2506.17512v1 [cs.CR] 20 Jun 2025

arxXiv

Semantic-Aware Parsing for Security Logs

Julien Piet
UC Berkeley, USA

Vern Paxson
Corelight and UC Berkeley, USA

Abstract

Security analysts struggle to quickly and efficiently query and cor-
relate log data due to the heterogeneity and lack of structure in
real-world logs. Existing Al-based parsers focus on learning syn-
tactic log templates but lack the semantic interpretation needed for
querying. Directly querying large language models on raw logs is
impractical at scale and vulnerable to prompt injection attacks.

In this paper, we introduce Matryoshka!, the first end-to-end
system leveraging LLMs to automatically generate semantically-
aware structured log parsers. Matryoshka combines a novel syn-
tactic parser—employing precise regular expressions rather than
wildcards—with a completely new semantic parsing layer that clus-
ters variables and maps them into a queryable, contextually mean-
ingful schema. This approach provides analysts with queryable and
semantically rich data representations, facilitating rapid and pre-
cise log querying without the traditional burden of manual parser
construction. Additionally, Matryoshka can map the newly cre-
ated fields to recognized attributes within the Open Cybersecurity
Schema Framework (OCSF), enabling interoperability.

We evaluate Matryoshka on a newly curated real-world log
benchmark, introducing novel metrics to assess how consistently
fields are named and mapped across logs. Matryoshka’s syntactic
parser outperforms prior works, and the semantic layer achieves
an F; score of 0.95 on realistic security queries. Although map-
ping fields to the extensive OCSF taxonomy remains challenging,
Matryoshka significantly reduces manual effort by automatically
extracting and organizing valuable fields, moving us closer to fully
automated, Al-driven log analytics.

Keywords

log parsing, security operations, large language models

1 Introduction

Security operations depend on analysts’ ability to rapidly search
and cross-correlate vast quantities of data to detect and respond to
threats. Yet, they face a fundamental challenge: their job requires
correlating events from multiple log sources, but these sources
are heterogeneous, massive, and most often unstructured. Notably,
they rely on system log data, reporting operational events across
infrastructure—from network devices and operating systems to
applications and security tools—each generating logs in different
formats with varying levels of detail. To leverage these diverse
data sources effectively, security teams invest considerable time
developing parsers and query engines. Typically, logs are converted
and normalized to a structured format, often using frameworks like
!Matryoshka dolls are Russian nesting dolls where each hollow wooden figure opens

to reveal a smaller similar doll inside. We named our system after these because of its
nested layers of parsing, revealing more and more information about log messages.

Vivian Fang
UC Berkeley, USA

Raluca Ada Popa
UC Berkeley, USA

Rishi Khare
UC Berkeley, USA

David Wagner
UC Berkeley, USA

the Open Cybersecurity Schema Framework (OCSF), so they can
be ingested into security information and event managers.

Modern Al seems ideally suited for this problem. Large language
models (LLMs) can understand system logs [6, 25, 31], retrieval-
augmented generation (RAG) systems can query natural language
data [27], and Al systems can even generate SQL queries for struc-
tured data analysis [14, 18, 45, 61, 62]. Yet, existing methods in the
literature are not adopted. Real-world systems generate millions of
log lines daily—far exceeding any language model’s context win-
dow. Log data combines natural language, technical identifiers, and
structured delimiters, making standard text embeddings inefficient
and inaccurate. Even recent advances in querying unstructured
data cannot keep pace with log generation rates; such approaches
require embedding each new line individually and often resort
to imprecise clustering for speed [8]. Also, directly analyzing logs
with LLMs exposes analyses to prompt injection attacks, potentially
evading detection or introducing misleading information. Recent
reports show attackers already employ Al-aware strategies to evade
detection [44].

Security teams are thus left with two suboptimal approaches:
either (1) write parsers by hand, requiring substantial upfront re-
sources but enabling efficient ingestion and search over logs, or
(2) use Al search tools that require embedding each line indepen-
dently, a slow approach that can produce inadequate embeddings
and fail to scale to security workload volumes, thereby sacrificing
both ingestion and search time.

We propose Matryoshka, the first end-to-end system leverag-
ing LLMs to automatically generate semantically-aware structured
log parsers, offering analysts fast ingestion and search with min-
imal human effort. Matryoshka proceeds in three steps. First, a
syntax parser captures the syntax of each log line and identifies

Manual Parsing Matryoshka LLM Querying
Setup High (manually Low (auto- None (no parser
Cost written parsers) | generates parsers) | creation needed)
Query Fast (queries on Fast (queries on Slow (doesn’t
Cost structured data) structured data) scale)
. Good (no prompt G(,)Od (static Vulnerable

Security injection risk) parsing prevents (prompt injection)

J vulnerabilities) prompt iy

Figure 1: Comparison of log parsing approaches. Matryoshka
combines the advantages of both manual parsing and LLM

querying.

https://arxiv.org/abs/2506.17512v1

variables. Second, a semantic naming step consistently names and
clusters these extracted variables, producing a coherent schema
suitable for structured queries. Finally, Matryoshka maps the newly
created fields to standardized attributes in the OCSF taxonomy. Real-
time log processing relies exclusively on static regular-expression
matching, preventing prompt injection attacks and enabling effi-
cient ingestion. The schema produced by the syntax parser and
semantic naming provides analysts with a queryable structured
dataset that supports fast searches. The final mapping step further
enables queries using standardized variable names.

Building a reliable pipeline to transform unstructured logs into
structured data is challenging. While LLMs are capable of interpret-
ing log content, their raw outputs often lack enough consistency
for high-quality parsers. Instead, Matryoshka combines LLMs with
additional techniques to ensure robust results at each step.

Our approach draws on insights from log template generation,
in which variable fields are captured by wildcards (e.g., “Mar 9
12:46:17 puma25 sshd[17839]” becomes “<*> <*> sshd[<x>]").
Prior work has shown that LLMs can produce such templates [21,
22], but these templates alone are insufficient to ingest log lines.
Wildcards alone lack the granularity to disambiguate neighboring
variables: in the example, we cannot clearly assign the date (which
also contains spaces) to the first wildcard and the hostname to
the second. Wildcards also risk “overcapture”: the same template
would match “INFO Mar 9 12:46:17 puma25 sshd[17839]” even
though it includes more fields. To address these limitations, Ma-
tryoshka generates precise regular expressions instead of wildcards
and detects overcapture with a set of heuristics, ensuring accurate
variable extraction.

Next, Matryoshka groups and names the extracted variables
according to their semantic roles. Naively asking an LLM to name
each variable can produce inconsistent names (e.g., “source_ip”
in one log line vs. “src_ip” or“source_ip_address” in another
log line). To ensure consistency, we first have the LLM generate a
description of the variable’s role, and embed this descriptive text.
Because this embedding emphasizes the variable’s role instead of
its value, we can use it to identify closely related variables. When
generating names for a new variable, we provide the LLM with
few-shot examples of already named variables that have similar
roles. We call this technique description embedding, and apply it
widely throughout Matryoshka to cluster objects based on their
role or meaning instead of their syntax.

Finally, Matryoshka maps each named variable to OCSF fields.
This step resembles prior work on schema matching [43, 46, 64],
but existing approaches do not handle our setting: the OCSF spans
tens of thousands of attributes, the source data is unstructured,
and we lack reference mappings or documentation. Instead, Ma-
tryoshka leverages its own created schemas and their description
embeddings to filter candidate OCSF fields and identify suitable
matches, without relying on external documentation.

To evaluate Matryoshka, we propose a new curated dataset and
metrics for structured log parsing. We create ground-truth labels
for five real-world log files obtained from online bugtracker reports.
We define new metrics to evaluate each step of our pipeline. We
also design metrics to measure end-to-end performance, to test
how well the resulting structured data supports security tasks. Our
results show that while mapping fields to OCSF attributes remains

challenging, the first two steps in Matryoshka produce high-quality
parsers for diverse log sources. Queries over created field names
achieve an average precision of 0.96 and recall of 0.95, compared
to 0.94 and 0.80 for a baseline simulating existing substring-based
systems (see Table 2). Moreover, on the LogPub dataset [23, 68], we
surpass LILAC [21], Brain [60] and Drain [17], three wildcard-based
template generation frameworks, achieving a group similarity of
0.97 on average and a template similarity of 0.91, while the best
other framework, LILAC, gets 0.90 and 0.81.

Our source code and benchmark are publicly available?. We pro-
ceed by examining the context of log analysis and related work
in Section 2, followed by a detailed description of Matryoshka’s
architecture in Section 3. In Section 4, we present our evalua-
tion methodology and results using new datasets and metrics. Fi-
nally, Section 5 addresses the strengths and limitations of our ap-
proach and considers future directions.

2 Background
2.1 System logs

System logs are text-based messages that record a program’s state
and report events. They can cover a wide range of operations, from
kernel messages to application-specific activities. Any software
can produce these logs, often as single-line entries. For instance,
the following DHCP log line indicates the assignment of a new IP
address:

Mar 31 20:47:49 nfsl1 dhclient[1226]: bound to 10.70.37.157
-- renewal in 40434 seconds.

In this example, we consider 10.70.37.157 and 40434 to be variables.
The template might be “<*> <x> dhclient[<*>]: bound to <*>
- renewal in <*> seconds.”.

Because these logs are usually unstructured, querying them in
a consistent manner is difficult. Most logs follow no fixed stan-
dard: thousands of applications produce logs, each with its own
distinct format. Even for the same application, the format can vary
between different versions or implementations. For example, one
DHCP client might log “bound to 10.70.37.157”, while another
logs “IP=10.70.37.157”. Such inconsistencies can complicate au-
tomated parsing and prevent straightforward data analysis.

2.2 Security operations

Security operations teams focus on detecting, investigating, and mit-
igating threats. Their daily tasks rely on correlating large amounts
of data from many sources to validate alerts and defend against
intrusions. Structured information is crucial for this type of anal-
ysis. While some data arrives in neat, parsed formats, much is
unstructured or line-based, including system logs.

Today, analysts often search logs using substring matching. For
example, to find newly assigned IPs, one might look for the sub-
string “bound to” in DHCP logs. This requires knowledge of the
software’s exact log message. Another DHCP client version might
use “IP=" instead, breaking simple substring search. Some search
conditions are not well-suited to substring matching; for instance,
restricting a query to a specific date is challenging, since date fields
often follow different formats and must be extracted separately.

