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Abstract—Nominative signatures allow us to indicate who can
verify a signature, and they can be employed to construct a
non-transferable signature verification system that prevents the
signature verification by a third party in unexpected situations.
For example, this system can prevent IOU/loan certificate verifi-
cation in unexpected situations. However, nominative signatures
themselves do not allow the verifier to check whether the funds
will be transferred in the future or have been transferred. It
would be desirable to verify the fact simultaneously when the
system involves a certain money transfer such as cryptocurren-
cies/cryptoassets. In this paper, we propose a smart contract-
based non-transferable signature verification system using nomi-
native signatures. We pay attention to the fact that the invisibility,
which is a security requirement to be held for nominative
signatures, allows us to publish nominative signatures on the
blockchain. Our system can verify whether a money transfer
actually will take place, in addition to indicating who can verify
a signature. We transform the Hanaoka-Schuldt nominative
signature scheme (ACNS 2011, IEICE Trans. 2016) which is
constructed over a symmetric pairing to a scheme constructed
over an asymmetric pairing, and evaluate the gas cost when a
smart contract runs the verification algorithm of the modified
Hanaoka-Schuldt nominative signature scheme.

Index Terms—Smart contract, Nominative signatures, Non-
transferability

I. INTRODUCTION

A. Background

There are many situations where it is necessary to verify
who has issued certain information. Generally, using a digital
signature scheme makes it possible to verify the issuer of the
information. However, since the usual digital signature scheme
allows for public verification, there is a possibility that the sig-
nature verification could be executed in unexpected situations
for the person handling the information. For example, even
information that one does not want to disclose to third parties,
such as debts, could be verified for its validity.

Here, we introduce an advertisement of investment contracts
as a specific example where the public verifiability of signa-
tures becomes a problem (See Fig 1). Assume that investment
contracts are made between a business operator who conducts
business and an investor who makes investments. When a
business operator seeks to receive more investments, it is
effective to appeal to other capitalists that they have received
investments from investors. When a business operator appeals
that they have received investments, it is assumed that the
business operator produces and publishes a signature on the

contract so that the information can be verified by third-party
capitalists as being issued by the business operator.

Fig. 1. Advertisement of Investment Contracts

Specifically, by attaching a signature to a contract indicating
that the business operator and the investor have entered into a
financial contract, it serves as evidence of the contract between
the business operator and the investor. When the business
operator uses the contract to advertise to capitalists, the
capitalists can indeed verify that the information was issued
by the business operator.1 At the first sight, the system seems
to be feasible when the investor will complete the financial
assistance. However, due to the public verifiability, anyone,
who obtains the business operator’s verification key and the
signed contract, can verify the signature. This raises concerns
that capitalists could use this investment information although
the business operator does not know this fact. A capitalist
could cause trouble by proving the validity of the contract
to a third party without the business operator’s and investor’s
awareness. For example, a capitalist might commit investment
fraud based on the investment information. Therefore, it is
necessary to

appropriately control who can verify the signature.
Additionally, the investor has an incentive to attract more
investments to the business operator they are investing in, as
it increases the likelihood of the business’s success. Note that
considering the possibility that the business operator might
solicit funds through false advertising, the verifiability of the
business operator’s investment should also involve the investor.

From the perspective of the capitalist, it is desirable to
decide whether the capitalist investments or not after confirm-

1Strictly speaking, it is necessary to separately verify that the signature
verification key belongs to the business operator using PKI.
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ing the investor has actually invested. It might be possible
to verify this fact by some means after funds have actually
been transferred from the investor to the business operator.
However, a certain time lag is expected between the conclusion
of the contract and the transfer of funds by considering
the time required for the investor to prepare the funds. It
is unreasonable to wait for the transfer before starting the
advertisement when the business operator wants to advertise to
attract further investments by using the fact of the transfer from
the investor. Furthermore, since the signature is independent to
the funds, and the transfer is conducted between the business
operator and the investor, the capitalist cannot confirm the
presence or absence of the transfer through signature verifica-
tion. Therefore, even if the investor will not transfer the funds
contrary to the contract, the capitalist cannot verify this. This
could result in the capitalist bearing the risk unilaterally. To
solve these problems, a method that can prove that

the funds will be transferred in the future, even
before the transfer,

is necessary. The usual publicly verifiable signature scheme
does not meet these requirements.

B. A Naive Solution and Its Limitation

As a naive and simple solution, we consider to employ
nominative signatures [1]. In a nominative signature scheme, a
new entity called Nominee is defined. A signer and a nominee
jointly generate a signature which is called a nominative sig-
nature, and the nominee proves the validity of the nominative
signature through an interactive protocol with the verifier.
Without the nominee, even the signer or a verifier who has
once participated in verification cannot prove the verification
result to a third party. By taking advantage of this property,
we can expect to construct a system in which the business
operator and the investor can control the verifiability of signed
contracts. Specifically, the business operator is assigned as a
signer and the investor as a nominee, and they jointly generate
a nominative signature (on a contract). The business operator
asks the investor to prove the validity of the contract to the
capitalist, and the investor communicates with the capitalist
to prove it. Due to the property of nominative signatures, the
capitalist cannot prove the validity of the contract to a third
party. The above system allows us to appropriately control
who can verify the signatures. Note that nominative signatures
themselves are still independent to the funds provided. Due to
this reason, nominative signatures are not effective to prove
that the funds will be transferred in the future before the funds
are transferred.

