ [k] we have

f (≤1)(λj) = (αj , βj).

When the set H in Γ1.R is composed of the indices of k − b correct responses,
the interpolated polynomial fH(λ) is exactly equal to f(λ) and thus has degree
≤ wt(< 2(k− b)−1) and results in fH(0) = f(0) = F (E(i)) = xi being included
into the set output_list.

(II) Referring to the description of Γ1.R in Fig. 2, as output_list = {fH(0) :
fH(λ) ∈ cp}, it is trivial to see that

|output_list| ≤ |cp|, (12)

where the equality occurs if and only if all polynomials in cp have different
constant terms. Let

H = {H : H ⊆ [k], |H| = k − b,deg(fH(λ)) ≤ w}.

18 P. Ke, L. F. Zhang et al.

be the set of all subsets of [k] of cardinality k − b that gives an interpolated
polynomial of degree ≤ w. According to the construction of cp, it is trivial to
see that cp = {fH(λ) : H ∈ H}. Therefore,

|cp| ≤ |H|. (13)

It is possible that |cp| < |H| because different subsets H1, H2 ∈ H may give the
same polynomial, i.e., fH1

(λ) = fH2
(λ). Let Ĥ be a subset of H such that there

is a bijection g : Ĥ → cp. Then

|cp| = |Ĥ|.

For any two distinct subsets H1, H2 ∈ Ĥ, the degree-wt polynomials g(H1) =
fH1

(λ) and g(H2) = fH2
(λ) must be distinct. By Lemma 1, the number of indices

j ∈ [k] such that f
(≤1)
H1

(λj) = f
(≤1)
H2

(λj) is upper bounded by ⌊wt/2⌋. Therefore,
we must have that |H1 ∩H2| ≤ ⌊wt/2⌋, and thus

|H1 \H2| = |H2 \H1| ≥ k − b− ⌊wt/2⌋. (14)

For every H ∈ Ĥ, we define a binary vector cH = (cH,1, . . . , cH,k) of length k
such that

cH,j =

{
1, j ∈ H,

0, j /∈ H.

Then it is easy to see that cH is of Hamming weight k − b. As per Eq. (14), the
Hamming distance between cH1 and cH2 for any two distinct subsets H1, H2 ∈ Ĥ
is at least 2δ for

δ = k − b− ⌊wt/2⌋.
Therefore, C = {cH}H∈Ĥ is a binary (k, 2δ, k − b) constant weight code. Let
A(k, 2δ, k − b) be the maximum size of a binary (k, 2δ, k − b) constant weight
codes. As per Theorem 1, we have that

|Ĥ| = |{cH}H∈Ĥ| ≤ A(k, 2δ, k − b)

≤
(

k
k−b−δ+1

)(
k−b

k−b−δ+1

)
=

(
k

⌊wt/2⌋+1

)(
k−b

⌊wt/2⌋+1

)
= O((

k

k − b
)⌊wt/2⌋+1)

= kO(1),

i.e., the size L of output_list is at most kO(1). □

t-Privacy. The t-privacy property of the proposed scheme is identical to that
of the Woodruff-Yekhanin RPIR scheme, because both schemes share the same
querying algorithm.

List-Decodable Byzantine Robust PIR 19

Communication complexity. The querying algorithm requires the client to
send a vector qj ∈ Fm

p to each of the ℓ servers. The answering algorithm requires
each server Sj to send a vector aj = (uj ,vj) ∈ Fm+1

p to the client. Therefore,
the average number of bits exchanged for retrieving one bit from the database
is ℓ(2m + 1) = O(ℓm). As the integer m is chosen such that

(
m
w

)
≥ n, we have

that m = O(wn1/w) and thus

CCΓ1
(n) = O(ℓwn1/w).

Note that n ≫ w in a typical application scenario of PIR, therefore CCΓ1(n)
is a monotonically decreasing function of w. Ideally, we prefer to choose a large
w in order to reduce the communication complexity. Theorem 2 stipulates that

the list size L =
(

k
k−b

)⌊wt/2⌋+1

. We present different strategies for choosing w,
which correspond to different list sizes and communication complexities.

– When k
k−b = O(1), that is, there exists a constant integer c such that b <

k − k/c, we can choose w = O
(

log k
t

)
. In this case, the communication

complexity of our scheme Γ1 is given by CCΓ1
(n) = ℓ log k

t nO(t/ log k), and
the list size is L = kO(1).

– When k
k−b = O(kc) for some constant c ≤ 1, we can choose w = O

(
1
t

)
.

In this case, the communication complexity of our scheme Γ1 is given by
CCΓ1(n) =

ℓ
tn

1/O(1/t), and the list size is L = kO(1).