Zhttps://github.com/julien-piet/matryoshka

Beyond substring matching, analysts write parsing scripts or reg-
ular expressions to capture log lines of interest. This can focus on
one type of event (e.g., newly leased IPs), or a comprehensive parse
of all log lines. In both cases, the analyst checks sample lines, crafts
new rules, tests them, and repeats until every variation is covered.
Every identified variable (e.g., IP addresses, ports, or timestamps)
must be named consistently, or else queries may fail mysteriously.
We ourselves once had to write a parser to extract successful con-
nections from a SSH log. After multiple iterations to capture missed
lines, the parser utilized a 3616-character regular expression within
a 160-line python program focused solely on extracting the user-
names, IPs and timestamps of successful connections. This slow,
manual process can consume days or even weeks, taking up analyst
time that could instead be dedicated to investigating threats.

Matryoshka’s goal is to save analysts time by automating the
entire parser creation process, so any log can be queried by match-
ing the value of specific fields. While prior work explores some
building blocks that we build on, we are the first to provide this
capability.

2.3 Related work

Most of the literature refers to log parsing as the task of generat-
ing templates that identify variables using wildcard placeholders.
The intuition is that applications typically generate log messages
with a printf-style (format string) AP, and each template should
hopefully correspond to a unique format string in the source code.
We call this template generation, as we consider it only part of the
parsing problem. Template generation has been studied for decades,
and existing approaches can be divided into statistics-based and
semantic-based approaches [22].

Statistics-based template generation. Earlier work on template
generation applies statistical methods to find variables in log mes-
sages: they identified variables based on word length, frequency, and
other statistical features. Frequency-based methods [7, 39, 52, 54]
rely on occurrence frequencies or n-gram counts to build templates.
Clustering-based techniques [11, 15, 38, 47, 50] group similar log
lines to produce templates. Heuristic-based approaches [9, 11, 16, 17,
24, 37, 49, 56, 60] employ various heuristics or rule-based methods
to detect the variable parts of each line.

Semantic-based template generation. Recent work has trended
towards using semantic information in logs to improve the quality
of generated templates. Earlier works cast template generation as a
token classification task and trained neural networks [20, 29, 33]
to mine semantics from log messages. More recently, researchers
have shown that LLMs are effective at template generation [3, 26,
36, 53, 63, 65], especially when leveraging in-context learning [4].
DivLog [58] selects examples for developers to label; then when
generating a log template for a target log line, it includes the most
similar labeled examples in the LLM prompt. LILAC [21] builds
on DivLog by improving the sampling method when choosing
examples for a target log line, and adds a parsing cache to reduce
the number of LLM queries. Other approaches focus on reducing
the number of LLM queries [19, 57, 67] or fine-tune smaller LLMs
for better performance [34, 35].

We are partly inspired by LogBatcher, which clusters log lines
based on statistical features and generates templates for each cluster.

When testing LogBatcher on our log dataset, their templates over-
captured and performed poorly, because their log clusters were
too large. We solve these problems by using a LLM to generate
a description of each line, computing a vector embedding of this
description, and clustering these embeddings.

All of these past works focus on generating syntactic templates,
but are not enough to convert unstructured logs to a structured
form. They identify the variables associated with each template,
but do not map them into a common schema. Also, our experiments
suggest that past work tends to overcapture and conflate consecu-
tive variables. We improve on past work on template generation,
generating a regular expression for each variable, improving the
quality of templates.

Schema matching. Databases researchers have studied schema
mapping, where the goal is to map data in one schema into a second
schema [43, 64]. Existing methods are effective in settings where
both schemas are thoroughly documented, but they are insufficient
in our setting, where schemas are auto-generated, do not come
with documentation of the meaning of fields in the schema, and
can contain tens of thousands of fields. Recent work explores using
LLMs for schema mapping [32, 42, 46, 59, 66], but it too shares some
of these limitations.

Log querying. LLMs are good at analyzing data [5, 10, 28], includ-
ing unstructured logs [6, 25, 31]. Structured data can be queried
using text-to-SQL tools [14, 18, 45, 61, 62], while unstructured data
is usually queried using RAG [12, 27]. LLMs can be used to plan out
complex queries over structured data [30], unstructured data [2],
or both [8]. Unfortunately, these methods are not sufficient for
our use case: they typically apply a LLM to each log line, which
is too expensive; query expressivity is limited, because they rely
on a vector embedding of each line; and they produce approximate
results.

Security logs. In the security domain, structured logs are usually
ingested into log managers such as Splunk [48], Google Security Op-
erations [13], or Elastic Security [1]. These tools support substring
matching and may offer Al-assisted query engines to help analysts
formulate suitable queries. Unfortunately, substring queries are lim-
ited in expressivity, and because similar events might be recorded
in multiple different formats, it is often challenging to develop a
substring query that matches all instances of a relevant event.

3 System architecture

We now turn to Matryoshka’s architecture, which processes logs
through three progressive stages of understanding. In Fig. 2, we
illustrate the parser using a sample log line from an SSH server log,
representing a successful authentication for the root user on an
SSH connection. Matryoshka learns parsers from a set of unlabeled
log lines — the generation data. These parsers are used at run-time
on live data. For the purposes of our evaluation, the live data and
generation data are the same. In production enviromnents, the
generation data would be the set of all collected logs up until a
certain time.

3.1 Anatomy of a parser

Matryoshka produces parsers that convert unstructured text-based
log messages into a structured database. Parsers operate in three

GENERATION INGESTION
| Mar 9 23:46:29 puma25 sshd[17376]: Accepted password for root from 10.35.161.71 port 59271
@ Template Generation ‘ .v
Mar 9 23:46:29 | puma25 | sshd | [| 17376 |]: | Accepted |
Structured Datab.
password | for | root | from | 10.35.161.71 | port | 59271 ructured Database
[\S+ \d+ \d+:\d+:\d+ | \S+ | .. | \d+\.\d+\.\d+\.\d+ | port | \d+ | date: 1741563989
@ Schema Creation y 8 hostname: puma25
Description SSH login event with successful authentication source_1p: 16.35.161.71
date Mar 9 23:46:29 username root auth_method: password
hostname puma25 source_IP 10.35.161.71
process_id 17376 source_port 59271
auth_method password QUERY
@ OCSF Mapping . 2
Field Name OCSF Type OCSF Mapping Q: Which servers have password auth for root?
date datetimeit timeidt hostname where
hostname hostname_t device.hostname, dst_endpoint.hostname username == “root”
process_id integer t actor.process.pid and authimetho.d == “password”
auth_method string_t auth_type and “accepted” in template
username username_t actor.user.name
source [P ip_t src_endpoint.ip R: puma2s
source_port port_t src_endpoint.port

Figure 2: Matryoshka converts unstructured log lines (top) to structured data suitable for ingestion into a database (upper-right),
in a sequence of three steps (O, @, ®). This makes it easy to query the logs for events that satisfy certain conditions (lower-right).

main stages: syntax parsing, semantic parsing, and schema map-

ping.

Syntax parsing. Programs emit log lines by interpolating variable
entities into a fixed message. Our parser infers a set of templates,
each intended to represent a different fixed message. Templates
are defined as sequences of tokens, where each token is either a
fixed string or a variable. Variables are associated with a regular
expression.

Prior work typically represents templates as text strings in which
variables are replaced by wildcards. However, we observed that
most variables in log messages exhibit a structured format. Rather
than relying on wildcards (which tend to overcapture variables),
we assign regular expressions to each variable to represent the
content’s expected structure. To parse a log line, we match it against
the appropriate template, checking that each variable matches its
corresponding regular expression.

Many templates may share a common prefix. For instance, Linux
system logs often share a prefix indicating the date, hostname,
process name, and process ID, followed by program-specific content.
We build a tree of templates, where all templates in a subtree share
a common prefix. This design helps us parse log lines consistently,
as repeated prefixes are parsed identically.

For example, consider the log line in Fig. 2. It can be captured
by the main branch in the parsing tree represented in Fig. 3. The
start of the line (up to the process ID brackets) is present in all

log lines, so it represents a branching point in the tree of tem-
plates. Each leaf represents a distinct template. Because the date
and hostname are adjacent, parsing with wildcards would be unable
to disambiguate where the date ends and hostname begins. In Ma-
tryoshka, we generate a regular expression for each variable (e.g.,
“NS+\s+\d+\s+\d+: \d+:\d+” for the date), which enables unique
disambiguation.

At the end of this stage (step @ in Fig. 2), we have auto-generated
a complete set of templates, each log line is matched to a template,
and we extract the value of all variables.

Semantic parsing. While templates capture a line’s syntax, they
provide no information about its meaning. Therefore, the next stage
maps each template to an auto-generated schema. Each schema
includes a description of the template and a set of fields representing
the template’s variables, where each field is assigned a name and
description. Names are chosen to reflect not only the data type
of the original variable but also the variable’s purpose within the
broader log context (see Fig. 2, step @). After this stage, each log
line is mapped to a JSON object containing a description of the
template and a list of named fields corresponding to the variables
in the line. We also ensure that the schemas for related templates
are consistent (e.g., use the same name when the “same” variable
appears in multiple templates).

Schema mapping. The first two stages produce a structured rep-
resentation of the log file enabled fast and efficient querying. We
propose a third step, which maps this structured representation

‘ Fai © none : :
Failed iy L > for L

\S+ \S+

1

\!

“user © _: root
: >

Mar 9 23:46:29 puma25 sshd L 17376 1: Accepted password for
\S+\s+\d+\s\d+: \d+: \d+ \S+ \d+ \S+ \S+

10.35.161.71

\d+.\d+. \d+. \d+

root

\d+

Figure 3: Example parsing tree, with two templates that share a common prefix. Each node/token represents either a string
constant (black) or a variable (with associated regular expression; blue), and each leaf corresponds to a template (given by the

path from the root to that leaf).

to an existing taxonomy so analysts can search over standardized
attribute names (see Fig. 2, ®). We use OCSF [40], which is be-
coming a popular choice in many security information and event
management (SIEM) systems. For each template, we:

o Identify the set of relevant OCSF events.

o Populate as many fields within each OCSF event as possible with
static information from the template.

o Assign each field in the template’s schema to an OCSF data type,
and provide a converter to transform the field’s value into the
appropriate OCSF format (e.g., converting text-based dates to
timestamps).

o When possible, map each field to one or more OCSF attributes.
There often are multiple OCSF attributes that can represent a
variable.

This final mapping step is not always feasible: OCSF is incomplete
and many fields do not have a standardized attribute in OCSF, so
we retain the schemas from the second stage to preserve all data.

3.2 Requirements

Building such a parser by hand requires substantial effort. Typically,
templates must be inferred from example log lines. The meaning
of log lines and their variables can be obscure; moreover, there are
tens of thousands of OCSF fields, so creating schemas and mapping
them to OCSF events is tedious.