C. Our Contribution

In this paper, we propose a non-transferable signature ver-
ification system.

1) In addition to a nominative signature scheme, we em-
ploy smart contracts to connect a signature with money
transfers.
• Concretely, we connect a signature with money trans-

fers by the following procedure: A business operator

and an investor jointly generate a nominative signature
on the program source code of the smart contract.

2) We also evaluated the performance of the proposed
system using pre-compiled contracts provided by sm-
lXL.inc [2].
• We employ the pairing-based Hanaoka-Schuldt nomi-

native signature scheme [3] in our evaluation.
Smart contracts allow various processes to be executed accord-
ing to pre-defined and publicly disclosed contracts. Therefore,
it is expected that the system will be configured in such a way
that the capitalist can verify the transfer as well. The proposed
system is briefly explained as follows.

1) We introduce a smart contract that manages a transfer.
2) A business operator and an investor jointly generate a

nominative signature on the program source code of the
smart contract, and store the nominative signature on the
smart contract.

3) An operation using a nominative signature in the smart
contract is run after the investor is ready to transfer, which
triggers the transfer.

A wallet on the blockchain can be viewed by anyone, so
the capitalist can check whether or not the transfer has been
made. Also, the capitalist can check whether the funds will
be transferred in the future or not (by the trigger described
in the program), even before the transfer, by checking the
program source code of the smart contract. Note that it is
easy to verify whether or not the transfer to the business
operator has been done by checking the transaction after the
transfer, and that the investor cannot illegally withdraw the
funds from the business operator’s wallet since the funds are
locked by the wallet. In the proposed system, a nominative
signature is stored on a smart contract and disclosed to the
public. However, no information of the business operator and
the investor is revealed due to the invisibility of the underlying
nominative signature scheme. Moreover, due to the security of
the underlying nominative signature scheme, it is guarantees
that both the business operator and the investor agree on
the creation of the nominative signature. It also employed
to prevent the business operator to run the smart contract
without the investor’s approval, and to prevent the investor
from proving to a capitalist that they are willing to make an
investment.

Differences from the proceedings version. An extended
abstract appeared at the 20th Asia Joint Conference on Infor-
mation Security (AsiaJCIS) 2025 [4]. This is the full version.
We declare that all figures presented in this full version are
identical to those published in the proceedings version.

As the additional content, given in Section V, we transform
the Hanaoka-Schuldt nominative signature scheme [3] which is
constructed over a symmetric pairing to a scheme constructed
over an asymmetric pairing, and evaluate the gas cost when a
smart contract runs the verification algorithm of the modified
Hanaoka-Schuldt nominative signature scheme. The reason
behind the transformation is explained as follows.



• A pre-compiled contract smlXL.Inc [2] that we employed
provides elliptic curve operations and pairing computa-
tion on Barreto-Naehrig (BN) curves [5] (bn128), i.e.,
asymmetric pairings. However, the original Hanaoka-
Schuldt nominative signature scheme, that was employed
as the underlying nominative signature scheme in the
proceedings version [4], is constructed over symmetric
pairings.

• We note that asymmetric pairings provide more efficient
implementation compared to that of symmetric pair-
ings [6]. This is due to the difference in the embedding
degree.2 On the other hand, the number of pairing op-
erations may increase because some elements may be
duplicated due to asymmetric pairings.

Because the number of pairing operations is dominant of
the gas cost, we transform the Hanaoka-Schuldt nominative
signature scheme to a scheme constructed over an asymmetric
pairing, and evaluate the gas cost when a smart contract runs
the verification algorithm of the modified Hanaoka-Schuldt
nominative signature scheme. As the result, we confirm that
the number of pairing computations in the TkVerify algorithm
(that is run on the smart contract) does not increase compared
to that of the original Hanaoka-Schuldt nominative signature
scheme.

D. Related Work

Advanced Cryptography in Blockchain. Hash functions
(such as SHA-256) and digital signatures (such as ECDSA)
are widely employed in the blockchain. Towards such a
relatively simple cryptographic primitive, some advanced cryp-
tographic primitives have been considered for blockchain-
oriented applications: zero-knowledge proofs (e.g., [7]–[9]),
linkable ring signatures (e.g., [10], [11]), accountable ring
signatures (e.g., [12], [13]), aggregate signatures (e.g., [14]),
adaptor signatures (e.g., [15]–[21]) and so on. To the best of
our knowledge, no attempt to employ a signature scheme with
controllable verifiability (listed below) to smart contracts has
been considered so far. Since values stored on the blockchain
are made public, providing controllable verifiability of signa-
tures seems to be effective in preserving security or privacy
in the blockchain environment.