Notably, when k ≤ 25, the differences between O(k/t), O(log k/t), and O(1/t)
are not significant. In this case, we can directly set w =

⌊
2k−2b−2

t

⌋
. The com-

munication complexity is

CCΓ1
(n) = O

(
ℓ(k − b)n1/⌊(2k−2b−2)/t⌋

)
,

and the list size is L =
(

k
k−b

)k−b

. For the ease of sublinear communication
complexity, we require that b ≤ k − 2.

4.3 Improving the Client-Side Computation Complexity

In Step 3 of reconstructing algorithm Γ1.R, the client interpolates a polynomial
with the set H for any H ⊂ [k] of cardinality k − b, which incurs the

(
k

k−b

)
interpolations. In this section, we propose a method to reduce the number of
interpolations to

(
k

wt/2

)
. Since wt < 2(k−b)−1 and wt = O(1) with respect to the

parameter k, the client-side computational complexity is significantly reduced.
Specifically, the complexity decreases from exponential in k to a polynomial
function of k.

We replace the Step 3 of Γ1.R with the following step:

3. Initialize a set cp = ∅ to store the candidate polynomials. For any set H ⊆ [k]
of cardinality ⌊wt/2⌋+ 1,

20 P. Ke, L. F. Zhang et al.

(3.1) Interpolate a polynomial fH(λ) such that for each j ∈ H, fH(λj) =
αj , f

′
H(λj) = βj .

(3.2) If fH(λ) is of degree at most wt and there exist at least k − b distinct
values of j ∈ [k] satisfying f(λj) = αj , f

′(λj) = βj add fH(λ) to the set
cp.

To see why this substitution works, consider any polynomial fH(λ) ∈ cp con-
structed in the original Step 3 of Γ2.R for a set H ⊆ [k] of cardinality k−b. Since
fH(λ) is included in cp, its degree must not exceed wt. Now, consider any subset
H ′ ⊆ H with cardinality ⌊wt/2⌋ + 1. The polynomial fH′(λ), which satisfies
f
(≤1)
H′ (λj) = (αj , βj) and has degree at most wt + 1, is uniquely determined as
fH′(λ) = fH(λ). The proof can be established by contradiction and is omitted
here for brevity. Consequently, the polynomial fH(λ) will also be included in the
set cp under the new Step 3.

With the substitution of Step 3, we can reduce the client-side computation
complexity of Γ1.R to be polynomial in k.

5 Perfect ldBRPIR based on weighted-degree polynomial

In this section, we construct a perfectly correct (L, b, t, k, ℓ)-ldBRPIR scheme
Γ2 with list size L = O(k) and Byzantine robustness b ≤ k −

√
kt. Compared

with Γ1, the scheme Γ2 demonstrates reduced communication complexity when
dealing with a larger number of servers.

5.1 The Construction

Same as Γ1, the scheme Γ2 retains the querying and answering algorithms of
the Woodruff-Yekhanin RPIR scheme Γ , (Γ2.Q, Γ2.A) = (Γ.Q, Γ.A). The key
differences between Γ2 and Γ are as follows: (I) The degree parameter w is
required to satisfy Eq. (3) in Γ , whereas in Γ2 it is required to satisfy that
w ≤ (k − b)2/t. (II) The reconstructing algorithm Γ.R in Γ is replaced by the
reconstructing algorithm Γ2.R in Γ2, as shown in Fig 3.

In scheme Γ2, we achieve the expected list size and Byzantine robustness
by extending Sudan’s list-decoding algorithm for Reed-Solomon codes to the
order-1 univariate multiplicity codes. Each responding server Sj(j ∈ [k]) in the
proposed scheme Γ2 returns both an evaluation of the polynomial F that en-
codes the database x and m partial derivatives of F , all computed at the same
query point qj ∈ Fm

p . The response of each server Sj gives an order-1 evaluation
f(λ) = F (G(λ)) at a field element λj , i.e., f (≤1)(λj). When at most b out of
the k responding servers are malicious and respond incorrectly, the problem of
constructing a list that contains xi = f(0) can be reduced to the problem of
building a list that contains f(λ), which is exactly the problem of list decoding
an order-1 univariate multiplicity code for f(λ) from the (corrupted) codeword
{(αj , βj)}kj=1, where (αj , βj) = f (≤1)(λj) for any honest server Sj but may not
be true for a malicious server.

List-Decodable Byzantine Robust PIR 21

output_list← Γ2.R(i, {aj}j∈[ℓ], aux):
1. Parse aux = ({λj}j∈[ℓ], {rs}s∈[t]). Construct the polynomial G(λ) = E(i) +∑t

s=1 λ
srs.