Our system leverages LLMs’ understanding of log files to au-
tomate parser construction. We designed our system around four
core principles:

e Accuracy. The structured representation of the logs must be
correct: each template should match only a single event. Vari-
able tokens should capture parts of the line that can vary and
convey some meaningful information about the event. Template
schemas must accurately represent the content of log lines, with
meaningful variable names. Fields must only be mapped to OCSF
attributes that capture their intended role. Lastly, queries ex-
ecuted on the structured data should yield the same result as
painstakingly searching the raw logs.

o Completeness. The structured representation must capture all
information in the original log file. Any query that could be exe-
cuted on the raw logs should be equally feasible on the structured
data.

o Consistency. Variables fulfilling the same role across multiple
log lines should be handled identically: they must have the same
field names, descriptions, OCSF mappings, and data types. Simi-
larly, templates that are syntactically different but serve the same
purpose should have the same schema.

e Run-time efficiency & security. The parser we produce should
operate efficiently: we should not need to invoke a language
model on every log line, and queries against structured data
should run more efficiently than a linear scan over the raw logs.
The parser should not be vulnerable to prompts injection attacks
at run-time.

While these four principles guide our system, it is impossible to
perfectly meet them all in practice. For instance, accuracy cannot be
measured without complete knowledge of the developer’s original
intention, and consistency involves a subjective notion of semantic
similarity across fields.

3.3 Applying LLMs

LLMs are a powerful tool for log parsing, but we cannot apply a LLM
to every log event. Real-world systems typically generate millions
of log lines daily, and it would be far too expensive to parse each
with a LLM or compute a vector embedding of each log line. Instead,
we use LLMs only to create parsers, not to parse data at run time.
This means while our generation process could be vulnerable to
attacks against the LLM present in the generation data, Matryoshka
parsers are immune to prompt injection at run-time. We use several
techniques to improve accuracy:

Controlled execution. Each time we query a language model, we
test its output with various heuristics to catch common errors. For
instance, in Section 3.4, we verify the returned regular expressions
are valid and do not over-capture — if so, we ask the model to fix its
answer. In rare cases, human feedback can supplement these checks.
If a particular test fails, we either directly correct the model’s output
when possible or interact with the model in a multi-turn exchange,
explaining the inaccuracies and prompting it to self-correct.

Guided chain of thought. We frequently ask the model to outline
its reasoning steps before providing the final answer. We supply
a structured algorithm or checklist to steer its reasoning process,
ensuring thorough analysis of the input data.

Few-shot prompting. We include a few previously generated
input-output pairs in the input. We include the chain of thought
for each, to show the desired reasoning style. These examples can
be hard-coded, supplied by humans, or derived from the model’s
own past responses to maintain consistency.

Description embedding. Including few-shot examples that closely
match the current prompt substantially improves both consistency
and accuracy. Ordinarily, one might use text embeddings and cosine
similarity to locate similar examples, but our input data often mixes
structured and unstructured text (including unique identifiers),

(1) Clustering

(2) Template Generation

Mar 9 23:46:29 | puma25 | sshd |

(3) Regex Generation
(Mar 9 23:46:29: \SH\s+\d+\s+\d+:\d+:\d+)

@Iar 9 23:46:29 puma25 sshd[..]: Accepted passw...] — [} 17376 | 1: | Accepted | — C pumaz25: \S+]
(Jun 17 19:53:02 pumal8 sshd[..]: Accepted publ..) password | for | root | from | (17376: \d+)
Q\pr 6 19:46:18 httpboot sshd[..]: Accepted pam..) 10.35.161.71 | port | 59271 C .. etc ...)

Figure 4: Overview of template creation: (1) clustering, (2) generation, and (3) regular expression assignment.

which degrades embedding performance. Instead, we devise a two-
step procedure where the model first writes a descriptive summary
of the object to be embedded, and we then compute an embedding
of that summary. Empirically, this method works well for diverse
data types (e.g., log lines, variables, templates, OCSF fields).

Consider our SSH log example in Fig. 2. Embedding this raw log
line directly produces poor results because identifiers (IP addresses,
ports, dates, hostnames) are not handled well by natural language
tokenizers and embedding models. While removing or replacing
these with placeholders improves the situation, the embedding still
represents syntax rather than meaning. A better approach is to first
generate a semantic description of the log line. An embedding of
this description captures the meaningful content of the log line
rather than its syntactic structure.

Self-consistency. Rather than having the model provide a single
response, we generate multiple responses and select the most fre-
quently produced one. We introduce slight variations in the prompt,
such as randomizing the few-shot examples, to encourage diversity
in the model’s outputs. Self-consistency has been shown to outper-
form greedy decoding by allowing the model to explore multiple
reasoning paths [55].

3.4 Template creation

In our system, a syntax parser is represented by a tree of templates
(see Fig. 3). We use a LLM to build this tree, similar to LILAC [21]
and DivLog [58], except we use regular expressions (instead of
wildcards) to capture variables, yielding more precise parsers. While
our overall template-generation process is largely similar to prior
efforts, our specific heuristics and clustering approach improve
template quality compared to existing methods.

We seed this process with a few user-provided examples of log
lines and corresponding templates. Empirically, we found this helps
guide the LLM in template generation. We initialize the parsing
tree with these templates. Then, as we parse each log line, if it
does not match any existing template, we generate a new template
for it and add the new template to the parsing tree. Templates
are generated by clustering unmatched log lines, using a LLM to
generate a template for each cluster, and using a LLM to infer a
regular expression for each variable(see Fig. 4). We further validate
the result to prevent over-capturing.

Clustering. Inspired by LogBatcher [57], we observe that generated
templates are of higher quality when the LLM sees multiple lines
from the same template rather than a single line. Therefore, we
store a streaming buffer of N unmatched log lines; when the buffer
becomes full, we cluster them in three steps:

o Coarse-grained clustering. First, we attempt to match each un-
matched line to the existing tree, and keep track of the longest

matching prefix. Log lines that do not share the same prefix can-

not belong to the same template. Consequently, this yields an

initial partition of lines into clusters.
o Fine-grained clustering. We further subdivide these coarse clusters
by computing description embeddings for each line and using the
DBSCAN clustering algorithm? with cosine-similarity distance
on each coarse cluster.
Cluster confirmation. We select the fine-grained cluster with the
highest average pairwise cosine similarity and randomly sample
five log lines from it. We ask the language model—using guided
chain of thought and self-consistency—to confirm if these lines
come from a single format string (i.e., if they should be associated
with a single template). If it rejects or partially rejects this set, we
prompt it to isolate the subset of lines that may share a format

string.

Template and regular expression generation. We ask the LLM
to construct a template from the log lines in a cluster. First, we ask
the LLM to segment the line into tokens; then we ask it to provide
regular expressions for the variable tokens. We employ few-shot
prompting, guided chain of thought, and self-consistency. We select
the few-shot examples as the most similar templates already in the
tree, selected via description embeddings.

Each template the model proposes is tested with a suite of heuris-
tics. First, we confirm that the output is valid and can indeed serve
as a template. We attempt to repair simple mistakes first using
hard-coded rules, then by explaining the mistake to the model and
soliciting a self-correction. From the valid templates, we choose
those that (1) match as few previously parsed lines as possible,
while (2) covering as many of the new cluster’s lines as possible.
This encourages the model to propose templates that are both pre-
cise (and do not over-capture) and suitable (capture as much of the
current cluster as possible).

Validation. If a proposed new template does not match any previ-
ously captured line, it is added to the parsing tree outright. If it does
match (meaning that the log line could match both the proposed
new template and an existing template), heuristics are needed to
decide whether to keep it or not. There are legitimate reasons for
templates to have some overlap in the set of lines they can match.
A previous template could be too specific, or a new template could
be needed to capture malformed values. However, overlaps can
also be due to the new template over-capturing, in which case we
should discard it. We use heuristics to decide what to do with a new
template. Let T;, be the new template and 7~ the set of overlapping
existing templates:

3In our experiments, setting € = 0.05 yields the best results, avoiding over-capture.

o Capturing malformed variables. If T,, only differs from overlap-
ping templates by the regular expressions for variables, this new
template is likely needed to capture malformed variables, thus we
keep it. For example, the template for Fig. 2 will not capture “Jun
2 ©5:19:38 pumal5 sshd[153]: Accepted password for root from
x.X.X.x port 59271” due to the malformed IP. We need a new
template with a broader regular expression for the source_ip
field. This new template is identical to the original except for its
capturing regular expressions, thus should be kept. We choose
to keep both the original and new template: the difference in
granularity can help distinguish valid values from invalid ones,
for instance the IP in the above example.

o Clustering heuristic. When a new template T, overlaps with ex-
isting templates in 77, we collect a representative sample of log
lines that match each template in 77, as well as lines that only
match T,,. We then query the language model, using the same
query as for the clustering step of the process, to determine if
these lines are part of a same cluster. If the LLM confirms that
these lines are part of the same cluster, we conclude that the
original templates were likely too specific. We replace the older
templates with T,.

If none of these conditions apply, we either ask the user whether to
keep T,,, or if we wish to run without feedback, we automatically
reject the template. Rejected templates are caused by excessively
large clusters or underfitting from the generation process. We avoid
repeating this mistake by rerunning the generation process on a
single line of the cluster while making sure the proposed templates
do not overlap with existing templates. If any overlap happens, we
supply the model with the overlapping lines and prompt it for a
self-correction.

3.5 Schema creation

Once the tree of templates is constructed, we map it to a schema
by assigning each variable node a field name and description. This
allows the logs to be ingested into a structured database and queried
conveniently by field name.

We create these fields on a template-by-template basis. Templates
are first sorted by descending prevalence in the log file. For each
template, we ask the language model to generate a schema, passing
it a few log lines matching the template and the list of tokenized
template elements. The model must produce a template description
and assign a name and description to each variable. Since templates
reside in the same parsing tree, their tokens often share common
prefixes. We give the model the names and descriptions for these
existing prefix tokens so they can be reused.

To ensure consistency, we employ few-shot prompting, encour-
aging the model to reuse variable names and descriptions across
templates when the same semantic roles are present. We do this
by identifying the most similar templates that have already been
mapped to a schema using description embeddings and presenting
them to the model. We gather multiple candidate answers, verify
that each preexisting variable’s name is preserved, and then embed
each description. To maximize consistency, we select the candidate
whose embedding is closest to the average of the other similar
templates.

Once this process is done, we ask the model to generate new
descriptions for each field, using example values from the variables
mapped to that field as context. Regenerating descriptions increases
the quality and generality of descriptions, since the model can see
more diverse usage examples.