Signature Schemes with Controllable Verifiability. In addi-
tion to nominative signatures, many other signature schemes
with controllable verifiability have been proposed. Undeniable
signatures [22] require that the verifier needs to run an interac-
tive protocol with the signer, and it can prevent signatures from
being verified without the signer’s knowledge or consent. Fur-
thermore, the signer can claim that they produced a signature,
but cannot claim that they did not produce a signature when

2Intuitively, the ratio of the size of a point on an elliptic curve (source
group) to the size of the finite field (target group). For example, for a BN
curve with an embedding degree of 12, it is sufficient to set the size of a
source group element is 256 bits (then, the size of a target group element is
3,000 bits that guarantees the hardness of the discrete logarithm problem over
the target group) whereas a symmetric pairing has an embedding degree of
2, it requires that the size of a source group element is 1,500 bits.

they have produced the signature. In some cases, it is desirable
to be able to use an undeniable signature together with a
conventional (i.e., publicly verifiable) signature. Therefore, a
convertible undeniable signature scheme [23] has also been
proposed where the signer can convert a previously issued
undeniable signature to a publicly verifiable signature. In
undeniable signatures, the signer is required to be always
involved to the verification process that increases the workload
of the signer. To solve this problem, confirmer signatures
have been proposed [24] that introduce a third entity called
a confirmer who runs the interactive verification protocol with
the verifier. Online untransferable signatures [25] have also
been proposed as a method to prevent a third party from
verifying the validity/invalidity of a signature by observing the
interactive protocol run between a signer and a verifier online.
In designated verifier signatures [26], the signer designates
a verifier, and only the designated verifier can verify the
signature, and the signer is not involved in the signature
verification process itself. Furthermore, the designated verifier
cannot convince a third party of the validity/invalidity of the
signature.

As a kind of these signatures with controllable verifiability,
nominative signatures have been proposed [1]. In nominative
signatures, which are the dual relationship with undeniable
signatures, the signature holder called nominee can prove
the validity/non-authenticity of the signature to a third party.
Several nominative signature schemes have been proposed so
far [27]–[31]. Schuldt and Hanaoka [32] formalized a security
definition of nominative signatures (we mainly refer to the
full version [3]). As an application of nominative signatures,
a privacy-enhanced access log management mechanism in
single-sign on (SSO) systems has been proposed [33], [34].
The system employs a nominative signature as an access log
stored on the system. Due to the invisibility of the underlying
nominative signature scheme, no information of access user is
reveled from the log whereas users can prove that they have
accessed the system. The proposed system is inspired by the
SSO system because the invisibility is attractive to preserve
privacy in blockchain, especially in a public blockchain where
anyone can observe information stored on the blockchain.

II. ROLES OF ECDSA IN ETHEREUM

In Ethereum, ECDSA signatures are required for the trans-
fer of cryptocurrencies/cryptoassets. Note that the underly-
ing ECDSA signature scheme in Ethereum is not the usual
one and is called recoverable ECDSA in Ethereum Yellow
Paper [35] where it provides the key recovery property: the
verification key is recovered from a signature and a message.
The following is a brief overview of the ECDSA signature
verification process in Ethereum. There are two entities: a
sender and a receiver of the funds. The sender generates
an ECDSA signature on a transaction M using own secret
signing key where (hash value of) the public verification key
is the address of its wallet, and sends the transaction with
the ECDSA signature to the receiver. The receiver recovers
the verification key from the signature and the message. If



(the hash value of) the recovered verification key matches the
sender’s address, it is accepted as a valid signature.

In the proposed system, ECDSA signatures are generated
when funds are transferred from an investor’s wallet. To avoid
any confusion, we do not explicitly specify the recovery phase
in the proposed system and employ the following syntax.
Let (ECDSA.KeyGen, ECDSA.Sign, ECDSA.Verify) be the
ECDSA scheme. The key generation algorithm is denoted as
(vk, sk) ← ECDSA.KeyGen(1λ) where λ ∈ N is a security
parameter, vk is a verification key, and sk is a signing key. The
signing algorithm is denoted as σECDSA ← ECDSA.Sign(sk,
M) where M is a message (transaction) to be signed and
σECDSA is a ECDSA signature. The verification algorithm is
denoted as 1/0← ECDSA.Verify(vk, σECDSA,M).

III. NOMINATIVE SIGNATURES

In this section, we give the definition of a nominative
signature scheme given by Hanaoka and Schuldt [3] that for-
malizes not only the security of nominative signatures but also
covers the conversion procedure that converts a nominative
signature to a publicly verifiable signature. Since a smart
contract cannot run the interactive verification protocols (See
Section IV), we need to employ the conversion functionality.
Due to this reason, we employ the Hanoka-Schuldt’s definition
and scheme in this paper.

A. Syntax

Definition 1 (Syntax of Nominative Signatures [3]).
Setup: The setup algorithm takes a security parameter 1λ as

input, and outputs a public parameter par.
KeyGenS: The signer’s key generation algorithm takes par as

input, and outputs a public/secret key pair (pkS, skS).
KeyGenN: The nominee’s key generation algorithm takes par

as input, and outputs a public/secret key pair (pkN, skN).
Sign: The signing algorithm takes par, pkN, a message to

be signed m, and skS as input, and outputs a signature
generation message δ. This algorithm is run by the signer
who has skS.

Receive: The nominative signature generation algorithm takes
par, pkS, m, δ, and skN as input, and outputs a nominative
signature σ. This algorithm is run by the nominee who
has skN.

Convert: The conversion algorithm takes par, pkS, m, σ, and
skN as input, and outputs a verification token tkσ . This
algorithm is run by the nominee who has skN.

TkVerify: The token verification algorithm takes par, pkS,
pkN, m, σ, and tk as input, and outputs either accept
or reject. Anyone can run the algorithm because it does
not take a secret key as input.

(Comfirm,VC): The interactive protocol for nominative sig-
nature confirmation takes as input par, pkS, pkN, m, and
σ as common input, the Comfirm algorithm takes skN as
input, and outputs either accept or reject. This protocol
is run by the nominee who has skN and the verifier.