2. Wlog, suppose the first k servers respond and denote aj = (uj ,vj) for all j ∈ [k].
For each j ∈ [k], let αj = uj , βj = ⟨vj , G

′(λj)⟩.
3. Let D = 2(k − b) − 1, ρ =

⌊
D
wt

⌋
. Define ρ + 1 fundamental polynomials

Q0(λ), . . . , Qρ(λ) and set

Qbase(λ, α) =

ρ∑
s=0

Qs(λ)α
s,

Qext(λ, α, β) =

ρ∑
s=1

s ·Qs(λ)α
s−1β +

ρ∑
s=0

Q′
s(λ)α

s

such that:
(1) Qbase has a (1, wt)-weighted degree of at most D.
(2) For every j ∈ [k],

Qbase(λj , αj) = 0, (15)

Qext(λj , αj , βj) = 0. (16)

4. Factor Q(λ, α) into irreducible factors. Define the set of candidate polynomials
cp as the set of degree-wt polynomials f̃(λ) such that α − f̃(λ) is a factor of
Qbase(λ, α) and there are at least k− b distinct j ∈ [k] such that f̃(λj) = αj and
f̃ ′(λj) = βj .

5. Output output_list = {f̃(0) : f̃(λ) ∈ cp}.

Fig. 3. Reconstructing algorithm Γ2.R of the (L, t, k, ℓ, b)-ldBRPIR scheme Γ2.

While Sudan’s list decoding algorithm [34] enables one to correct a relatively
large fraction of errors but is only applicable to order-0 univariate multiplicity
codes (i.e., Reed-Solomon codes) and the recent list decoding algorithms [21] are
applicable to general order-s univariate multiplicity codes but only allow recovery
from a relatively small fraction of errors, the main innovative idea underlying
Γ2 is achieving the (possibly) best from both worlds by injecting Sudan’s idea
of using the non-linear terms αc in the weighted-degree bivariate polynomial Q
of Eq. (1) into the construction of the multivariate polynomial Q of Eq. (2),
which is linear in α0, . . . , αs. To realize this idea, we simply replace the linear
term αc in Eq. (2) with its properly selected higher degree powers. The main
observation about this simple modification to Eq. (2) is that the new polynomial
may accommodate a much larger number of monomials and thus significantly
improve the fraction of correctable errors.

We denote by Qbase(λ, α) the new polynomial resulted from the aforemen-
tioned idea and denote by Qext(λ, α, β) the polynomial obtained by applying
the special operator D from Section 2.3 to Qbase(λ, α), where β = D(α). More

22 P. Ke, L. F. Zhang et al.

precisely, for ρ =
⌊

D
wt

⌋
, we choose a bivariate base polynomial

Qbase(λ, α) =

ρ∑
s=0

Qs(λ)α
s. (17)

and impose k constraints of the form

Qbase(λj , αj) = 0

for all j ∈ [k]. We calculate the trivariate extended polynomial

Qext(λ, α, β) = D(Qbase) =

ρ∑
s=1

s ·Qs(λ)α
s−1β +

ρ∑
s=0

Q′
s(λ)α

s

and impose k additional constraints of the form

Qext(λj , αj , βj) = 0

for all j ∈ [k].
To better understand the roles of the polynomials {Qs(λ)}ρs=0, consider the

polynomial p(λ) = Qbase(λ, f̃(λ)), where f̃(λ) is a polynomial of degree ≤ wt
such that f̃ (≤1)(λj) = (αj , βj) for at least k− b distinct indices j ∈ [k]. If j ∈ [k]

is any index such that f̃ (≤1)(λj) = (αj , βj), then we would have

p(λj) = Qbase(λj , f̃(λj)) = 0;

p′(λj) = Qext(λj , f̃(λj), f̃
′(λj)) = 0.

Hence, the polynomial p(λ) should be of degree ≥ 2(k − b) if it is nonzero. By
choosing a weighted degree parameter D = 2(k − b) − 1 and properly choosing
degrees for the polynomials {Qs(λ)}ρs=0, we force p(λ) to be a polynomial of
degree ≤ D and thus identically zero, which in turn enable use to extract f̃(λ)
by factoring the interpolated polynomial Qbase(λ, α).

5.2 Analysis

In this section, we show that the proposed scheme Γ2 is indeed an (L, b, t, k, ℓ)-
ldBRPIR scheme for L = O(k) and b ≤ k −

√
kt.

Correctness. To show that the proposed scheme is correct, we firstly identify
under what conditions there do exist ρ+ 1 polynomials {Qs(λ)}ρs=0 that satisfy
the the constraints of Eq. (15) and (16). Such conditions may guide our selections
of parameters.

Lemma 2. If ρ = ⌊D/wt⌋ and w ≤ (D+1)2

4kt

(
= (k−b)2

kt

)
, there exist ρ + 1 poly-

nomials {Qs(λ)}ρs=0 that satisfy the constraints imposed by Eq. (15) and (16),
where deg(Qs) ≤ D − swt for all s = 0, 1, . . . , ρ.