3.6 Schema mapping

While Matryoshka can function immediately after building the
schema and naming fields, using these field names directly requires
familiarity with the schema. For easier interoperability with com-
mon security tools, we map the schema to a set of relevant OCSF
events [40]. This lets us query logs using official OCSF attributes,
which are standardized and well documented. Mapping a schema
to OCSF events requires (1) inferring the type of each field, (2)
identifying the relevant OCSF event(s), (3) mapping each field to
one or more OCSF attributes, and (4) creating a converter for any
necessary transformations.

Typing. Every field in the schema is assigned a standard OCSF
type [41]. Typing enables using predicates over the type of a variable
instead of over its field name (e.g., searching over all fields of type IP
address instead of only those named “source_ip”). We determine
each field’s type by prompting an LLM with a list of possible types,
the field’s name, its description, and sample values. These sample
values are taken from all the variables that share the same field
name, so that the type can represent them all.

Event identification. We identify which OCSF events pertain to
each template. We provide the LLM with a short description of each
possible OCSF event, along with the template and its description,
and ask for up to three likely event matches. We use few-shot
prompting with similar templates to maintain consistency, run this
process multiple times, and then pick the three most frequently
identified events.

Attribute mapping. OCSF events contain hierarchically organized
attributes. Mapping our fields to these attributes is challenging
because: (1) the attribute tree is large (tens of thousands of leaf
attributes), and (2) attributes are documented in the context of their
parent. Additionally, we want a consistent mapping. Consistency
involves two components:

o Twin consistency. Twins are two variables in the parse tree with
the same role. These should map to the same OCSF attributes.

o Sibling consistency. Siblings are two fields that appear in the same
template and describe different aspects of the same entity (e.g.,
source IP and source port). We prefer that such siblings map
to attributes with a shared direct parent in the OCSF attribute
hierarchy (e.g., src_endpoint.ip and src_endpoint.port).

First, we simplify the OCSF attribute tree by flattening it and
creating a LLM—-generated description for each flattened attribute.
We then embed these descriptions. This process is done once and
cached.

Next, we map fields sequentially. For each field in our schema, we
embed the field’s description and select the K OCSF attributes (of
the same data type) with the highest cosine similarity. Empirically,
K = 25 usually includes the correct attribute in the set. We give
the LLM these K candidate attributes (with their descriptions), plus
the field name, description, and sample log lines. The model is then

asked which attributes best match this schema field, if any. Since
fields in our schema already merge variables with identical roles,
twin consistency is satisfied.

In order to enforce sibling consistency, we want to ensure sibling
fields appear in the list of potential candidates the LLM must decide
from. For instance, if a template contains a source IP field mapped
to src_endpoint. ip, and a source port field, we need to ensure the
src_endpoint.port OCSF attribute is in the list of candidates. We
list all potential siblings, and add them to the list of candidate OCSF
attributes before querying the LLM. Let field be the field we are
currently mapping. (1) We list all other fields that share a template
with field. (2) We list all OCSF attributes that are assigned to one
of these fields. (3) We list all sibling OCSF attributes to an assigned
attribute. (4) We add all siblings that have the same data type as
field to the set of candidate attributes.

We improve accuracy using guided chain of thought and self-
consistency: Specifically, we ask the model to list all candidate
attributes and to explain why each candidate attribute is or is not
suitable, run the query multiple times, and select any attribute
returned in at least half the runs.

3.7 Normalization

At this point, we have mapped logs to a structured and semantically-
rich schema, and associated created fields to existing OCSF at-
tributes. We wrote static conversion functions for dates, times and
numbers, to translate them into a standard format. This is sufficient
to allow users to query the data based on field values and static
parts of the template, and is what our evaluation metrics focus on.
However, to ensure thorough conformity with the OCSF format,
we include two additional steps to help better conform to the OCSF
format.

Static attributes. Some OCSF attributes can be filled statically
based solely on the text of the template, and do not depend on
the values of any variables. For example, for the example in Fig. 2,
the “activity_id” field can be statically filled with the value 1,
indicating that this is a new connection. For each template, we
identify static values by querying a LLM with a redacted template
(variables are replaced by their names) and a list of top-level OCSF
attributes that remain unmapped, using guided chain of thought and
self-consistency, and few-shot prompting with similar templates.
Converter creation. Some OCSF types require data to be in a
specific format. Relying on our static conversion functions is in-
sufficient. First, some OCSF attributes expect a value chosen from
an enumeration. Second, some rare date, time or number formats
might not be handled by our static parser. When one of these sce-
narios arises, we use a LLM to write Python code to convert values
into the expected output format, prompting the LLM with example
values from the logs and the expected output format. If the con-
verter encounters a value at generation time that it cannot parse, it
raises an error, at which point we provide the language model with
this new value so it can update the converter dynamically.

4 Evaluation
Our evaluation is comprised of four parts.

(1) End-to-end evaluation. We measure Matryoshka’s ability to
convert data into a format that supports structured queries. We

Unique

Total Variable Unique OCSF
Nodes Nodes Templates fields attributes
SSHD 384 154 98 47 135
Cron 72 19 7 8 35
DHCP 441 153 178 41 67
Audit 6309 3000 496 150 286
Puppet 981 370 254 101 77
| Total | 8187 3696 1033 347 600

Table 1: Bug tracker parser summary

run a set of curated queries against datasets processed with
Matryoshka, and compare the results to ground-truth answers.

(2) Step evaluation. We evaluate Matryoshka’s step-by-step per-
formance using metrics we developed, either refinements to
existing metrics or in several cases new metrics. We compare our
syntax parser to three existing works: LILAC [21], Drain [17],
and Brain [60].

(3) Ablation study: Description embedding efficacy. We run
Matryoshka twice, once with description embeddings, once
with regular embeddings, and compare the performance of
both using our step metrics to demonstrate the usefulness of
description embeddings.

(4) Efficiency. We measure the time to process security logs and
query them, showing that Matryoshka is efficient enough for
practical use.

We ran Matryoshka on our curated dataset using one labeled
example for the template parser, and zero-shot for the schema
creation and OCSF mapping. Our source code, containing Ma-
tryoshka, our datasets, and our curation tools, is made public at
https://github.com/julien-piet/matryoshka. We support the Gem-
ini [51] suite of models, but the code can easily be extended to
any language model. Unless stated otherwise, we mostly rely on
Gemini-1.5-Pro for our experiments.

In the rest of this section, we first introduce the datasets we
use, including one we created to benchmark Matryoshka. Then,
we discuss the metrics we create to evaluate parsers, and for each,
provide evaluation results for the experiments outlined above.

4.1 Datasets
Our evaluation relies on two datasets.

Bug tracker dataset. We curated our main dataset from Redhat
Bugzilla bug reports. We discovered that many users attach system
log files to public bug reports there, so we crawled the Bugzilla
website and downloaded all log files attached to bug reports up
to August 2023. In total, this dataset contains over 30 million log
lines. We filter to logs from five applications that are particularly
security-relevant and are well-enough documented that we could
manually construct ground-truth parsers:

e Linux kernel audit logs (77K lines): Fine-grained logs of
security-relevant events in Linux systems.

e Puppet logs (157K lines): Logs from Puppet, an orchestration
tool for server configuration deployment.

https://github.com/julien-piet/matryoshka

o SSH daemon logs (35K lines): Logs involving SSH authentica-
tions and connections.

e DHCP logs (378K lines): DHCP client logs reporting DHCP
requests and lease information.

e Cron logs (13K lines): Reports of scheduled CRON jobs.

We ran Matryoshka on each log file. We also created a ground-
truth parser, by manually checking and fixing every template, field
name, and mapping generated by Matryoshka. The ground truth
parsers are summarized in Table 1.

LogPub. Existing approaches to template generation commonly use
LogPub [23, 68]. This resource contains 14 log files (over 3 million
lines) annotated with ground-truth wildcard-based templates. We
use it to compare the performance of our template generation step
against prior methods, but we do not generate ground-truth labels
for schema creation or attribute mapping because:

e Most of the data is outdated (some logs are over 20 years old).

o Several files are heavily anonymized, limiting reliable semantic
extraction.

e Most are not security-focused and instead are activity logs from
supercomputers or distributed systems.

4.2 End-to-end performance

We define up to ten queries for each log type (see Appendix A),
chosen to represent the most common and security-relevant tasks
that a security analyst might perform. For example, one of our cron
log queries looks for scheduled jobs from a particular host within a
specific time window, filtering on OCSF fields
scheduled_job_activity.time_dt and
scheduled_job_activity.device.hostname, and checking for
the presence of the executable_path custom field.

All queries are formed by applying unions or intersections of
predicates. Predicates can be over the values of the fields, or over
the static part of templates. We run each query in two ways: once
using OCSF attributes, and once using the field names generated
by our schema mapping step.

Predicates on the static template are defined by substring match-
ing. This limits the range of queries we can run. For example, “return
all lines indicating a bind error due to an already-in-use address”
is tedious to formulate in our query syntax, because it requires
knowing all possible templates that could indicate such an event. A
dedicated LLM-powered query planner could plausibly map queries
to the relevant set of templates; we leave that to future work.

Each query effectively creates a binary classifier over the log
lines, and we evaluate performance by comparing results from the
parser-structured data to our ground truth data. We report the
precision and recall of the results. In doing so, we measure how
accurately our system can handle typical analyst queries.

Existing systems rely on substring matching on the unparsed log
line. This can answer some queries, but limits the reach that an ana-
lyst can have, and many of our queries could not be expressed using
substring matching alone. We illustrate this using three examples:

o Tracking the usage of a specific key based on its hash in SSH can
be done efficiently using substring matching.

o Substring matching does not allow restricting results to a particu-
lar date range or time window. Analysts would have to manually
write a one-off script to post-process the results of the substring

Table 2: Matryoshka query precision and recall metrics

OCSF Created Naive

Dataset . . .
attributes attributes substring
Prec. [Rec. | Prec. [Rec. | Prec. [Rec.
SSHD 0.82 1.00 1.00 1.00 0.90 0.80
Cron 0.40 0.40 1.00 1.00 0.92 1.00
DHCP 0.60 0.59 1.00 0.97 0.92 0.71
Audit 0.70 0.68 0.90 0.88 0.97 0.85
Puppet 0.80 0.80 0.90 0.88 1.00 0.63

[Average [066 | 0.69 | 0.96 [0.95 [094 [080 |

search. In contrast, Matryoshka can express such a predicate
natively.

e One of our queries asks to identify DHCP leases with long re-
newal times. This is difficult to express with substring matches,
as there is a variety of log formats that contain the renewal time.
With Matryoshka, this query can be expressed simply with a
predicate on the “renewal_time” field.

We evaluate the performance of naive substring-based systems,
by translating each query into substring matching where possible.
We assume an analyst will not have resources to comprehensively
identify all message formats/templates that might have relevant
information; instead, we simulate an analyst who looks for the first
example they can find of a log message containing the necessary
information and identifies a single substring from that log message
to search for.