(Disavow,VD): The interactive protocol for nominative signa-
ture disavowal takes par, pkS, pkN, m, and σ as common

Fig. 2. Nominative Signatures

input, the Disavow algorithm takes skN as input, and
outputs either accept or reject. This protocol is run by
the nominee who has skN and the verifier.

An outline of a nominative signature scheme is as fol-
lows (See Fig. 2). Let par ← Setup(1λ). A signer runs
(pkS, skS) ← KeyGenS(par). A nominee runs (pkN, skN)
← KeyGenN(par). A signer and a nominee collaboratively
generate a nominative signature on a message m as fol-
lows. The signer generates a signature generation message
δ ← Sign(par, pkN,m, skS), and sends m and δ to the
nominee. The nominee generates a nominative signature σ ←
Receive(par, pkS,m, δ, skN). To verify (m,σ), the nominee
and a verifier run {Comfirm(skN),VC}(par, pkS, pkN,m, σ)
or {Disavow(skN),VD}(par, pkS, pkN,m, σ). The nominee can
convert σ to a publicly verifiable signature (called a token)
tkσ ← Convert(par, pkS,m, σ, skN). Anyone can verify tkσ
by running TkVerify(par, pkS, pkN,m, σ, tkσ).

B. Security of Nominative Signatures

Here, we briefly introduce the security of nominative signa-
tures (See [3] for more details) and briefly introduce the roles
of each security in the proposed system.
Invisibility. It guarantees that even a malicious signer cannot

distinguish between an honestly generated nominative
signature and a random value. Therefore, an adversary
who has the signer’s secret key skS and other information,
and even a verifier who has once participated in the
verification cannot know the correspondence between the
message and the nominative signature. In the proposed
system, this security is employed to guarantee that the
information of business operator and investor is not
leaked when nominative signatures are stored on the
blockchain.

Unforgeability. It guarantees that a legitimate nominative
signature can be obtained only through a signer. In
other words, even a malicious nominee cannot generate
a nominative signature without communicating with the
signer. In the proposed system, this security is employed
to ensure that the investor cannot independently gener-
ate legitimate nominative signatures associated with the



business operator, i.e., it guarantees that both the business
operator and the investor have agreed to produce nomina-
tive signatures (together with Security against malicious
signers as described below).

Security against malicious signers. It guarantees that a le-
gitimate nominative signature is produced only when
the nominee is participated in. In other words, even a
malicious signer cannot generate a legitimate nominative
signature without communicating with the nominee. In
addition, it guarantees that the signer cannot generate
legitimate verification tokens and cannot prove the veri-
fication result to a third party through an interactive pro-
tocol. In the proposed system, this security is employed
to ensure that the business operator cannot generate a
legitimate nominative signature related to the investor by
itself.

Protocol Security. It also was referred as non-transferability.
It guarantees that even a verifier who has executed an
interactive protocol with the nominee and has verified
the signature cannot prove the verification result to a
third party. To satisfy the property, the interactive protocol
needs to be zero-knowledge. In the proposed system,
this security guarantees that a capitalist whose investor
certifies the verification result of a nominative signature
cannot prove the verification result to a third party.

IV. PROPOSED SYSTEM

In this section, we propose a smart contract-based non-
transferable signature verification system using nominative
signatures. In the proposed system, the business operator acts
as the signer and the investor acts as the nominee. They
generate a nominative signature σ on the program source code
of the smart contract, and store σ in a smart contract. Due to
the invisibility, information of the business operator and the
investor is not leaked even σ is stored on the public blockchain.
Note that the verifier needs to choose a random number in the
interactive verification protocols of the underlying nominative
signature scheme. Thus, the smart contact is not allowed to
run these protocols as the verifier because the random number
is disclosed when the smart contract runs these protocols.
Thus, we employ these interactive protocols when the investor
proves the validity of σ to the capitalist off-chain. Tu run
the smart contract, the investor converts σ to tkσ via the
Convert algorithm and sends tkσ to the smart contract that
can be regarded as the trigger of the contract because tkσ is a
publicly verifiable. Note that a ECDSA signature is required
for executing a transaction. Thus, the investor sends a ECDSA
signature σECDSA together with tkσ .

Before giving the proposed system, we consider the cases
that the investor does not follow the procedure. First of all,
we need to consider the case that the investor does not
send (tkσ, σECDSA) to the smart contract (or the case that
(tkσ, σECDSA) sent to the smart contract is invalid). Then, the
smart contract does not transfer the investment to the business
operator. To capture the case, a portion of the investment

amount is paid in advance in the proposed system. The investor
makes an advance payment to the wallet of the business
operator, which is confirmed by the business operator, who
then generates the signature generation message δ and sends
δ to the inverter. Here, we do not consider the case that tkσ is
invalid but σECDSA is valid (then, the investment is transferred
without employing the smart contact by anyone who obtains
σECDSA) because there is no merit of the investor.

A. System Description

We give the proposed non-Transferable signature verifica-
tion system using smart contracts and nominative signatures
as follows (See Fig. 3). We assume that the business operator
and the investor manage own wallet. Moreover, we assume that
they have agreed with the description of the program source
code m of the smart contact and the smart contract has already
been deployed by the business operator.
1. Setup.

1.1. Advance Payment. The investor pays a portion of
the investment amount in advance to the business op-
erator’s wallet. The business operator will not process
any further transactions if the advance payment is not
transferred or is insufficient amount.