List-Decodable Byzantine Robust PIR 23

Proof. Consider the bivariate polynomial Qbase(λ, α) of Eq. (17). If we choose
D = 2(k − b) − 1 and choose every Qs(λ) there to be a polynomial of degree
≤ D − swt, then the (1, wt)-weighted degree of Qbase(λ, α) is ≤ D. Let num be
the number of monomials in Qbase(λ, α). Given that ρ = ⌊D/wt⌋, we have

num =

ρ∑
s=0

(D − swt+ 1) ≥ (D + 1)2

2wt
+ 1.

On the other hand, the number of constraints imposed by Eq. (15) and (16) is
2k. When w ≤ (D+1)2

4kt , we have that

2k ≤ (D + 1)2

2wt
< num.

As the number of coefficients in Qbase(λ, α) exceeds the number of constraints
given by Eq. (15) and (16), there must exist a nonzero bivariate polynomial
Qbase(λ, α) that satisfies all of the 2k constraints. The existence of Qbase(λ, α)
implies that of Q0(λ), . . . , Qρ(λ). □

Lemma 2 shows the existence of the polynomials Q0, ..., Qρ when we prop-
erly choose the parameters in Γ2. Since w is the degree of the polynomial F (z)
encoding the database x, we must have that w ≥ 1, which together with the
condition w ≤ (k − b)2/(kt) implies that b ≤ k −

√
kt, i.e., the scheme Γ2 can

tolerate as many as k −
√
kt malicious servers that respond incorrectly.

Theorem 3. The scheme Γ2 is correct with list size L = O(k) when 1 ≤ w ≤
(k−b)2

kt .

Proof. Let output_list be the list output by Γ2.R. It suffices to show that (I)
xi ∈ output_list; and (II) |output_list| ≤ O(k), under the proposed choices of
the parameters w, b, t and k.

(I) Referring to the description of Γ2.R in Figure 3, wlog the first k servers
respond. Consider the degree-wt polynomial

f(λ) = F (G(λ)) = F (E(i) +

t∑
s=1

λsrs).

For every j ∈ [k], it is easy to see that

f(λj) = F (G(λj)) = F (qj),

f ′(λj) =

m∑
c=1

∂F (z)

∂zc

∣∣∣∣
G(λj)

·G′(λj)c

= ⟨vj , G
′(λj)⟩ ,

where G′(λj)c denotes the c-th entry of the vector G′(λj). Consider the poly-
nomial p(λ) = Qbase(λ, f(λ)). Since f(λ) is a polynomial of degree wt and the

24 P. Ke, L. F. Zhang et al.

bivariate polynomial Qbase(λ, α) has a (1, wt)-weighted degree ≤ D, the de-
gree of p(λ) is ≤ D. For any j ∈ [k] and any triplet (λj , αj , βj) such that
f (≤1)(λj) = (αj , βj), we have

p(λj) = Qbase(λj , f(λj))

= Qbase(λj , αj)

= 0,

p′(λj) =

ρ∑
s=1

s ·Qs(λj)f(λj)
s−1f ′(λj) +

ρ∑
s=0

Q′
s(λj)f(λj)

s

= Qext(λj , f(λj), f
′(λj))

= Qext(λj , αj , βj)

= 0.

Thus, the polynomial p(λ) should be of degree ≥ 2(k−b), if it is nonzero. On the
other hand, our choices of all parameters imply that deg(p(λ)) ≤ D = 2(k−b)−1.
Hence, p(λ) must be the zero polynomial, i.e., Qbase(λ, f(λ)) = 0. It follows that
(α − f(λ)) | Qbase(λ, α) Thus, f(λ) will be included in the set cp of candidate
polynomials can cause f(0) = xi to be included into the set output_list.

(II) Referring to the description of Γ2.R in Figure 3, for every f̃(λ) ∈ cp, the
polynomial α − f̃(λ) must be a linear factor of Qbase(λ, α). As Qbase(λ, α) is a
polynomial of degree ≤ ρ in α, the number of polynomials in cp must be at most
ρ, i.e., |cp| ≤ ρ. Consequently, we have that

L = |output_list| ≤ |cp| ≤ ρ = ⌊2(k − b)− 1

wt
⌋ = O(k).

In particular, we have that L ≤ 2k for any choices of (k, b, t). Furthermore,
when the majority of the server responses are incorrect, that is, b > k/2, we
have L ≤ k. □

t-Privacy. The t-privacy property of the proposed scheme is identical to that of
the Woodruff-Yekhanin RPIR scheme and our scheme Γ1, because those schemes
share the same querying algorithm.
Communication complexity. Same as scheme Γ1, we have m = O(wn1/w) in
scheme Γ2 and the communication complexity is

CCΓ2
(n) = O(ℓwn1/w).

