
ar
X

iv
:2

50
6.

17
37

1v
1

 [
cs

.C
R

]
 2

0
Ju

n
20

25

Secret Sharing in 5G-MEC: Applicability for joint
Security and Dependability
1st Thilina Pathirana

Department of Electrical Engineering and Computer Science
University of Stavanger)

Stavanger, Norway
thilina.pathirana@uis.no

2nd Ruxandra F. Olimid
Department of Computer Science

University of Bucharest)
Bucharest, Romania

ruxandra.olimid@fmi.unibuc.ro

Abstract—Multi-access Edge Computing (MEC), an enhance-
ment of 5G, processes data closer to its generation point,
reducing latency and network load. However, the distributed and
edge-based nature of 5G-MEC presents privacy and security
challenges, including data exposure risks. Ensuring efficient
manipulation and security of sensitive data at the edge is
crucial. To address these challenges, we investigate the usage
of threshold secret sharing in 5G-MEC storage, an approach
that enhances both security and dependability. A (k, n) threshold
secret sharing scheme splits and stores sensitive data among n
nodes, requiring at least k nodes for reconstruction. The solution
ensures confidentiality by protecting data against fewer than
k colluding nodes and enhances availability by tolerating up
to n − k failing nodes. This approach mitigates threats such
as unauthorized access and node failures, whether accidental
or intentional. We further discuss a method for selecting the
convenient MEHs to store the shares, considering the MEHs’
trustworthiness level as a main criterion. Although we define
our proposal in the context of secret-shared data storage, it can
be seen as an independent, standalone selection process for 5G-
MEC trustworthy node selection in other scenarios too.

Index Terms—5G-MEC, security, dependability, secret sharing

I. INTRODUCTION

The fifth-generation mobile network (5G) technology allows
high speed, low latency, and reliable data transfers. This facil-
itates scenarios like the Internet of Things (IoT), smart cities,
self-driving cars, and other applications. Multi-access Edge
Computing (MEC), previously known as Mobile Edge Com-
puting [1], [2], enriches the 5G’s potential as the computations
are performed at the edge. By design, MEC minimizes overall
latency and makes optimum use of the bandwidth resources by
performing work close to the source. Similarly, local storage
is a real benefit present in several IoT applications, including
smart homes, wearables, healthcare, environment monitoring,
and farming [3], [4]. As a consequence, MEC has lowered its
reliance on centralized cloud architectures.

On the other side, because of the distributed and de-
centralized nature of the 5G-MEC environment, as well as
its placement in insecure physical locations and the use of
wireless connectivity, data storage at the edge is vulnerable
to various security threats. The edge nodes are often placed

This work was supported by the Research Council of Norway through the
5G-MODaNeI project (no. 308909).

in unguarded or even hard-to-secure locations so that they
can face physical attacks due to easy access. Attacks such
as Distributed Denial of Service (DDoS) can flood the infras-
tructure by attacking several edge nodes and thus disrupting
the service and data availability. Furthermore, edge nodes are
equipped with limited capabilities that restrict the adopted
security protocols, which, again, puts them at risk. All this
becomes even more significant as the end-users normally own
the data collected at the edge, so data is highly sensitive.
This is the case of healthcare, financial, or any other personal
data that is processed at the edge. Data protection laws (for
instance, GDPR [5]) pose a challenge in a distributed edge
environment since there is a need to enforce rules on how
data is stored and processed.

In this context, over the years, different cryptographic
methods have been investigated and used. In particular, secret
sharing [4] has proven its applicability in many scenarios,
including networking. A Secret Sharing Scheme (SSS) splits
into several shares and further reconstructs the original data at
need, using a qualified set of shares. Shamir’s (as any threshold
SSS) asks for any set qualified to reconstruct to have at least
a given threshold k of shares [6]. 5G-MEC can employ its
decentralized design to store these shares over the edge nodes.
By construction, the solution facilitates theoretical perfect data
secrecy when fewer than k nodes are compromised and failure
tolerance up to n− k failing nodes.

A. Motivation

The motivation of this paper is two-fold.
Firstly, there is a need for 5G-MEC solutions that are jointly

secure and dependable. This holds especially in the rise of
mission-critical scenarios such as emergencies (e.g., remote
medical emergency, emergency communications) that have
strict requirements on both security and dependability: the
communication must not be tampered with and must remain
functional regardless of intentional attacks or unintentional
faults. Hence, looking at building blocks that offer both
security and dependability by construction, such as threshold
cryptography - in particular, secret sharing - is a natural
direction to investigate. Several research questions remain
open. Are such primitives appropriate to use in 5G-MEC to
offer joint security and dependability by construction? If so,

https://arxiv.org/abs/2506.17371v1

under what scenarios and how can/should they be integrated
to maximize success?

Secondly, 5G-MEC data storage brings lower latency and
bandwidth consumption than other established solutions, e.g.,
the cloud. However, this comes at the cost of placing nodes
close to end users, which by design increases security risks
and decreases storage capabilities. Individual MEC nodes
are exposed to intentional attacks and prone to unintentional
failures, which can cause sensitive data exposure, data loss
and/or unavailability of services. Such an undesired behavior
becomes relevant, especially in scenarios where high-volume
data are generated continuously, such as smart cities with
autonomous vehicles and real-time surveillance.