1.2. Key Generation. . Let par← Setup(1λ). The busi-
ness operator runs (pkS, skS) ← KeyGenS(par), and
the investor runs (pkN, skN)← KeyGenN(par).

2. Signing by the business operator. The business operator
runs δ ← Sign(par, pkN,m, skS), and then sends the
signature generation message δ to the investor.

3. Signing by the investor. The investor runs σ ← Receive
(par, pkS,m, δ, skN), and then sends σ to the smart con-
tract.

4. Advertisement. The business operator requests the in-
vestor to advertise the investment. The investor and the
capitalist run {Comfirm(skN),VC}(par, pkS, pkN,m, σ)
where the investor acts as the nominee and the capitalist
acts as the verifier.

5. Trigger Generation. Let M be the transaction. The in-
vestor runs tkσ ← Convert(par, pkS,m, σ, skN) and
σECDSA ← ECDSA.Sign(sk,M), and sends tkσ and
(M,σECDSA) to the management smart contract.

6. Investment
6.1. Trigger Verification TkVerify(par, pkS, pkN,m, σ,

tkσ) and ECDSA.Verify(vk, σECDSA,M) are run in
the management smart contract.

6.2. Execution If (tkσ, σECDSA) is valid, the funds are
transferred from the investor’s wallet to the business
operator’s wallet according to the program m and
transaction M If either tkσ or σECDSA is not valid,
the smart contract does not transfer funds.

B. Security of Proposed System

Due to the unforgeability of the underlying nominative sig-
nature scheme, the proposed system guarantees that investors



Fig. 3. Proposed System

cannot generate legitimate nominative signatures without com-
municating with the business operator. Moreover, due to the
security against malicious signers, the business operator cannot
generate legitimate nominative signatures without communi-
cating with the investor. Therefore, it is guaranteed that it is
impossible to forge a legitimate nominative signature without
the agreement of both parties. Due to the invisibility, the
information of the business operator and the investor cannot
be leaked from the nominative signature σ stored on the
public blockchain. Moreover, due to the non-transferability,
the capitalist who has known the verification result cannot
prove the result to a third party.

V. NOMINATIVE SIGNATURES OVER ASYMMETRIC
PAIRINGS

In this section, we transform the Hanaoka-Schuldt nomi-
native signature scheme to employ asymmetric pairings. For
the sake of clarity, we introduced the original scheme as
follows. Hereafter, we denote the zero-knowledge proof of the
relation R between the witness ω and the common input x as
ZKPK{(ω) : R(x, ω)}. With respect to the Comfirm/Disavow
protocol, we use a four-pass interactive zero-knowledge proof
constructed using the Cramer-Damgård-MacKenzie transfor-
mation [36] (Nakagawa et al. [34] described the actual pro-
cedure of the protocols). In the evaluation in Section VI, we
set ℓ = 256 for the plaintext space {0, 1}ℓ. In addition, we
assumed that FS(MS) and FN (MN ) are run by 128-times
additions over elliptic curves on average, respectively, and that
the estimation of the total number of additions is 256.

Original Hanaoka-Schuldt Nominative Signature Scheme
Setup(1λ): Let G1 and GT be groups with prime order p, g

be the generator of G1, and e : G1×G1 → GT be a sym-
metric pairing. Choose collision-resistant hash functions

H1 : {0, 1}∗ → {0, 1}ℓ and H2 : {0, 1}∗ → Zp. Output
par ← (e, p, g,H1, H2). Here, {0, 1}ℓ is the plaintext
space.

KeyGenS(par): Choose αS , v0, . . . , vℓ ← Zp, hS ← G1, and
compute gS ← gαS , ui ← gvi (0 ≤ i ≤ ℓ). Let mi be the
i-th bit of m ∈ {0, 1}ℓ, and define the function FS (m) =
u0

∏ℓ
i=1 u

mi
i . Output pkS ← (gS , hS , u0, . . . , uℓ) and

skS ← αS .
KeyGenN(par): Choose αN , y1, y2, v

′
0, . . . , v

′
ℓ ← Zp,

hN , k ← G1, and compute gN ← gαN and u′
i ←

gv
′
i (1 ≤ i ≤ ℓ). Let mi be the i-th bit of m ∈ {0, 1}ℓ,

and define the function FN (m) = u′
0

∏ℓ
i=1 u

′mi

i .
Then, compute x1 ← gy

−1
1 and x2 ← gy

−1
2 .

Output pkN ← (gN , hN , k, u′
0, . . . , u

′
n, x1, x2) and

skN ← (αN , v′0, . . . , v
′
ℓ, y1, y2).

Sign(par, pkN,m, skS): Choose r ← Zp, and compute MS =
H1(pkN||m), δ1 ← gr, δ2 ← hαS

S FS (MS )
r. Then, output

δ = (δ1, δ2).
Receive(par, pkS,m, δ, skN): Compute MS = H1(pkN||m)

and output ⊥ if e(gS , hS)e(δ1,FS (MS )) = e(g, δ2) does
not hold. Otherwise, choose r, r′, s ← Zp and compute
δ′1 ← δ1g

r′ , δ′2 ← δ2FS (MS )
r′ . Then, compute t ←

H2(pkN||σ1|||σ2||m),MN ← gtks. Let MN,i be the i-th
bit of MN . Compute σ1 ← (δ′1/g

r)y
−1
1 , σ2 ← (gr)y

−1
2 ,

σ3 ← δ′2h
αN

N (δ′1)
v′
0+

∏ℓ
i=1 v′

iMN,i . Output σ ← (σ1, σ2,
σ3, s).