Note that n≫ w in a typical application scenario of PIR, therefore CCΓ2
(n) is a

monotonically decreasing function of w. Ideally, we prefer to choose a large w in
order to reduce the communication complexity. Theorem 3 establishes a scaled
upper bound for w, specifically w ≤ (k−b)2

kt , implying that the communication
complexity CCΓ2(n) of our scheme Γ2 is

CCΓ2
(n) = O

(
ℓ(k − b)2

kt
n1/⌊ (k−b)2

kt ⌋
)
.

List-Decodable Byzantine Robust PIR 25

Our scheme Γ2 shares the same Byzantine tolerance bound b ≤ k −
√
kt as

the scheme in [16]. For different numbers of malicious servers b, the relationship
between the communication complexity CCΓ2(n) of scheme Γ2 and the database
size n is compared with the schemes in [16] and [12] as follows:

– When k−
√
2kt < b ≤ k−

√
kt, the communication complexity of our scheme

Γ2 is O(n), which is less efficient than the communication complexity of the
schemes in both [16] and [12], achieving O(n1/2).

– When k−
√
3kt < b ≤ k−

√
2kt, the communication complexity of our scheme

Γ2 is O(n1/2), matching the efficiency of the schemes in [16] and [12].
– When b ≤ k −

√
3kt, the communication complexity of our scheme Γ2 can

achieve o(n1/2), offering a significant improvement over the schemes in [16]
and [12].

6 Implementation

We implemented the scheme Γ1 and Γ2 presented in this paper using C++ and
the FLINT library [36] and compared the efficiency of the scheme described in
[16] and [12]. The database used in the experiments was generated with a custom
Python-based generator. Our implementation of the schemes and the database
generator is publicly available on GitHub. We have uploaded only a smaller
example database and Larger databases can be reproduced using the generator
provided in our repository.

We measure the performance of our scheme on a computer with a 16-core
intel Xeon Gold 6250 CPU 3.90GHz and 256 GB RAM, running Ubuntu 20.04.
All of our experiments are single-threaded.

In the foregoing sections, we scrutinized the Byzantine robustness of Γ1 and
Γ2. In our experiments, we focus on evaluating (1) the communication volume
exchanged between the client and the servers; and (2) the size of the output lists
generated by the schemes.

(1) To evaluate the communication volume between the client and servers, we
analyze the total size of the queries {qj}j∈[ℓ] generated by the querying algorithm
and the responses {aj}j∈[ℓ] produced by the answering algorithm.

(2) To determine the output list size, we count the number of elements in the
list output_list produced by the reconstructing algorithm. For different databases
x, indices i of interest to the client, chosen queries {qj}j∈[ℓ], and adversarial
responses {âj}j∈[b] from Byzantine servers, the size of the output list from the
reconstructing algorithm varies. Moreover, it is challenging to identify a specific
combination of x, i, {qj}j∈[ℓ], and {âj}j∈[b] that maximizes the output list size.
To address this, we fix modest values for the database size n, the field size p,
and the parameters (k, b, t), then allow the adversary to inject random erroneous
responses. We execute the protocol repeatedly and record the worst-case list size
yielded by the reconstructing algorithm.

https://github.com/LDPIR/Efficient-list-decodable-BRPIR-with-Higher-Byzantine-Tolerance

26 P. Ke, L. F. Zhang et al.

Scheme Vary k Vary b

k Asymptotic Experimental b Asymptotic Experimental

Γ1

16 O(n1/4) 20.0± 0.1 MiB 10 O(n1/16) 735.5± 20 KiB
18 O(n1/8) 2.2± 0.1 MiB 11 O(n1/14) 821.3± 20 KiB
20 O(n1/12) 1.0± 0.1 MiB 12 O(n1/12) 1.0± 0.1 MiB
22 O(n1/16) 732.2± 20 KiB 13 O(n1/10) 1.4± 0.1 MiB
24 O(n1/20) 612.5± 20 KiB 14 O(n1/8) 2.2± 0.1 MiB

Γ2

16 O(n) Too large 10 O(n1/6) 1.1± 0.1 MiB
18 O(n1/2) 325.8± 5 MiB 11 O(n1/5) 1.5± 0.1 MiB
20 O(n1/4) 3.6± 0.1 MiB 12 O(n1/4) 3.6± 0.1 MiB
22 O(n1/5) 1.5± 0.1 MiB 13 O(n1/3) 15.3± 0.2 MiB
24 O(n1/8) 421.5± 20 KiB 14 O(n1/2) 317.2± 5 MiB

[16]