B. Novelty and Contributions

Motivated by the reasons mentioned above, we investigate
the utility of secret sharing in 5G-MEC as a cryptographic
primitive that provides both data security and redundancy by
construction. We then focus on 5G-MEC data storage and
investigate to what extent secret sharing, in particular, Shamir’s
scheme [6] - could help satisfy both security and dependability
needs. We investigate an algorithm to select the 5G-MEC
nodes used in the sharing to maximize trustworthiness and
availability and decrease communication latency. We perform
a theoretical analysis and conduct a basic testbed experiment
using Simu5G [7]. Our main contributions are as follows.

• We investigate how secret sharing was used in the litera-
ture to enable security and/or dependability in 5G-MEC.

• We integrate secret sharing in the context of 5G-MEC
data storage as a solution that brings data security and
redundancy by construction and discuss its feasibility in
terms of security, dependability, and performance. Our
analysis encompasses theoretical and practical methods.

• We discuss a method for the 5G-MEC node selection,
considering the nodes’ trustworthiness level and their
capabilities. Our proposal is defined in the context of
secret-shared data storage. However, in other scenarios, it
can also be seen as an independent, standalone selection
process for 5G-MEC trustworthy node selection.

C. Outline

The paper is organized as follows. Section II briefly dis-
cusses the existing literature in two directions: (1) secret
sharing utility in 5G-MEC and (2) storage solutions, which
presents (A) distributed storage in 5G-MEC and (B) the role
of secret sharing in distributed storage. Section III gives the
preliminaries in terms of 5G-MEC storage solutions and secret
sharing. Section IV proposes a secure storage solution for
MEC based on Shamir’s scheme, including an implementation
exemplification and discussing a process for selecting the
MEHs to store the shares. Section V discusses the proposed
solution in terms of security and dependability, with a focus on
performance and introduced complexity. Section VI concludes.

Secret sharing
applicability in

5G-MEC

Secure and reliable
data transmission
(multi-path routing)

Secure authentication
data protocols

Network traffic
anonymization

Key management

Secure and reliable
(fault-tolerance
resistant) data

storage

Artificial intelligence
(Federated Learning)

Secure group
communication

Fig. 1. Applicability of secret sharing in 5G-MEC

II. RELATED WORK

A. Secret Sharing in 5G-MEC

In the literature, secret sharing was proposed to improve
several aspects concerning privacy and security in 5G-MEC.
Fig.1 illustrates the applicability of secret sharing in 5G-
MEC, even though some aspects are not explicitly discussed
in the literature in the exact context of 5G-MEC. We thus
focus on 5G-MEC but sometimes refer to related scenarios
(general MEC or 6G) that can be, to some extent, applicable
to 5G-MEC. Note that the existing literature on secret sharing
usage in networking in general, also in relation to security
and dependability, is much larger. In particular, [4] lists
the applicability of secret sharing in close-related domains,
including IoT, cloud, and smart grids.

Data transmission. Liyanage et al. [8] illustrate the use
case of the SDN controller that chooses multiple paths in the
network to transmit different parts of the data stream.

Zhao et al. [9] mention threshold secret sharing as a
representative for multipath routing in 6G edge networks, too,
as a solution to provide both increased security (data is difficult
to be stolen) and reliability (data has a certain level of fault
tolerance).

Network traffic anonymization. Niewolski et al. [10] propose
to anonymize six network parameters - the source and desti-
nation MAC addresses, IP addresses, and ports - by bitwise
xor-ing with shares of a secret, using rules configured on the
UPF core and UPF MEC.

Key management. Wang [11] uses Shamir’s secret sharing
to design a key exchange protocol for secure communications
between end devices and edge devices.

Zhang et al. [12] propose a data storage and sharing scheme
for blockchain-based mobile-edge computing. In particular,
they use secret sharing to share a private signing key and
store the encrypted shares in the blockchain. The solution
is debatable because storing sensitive data in the blockchain
(in particular private keys) is a bad practice, even if the
stored data is encrypted. Sun et al. [13] propose a data-
sharing model for intelligent terminals, which introduces a key
self-certification algorithm and uses Shamir’s secret sharing
to secure a key distribution process. The proposed solution
uses expensive primitives and technologies such as public

key encryption, bilinearity, blockchain, etc. It is worth noting
that the advantage of sharing an encryption key (rather than
the data) is clear in terms of storage savings. However, this
weakens security, making data reveal computationally hard
(not theoretically secure, as in the case of direct sharing of
the data). In this work, we are not interested in sharing keys
but only the data directly.

Artificial Intelligence. Ari et al. [14] mention secret sharing
in the context of federated learning for IoT data monitoring
and analysis at the edge to allow clients to hide their model
contributions to the server. Similarly, Wang et al. [15] design
a lightweight privacy protection protocol based on threshold
secret sharing and weight masks in the context of federated
learning under edge computing for healthcare.