Experimental setup. We ran Matryoshka on our bug tracker
dataset. We rely on Gemini-1.5-Pro and the standard Gemini em-
bedding model as our LLM backend. We used user feedback for
resolving overlaps that could not automatically be resolved — this
required a total of 8 user inputs across the 5 files.

Results. We compare the output of the queries on the full pipeline
versus the ground truth. We ran queries in three ways: once us-
ing OCSF attributes, once with Matryoshka-created attributes, and
once using naive substring-matching. The average precision and
recall of the queries is reported in Table 2. We observe that using
OCSF attributes for querying performs leads to poor results com-
pared to created attributes: This is due to the difficulty of mapping
created fields to OCSF attributes. If the mapping for a high volume
variable fails, this variable cannot be queried using OCSF attributes.
However, if we run queries over our created schema instead, both
precision and recall are consistently above 80%, with some files
getting values above 95%. In fact, most queries yield perfect perfor-
mance, but a few do not run properly and negatively impact the
average scores.

The main error source is baseline fields being represented as
multiple parsed fields. For example, the audit log has a field for the
current working directory of a process. This field in the generated
parser is most often called “current_working_directory”, but
sometimes abbreviated as “cwd”. For the sake of simplicity, we
chose to run queries on only one created field, even when the field
is fragmented: requiring analysts to list all possible fields would be
tedious. Using an LLM query engine could help here, as the model
could automatically select all relevant fields.

Table 3: Comparison of Matryoshka and prior template generation on LogPub data

Dataset Matryoshka | LILAC Drain3 Brain Dataset Matryoshka | LILAC Drain3 Brain

PGS TS |PGS TS |PGS TS|PGS TS PGS TS|PGS TS|PGS TS| PGS TS
Apache 1.00 1.00 | 0.99 099 | 0.99 0.89| 0.99 0.88 || HPC 1.00 0.99 | 1.00 1.00 | 0.97 096 | 0.78 0.75
BGL 0.99 098 | 097 096 | 095 0.96 | 0.88 0.79 || Linux 0.85 093 | 0.83 0.86| 0.87 0.80| 0.81 0.71
Hadoop 0.97 091 | 0.86 0.81| 0.88 0.71 | 0.35 0.29 || Mac 0.96 091 | 0.78 0.75| 083 0.82| 095 0.89
HDFS 1.00 0.96 | 0.96 084 | 097 0.93| 097 0.84 || OpenSSH 0.97 097 | 0.72 0.68 | 096 0.92| 0.99 0.92
HealthApp 1.00 0.94 | 1.00 0.94 | 0.97 0.92 | 0.54 0.44 || OpenStack | 0.93 0.86 | 0.93 0.88 | 0.66 0.67 | 1.00 0.97
Proxifier 1.00 0.50 | 0.97 0.38 | 0.52 0.31| 0.99 0.35 || Spark 1.00 097 | 091 093] 097 0.79| 097 0.91
Thunderbird | 0.98 0.82 | 0.82 0.68 | 0.87 0.68 | 0.79 0.69 || Zookeeper | 0.99 096 | 0.86 0.83|0.99 0.98 | 0.99 0.95

Some errors are due to overcapturing: this is when a field name “Accepted password for john”

in the generated parser covers multiple fields in the baseline. Un-
fortunately, these errors are difficult to recover from, as there is
no way to separate the variables without looking at them indi-
vidually. However, this type of error is rarest, as we designed the
parser, schema creation and OCSF mapping to err on the side of
undercapturing.

Queries over created attribute names perform better than the
naive substring queries. The naive approach uses an arbitrary line
as an example to model the substrings needed to run the query: this
leads to missed lines when there are multiple possible templates that
would match a given query, and leads to over-capture if the same
substring is present in other lines. However, we want to emphasize
the fact these substring queries are likely not representative of what
an analyst would run: in practice, they would likely put more effort
to obtain a better result. Instead, these results are representative
of what could be achieved using substrings if we spend the same
time writing them as writing our queries over created fields. The
complete set of substring matches usSed for this task are detailed
in Appendix A.

4.3 Template generation evaluation.

Prior template generation solutions measure performance using
two primary metrics: Group Accuracy (GA) and Parser Accuracy
(PA).

e GA (Group Accuracy): The percentage of log lines assigned
to the same group as the ground truth. Each template encodes
one group of lines derived from the same format string, so GA
measures how well the parser separates different format strings.

o PA (Parser Accuracy): The percentage of log lines whose tem-
plate exactly matches the ground truth. PA focuses on whether
each predicted template is identical to the ground-truth template.
Although broadly used, these metrics have limitations. Parser

accuracy is too strict. If our parser splits a variable into two parts

(e.g., splitting “IP:port” into separate fields when the ground truth

has them merged), the template is deemed incorrect, even though

it might still be perfectly useful—or even preferable—in practice.

Group accuracy penalizes both overcapture and undercapture equally,

although overcapture can be more problematic. Overcapture con-

flates data from separate format strings, making fields unusable.

For example, some log parsers use wildcards in templates like:

“Accepted <*> from <x>”

intended to match lines such as:

However, this template also incorrectly matches:
“Accepted password for john from 192.168.1.1”

causing the IP address to be captured as part of the username. The
parser thus fails to capture a separate IP field.

To address these issues, we propose two refined metrics. Both
these metrics take the per-line average of a scoring function. If a
line matches multiple templates, the score for that line is taken to
be the maximum over all matches:

o Template Similarity (TS): The per-line score is an edit-distance-
based similarity between the predicted and ground-truth tem-
plates when all variables are replaced by “<*>”. This is defined

as
Levenshtein(Ground Truth, Predicted)

max(|Ground Truth|, |Predicted|)
In contrast to parser accuracy, small differences (like splitting or
joining variables) do not yield a zero score.

e Parser Group Similarity (PGS): The per-line score is the aver-
age ratio of the predicted group size to the ground-truth group
size for each line. If the parser’s group is larger than the correct
group (overcapture), the score is 0 for that line. Otherwise, it is

|Parser Group|
|Ground Truth Group]|

This asymmetry acknowledges the harm of merging lines from
distinct format strings, while still discouraging undercapture: A
trivial parser that assigns a unique template for each line would
get close to 0 score.

LogPub dataset. Templates generations has been extensively stud-
ied in prior work, and recent works such as LILAC [21], DivLog [58]
or LogBatcher [57] use language models to perform this task. Al-
though we added regular expressions for precisely matching vari-
ables, our templates can be converted back into the same wildcard
templates used in the past in order to compare our approach to
prior works. Many of our building blocks are similar to those found
in these works. However, our approach achieves a higher accuracy
with minimal labeled data (1 labeled example) by selecting the most
appropriate few-shot examples dynamically using our description
embeddings, and using additional heuristics to catch mistakes and
self-correct, as detailed in Section 3.4.

Experimental setup. We selected three prior works to compare
against: LILAC [21], one of the most promising LLM-based ap-
proaches, Drain3, the latest version of Drain [17], a popular log

Table 4: Comparison of LILAC and Matryoshka on the bug-
tracker datasets

Table 5: Matryoshka schema and mapping performance met-
rics

parsing algorithm, and Brain [60], a lightweight parser. On the
LogPub dataset, these three frameworks use a pre-parsed version
of the logs and only generate templates for the suffixes. In contrast,
Matryoshka is given the raw version of the logs. Drain and Brain do
not use LLMs or few-shot examples. We ran LILAC and Matryoshka
with Gemini-1.5-Flash and rely on a single labeled example. For
fairness with prior works, we did not use user feedback to resolve
overlaps, and instead automatically refused templates that overlap
if the heuristics could not resolve it.

Results. We report our metrics (Parser Group Similarity and Tem-
plate Similarity) in Table 3. We find that Matryoshka equals or
outperforms other works on most log files. On average, we obtain
a parser group similarity of 0.97 and a template similarity of 0.91,
while the best of the other schemes, LILAC, obtains a PGS of 0.90
and a TS of 0.82.

Bug tracker dataset. We further compare LILAC and Brain to
Matryoshka on our own dataset. In this setting, LILAC and Brain
are run on the full log lines: Unlike LogPub, our dataset contains a
multitude of log prefixes, because the logs originate from multiple
systems. We use the same Matryoshka parsers as for the end-to-
end queries. Matryoshka outperforms both other works on all five
logs. We attribute this performance gap to the lack of consistency
of LILAC and Brain when parsing similar structures across logs.
In contrast, Matryoshka uses previously generated templates as
examples for new ones, and parses shared prefixes using the same
prefix branch in the parse tree, ensuring consistency. This issue
does not appear as much in the LogPub dataset because the similar
prefixes across lines are pre-parsed.

4.4 Schema creation evaluation.

Schema creation entails clustering variables by meaning (e.g., as-
signing every “source IP” variable to a field “source_ip”). For this
step, we define Schema Group Similarity (SGS), the analog to
PGS, computed over variables. If our schema’s group for a variable
is larger than in the ground truth, the similarity is 0. Otherwise, it
is the ratio of the parser’s group size to that of the ground-truth
cluster. This rewards grouping variables of the same semantic role
without merging separate roles. The score over a file is computed by
taking the weighted average of group similarity for each variable,
so that high-volume variables are most represented in the final
score than rare ones.

Results. We ran the schema creation step on the golden parsers for

the five logs in our dataset to evaluate this step independently from
the rest of the pipeline. Doing so allows to compute the schema

Dataset Lines Matryoshka LILAC Brain l Dataset [Schema Group Similarity [Mapping Accuracy
PGS| TS [PGS| TS [PGS | TS SSHD 0.96 0.76

SSHD 35,329 | 0.99 0.99 092 | 0.81 | 0.88 | 0.73 Cron 1.00 0.66

Cron 12,547 | 1.00 0.99 1.00 | 0.80 | 1.00 0.6 DHCP 0.98 0.71

DHCP 377,653 | 0.99 0.98 040 | 044 | 0.54 | 0.69 Audit 0.56 0.42

Audit 76,636 | 0.99 0.99 0.13 | 0.33 | 0.62 | 0.52 Puppet 0.80 0.51

Puppet 156,880 | 0.98 0.98 0.59 | 0.74 | 0.96 | 0.68

group similarity across the files, as reported in the first column
of Table 5. SSHD, Cron and DHCP logs all have group similarities
above 0.95, indicating the created schema groups fields almost iden-
tically to the ground truth. Puppet scores a bit lower: some variables
are grouped to multiple fields when the baseline grouped them as
one. For example, instead of recognizing missing dependencies as a
single field, it subdivided them according to the type of dependency:
the baseline field “dependency” is split into “missing_service”,
“missing_provider”and “missing_package”. This can make query-
ing more difficult, as searching over dependencies will requires
predicates over three fields instead of one. Audit scores are the
worse, at 0.56.