Convert(par, pkS,m, σ, skN): For MS = H1(pkN||m), MN =
gtks, t = H2(pkS||σ1||σ2|||m), output ⊥ if

e(g, σ3) =e(gS , hS) · e(gN , hN )

·e(σy1

1 σy2

2 , FS(MS)FN (MN ))

does not hold. Otherwise, output tkσ ← (σy1

1 , σy2

2 ).



TkVerify(par, pkS, pkN,m, σ, tkσ): For MS = H1(pkN||m),
MN = gtks, tkσ = (tk1, tk2), t = H2(pkS||σ1||σ2||m),
output accept if

e(σ1, g) =e(tk1, x1)

e(σ2, g) =e(tk2, x2)

e(g, σ3) =e(gS , hS) · e(gN , hN )

·e(tk1tk2,FS (MS )FN (MN ))

holds and reject, otherwise
(Comfirm(skN), VC)(par, pkS, pkN,m, σ): For MS = H1

(pkN||m), MN = gtks, t = H2(pkS||σ1||σ2||m), define
e1 = e(g, σ3), e2 = e(gS , hS)e(gN , hN ), e3 = e(σ1,
FS(MS)FN (MN )), e4 = e(σ2, FS(MS)FN (MN )). The
following protocol is executed between the nominee and
a verifier.

ZKPK{(y1, y2) : xy1

1 = g ∧ xy2

2 = g ∧ e1 = e2e
y1

3 ey2

4 }

(Disavow(skN), VD)(par, pkS, pkN,m, σ): The following pro-
tocol is executed between the nominee and a verifier.

ZKPK{(y1, y2) : xy1

1 = g ∧ xy2

2 = g ∧ e1 ̸= e2e
y1

3 ey2

4 }

What we need to consider for transformation? Let G1 ×
G2 → GT be an asymmetric pairing where G1, G2, and GT

are groups with prime order p and g1 ∈ G1 and g2 ∈ G2

are generators. We consider type 3 curves where no efficient
isomorphism between G1 and G2 exist.

If each element belongs to G1 or G2, then the transforma-
tion is easy. However, an element belongs to both groups in the
Hanaoka-Schuldt nominative signature scheme if we naively
assign each element. Concretely, for

σ3 ← δ′2h
αN

N (δ′1)
v′
0+

∏ℓ
i=1 v′

iMN,i

σ3 must belong to G2 because e(g, σ3) is computed. However,
for δ = (δ1, δ2) = (gr, hαS

S FS (MS )
r) (which is a Waters

signature [37] on MS ), δ1 must belong to G1 and δ2 must
belong to G2, respectively, because of the verification equation
e(gS , hS)e(δ1,FS (MS )) = e(g, δ2). Since δ′1 ← δ1g

r′ , δ′1 ∈
G1. This contradicts the computation above. If we assign σ3

to G1 and refine e(g, σ3) to be e(σ3, g), then δ2 must belong
to G1 since δ′2 ← δ2FS (MS )

r′ . Then, FS (MS ) ∈ G1 and
thus hS ∈ G1 because δ2 = hαS

S FS (MS )
r. This contradicts

the computation e(gS , hS).

Our Modification. We duplicate δ1 such that δ =
(δ1, δ2, δ3) = (gr1, g

r
2, h

αS

S FS (MS )
r) ∈ G1 × G2

2 (here,
previous δ2 is renamed as δ3). Then,

σ3 ← δ′3h
αN

N (δ′2)
v′
0+

∏ℓ
i=1 v′

iMN,i ∈ G2

where δ′2 ← δ2g
r′

2 ∈ G2 and δ′3 ← δ3FS (MS )
r′ ∈ G2.

Moreover, we can run the verification equation:

e(gS , hS)e(δ1,FS (MS )) = e(g1, δ3)

To guarantee the security of the modified scheme, three
additional problems happen. First, we additionally need to
check

logg1 δ1 = logg2 δ2

because the same randomness is used for computing δ1 and
δ2. This can be checked via the pairing operation:

e(δ1, g2) = e(g1, δ2)

holds or not. This is the reason behind that we will add
the equation in the Receive algorithm later. The second
problem is more serious. In the security proof of the origi-
nal scheme, the security is reduced to the Waters signature
scheme. In the symmetric pairing setting, the signing oracle
of the Waters signature scheme returns (gr, hαS

S FS (MS )
r) for

the signing query MS . If we simply construct the Waters
signature scheme over G2, then the signing oracle returns
(gr2, h

αS

S FS (MS )
r) ∈ G2

2. However, the simulator has no
way to produce gr1 without knowing r. Thus, the simulator
needs to receive (gr1, g

r
2, h

αS

S FS (MS )
r) ∈ G1 × G2

2 from the
signing oracle. That is, we need to modify the Waters signature
scheme. The third problem is how to modify the decision linear
(DLIN) assumption that is also employed to prove the security
of the original scheme.

We describe the modified nominative signature scheme first
as follows, and we evaluate the modified Waters signature
scheme and the DLIN problem later. Compared to the original
scheme, our modification does not increase the number of
pairing computations in the TkVerify algorithm that is run on
the smart contract.