B. Storage Solutions

We further consider existing storage solutions from two dif-
ferent perspectives: (1) storage in 5G-MEC (sometimes MEC
in general) and (2) secret sharing-based storage solutions,
regardless of the context.

1) Storage Solutions in 5G-MEC: Al Ridhawi at el. [16]
propose a solution that replicates files and service tasks from
the cloud to MEC servers. Replication at the MEC servers
can be expensive, and thus performed for highly requested
data. Moreover, replication is also present at the end user by
caching the highly-accessed data. This approach ensures fast
data access and creates an interactive environment in 5G due
to the possibility of user-MEC collaboration to share content.

Makris et al. [17] present challenges related to distributed
storage in the context of edge computing in terms of latency,
data accessibility, data accuracy, scalability, interoperability
between hardware and software, and security. They point
out that storage approaches used in edge nodes require less
complexity than those used in cloud nodes [17]. They
evaluate MinIO [18], BigchainDB [19], and IPFS [20]. Each
of the mentioned solutions provides a different type of storage
(object, blockchain, and file storage), which can be considered
suitable for edge computing. MinIO, however, stands out for
its decentralization and scalability. While blockchains offer
data integrity and transparency, they bring high computational
and storage requirements that are not suitable for edge nodes.
The study also notes that although encryption improves se-
curity, it puts additional pressure on the system resources,
which asserts that there is a compromise between efficiency
and security in existing edge storage solutions.

According to both [21] and [22], distributed storage
frameworks that utilize Kubernetes [23] and MinIO [18] are
proposed to achieve optimal data management in 5G-MEC
settings. Although these systems exhibit their efficiency in
data processing and durability, they also indicate security con-
straints, particularly related to encryption and authentication
for mobility and handovers in 5G networks. The decentralized
storage of data and the implementation of dynamic mecha-
nisms engender both exposure risks and challenges relating
to stringent access control, primarily when seeking to protect
privacy at 5G-MEC edge nodes. In addition to attempts to

enhance security through lightweight solutions, these measures
may still prove insufficient for managing the high-rate, low-
latency demands of 5G, as they lack broad protection protocols
and suitable responses to time-sensitive security risks, partic-
ularly when sensitive data is managed across both the cloud
and the edge nodes. In relation to secret sharing, the R-Drive
encryption used in [21] makes use of 256-bit AES encryption
where the key is split using Shamir’s SSS (in the all-or-nothing
settings). Without arguing here the selection of the Shamir SSS
instead of a more efficient all-or-nothing scheme (e.g., XOR-
based), we note that this solution fundamentally differs from
ours in that it shares the key, not the data itself. Although this
approach has its own advantages (e.g., lower processing), the
confidentiality remains computational.

Sagor et al. [24] propose a MEC-based storage solution
focused on disaster response and tactical scenarios in Cyber-
Physical Systems while maintaining the data secure and ac-
cessible. Even though the system is effective for mission-
critical applications that call for minimal latency and high
fault tolerance, it has particular limitations. Using adaptive
erasure coding at the edge introduces computational burdens,
and depending solely on one master node can lead to data loss
or high latency if a failure occurs during important missions.

Chen et al. [25] look into a cloud-edge collaborative fault-
tolerant storage method to strengthen fault tolerance and
storage efficiency. Their solution depends heavily on the cloud,
causing latency issues in 5G-MEC time-sensitive applications.
Cloud-based parity storage makes data vulnerable to intercep-
tion during the transfer. Adding erasure coding and Software-
Defined Networking (SDN) increases complexity and the
overhead that reduces performance levels during heavy traffic
and critical, real-time 5G-MEC applications.

2) Secret Sharing-Based Storage Solutions: Over the years,
secret sharing has been successfully used to secure data stor-
age. Compared to traditional solutions, secret-sharing-based
solutions have some considerable advantages. By design, they
bring theoretical security1, in opposition to the computational
secrecy obtained by encryption. They also introduce depend-
ability by default (as the data is split over several nodes and
can be recovered even if some nodes are unavailable), thus
eliminating the need for additional backup solutions.

Examples include PASIS [26], a threshold-secret sharing-
based storage system, and GridSharing [27], an all-or-nothing
secret sharing-based solution, POTSHARDS [28], which com-
bines the principles of the previous two, the Redundant Array
of Independent Disks (RAID) distributed algorithms for data
recovery,

OceaneStore [29], used as the storage layer for the ePOST
serverless email system [30], Glacier [31], and AONT-RS [32],
implemented in Cleversafe solutions, later acquired by IBM.
Other solutions that use secret sharing for cloud storage (e.g.,
[33], [34]) or in blockchain (e.g., [13], [35]) are also available.

The literature on storage solutions that use secret-sharing
is quite vast, so it is out of our scope here to provide a

1Up to compromising enough nodes, in case of threshold secret sharing.

MEH collocated
with ESI and gNB

ESI

MEH collocated
with ESI and gNB

Smart
City

-
End

Devices

UPF

MEH

ESI

UPF

MEH

ESI

UPF

MEH

ESI

MEH collocated
with ESI and gNB

UPF

MEH

ESI

MEH collocated
with ESI and gNB

MEH collocated
with ESI and gNB

UPF

MEH

Fig. 2. Scenario overview: Smart city using MEH equipped with ESI in 5G
networks

comprehensive image of the existing works. We further restrict
the presentation of the work within the settings of the edge.