16 / / 10 O(n1/2) 12.8± 0.1 MiB
18 O(n1/2) 12.8± 0.1 MiB 11 O(n1/2) 12.8± 0.1 MiB
20 O(n1/2) 12.8± 0.1 MiB 12 O(n1/2) 12.8± 0.1 MiB
22 O(n1/2) 12.8± 0.1 MiB 13 O(n1/2) 12.8± 0.1 MiB
24 O(n1/2) 12.8± 0.1 MiB 14 O(n1/2) 12.8± 0.1 MiB

[12]

16 O(n1/2) 12.8± 0.1 MiB 10 O(n1/2) 12.8± 0.1 MiB
18 O(n1/2) 12.8± 0.1 MiB 11 O(n1/2) 12.8± 0.1 MiB
20 O(n1/2) 12.8± 0.1 MiB 12 O(n1/2) 12.8± 0.1 MiB
22 O(n1/2) 12.8± 0.1 MiB 13 O(n1/2) 12.8± 0.1 MiB
24 O(n1/2) 12.8± 0.1 MiB 14 O(n1/2) 12.8± 0.1 MiB

Scheme Vary t Vary Fp

t Asymptotic Experimental log |Fp| Asymptotic Experimental

Γ1

1 O(n1/12) 1.0± 0.1 MiB 16 O(n1/12) 152± 10 KiB
2 O(n1/6) 3.2± 0.1 MiB 32 O(n1/12) 267± 10 KiB
3 O(n1/4) 11.5± 0.1 MiB 64 O(n1/12) 508± 10 KiB
4 O(n1/3) 41.0± 0.3 MiB 128 O(n1/12) 1.0± 0.1 MiB

Γ2

1 O(n1/4) 3.6± 0.1 MiB 16 O(n1/4) 465± 10 KiB
2 O(n1/2) 315.4± 5 MiB 32 O(n1/4) 932± 20 KiB
3 O(n) Too large 64 O(n1/4) 1.8± 0.1 MiB
4 O(n) Too large 128 O(n1/4) 3.6± 0.1 MiB

[16]

1 O(n1/2) 12.8± 0.1 MiB 16 O(n1/2) 1.6± 0.1 MiB
2 O(n1/2) 12.8± 0.1 MiB 32 O(n1/2) 3.2± 0.1 MiB
3 O(n1/2) 12.8± 0.1 MiB 64 O(n1/2) 6.4± 0.1 MiB
4 O(n1/2) 12.8± 0.1 MiB 128 O(n1/2) 12.8± 0.1 MiB

[12]

1 O(n1/2) 12.8± 0.1 MiB 16 O(n1/2) 1.6± 0.1 MiB
2 O(n1/2) 12.8± 0.1 MiB 32 O(n1/2) 3.2± 0.1 MiB
3 O(n1/2) 12.8± 0.1 MiB 64 O(n1/2) 6.4± 0.1 MiB
4 O(n1/2) 12.8± 0.1 MiB 128 O(n1/2) 12.8± 0.1 MiB

Table 2. Asymptotic and Experimental Per-Server Communication Complexities un-
der Variations of k, b, t, and log |Fp|, Averaged over 100 Trials. The Baseline Configu-
ration is (k, b, t, log |Fp|) = (20, 12, 1, 128).

List-Decodable Byzantine Robust PIR 27

Scheme log |Fp| Worst List Size log |Fp| Worst List Size

Γ1 7 2 10 2
Γ2 7 3 10 4
[16] 7 8 10 15
[12] 7 6 10 13

Table 3. Worst-case output list sizes (over 106 runs) for four ldBRPIR schemes with
parameters (k, b, t) = (6, 3, 1) and database size n = 216, instantiated over two prime
fields of size p = 27 + 3 and 210 + 7 (i.e. log |Fp| = 7 and 10).

The experiments are divided into two phases. In Phase I, we employ a
database of size n = 226 over Fp, with initial parameters (k, b, t) = (20, 12, 1)
and p = 2128 + 51. Thereafter, we individually vary k, b, t, and log p, derive the
asymptotic communication complexity per server, and measure the experimen-
tal communication volume. Throughout, for Γ1 we set w1 = 2(k − b − 2)/t. To
minimize errors caused by randomness, each experiment is repeated 100 times,
and the average results are recorded as in Table. 2. As evidenced by the data,
although schemes Γ1 and Γ2 fall short of the protocols in [16] and [12] for larger
values of t, they incur markedly lower communication overhead when t is small.
Moreover, this benefit grows more pronounced as the total number of servers
increases and the number of Byzantine servers decreases. In Phase II, we con-
sider the database of size n = 216 over Fp, with parameters (k, b, t) = (6, 3, 1).
We instantiate two variants over distinct prime fields, namely p = 27 + 3 and
p = 210 + 7. For each configuration, the scheme is executed 106 times, and the
worst-case cardinality of the output list is reported in Table. 3. It is evident that
the maximum list sizes of schemes Γ1 and Γ2 remain small and exhibit negligible
variation as the field Fp grows. In contrast, the protocols of [16] and [12] display
a marked increase in list size. Consequently, one can surmise that for sufficiently
large Fp there exist parameter choices (k, b, t) and adversarial response strate-
gies under which those earlier schemes yield substantially larger lists, whereas
our constructions continue to produce output lists whose size remains bounded
independently of p.