Modified Hanaoka-Schuldt Nominative Signature Scheme
over Asymmetric Pairings
Setup(1λ): Let G1 × G2 → GT be an asymmetric pairing

where G1, G2, and GT are groups with prime order p and
g1 ∈ G1 and g2 ∈ G2 are generators. Choose collision-
resistant hash functions H1 : {0, 1}∗ → {0, 1}ℓ and H2 :
{0, 1}∗ → Zp. Output par← (e, p, g1, g2, H1, H2). Here,
{0, 1}ℓ is the plaintext space.

KeyGenS(par): Choose αS , v0, . . . , vℓ ← Zp, hS ← G2, and
compute gS ← gαS

1 ∈ G1, ui ← gvi2 ∈ G2 (0 ≤ i ≤ ℓ).
Let mi be the i-th bit of m ∈ {0, 1}ℓ, and define the
function FS (m) = u0

∏ℓ
i=1 u

mi
i ∈ G2. Output pkS ←

(gS , hS , u0, . . . , uℓ) and skS ← αS .
KeyGenN(par): Choose αN , y1, y2, v

′
0, . . . , v

′
ℓ ← Zp,

hN , k ← G2, and compute gN ← gαN
1 ∈ G1

and u′
i ← g

v′
i

2 ∈ G2 (1 ≤ i ≤ ℓ). Let mi

be the i-th bit of m ∈ {0, 1}ℓ, and define the
function FN (m) = u′

0

∏ℓ
i=1 u

′mi

i ∈ G2. Then,

compute x1 ← g
y−1
1

2 ∈ G2 and x2 ← g
y−1
2

2 ∈ G2.
Output pkN ← (gN , hN , k, u′

0, . . . , u
′
n, x1, x2) and

skN ← (αN , v′0, . . . , v
′
ℓ, y1, y2).

Sign(par, pkN,m, skS): Choose r ← Zp, and compute MS =
H1(pkN||m), δ1 ← gr1 ∈ G1, δ2 ← gr2 ∈ G2, and δ3 ←
hαS

S FS (MS )
r ∈ G2. Then, output δ = (δ1, δ2, δ3).

Receive(par, pkS,m, δ, skN): Compute MS = H1(pkN||m)
and output ⊥ if both e(gS , hS)e(δ1,FS (MS )) = e(g1, δ2)
and e(δ1, g2) = e(g1, δ2) do not hold. Otherwise, choose
r, r′, s ← Zp and compute δ′1 ← δ1g

r′

1 ∈ G1, δ′2 ←
δ2g

r′

2 ∈ G2, and δ′3 ← δ3FS (MS )
r′ . Then, compute t←



H2(pkN||σ1|||σ2||σ3||m),MN ← gt2k
s. Let MN,i be the

i-th bit of MN . Compute σ1 ← (δ′1/g
r
1)

y−1
1 ∈ G1, σ2 ←

(gr1)
y−1
2 ∈ G1, and σ3 ← δ′3h

αN

N (δ′2)
v′
0+

∏ℓ
i=1 v′

iMN,i ∈
G2. Output σ ← (σ1, σ2, σ3, s).

Convert(par, pkS,m, σ, skN): For MS = H1(pkN||m), MN =
gt2k

s, t = H2(pkS||σ1||σ2||σ3|||m), output ⊥ if

e(g1, σ3) =e(gS , hS) · e(gN , hN )

·e(σy1

1 σy2

2 , FS(MS)FN (MN ))

does not hold. Otherwise, output tkσ ← (σy1

1 , σy2

2 ) ∈ G2
1.

TkVerify(par, pkS, pkN,m, σ, tkσ): For MS =
H1(pkN||m), MN = gt2k

s, tkσ = (tk1, tk2),
t = H2(pkS||σ1||σ2||σ3||m), output accept if

e(σ1, g2) =e(tk1, x1)

e(σ2, g2) =e(tk2, x2)

e(g1, σ3) =e(gS , hS) · e(gN , hN )

·e(tk1tk2,FS (MS )FN (MN ))

holds and reject, otherwise
(Comfirm(skN), VC)(par, pkS, pkN,m, σ): For MS = H1

(pkN||m), MN = gt2k
s, t = H2(pkS||σ1||σ2||σ3||m),

define e1 = e(g1, σ3), e2 = e(gS , hS)e(gN , hN ),
e3 = e(σ1, FS(MS)FN (MN )), e4 =
e(σ2, FS(MS)FN (MN )). The following protocol is
executed between the nominee and a verifier.

ZKPK{(y1, y2) : xy1

1 = g2 ∧ xy2

2 = g2 ∧ e1 = e2e
y1

3 ey2

4 }

(Disavow(skN), VD)(par, pkS, pkN,m, σ): The following pro-
tocol is executed between the nominee and a verifier.

ZKPK{(y1, y2) : xy1

1 = g2 ∧ xy2

2 = g2 ∧ e1 ̸= e2e
y1

3 ey2

4 }

Evaluation of the Modified Waters Signature Scheme. What
we need to evaluate here is whether the Waters signature
scheme provides existentially unforgeability against chosen
message attack (EUF-CMA) when a signature is modified as

(gr1, g
r
2, h

αHW (m)r) ∈ G1 ×G2
2

where h ∈ G2, α ∈ Zp, and HW : {0, 1} → G2 is the Waters
hash.