Pu et al. [36] propose a distributed edge storage scheme
named R2PEDS, which makes use of secret sharing. The
authors claim the solution is to preserve privacy while allowing
for data recovery. However, the proposed solution tries to
minimize storage by using secret sharing in a deterministic
way defined by the data. An in-depth security evaluation of
the proposal is out of our scope. However, this approach
has already been proven insecure in the literature [37] and
should not be followed. To maintain the security properties of
Shamir’s scheme, the coefficients of the polynomial - except
the free term, which equals the shared secret - must be
randomly chosen. Hence, the dimension of each share equals
the dimension of the shared secret. A direct consequence of
this is an overhead in storage. For these reasons, we are not
interested in comparison with [36].

III. PRELIMINARIES

A. 5G-MEC and the Edge Storage Infrastructure (ESI)

In smart cities, much of the collected data is (pre-) processed
at the edge of the network [38]. To facilitate the overall
performance in the 5G networks, a new technology called
the Multi-Access Edge Computing (MEC) moves some of the
functionalities close to the end user. In the 5G-MEC setup,
the MEC infrastructure deployed at the edge, known as MEC
Hosts (MEHs), can be collocated with the 5G base stations,
called gNBs [2]. A MEH is defined as an entity that provides
compute, storage, and network resources for MEC applications
[39] When collocated with 5G base stations, the gNB can
offload tasks from the MEH, e.g., by providing storage services
and computing services and thus helping in lowering latency
and transmission burden [40].

The MEHs might be further enhanced with a component to
facilitate large data storage. Inspired from the literature [41]2,

2The reference is not on 5G-MEC but edge in general.

we will refer to this as the Edge Storage Infrastructure (ESI).
Depending on the architectural design choices, this might also
be perceived as a Storage Area Network (SAN) that is attached
to the User Plane Function (UPF) of the 5G-MEC. A SAN
is a network with a special purpose - to transfer data to and
from storage elements, using a communication infrastructure,
and that can come in different flavors, e.g., Virtualized SAN
(VSAN) [42]. Therefore, we can consider the scenario where
the (pre-)processing takes place in the MEHs, but the (large)
storage is outsourced to the SAN. This approach might be of
particular interest in case of high storage necessities at the
edge. Note that we use the SAN as an exemplification, but
any solution that allows the MEHs to directly and efficiently
exchange stored data (regardless of whether the data is stored
internally or externally in the MEH) is of interest. In the
settings of a distributed ESI, we assume a one-to-one relation
between an MEH and a storage node. We further assume
that the MEH and the storage are collocated and refer to this
assembly as a node, or sometimes as simply the MEH. Thus,
an MEH can access its own storage and, by case, send stored
data to other MEHs. Note that although we refer to this in the
settings of 5G-MEC, the solution can be suitable for MEC
in general, not necessarily using the 5G connectivity. In the
following, we consider all the internals transparent, regardless
of the detailed implementation. Fig. 2 illustrates the given
settings, focusing on one single node, which is highlighted.

The usability of such an approach is of particular interest in
smart cities, where devices such as sensors and cameras collect
vast quantities of data, much of this data being sensitive.
In the case of smart city surveillance systems, MEHs are
placed between the monitoring devices and the cloud [43].
This way, the MEC layer only sends necessary and lesser
data (e.g., summaries of data) to the cloud [44]. However, by
design, the MEHs are less resourceful devices and might need
more data storage space to accommodate the high amount of
data. Sending the data to a cloud would create latency issues
and bandwidth constraints [45], so using 5G-MEC to process
large raw data and analyze it at the edge is preferable. As
given above, an architecture with MEHs equipped with storage
functionalities such as SAN would be a way to achieve this.

B. Secret Sharing

Secret Sharing Schemes (SSS) are cryptographic primitives
that allow one party, called the dealer3 to share a secret into
several shares such as qualified sets of parties can reconstruct
the secret, while unqualified set of parties cannot. We will
further denote the shared secret by s, the space of possible
secrets by S (i.e., s ∈ S), the dealer by D, and the set of
parties by P = {P1, . . . , Pn}, with n > 1 the number of
parties. We allow the dealer D to be both one of the parties
in P or an external party. We formally define SSS as follows:

Definition 3.1: A Secret Sharing Scheme (SSS) Π is a pair
of algorithms (Sh,Rec), where:

3In the literature, there exist SSS without a dealer too, but we ignore those,
as they are not relevant for our current purpose.