4.5 OCSF mapping evaluation.

Our baseline attribute mapping maps each field to every OCSF
attribute that is relevant to that field. There are often multiple. In
practice, we care more about having one correct mapping than
getting all the possibilities. Thus, we design our mapping accuracy
metric by defining a per-field score, equal to the proportion of
assigned fields that were also present in the baseline. More precisely,
if OCSFgaseline (f) is the set of OCSF mappings for field f in the
baseline, and OCSFatryoshka(f) in the generated parser, then:

?
5OCSFBaseIine (f) = @
Sf=
|OCSFMatryoshka (f)mOCSFBaseline (f) |
IOCSFMatryoshka (f) |

The mapping accuracy is the weighted average of the scores.

if OCSFMatryoshka (f) =0

otherwise

Results. We ran mapping independently from the other steps,
by using the golden schemas as a baseline, and report the map-
ping accuracy of each file in the second column of Table 5. Per-
formance of this step is lower than for other steps, Matryoshka
struggling most with Audit and Puppet, two rich logs containing
many variables. Mapping is the most difficult step, as there are tens
of thousands of candidate OCSF mapping attributes, and whether
an attribute is a match for a field is often open to interpretation. For
instance, the “authentication.src_endpoint” attribute is described
within the taxonomy as “the source of the IAM activity.”, while
“authentication.dst_endpoint” is “the endpoint to which the
authentication was targeted”. The device on which an authentica-
tion happens in an authentication log message certainly maps to the
“dst_endpoint” attribute, yet based on the definition alone, could
arguably also map to “src_endpoint” since the authentication is
happening on the device. This ambiguity is the reason we decided

to select all possible mappings for our baseline, and reward the
system if it chose attributes from this set.

4.6 Ablation study

We test the usefulness of description embeddings by running Ma-
tryoshka’s template generation and schema creation steps on DHCP
logs with a regular embedding instead. We cannot run the map-
ping stage without description embeddings, as they are central to
the field filtering process. We ran our standard queries using the
output from this altered pipeline, obtaining a precision of 0.9 and a
recall of 0.81, significantly lower than the near-perfect metrics of
the regular parser. Description embeddings improve Matryoshka’s
performance.

4.7 Efficiency

l Step [SSHD Cron DHCP Audit Puppet ‘
Generation | 2h 25m 10m 2h56m 8h46m 5h 18m
Creation 18m 4m 17m 2h 53m 26m
Mapping th15m 12m 1h58m 7h24m 3h43m

| Total | 3h58m 26m 5h10m 1%5h3m 9h 27m

Table 6: Timing summary for generation steps

Our system allows running queries in a few seconds, even when
the source log file is hundreds of thousands of lines. Log ingestion
is also fast: we consistently parse log files at over 200 lines per
second. This is possible because LLMs are only used at generation
time, not at run-time: live data is statically parsed, which also pre-
vents prompt-injection attacks. However, the process of generating
parsers is slow, due to the fact most steps use previous answers
of the model to few-shot prompt the next ones, thus cannot be
parallelized. This only needs to be run once, but future work should
look at speeding up this process.

5 Discussion

Although Matryoshka advances the state-of-the-art in end-to-end
log parsing, several limitations are worth highlighting. Mapping
extracted fields to standard OCSF attributes remains challenging.
Reliably mapping fields into OCSF is fundamentally difficult due
to the volume of target attributes and nuances in different field
definitions. Future work should explore more advanced semantic
techniques to further improve mapping accuracy.

Queries run against Matryoshka processed data can miss entries
or report false positives. Given analysts’ need for high reliability,
any incorrect or missing extracted fields can significantly impact
usefulness. To address this limitation, we developed a prototype
user interface enabling analysts to inspect and correct automatically
generated parsers. However, improving Ul design for efficient parser
correction remains important future work.

Matryoshka makes it easy to run queries over variables and to
substring match templates. However, some queries require selecting
specific templates based on the event they characterize. Using an
LLM-assisted query engine could more conveniently determine
relevant templates for each query.

Log ingestion and querying is fast, because we only rely on
regular-expression matching. However, parser generation is slow
due to sequential LLM calls used to ensure consistency. Future
solutions could improve speed by parallelizing model calls or using
more efficient architectures, relying on smaller domain-specific
models, to speed up parser generation and improve practicality.

We assume the ingested data is the same as the generation data
in Section 3. In practice, as more data gets collected, lines from un-
known templates are bound to occur. Production implementations
of our work would need to be online—meaning they can discover
new templates at run time.

At present, we only support logs where each event is a single line.
Ideally, a practical system would handle multi-line log messages
and any arbitrary log format.

6 Conclusion

We presented Matryoshka, the first end-to-end system leverag-
ing LLMs to automatically generate semantically-aware structured
log parsers. Matryoshka combines a novel syntactic parser with
a semantic layer that clusters variables, maps them to structured
schemas, assigns contextually meaningful field names, and maps
variables to attributes from the Open Cybersecurity Schema Frame-
work. Queries ran against Matryoshka-parsed real-world logs achieve
an average precision of 0.96 and recall of 0.95, which significantly
higher than achievable with existing substring matching techniques.
While mapping to OCSF’s schema remains challenging, Matryoshka’s
structured representation still enables precise querying using cre-
ated fields, significantly reducing security analysts’ manual parsing
workload. By automatically transforming unstructured logs into
structured, semantically rich data, Matryoshka represents a mean-
ingful step toward enabling security analysts to focus on threat
detection rather than manual parser construction.

Acknowledgments

We thank Aashish Sharma and the cybersecurity team at Lawrence
Berkeley National Laboratory for providing valuable insights into
security operations and helping shape this project. We also thank
Scott Coull and Sunil Vasisht for their insightful feedback that
helped shape Matryoshka, and David Huang for helping implement
template generation works. This research was supported by the
KACST-UCB Joint Center on Cybersecurity, OpenAl, the National
Science Foundation under grant numbers 2229876 (the ACTION
center) and CNS-2154873, the Department of Homeland Security,
IBM, C3.ai Digital Transformation Institute, Open Philanthropy,
and Google. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the sponsors.

References

[1] Elasticsearch BV. 2025. Elastic Security. https://www.elastic.co/security Accessed:
2025-04-12.

[2] Eric Anderson, Jonathan Fritz, Austin Lee, Bohou Li, Mark Lindblad, Henry
Lindeman, Alex Meyer, Parth Parmar, Tanvi Ranade, Mehul A. Shah, Benjamin
Sowell, Dan Tecuci, Vinayak Thapliyal, and Matt Welsh. 2024. The Design of
an LLM-powered Unstructured Analytics System. arXiv:2409.00847 [cs.DB]
https://arxiv.org/abs/2409.00847

[3] Merve Astekin, Max Hort, and Leon Moonen. 2024. A Comparative Study on
Large Language Models for Log Parsing. In ESEM.

https://www.elastic.co/security
https://arxiv.org/abs/2409.00847
https://arxiv.org/abs/2409.00847

(4]

[5

l6

=

[9

=

[10

(1

[12]

[13]

[14

[15]

=
&

[17]

[18

[19]

[20

[21]

[22

[23

[24

[25]

[27]

[28]

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. NeurIPS (2020).
Wenhu Chen. 2023. Large Language Models are few(1)-shot Table Reasoners.
arXiv:2210.06710 [cs.CL] https://arxiv.org/abs/2210.06710

Tianyu Cui, Shiyu Ma, Ziang Chen, Tong Xiao, Shimin Tao, Yilun Liu, Shenglin
Zhang, Duoming Lin, Changchang Liu, Yuzhe Cai, Weibin Meng, Yonggian Sun,
and Dan Pei. 2024. LogEval: A Comprehensive Benchmark Suite for Large
Language Models In Log Analysis. arXiv:2407.01896 [cs.CL] https://arxiv.org/
abs/2407.01896

Hetong Dai, Heng Li, Che-Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.
Logram: Efficient log parsing using n-gram dictionaries. IEEE TSE (2020).
Hanjun Dai, Bethany Yixin Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade
Nova, Pengcheng Yin, Phitchaya Mangpo Phothilimthana, Charles Sutton, and
Dale Schuurmans. 2024. UQE: A Query Engine for Unstructured Databases.
arXiv:2407.09522 [cs.DB]

Min Du and Feifei Li. 2019. Spell: Online Streaming Parsing of Large Unstructured
System Logs. IEEE TKDE (2019).

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott
Nickleach, Diego Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos.
2024. Large Language Models(LLMs) on Tabular Data: Prediction, Generation,
and Understanding — A Survey. arXiv:2402.17944 [cs.CL] https://arxiv.org/abs/
2402.17944

Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In ICDM.
Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi
Dai, Jiawei Sun, Meng Wang, and Haofen Wang. 2024. Retrieval-Augmented
Generation for Large Language Models: A Survey. arXiv:2312.10997 [cs.CL]
https://arxiv.org/abs/2312.10997

Google LLC. 2025. Google Security Operations. https://cloud.google.com/security/
products/security-operations Accessed: 2025-04-12.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. arXiv:1905.08205 [cs.CL] https://arxiv.org/
abs/1905.08205

Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. LogMine: Fast pattern recognition for log analytics. In
CIKM.

Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R. Lyu. 2018. Towards
Automated Log Parsing for Large-Scale Log Data Analysis. In IEEE TDSC.
Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An Online
Log Parsing Approach with Fixed Depth Tree. In ICWS.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran
Huang, and Xiao Huang. 2024. Next-generation database interfaces: A survey of
llm-based text-to-sql. arXiv preprint arXiv:2406.08426 (2024).

Junjie Huang, Zhihan Jiang, Zhuangbin Chen, and Michael R Lyu. 2024. LUNAR:
Unsupervised LLM-based Log Parsing. arXiv:2406.07174 [cs.SE]

Yintong Huo, Yuxin Su, Cheryl Lee, and Michael R Lyu. 2023. SemParser: A
semantic parser for log analytics. In ICSE.

Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong
Huo, Pinjia He, Jiazhen Gu, and Michael R Lyu. 2024. LILAC: Log parsing using
LLMs with adaptive parsing cache. FSE (2024).

Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen Gu,
Zhuangbin Chen, Jieming Zhu, and Michael R Lyu. 2024. A large-scale evaluation
for log parsing techniques: How far are we?. In ISSTA.

Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen Gu,
Zhuangbin Chen, Jieming Zhu, and Michael R. Lyu. 2024. A Large-Scale Evalua-
tion for Log Parsing Techniques: How Far Are We?. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis (Vienna,
Austria) (ISSTA 2024). Association for Computing Machinery, New York, NY, USA,
223-234. doi:10.1145/3650212.3652123

Zhen Ming Jiang, Ahmed E Hassan, Parminder Flora, and Gilbert Hamann. 2008.
Abstracting execution logs to execution events for enterprise applications (short
paper). In QSIC.

Egil Karlsen, Xiao Luo, Nur Zincir-Heywood, and Malcolm Heywood. 2024.
Benchmarking Large Language Models for Log Analysis, Security, and Interpre-
tation. Journal of Network and Systems Management (2024).

Van-Hoang Le and Hongyu Zhang. 2023. Log parsing with prompt-based few-
shot learning. In ICSE.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktaschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang,
Danielle Rifinski Fainman, Dongmei Zhang, and Surajit Chaudhuri. 2023. Table-
GPT: Table-tuned GPT for Diverse Table Tasks. arXiv:2310.09263 [cs.CL]
https://arxiv.org/abs/2310.09263

Zhenhao Li, Chuan Luo, Tse-Hsun Chen, Weiyi Shang, Shilin He, Qingwei Lin,
and Dongmei Zhang. 2023. Did we miss something important? studying and
exploring variable-aware log abstraction. In ICSE.

Shu Liu, Asim Biswal, Amog Kamsetty, Audrey Cheng, Luis Gaspar Schroeder,
Liana Patel, Shiyi Cao, Xiangxi Mo, Ion Stoica, Joseph E. Gonzalez, and Matei
Zaharia. 2025. Optimizing LLM Queries in Relational Data Analytics Workloads.
arXiv:2403.05821 [cs.LG] https://arxiv.org/abs/2403.05821

Yilun Liu, Yuhe Ji, Shimin Tao, Minggui He, Weibin Meng, Shenglin Zhang,
Yonggian Sun, Yuming Xie, Boxing Chen, and Hao Yang. 2025. LogLM: From Task-
based to Instruction-based Automated Log Analysis. arXiv:2410.09352 [cs.SE]
https://arxiv.org/abs/2410.09352

Yurong Liu, Eduardo Pena, Aecio Santos, Eden Wu, and Juliana Freire. 2024.
Magneto: Combining Small and Large Language Models for Schema Matching.
arXiv:2412.08194 [cs.DB]

Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,
Minghua Ma, Qingwei Lin, Yingnong Dang, et al. 2022. Uniparser: A unified log
parser for heterogeneous log data. In WWW.

Lipeng Ma, Weidong Yang, Sihang Jiang, Ben Fei, Mingjie Zhou, Shuhao Li,
Mingyu Zhao, Bo Xu, and Yanghua Xiao. 2024. Luk: Empowering log understand-
ing with expert knowledge from large language models. arXiv:2409.01909 [cs.SE]
Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun Chen, and Shaowei Wang.
2024. LLMParser: An exploratory study on using large language models for log
parsing. In ICSE.

Zeyang Ma, Dong Jae Kim, and Tse-Hsun Chen. 2024. LibreLog: Accurate and
Efficient Unsupervised Log Parsing Using Open-Source Large Language Models.
arXiv:2408.01585 [cs.SE]

Adetokunbo A.O. Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios.
2009. Clustering event logs using iterative partitioning. In KDD.

Masayoshi Mizutani. 2013. Incremental mining of system log format. In SCC.
IEEE.

Meiyappan Nagappan and Mladen A Vouk. 2010. Abstracting log lines to log
event types for mining software system logs. In MSR.

Open Cybersecurity Schema Framework. 2025. OCSF Schema - Categories.
https://schema.ocsf.i0/1.4.0/.

Open Cybersecurity Schema Framework. 2025. OCSF Schema - Data Types.
https://schema.ocsf.io/1.4.0/data_types?extensions=.

Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M. Peeters, and Stijn
Vansummeren. 2024. Schema Matching with Large Language Models: an Experi-
mental Study. arXiv:2407.11852 [cs.DB]

Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches to automatic
schema matching. VLDB (2001).

Mikel Rodriguez, Raluca Ada Popa, Four Flynn, Lihao Liang, Allan Dafoe, and
Anna Wang. 2025. A Framework for Evaluating Emerging Cyberattack Capabili-
ties of Al arXiv:2503.11917 [cs.CR] https://arxiv.org/abs/2503.11917

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. arXiv:2109.05093 [cs.CL] https://arxiv.org/abs/2109.05093

Eitam Sheetrit, Menachem Brief, Moshik Mishaeli, and Oren Elisha.
2024. ReMatch: Retrieval Enhanced Schema Matching with LLMs.
arXiv:2403.01567 [cs.DB]

Keiichi Shima. 2016. Length matters: Clustering system log messages using
length of words. arXiv:1611.03213 [cs.OH]

Splunk Inc. 2025. Splunk. https://www.splunk.com Accessed: 2025-04-12.
Byungchul Tak and Wook-Shin Han. 2021. Lognroll: Discovering accurate log
templates by iterative filtering. In Middleware.

Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating system
events from raw textual logs. In CIKM.

Gemini Team and Google. 2023. Gemini: A Family of Highly Capable Multimodal
Models. arXiv preprint arXiv:2312.11805 (2023). https://arxiv.org/abs/2312.11805
Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event
logs. In IPOM.

Risto Vaarandi and Hayretdin Bahsi. 2025. Using Large Language Models for
Template Detection from Security Event Logs. arXiv:2409.05045 [cs.CR] https:
//arxiv.org/abs/2409.05045

Risto Vaarandi and Mauno Pihelgas. 2015. LogCluster - A data clustering and
pattern mining algorithm for event logs. In CNSM.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. arXiv:2203.11171 [cs.CL]
https://arxiv.org/abs/2203.11171

Xuheng Wang, Xu Zhang, Liqun Li, Shilin He, Hongyu Zhang, Yudong Liu, Lin-
gling Zheng, Yu Kang, Qingwei Lin, Yingnong Dang, Saravanakumar Rajmohan,
and Dongmei Zhang. 2022. SPINE: a scalable log parser with feedback guidance.
In ESEC/FSE.

Yi Xiao, Van-Hoang Le, and Hongyu Zhang. 2024. Demonstration-Free: Towards
More Practical Log Parsing with Large Language Models. In ASE.

Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He. 2024.
DivLog: Log parsing with prompt enhanced in-context learning. In ICSE.

https://arxiv.org/abs/2210.06710
https://arxiv.org/abs/2210.06710
https://arxiv.org/abs/2407.01896
https://arxiv.org/abs/2407.01896
https://arxiv.org/abs/2407.01896
https://arxiv.org/abs/2407.09522
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://cloud.google.com/security/products/security-operations
https://cloud.google.com/security/products/security-operations
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/2406.07174
https://doi.org/10.1145/3650212.3652123
https://arxiv.org/abs/2310.09263
https://arxiv.org/abs/2310.09263
https://arxiv.org/abs/2403.05821
https://arxiv.org/abs/2403.05821
https://arxiv.org/abs/2410.09352
https://arxiv.org/abs/2410.09352
https://arxiv.org/abs/2412.08194
https://arxiv.org/abs/2409.01909
https://arxiv.org/abs/2408.01585
https://schema.ocsf.io/1.4.0/
https://schema.ocsf.io/1.4.0/data_types?extensions=
https://arxiv.org/abs/2407.11852
https://arxiv.org/abs/2503.11917
https://arxiv.org/abs/2503.11917
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2403.01567
https://arxiv.org/abs/1611.03213
https://www.splunk.com
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2409.05045
https://arxiv.org/abs/2409.05045
https://arxiv.org/abs/2409.05045
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171

[59]

[60]

[61]

[62]

[63

[64

[65]

[66

[67]

[68]

Yongqin Xu, Huan Li, Ke Chen, and Lidan Shou. 2025. KcMF: A Knowledge-
compliant Framework for Schema and Entity Matching with Fine-tuning-free
LLMs. arXiv:2410.12480 [cs.CL]

Siyu Yu, Pinjia He, Ningjiang Chen, and Yifan Wu. 2023. Brain: Log Parsing With
Bidirectional Parallel Tree. IEEE TSC (2023).

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and
Dragomir Radev. 2018. SyntaxSQLNet: Syntax Tree Networks for Complex and
Cross-DomainText-to-SQL Task. arXiv:1810.05237 [cs.CL] https://arxiv.org/abs/
1810.05237

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. arXiv:1809.08887 [cs.CL]

https://arxiv.org/abs/1809.08887

Xian Yu, Shengxi Nong, Dongbiao He, Weijie Zheng, Teng Ma, Ning Liu, Jianhui
Li, and Gaogang Xie. 2024. LogGenius: An Unsupervised Log Parsing Framework
with Zero-shot Prompt Engineering. In ICWS.

Jing Zhang, Bonggun Shin, Jinho D. Choi, and Joyce C. Ho. 2021. SMAT: An
Attention-Based Deep Learning Solution to the Automation of Schema Matching.
In ADBIS.

Wei Zhang, Hongcheng Guo, Anjie Le, Jian Yang, Jiaheng Liu, and Zhoujun Li.
2025. Lemur: Log parsing with entropy sampling and chain-of-thought merging.
arXiv:2402.18205 [cs.SE]

Yu Zhang, Mei Di, Haozheng Luo, Chenwei Xu, and Richard Tzong-Han Tsai.
2024. SMUTF: Schema Matching Using Generative Tags and Hybrid Features.
arXiv:2402.01685 [cs.CL]

Aoxiao Zhong, Dengyao Mo, Guiyang Liu, Jinbu Liu, Qingda Lu, Qi Zhou, Jiesh-
eng Wu, Quanzheng Li, and Qingsong Wen. 2024. LogParser-LLM: Advancing
efficient log parsing with large language models. In KDD.

Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R. Lyu. 2023. Loghub:
A Large Collection of System Log Datasets for Al-driven Log Analytics . In ISSRE.

https://arxiv.org/abs/2410.12480
https://arxiv.org/abs/1810.05237
https://arxiv.org/abs/1810.05237
https://arxiv.org/abs/1810.05237
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2402.18205
https://arxiv.org/abs/2402.01685

A Evaluation Queries
A.1 DHCP Log Queries

Assigned addresses for a given | Description Identifies IP addresses assigned to a specific host.

hostname
Query assigned_ip exists AND log_host is laphroaig
Naive sub-string fgrep "bound to" | fgrep "laphroaig"

List all server IPs Description Enumerates all DHCP server IP addresses that are not broadcast addresses.
Query server_ip != 255.255.255.255

Naive sub-string

fgrep "port" | fgrep -v "255.255.255.255"

Note

The word port seems to always be present next to server IPs

Track all log messages for a | Description Follows the complete lifecycle of a specific DHCP transaction.
given transaction ID
Query transaction_id is 0x6520bf0oe
Naive sub-string fgrep "xid=0x6520bfoe"
List the MAC addresses used by | Description Retrieves entries containing MAC address information for a particular host-
a specific host name.
Query mac_address exists and log_host is laphroaig

Naive sub-string

fgrep "laphroaig" | fgrep "Listening"

Entries with high renewal times

Description

Identifies DHCP leases with renewal times exceeding 1 day (86400 seconds).