We revisited the original security proof [37]. Let
(g, ga, gb) ∈ G3 be an Computational Diffie-Hellman (CDH)
instance where e : G × G → GT is a symmetric pairing. In
the original security proof, for a signature (gr̃, hαHW (m)r̃),
the randomness r̃ is implicitly set as r̃ := r − a

F (v) to
cancel out hα = gab (which is the solution of the CDH
problem) for computing hαHW (m)r̃. Here, a is contained in
the CDH instance, α := a, and r is a randomness chosen by
the simulator. We omit the definition of F (v) since it is not
necessary in the evaluation below.

To simulate this procedure when (gr̃1, g
r̃
2, h

αHW (m)r̃) is
computed, we need to define a CDH problem over asymmetric
bilinear groups: for (g1, g

a
1 , g2, g

a
2 , g

b
2) ∈ G2

1 × G3
2, compute

gab2 . The modified Waters signature scheme is EUF-CMA
secure under the modified CDH assumption.

Modification of the DLIN problem. The original security
proof employs the DLIN problem: for (x1, x2, x

a
1 , x

b
2, g

c),
decide c = a + b or not. x1 and x2 are directly
used as is, and σ1 := xa

1 and σ2 := xb
2 (i.e.,

implicitly set a := y1 and b := y2). Moreover,
σ3 := hαS

S (gc)v0+
∏ℓ

i=1 viMS,ihαN

N (gc)v
′
0+

∏ℓ
i=1 v′

iMN,i and
claimed that (σ1, σ2, σ3, s) is a valid signature when c =
a + b (here, s is picked by the simulator). To embed
the instance to the modified scheme, we need to de-
fine a DLIN problem over asymmetric bilinear groups: for
(x1,1, x2,1, x

a
1,1, x

b
2,1, x1,2, x2,2, x

a
1,2, x

b
2,2, g

c
2) ∈ G4

1 ×G5
2, de-

cide c = a+ b or not, since σ1, σ2 ∈ G1 and x1, x2 ∈ G2 in
the modified scheme. In the simulation, set x1 := x1,2 ∈ G2,
x2 := x2,2 ∈ G2, σ1 := xa

1,1 ∈ G1, σ2 := xb
2,1 ∈ G1, and

σ3 := hαS

S (gc2)
v0+

∏ℓ
i=1 viMS,ihαN

N (gc2)
v′
0+

∏ℓ
i=1 v′

iMN,i ∈ G2.

VI. PERFORMANCE EVALUATION

Gas Cost. In this section, we estimate the gas cost of the
proposed system when the TkVerify algorithm is run by
the smart contract. First, we need to select the underlying
nominative signature scheme. Due to the progress of quantum
computers, one may think that we should employ a lattice-
based nominative signature scheme, e.g., [38]. However, to the
best of our knowledge, no pre-compiled contract providing a
lattice-based cryptographic scheme has been published so far.
Moreover, currently, ECDSA is necessary to issue a transaction
which is secure under the discrete-logarithm problem over
elliptic curves [39], [40] and is not a post-quantum cryp-
tography (PQC). Thus, replacing the underlying nominative
signature scheme to be PQC does not affect the post-quantum
security of the proposed system. Thus, we employ the pairing-
based Hanaoka-Schuldt nominative signature scheme [3] in
our evaluation.

We employed a pre-compiled contract provided by sm-
lXL.Inc [2] that allows us to run the smart contract efficiently.
It provides elliptic curve operations and pairing computation
on Barreto-Naehrig (BN) curves [5] (bn128). First, we intro-
duce a benchmark of pairing computations and additions over
elliptic curves in Table I.

TABLE I
PROCESS AND GAS COSTS

Process Gas cost (Unit)
Pairing 45, 000 + 34, 000 ∗ n
Addition over elliptic curves 150

Here, n is the number of pairing computations. Precisely, n
increases for every 192 bytes of input size. In the Hanaoka-
Schuldt nominative signature scheme, eight pairing computa-
tions are required in the TkVerify algorithm. By considering
the gas cost in table I, the gas cost for running the TkVerify
algorithm is estimated to be 317,000 + 150 * 256 = 355,400
Units (0.00629058 ETH (11.2 U.S. dollars) by the rate on
March 14, 2025)). The gas cost for verifying a ECDSA
signature on the pre-compiled contract is just 3,000 Units
(when the algorithm that recovers the verification key from



the ECDSA signature and the message, called ecRecover,
is executed). It should be noted that running the ecRecover
algorithm is an essential procedure in Ethereum, and it can be
assumed that there is a consensus that this level of gas cost is
acceptable to run smart contracts.

Our estimation indicates that the execution of the TkVerify
algorithm requires about 120 times higher gas cost than that
of the key recovery process of ECDSA, and we cannot say
that the proposed system is efficient in practice. Nevertheless,
we claim that our proposal is meaningful to demonstrate the
feasibility of a smart contract-based system when enhanced
cryptographic primitives such as nominative signatures are
employed.

VII. CONCLUSION

In this paper, we proposed a non-transferable signature
verification system. We employed both the smart contract
and a nominative signature scheme, and estimate the gas
cost for running the system. Currently, the proposed system
is not sufficiently practical due to the number of pairing
computations of the underlying nominative signature scheme.
Proposing an efficient nominative signature scheme is also an
important future work since eight pairing computations are
dominant of the gas cost. In addition, it is also a future work
to enable lattice-based nominative signatures to be handled on
smart contracts that may reduce the gas cost.
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