• Sh is a randomized algorithm that on input a secret s ∈ S
and a set of parties P = {P1, . . . , Pn}, with n > 1 returns
a set of shares sh = (sh1, . . . , shn), where share shi

corresponds to the party Pi, for all i = 1, . . . , n.
• Rec is a deterministic algorithm that, on input, a subset

of shares sA = {shi|i ∈ A, A qualified} ⊆ sh returns s.
Threshold SSS is a particular implementation of SSS, for

which the secret can be recovered if the number of parties
participating in reconstruction is at least equal to a given
threshold. Let this threshold be k, with 1 < k ≤ n. Then, any
sub-set of participants A ⊂ P with card(A) ≥ k is qualified
(i.e., parties in A can recover s), and any sub-set of participants
B ⊂ P with card(B) > k is unqualified (i.e., parties in B
cannot recover s). An SSS is perfect if, for any unqualified
set of parties B, it holds that B cannot find any information
about s. This means that the secret s remains perfectly hidden
to B, in the sense that the set of shares in B gives no extra
information about s. Shamir’s SSS [6] is probably the most
popular threshold SSS, also providing perfect secrecy.

Definition 3.2 (Shamir’s SSS [6]): Shamir’s SSS Π =
(Sh,Rec) is defined as follows:

• Sh: Choose f ←R Polyk−1[X] with f(0) = s, where
Polyk−1[X] is the set of polynomials of degree k − 1
with coefficients in S, and ←R is the uniformly random
sampling of f in Polyk−1[X], then compute shi = f(i),
for all i = 1, . . . , n.

• Rec: Reconstruct s =
∑k

i=1 shi

∏k
j=1,j ̸=i

xj

xj−xi
, where

A = {shi, i = 1, . . . , k} is qualified.
Note that the polynomial f is randomly chosen for each

sharing, such as its degree is k − 1 and its free term is s
(i.e., f(0) = s), the secret to being shared. Also note that,
without losing generality, we stated the definition for A with
card(A) = k, the smallest set length to allow reconstruction
(more than k shares will also allow reconstruction, e.g., by
simply ignoring some of the shares).

IV. THE SOLUTION

We use a (k, n)-threshold SSS (in particular, Shamir’s SSS)
to build a storage system for 5G-MEC under the assumptions
given in Section III-A, which is simultaneously secure and
fault-tolerant by construction. The data is split into n shares,
each being stored on a different node. The original data can
only be reconstructed by combining at least k (out of the n)
shares. By construction, this approach assures functionality for
up to n−k inaccessible nodes. The inaccessibility of the nodes
can be caused by either intentional attacks or unintentional
failures. As in [16], data is - to some extent - replicated
at the edge, in the sense that the dimension of the overall
stored secrets is increased in comparison with the initial data.
However, if [16] replicates highly accessed data, we are now
interested in sharing highly sensitive data.

We assume that the secret sharing and reconstruction func-
tionalities are implemented into a MEC application, further
referred to as MECShApp. This application is placed on
the MEHs and runs whenever triggered, to store or retrieve

MEH collocated
with ESI and gNB

Smart
City

-
End

Devices

UPF

MEH

ESI

UPF

MEH

ESI

UPF

MEH

ESI

MEH collocated
with ESI and gNB

UPF

MEH

ESI

MEH collocated
with ESI and gNB

MEH collocated
with ESI and gNB

MEHShApp - Active Mode

Data shares

MEHShApp - Idle Mode

UPF

MEH

ESI

MEH collocated
with ESI and gNB

Fig. 3. MECShApp - Smart City scenario

sensitive data originating from a User Equipment (UE) via
the 5G radio interface (we refer to the UE regardless of
whether it is a user device or a sensor, a camera, etc.). Mul-
tiple MEC applications can run simultaneously on an MEH,
and continuously running MECShApp on all nodes becomes
resource-consuming. Therefore, the MECShApp could accept
two modes: Active and Idle, with Idle being the resource-
saving mode. Fig.3 illustrates these settings.

A. Goals

The two main goals of the proposed solution are data
secrecy and data availablity. Data secrecy ensures the privacy
of the data in the sense that the data should remain hidden
from unauthorized parties. Data availability ensures that data
are available to authorized parties at request, including data
recovery in case of intentional or unintentional faults. As a
secondary goal, performance ensures low overhead in data
transmission, data storage, and computation cost.

B. Functionality

Fig. 4 illustrates the data sharing process performed by the
MECShApp. The user equipment UE collects the data and
sends it to MEH0 (step 1). Then, MEH0 runs the SSS
algorithm to create n shares. Once the shares are created,
MEH0 keeps one share local and sends the other n−1 shares
to the other MEH servers (step 2).

When data retrieval is triggered, the MECShApp selects
k − 1 nodes MEH1, . . . ,MEHk (without losing generality,
after a possible reordering) and requests their shares. In
response to its request, MEH0 receives the shares (step 3)
and reconstructs the original data from the shares (step 4).

We have assumed that the process runs smoothly in the
sense that there are no errors, interruptions, etc., and that
all nodes are reachable and respond with their shares upon
request. Of course, by case, MEH0 might request more than

Step 1: Data Collection

Step 2: Secret sharing and Distribution (by MEH0)

Step 3: Data Retrieval

Data
UE MEH0

MEH0

MEH1

MEH2

MEHn

...