7 Conclusion

We have introduced two perfect list-decodable BRPIR schemes, Γ1 and Γ2.
The Byzantine tolerance bound of scheme Γ1 significantly surpasses those es-
tablished in [16] and [12]. Compared to the schemes proposed in [16] and [12],
our schemes demonstrate a notable improvement in communication complexity.
This advantage is particularly pronounced in scenarios with a small and fixed
privacy threshold, such as t = O(1). We achieve a small maximum output list
size that is independent of the size of the finite field containing the data and de-
pends solely on the number of servers. Additionally, our scheme Γ1 offers higher
Byzantine robustness than [16] and [12].

28 P. Ke, L. F. Zhang et al.

References

1. Agrell, E., Vardy, A., Zeger, K.: Upper bounds for constant-weight codes. IEEE
Transactions on Information Theory 46(7), 2373–2395 (2000)

2. Angel, S., Chen, H., Laine, K., Setty, S.: Pir with compressed queries and amortized
query processing. In: 2018 IEEE symposium on security and privacy (SP). pp. 962–
979. IEEE (2018)

3. Angel, S., Setty, S.: Unobservable communication over fully untrusted infrastruc-
ture. In: 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16). pp. 551–569 (2016)

4. Banawan, K., Ulukus, S.: The capacity of private information retrieval from byzan-
tine and colluding databases. IEEE Transactions on Information Theory 65(2),
1206–1219 (2018)

5. Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: A unified
construction. In: Automata, Languages and Programming: 28th International Col-
loquium, ICALP 2001 Crete, Greece, July 8–12, 2001 Proceedings 28. pp. 912–926.
Springer (2001)

6. Beimel, A., Stahl, Y.: Robust information-theoretic private information retrieval.
In: International Conference on Security in Communication Networks. pp. 326–341.
Springer (2002)

7. Bose, Rao: Theory of unidirectional error correcting/detecting codes. IEEE Trans-
actions on Computers 100(6), 521–530 (1982)

8. Cao, Q., Tran, H.Y., Dau, S.H., Yi, X., Viterbo, E., Feng, C., Huang, Y.C., Zhu,
J., Kruglik, S., Kiah, H.M.: Committed private information retrieval. In: European
Symposium on Research in Computer Security. pp. 393–413. Springer (2023)

9. Chee, Y.M., Feng, T., Ling, S., Wang, H., Zhang, L.F.: Query-efficient locally
decodable codes of subexponential length. computational complexity 22(1), 159–
189 (2013)

10. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
Journal of the ACM (JACM) 45(6), 965–981 (1998)

11. Colombo, S., Nikitin, K., Corrigan-Gibbs, H., Wu, D.J., Ford, B.: Authenticated
private information retrieval. In: 32nd USENIX security symposium (USENIX Se-
curity 23). pp. 3835–3851 (2023)

12. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information re-
trieval. In: 21st USENIX Security Symposium (USENIX Security 12). pp. 269–283
(2012)

13. Dvir, Z., Gopi, S.: 2-server pir with subpolynomial communication. Journal of the
ACM (JACM) 63(4), 1–15 (2016)

14. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing. pp.
39–44 (2009)

15. Eriguchi, R., Kurosawa, K., Nuida, K.: Multi-server pir with full error detection
and limited error correction. Cryptology ePrint Archive (2022)

16. Goldberg, I.: Improving the robustness of private information retrieval. In: 2007
IEEE Symposium on Security and Privacy (SP’07). pp. 131–148. IEEE (2007)

17. Goyal, R., Harsha, P., Kumar, M., Shankar, A.: Fast list decoding of univariate
multiplicity and folded reed-solomon codes. In: 2024 IEEE 65th Annual Symposium
on Foundations of Computer Science (FOCS). pp. 328–343. IEEE (2024)

18. Gupta, T., Crooks, N., Mulhern, W., Setty, S., Alvisi, L., Walfish, M.: Scalable
and private media consumption with popcorn. In: 13th USENIX symposium on
networked systems design and implementation (NSDI 16). pp. 91–107 (2016)

List-Decodable Byzantine Robust PIR 29

19. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on information theory
54(1), 135–150 (2008)

20. Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-
geometric codes. In: Proceedings 39th Annual Symposium on Foundations of Com-
puter Science (Cat. No. 98CB36280). pp. 28–37. IEEE (1998)

21. Guruswami, V., Wang, C.: Optimal rate list decoding via derivative codes. In: Inter-
national Workshop on Approximation Algorithms for Combinatorial Optimization.
pp. 593–604. Springer (2011)

22. Guruswami, V., Wang, C.: Linear-algebraic list decoding for variants of reed–
solomon codes. IEEE Transactions on Information Theory 59(6), 3257–3268 (2013)

23. Ke, P., Zhang, L.F.: Two-server private information retrieval with result verifica-
tion. In: 2022 IEEE International Symposium on Information Theory (ISIT). pp.
408–413. IEEE (2022)

24. Ke, P., Zhang, L.F.: Private information retrieval with result verification for more
servers. In: International Conference on Applied Cryptography and Network Secu-
rity. pp. 197–216. Springer (2023)

25. Khoshgozaran, A., Shahabi, C.: Private information retrieval techniques for en-
abling location privacy in location-based services. Privacy in Location-Based Ap-
plications: Research Issues and Emerging Trends pp. 59–83 (2009)

26. Kopparty, S.: List-decoding multiplicity codes. Theory of Computing 11(1), 149–
182 (2015)

27. Kopparty, S., Ron-Zewi, N., Saraf, S., Wootters, M.: Improved list decoding of
folded reed-solomon and multiplicity codes. SIAM Journal on Computing 52(3),
794–840 (2023)

28. Kruglik, S., Dau, S.H., Kiah, H.M., Wang, H., Zhang, L.F.: Querying twice to
achieve information-theoretic verifiability in private information retrieval. Au-
thorea Preprints (2023)

29. Kurosawa, K.: How to correct errors in multi-server pir. In: International Confer-
ence on the Theory and Application of Cryptology and Information Security. pp.
564–574. Springer (2019)

30. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: Proceedings 38th annual sym-
posium on foundations of computer science. pp. 364–373. IEEE (1997)

31. Melchor, C.A., Barrier, J., Fousse, L., Killijian, M.O.: Xpir: Private information
retrieval for everyone. Proceedings on Privacy Enhancing Technologies pp. 155–174
(2016)

32. Patel, S., Persiano, G., Yeo, K.: Private stateful information retrieval. In: Pro-
ceedings of the 2018 ACM SIGSAC conference on computer and communications
security. pp. 1002–1019 (2018)

33. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

34. Sudan, M.: Decoding of reed solomon codes beyond the error-correction bound.
Journal of complexity 13(1), 180–193 (1997)

35. Tajeddine, R., Gnilke, O.W., Karpuk, D., Freij-Hollanti, R., Hollanti, C.: Private
information retrieval from coded storage systems with colluding, byzantine, and
unresponsive servers. IEEE Transactions on information theory 65(6), 3898–3906
(2019)

36. team, T.F.: FLINT: Fast Library for Number Theory (2023), version 3.0.0, https:
//flintlib.org

https://flintlib.org
https://flintlib.org

30 P. Ke, L. F. Zhang et al.

37. Welch, L.R., Berlekamp, E.R.: Error correction for algebraic block codes (1986)
38. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic pri-

vate information retrieval. In: 20th Annual IEEE Conference on Computational
Complexity (CCC’05). pp. 275–284. IEEE (2005)

39. Yannuzzi, M., Milito, R., Serral-Gracià, R., Montero, D., Nemirovsky, M.: Key
ingredients in an iot recipe: Fog computing, cloud computing, and more fog com-
puting. In: 2014 IEEE 19th international workshop on computer aided modeling
and design of communication links and networks (CAMAD). pp. 325–329. IEEE
(2014)

40. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
Journal of the ACM (JACM) 55(1), 1–16 (2008)

41. Zhang, L.F., Safavi-Naini, R.: Verifiable multi-server private information retrieval.
In: International Conference on Applied Cryptography and Network Security. pp.
62–79. Springer (2014)

42. Zhang, L.F., Wang, H., Wang, L.P.: Byzantine-robust private information retrieval
with low communication and efficient decoding. In: Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security. pp. 1079–1085
(2022)

43. Zhao, L., Wang, X., Huang, X.: Verifiable single-server private information retrieval
from lwe with binary errors. Information Sciences 546, 897–923 (2021)

44. Zhu, L., Lin, C., Lin, F., Zhang, L.F.: Post-quantum cheating detectable private
information retrieval. In: IFIP International Conference on ICT Systems Security
and Privacy Protection. pp. 431–448. Springer (2022)

	List-Decodable Byzantine Robust PIR: Lower Communication Complexity, Higher Byzantine Tolerance, Smaller List Size