Query

renewal_time > 86400

Naive sub-string

fgrep "renewal"

Note

We cannot compare numbers so we can only search for lines that include
renewal times.

Servers on non-standard ports | Description Lists DHCP servers operating on ports other than the standard port 67.
Query server_port is not 67
Naive sub-string fgrep "port" | fgrep -v "67"

Specific client version usage Description Identifies log entries associated with a specific DHCP client version (3.0.1).
Query client_version is 3.0.1
Naive sub-string fgrep "3.0.1"

DHCPDISCOVER messages Description Lists clients that have sent DHCPDISCOVER messages.
Query DHCP_message_type is DHCPDISCOVER

Naive sub-string

fgrep "DHCPDISCOVER"

XMT Renew messages Description Lists clients that have issued renewal requests.
Query DHCP_message_type is Renew
Naive sub-string fgrep "Renew"

Bad IP checksums Description Identifies packets with incorrect IP checksums.
Query bad IP checksums

Naive sub-string

fgrep "bad IP checksums"

Table 7: DHCP Log Queries

A.2 SSHD Log Queries

Password authentication for | Description Identifies instances where the root account attempted to authenticate using
root a password.
Query authentication_method is password and user_name is root
Naive sub-string fgrep "password" | fgrep "root"
Unusual server ports Description Detects SSH servers operating on non-standard ports (not port 22).
Query bind_port is not 22
Naive sub-string fgrep "port" | fgrep -v "22"
Usage of specific key Description Tracks usage of a particular SSH key based on its fingerprint.
Query key_hash is SHA256:1JC30+heWZCsp5vkBo@dcsZY6bg1Ycx+VwGmmcFhEnc

Naive sub-string

fgrep "SHA256:1JC30+heWZCsp5vkBo@dcsZY6bg1Ycx+VwGmmcFhEnc"

Root user SSH keys Description Retrieves all SSH key fingerprints associated with root user logins.
Query key_hash exists and user_name is root
Naive sub-string fgrep "root" | fgrep "publickey"
Activity from specific IP on spe- | Description Monitors all SSH activity from IP 61.143.236.193 on September 25.
cific date
Query remote_ip is 61.143.236.193 and log_timestamp > sept. 25

00:00:00 and log_timestamp < sept. 26 00:00:00

Naive sub-string

fgrep "61.143.236.193" | fgrep "sept. 25"

Non-SSH terminals for root user | Description Identifies root logins through terminal types other than SSH.
Query terminal_type is not ssh and user_name is root
Naive sub-string fgrep "root" | fgrep "tty" | fgrep -v "tty=ssh"

Root sessions initiated by non- | Description Detects when standard users escalate to root privileges.

root accounts
Query initiating_user_name is not root and user_name is root

Naive sub-string

fgrep "user root" | fgrep -v "root("

Note

This matches the format of the main template that contains this information

“None” authentication attempts

Description

Identifies login attempts using the "none" authentication method.

Query

authentication_method is none

Naive sub-string

fgrep "none"

Activity for specific system and | Description Tracks SSH activity related to a specific process ID on a particular host.
process
Query process_id is 4317 and log_host is LIPC@@3.intranet.local
Naive sub-string fgrep "4317" | fgrep "LIPC@@3.intranet.local"
Host key mentions Description Finds log entries that reference host key files or paths.
Query host_key_path exists

Naive sub-string

fgrep "host key"

Table 8: SSHD Log Queries

A.3 Audit Log Queries

Sudo/su usage by non-root users

Description

Identifies when standard users attempt to use sudo or su commands.

Query

(executable_path contains /sudo or executable_path contains
/su) AND user_id is not 0

Naive sub-string

fgrep "/su" | fgrep -v "uid=0"

Denied write operations for | Description Detects when rsync processes are denied write permissions.

rsync
Query avc_operation contains write and process_name contains rsync
Naive sub-string fgrep "write" | fgrep "rsync"

Specific Target SELinux context | Description Finds log entries with a specific target SELinux context.
Query target_context is system_u:system_r:udev_t:s@-s0:c0.c1023

Naive sub-string

fgrep "system_u:system_r:udev_t:s0-s0:c0.c1023"

Devices that had denied calls to | Description Identifies log entries related to mounting storage devices.
mount
Query device_name exists and process_name is "mount"
Naive sub-string fgrep "mount" | fgrep ’dev=’
Root user logins Description Captures all direct login events for the root user.
Query audit_type is LOGIN and user_id is @
Naive sub-string fgrep "LOGIN" | fgrep "uid=0"
Audit rule removal Description Detects when audit rules are removed from the system.
Query operation contains "remove rule"
Naive sub-string fgrep "remove rule"
SELinux permissive mode set- | Description Identifies when SELinux is set to permissive mode rather than enforcing.
ting
Query selinux_permissive is 1
Naive sub-string fgrep "permissive=1"
Root directory as working direc- | Description Finds processes operating with root (/) as their current working directory.
tory
Query current_working_directory is "/" or current_working_directory

is u/n

Naive sub-string

fgrep "cwd=/ " and fgrep ’cwd="/"’

Non-binary audit enabled flags

Description

Detects when the audit enabled flag is set to a value other than 0 or 1.

Query

audit_enabled is not @ and audit_enabled is not 1

Naive sub-string

fgrep "audit_enabled=" | fgrep -v "audit_enabled=1" | fgrep
-v "audit_enabled=0"

Remote SSH connections to spe-
cific host on specific date

Description Tracks remote hosts that established SSH connections to a particular server
on a specific date.
Query audit_datetime >= Aug 3 and audit_datetime < Aug 4 and terminal

contains ssh and remote_hostname exists and audit_host is
perfc-380g8-01

Naive sub-string

fgrep "perfc-380g8-01" | fgrep "Aug 3" | fgrep "terminal=ssh"
| fgrep "hostname"

Table 9: Audit Log Queries

A.4 Cron Log Queries

List all executed jobs on a host
at a specific date

Description Identifies entries with executable paths on a particular host within a specific
date range.
Query executable_path exists and log_timestamp >= 2017-07-14 and

log_timestamp < 2017-07-15 and log_hostname is httpboot

Naive sub-string

fgrep "CMD" | fgrep "2017-07-14" | fgrep "httpboot"

Entries with scaling factor Description Locates log entries that contain scaling factor information.
Query scaling_factor exists
Naive sub-string fgrep "factor"
Specific process ID Description Finds entries related to a specific process ID.
Query process_id is 24225
Naive sub-string fgrep "24225"
CRON session openings for root | Description Lists all session openings for the root user before a specific date.
Query opened and username is root and log_timestamp < 2017-07-15

Naive sub-string

fgrep "opened" | fgrep "root" | fgrep "2017-07-14"

Note

We cannot compare dates so we look for the day before

CRON session closings

Description

Lists all session closings before a specific date.

Query

closed and log_timestamp < 2017-07-15

Naive sub-string

fgrep "closed" | fgrep "2017-07-14"

Table 10: Cron Log Queries

A.5 Puppet Log Queries

Resource-specific failures for a | Description Retrieves failure reports about a specific Puppet resource on a particular
host host.
Query puppet_resource is Service[galera] AND has failures AND
log_hostname is controlleri
Naive sub-string fgrep "Service[galeral" | fgrep "has failures" | fgrep
"controller1"”
Revoked certificates Description Identifies logs reporting revoked certificates.
Query certificate_common_name exists AND revoked
Naive sub-string fgrep "revoked"
Specific error code on similar | Description Finds hosts with similar naming patterns experiencing a specific error code.
hosts
Query error_code is 14 and log_hostname contains maca

Naive sub-string

fgrep "14" | fgrep "maca"

Host associated with specific re- | Description Identifies the host linked to a particular Puppet request ID.

quest ID
Query request_id is req-9ac8edb7-f81f-44a7-9f34-9a375e7df573
Naive sub-string fgrep "req-9ac8edb7-f81f-44a7-9f34-9a375e7df573"

Interval value changes Description Tracks changes to interval values in Puppet configurations.
Query attribute_name is interval and new_value exists

Naive sub-string

fgrep "interval"

Specific SQL password hash de-
tection

Description Checks if any SQL-related resources contain a specific password hash value.
Query attribute_name is password_hash and new_value
contains D602AB0O2F4227D3EBF5FE6EA@323BD6D586A7454 and

reporting_resource contains sql

Extended Puppet run durations

Naive sub-string fgrep "D602ABO2F4227D3EBF5FE6EA0323BD6D586A7454" | fgrep
n sql n

Description Identifies Puppet runs that took longer than 1 hour (3600 seconds).

Query run_time > 3600

Naive sub-string

fgrep "catalog run"

Note

We cannot compare numbers without parsing

Non-localhost server connec-
tions

Description Lists connections to non-localhost servers by a Puppet agent on a specific
date.
Query server_ip is not 127.0.0.1 and log_hostname is puma@3 and

log_timestamp >= Jan 8 and log_timestamp < Jan 9

Naive sub-string

fgrep "127.0.0.1" | fgrep "puma@3" | fgrep "Jan 8"

Firewall persistence failures Description Identifies cases where firewall rules cannot be persisted.
Query Unable to persist firewall rules
Naive sub-string fgrep "Unable to persist firewall rules"
HTTP URL targets Description Lists log entries with HTTP URL targets.
Query target_url contains http://

Naive sub-string

fgrep "http://"

Table 11: Puppet Log Queries

	Abstract
	1 Introduction
	2 Background
	2.1 System logs
	2.2 Security operations
	2.3 Related work

	3 System architecture
	3.1 Anatomy of a parser
	3.2 Requirements
	3.3 Applying LLMs
	3.4 Template creation
	3.5 Schema creation
	3.6 Schema mapping
	3.7 Normalization

	4 Evaluation
	4.1 Datasets
	4.2 End-to-end performance
	4.3 Template generation evaluation.
	4.4 Schema creation evaluation.
	4.5 OCSF mapping evaluation.
	4.6 Ablation study
	4.7 Efficiency

	5 Discussion
	6 Conclusion
	References
	A Evaluation Queries
	A.1 DHCP Log Queries
	A.2 SSHD Log Queries
	A.3 Audit Log Queries
	A.4 Cron Log Queries
	A.5 Puppet Log Queries