Step 4: Data Reconstruction (by MEH0)

Shared data

Shares

Sh

Rec...

s

s

MEH0

MEH1

MEH2

MEHk

Fig. 4. Functionality of the MECShApp

UE APP

MEC Orchestrator

UPF

5G Core

Virtual Box

Simu 5G

Virtual Box 1Gbps virtual network

ESI

MEH0

ESI

MEH1

ESI

MEH2

ESI

MEH3

ESI

MEH4

ESI

MEH5

ESI

MEH6

Fig. 5. Testbed setup

k (and up to n) shares from the start to avoid subsequent
rounds of requests in case some of the MEHs do not answer.
We have also skipped other details, such as data encoding into
a friendly representation for the SSS, as well as data division
into appropriate chunks in case the dimension is over the limit
and cannot be shared in one single run of the SSS. These are
general to other storage solutions based on secret sharing, so
one can follow the same approach as in the existing literature.

C. Implementation

Based on the proposed functionality, we implement the
testbed illustrated in Fig. 5. We use Simu5G [7], a well-known
emulator for 5G networks, to emulate the 5G network and
the MEC orchestration within the system. We further make
use of a set of virtual machines acting as MEHs to emulate
the processing and storage of data based on the proposed
SSS-based solution. All the virtualization, including setting up
Simu5G, are done within the Virtual Box environment [46].

When the experiment runs, a client application placed in the
UE uploads some data to its connected MECShApp, which
runs on MEH0, the corresponding MEC server through the
5G network. Once the data is received4, MECShApp runs the
SSS algorithm and creates the data shares. These data shares
will then be sent to the other MEH servers hosting ESI service
through the internal MEC network. We will further calculate
the time differences between various stages of this data flow

4We ignore here if the shared data is encrypted or not before being shared,
as this is transparent to the sharing itself (up to data size increase).

from the time the data starts to upload until the shares are
stored in the network (see Section V).

Simu5G uses several Python-based scripts to run as the UE
APP and the MEC APP. We use Samba (SMB) service [47] on
top of the Ubuntu operating system as the network file storage,
with the underlying network being a 1Gbps virtual network
within Virtual Box. We have used a Python library called
pyshamir [48] to run the secret sharing. The virtualization
software, Virtual Box, was installed on an Intel Core i7
processor-powered physical computer with 32GB RAM. The
Simu5G was allocated 4GB RAM, and all the other virtual
machines configured as MEHs had 2GB RAM, each with
Ubuntu 24.04 LTS as the operating system.

D. Nodes Selection

Until now, we have assumed no particular selection of
the n nodes to store the shares. However, in practice, n is
normally smaller than the total number of reachable MEHs,
so we can define a selection process to identify the nodes to
receive the shares. Trivial selections, such as the geographi-
cally closest neighbors or randomly chosen nodes, may raise
security concerns or be transmission costly. Therefore, we
follow the previous work line and investigate the selection
of the 5G-MEC nodes. However, unlike [16], we include the
trustworthiness of the nodes as criteria. We define our proposal
in the context of secret-shared data storage; nevertheless, the
selection process can be seen as an independent and standalone
process for 5G-MEC node selection in other scenarios, too.

The process selects the best MEHs in terms of a weighted
selection score SSMEHi computed for each candidate MEH
(generically denoted by MEHi) and based on two criteria:
(1) STMEHi

, a selection score based on the trustworthiness
and (2) SCMEHi

, a selection score based on the physical
characteristics of the MEH:

SSMEHi = wST · STMEHi(t) + wSC · SCMEHi(t) (1)

We work over discrete time steps, so we consider the
scores functions of time. We keep the values in the score
calculation weighted and assign a different weight w to each
term for flexibility. When changing the corresponding weight,
one changes the importance given to the corresponding criteria
in the score calculation.

(1) We define the MEH trustworthiness score STMEHi
as

a weighted sum of the inverse of Ratt
MEHi

, the risk to success-
fully attack the MEHi and ST sh

MEHi
, a sharing selection score

used to enforce load balancing (within acceptable margins):

STMEHi
= watt

ST · 1/Ratt
MEHi

(t) + wsh
ST · ST sh

MEHi
(t) (2)

The risk of attack Ratt
MEHi

can be computed based on historical
data and/or well-established risk procedures. The sharing se-
lection score ST sh

MEHi
depends on Nno

MEHi
(t), the number of

active shares that MEHi stores at time step t and ST as
MEHi

(t),
a score that depends on the access structures of the previously
authorized sets and their instantiation for the active shares:

ST sh
MEHi

(t) = wno
ST · 1/Nno

MEHi
(t) + was

ST · ST as
MEHi

(t) (3)

Thus, in the computation of ST sh
MEH , we are interested in

how many active shares the MEHi stores and which are the
other MEHs with whom MEHi creates authorized sets. This
is important because it avoids a small5 set of MEHs being
responsible for (a) storing the vast majority of shares and (b)
being part of a vast majority of qualified sets, respectively. In
conclusion, it avoids creating a nucleus of high risk. The idea
is to spread shares across the MEHs reasonably uniformly so
that a successful attack against a small set of MEHs keeps
the impact relatively low and avoids reconstructing a large
quantity of secrets. Naturally, one could argue that the impact
of the number of shares Nno

MEHi
(t) in ST sh

MEHi
(t) can be

modeled inside ST as
MEHi

(t); the idea to include it as a separate
term is to emphasize the importance of load balancing. In
the 5G-MEC context, the computation of ST sh

MEHi
(t) is best

performed by the orchestrator, which has a complete overview
of the sharing process.

Finally, in case of a known compromised MEH, we directly
assign the trustworthiness score a minimal constant value MIN,
which can, in theory, equal −∞:

STMEHi
(t) = MIN, if isCorrupt(MEHi) = 1 (4)

The function isCorrupt(MEHi) returns 1 iff MEHi is
known to be corrupt (i.e., compromised by an adversary).

(2) The MEH physical characteristics score SCMEHi de-
pends on attributes such as the node’s power capability,
communication latency, etc. Examples of how to compute
such scores have already been defined and can be taken from
the existing literature [16]. Similarly to other works [49], we
explicitly cover the case for which the memory capacity of the
MEH becomes fully occupied in time, and, consequently, the
MEH cannot store any new shares. Similarly, we explicitly
consider the case for which the MEH becomes unreachable
because of non-intentional faults.

SCMEHi
(t) = MIN, if (isAvCap(MEHi, sh size) = 0

or isReachable(MEHi) = 0) (5)

In the above equations, the function
isAvCap(MEHi, sh size) returns 1 iff MEHi has
enough storage capacity to store a share (of size sh size),
and the function isReachable(MEHi) returns 1 iff MEHi

is reachable (i.e., MEHi is up and running). Note that
we decouple unintentional faults from intentional attacks,
which are already encompassed in the computation of the
trustworthiness score STMEHi

.
Finally, the selection of the n MEHs depends on the scores

SSMEHi and can follow two possible approaches: (1) select
the n MEHs with the highest score (this approach follows
the idea in [16]) or (2) select n random MEHs from the set
of MEHs whose score is above a given, acceptable threshold
(this approach follows the idea in [49]).

5Small here is, of course, dependent on the choice of the parameters (k, n).

V. EVALUATION

A. Security Evaluation

1) Adversarial Model: We consider the honest-but-curious
model in which all parties behave as expected but aim to
disclose additional information. This means that the nodes (in
particular the MEHs) follow the protocol exactly but might
want to disclose sensitive data that they are unauthorized for.
We also restrict the adversary from tampering with the data
in transit or at rest. Otherwise, this could be, for example,
reduced to a dishonest MEH that fails to follow the protocol
exactly but responds with fake data. Even if an honest-but-
curious attacker does not interfere with the process, he/she
might observe patterns, find intermediate results, or perform
any analysis to obtain an advantage We also permit coalitions
in the sense that more than one party (in particular, two or
more MEHs) can collude to satisfy their adversarial goal.

Note that SSS with enhanced capabilities could allow for
stronger adversarial models. For example, malicious MEHs
could try to respond with incorrect shares, or, the MecShApp
could play the role of a malicious dealer and transmit incorrect
shares. A way to mitigate this is to use (publicly) Verifiable
Secret Sharing (VSS).

2) Data secrecy: Shamir’s SSS is theoretically secure in
the sense that regardless of the computational power and time
of the adversary, he/she cannot reconstruct from an unqualified
set of shares. This reduces to perfect secrecy (in theory) when
less than k nodes are compromised. If k is chosen large
enough, the probability of maliciously taking over enough
nodes remains low, and the scheme is secure. In our case, this
means that no more than k−1 MEHs running the MecShApp
are allowed to get compromised.

Moreover, the MECShApp hosted on an honest-but-curious
MEH is, by construction, directly exposing data that arrives
to the MEH in clear. Nevertheless, we assume that sensitive
data does not leave the UE in clear text, so a secure channel
exists between the UE and the MEC. If the UE-MEH com-
munication is encrypted, the security of the data at the MEH
becomes computational. This is because someone can, with
some probability, break the encryption and disclose the data.
However, suppose the MEH permanently deletes the data after
the sharing. In that case, the possibility of such an attack is
restricted for much less time (the time from receiving the data
until sharing and then deletion, respectively, for the whole
lifetime of the data in the traditional case when data is stored
in encrypted - not shared - form). The same reduction of the
attack window in time happens at reconstruction. Naturally,
the best solution would be to implement the sharing directly
on the UE. However, the feasibility of sharing directly at the
UE is lower because of the heterogeneity of the UE devices
and their physical constraints (e.g., sensors in smart cities).

3) Availability: The proposed solution works by construc-
tion when at least k nodes are functional. Not relying on a
single point of trust and allowing the reconstruction in the
presence of up to n−k nodes put down because of intentional
attacks makes the solution more resilient to DoS.

4) Maintenance: Strict access control mechanisms are nec-
essary for maintaining security so that intentionally made
changes do not result from unmonitored client software or
users lacking authorization. Periodic data audits should occur
to search for intentional errors or node manipulation that
would keep the shares intact. MEC-level monitoring of se-
curity incidents globally must ensure they will detect known
attacks with high probability. Investing in such proactive meth-
ods will ensure quick addressing of any anomalies, reducing
risks, and safeguarding the integrity of the storage system.

We leave out of the current discussion other aspects, such
as implementation bugs, the security of the MEC application
API towards the storage system, etc., which also impact the
overall security of the solution.

B. Dependability Evaluation

1) Availability: By making use of a threshold SSS, our
solution introduces dependability by design. The dependability
is mainly referred to in terms of availability and reliability
of the service, as well as the capacity for fault tolerance. In
large-scale systems such as the 5G-MEC, where edge nodes
might be deployed in multiple, distinct geographical locations,
the usage of a threshold SSS, which assures that data remains
available up to a threshold number of failure nodes, minimizes
the impact of node failures or network unavailability. In our
case, Shamir’s SSS assures that data is recoverable when up
to n − k nodes are faulty or unavailable. Furthermore, the
distribution of shares across different nodes minimizes the
probability of a unique point of failure, making the system
highly reliable.

2) Parameter selection: The values of k and n have a
critical impact on security and dependability, with a reasonable
trade-off being necessary for efficiency. A large value of k
(and hence, n) leads to better data protection because as more
shares are required to reconstruct the secret, the more difficult
the attacker has to breach into more nodes. However, this
also means that the system’s efficiency degrades: the scheme
becomes more complex, the number of involved entities is
higher, the time to process the request increases, etc. On the
other hand, a small k improves fast data retrieval as few shares
are required for rebuilding, but in turn, it may compromise
security since the data is in the hands of the adversary if he
gains access to only a few nodes. The value of n and the
difference n − k between the total number of nodes and the
minimal number of nodes necessary for reconstruction directly
impact the fault tolerance.

Naturally, the performance analysis performed for Shamir’s
SSS shows that as n increases, the necessary time for data
splitting and recovery becomes more noticeable [50]. When
n approaches higher values (e.g., above 20 or 30), the time
consumed by the SSS becomes highly noticeable in contrast
to the typical communication delays experienced in the con-
sidered MEH-SAN environment. The delay may negatively
impact the overall efficiency of the system, especially in
areas dependent on real-time high-speed data processing where
latency is a critical factor. For example, if the customary MEH-

SAN setup causes delays on the order of milliseconds, the
added strain of high n values can cause delays surpassing
operational thresholds. To maintain efficient communication
and mitigate latency in the distributed storage system, it is thus
recommended to keep n relatively low (e.g., n not exceeding
10, max.20 nodes) and not sacrifice the advantages of the SSS
scheme due to significant performance degradation.

3) Node allocation: Normally, the number of shares is
lower than the total number of nodes in the network. Thus, the
shares are generally stored in a subset of nodes. The decision
on the nodes to accommodate the shares should be based on
attributes such as the workload, the reliability and the degree
of trustworthiness of the node, and the geographical location.
Ideally, shares should be assigned to less-loaded nodes to
prevent all nodes from being clogged with data and minimize
processing delays within certain nodes. Moreover, focusing
on nodes with high available capabilities or good connectivity
records can help avoid a data loss issue. Geographic diversity
will help protect some nodes hosting shares in the event of
multiple nodes failing in the same geographical area due to
causes like natural disasters. Thus, the optimal approach can
be to keep track of the current load and network delay of each
MEH and then continuously allocate shares to nodes that have
lesser load, higher availability, and geographical dispersion
to improve the robustness of the SSS-based MEC storage
solution.

4) Maintenance: Determining the dependability of a sys-
tem depends on its real-time identification of node failures
through monitoring and fault tolerance functionality. The
system must be able to alert administrators when a storage
node fails or is suspended and to redistribute shares to keep
availability up. Continuous monitoring identifies equipment,
software, or network problems for quick corrective steps. All
MEC operators should consider proactive monitoring for faults
and failures from the MEC system level, as it will help the
administrators and users have high dependability within the
MEC environment.

C. Performance Evaluation

1) Theoretical performance: Table I lists the complexities
of the proposed solution and the underlying Shamir SSS [6],
[50] when it is applied to 5G and MEC-ESI environment,
particularly relative to distributed storage and secure data man-
agement. It is evident that while the security and dependability
of this scheme are noteworthy, the computational resources
needed for the sharing escalate as the number n of the shares
rises. It is imperative to determine values for n (and k) accu-
rately based on the specifications of an application in terms
of latency and performance. The O(n|s|) linear storage need
exemplifies the intrinsic redundancy of the scheme, which,
while also ensures fault tolerance (for up to n − k nodes), it
also elevates storage demands. In much the same way, the time
taken for communication O(n|s|) and O(k|s|) requires that, in
networks with restrictions on bandwidth or increased latency,
diligent planning is needed to steer clear of performance
limitations. The underlying SSS scheme ensures that k− 1 or

TABLE I
THEORETICAL PERFORMANCE ANALYSIS.

Parameter Complexity Explanation
Computation (Shamir’s SSS) O(nlog2n) Shamir’s SSS requires O(nlog2n) time complexity caused by the polynomial interpolation [6].
Total Storage Requirement O(n|s|) Each of the n shares is of the same size |s| as the original data s, resulting in a total storage

requirement of O(n|s|).
Total Communication Overhead
(Sharing)

O(n|s|) The communication overhead is O(n|s|) because all n shares have to be transferred and stored
across the network, and each share is the size of the shared data |s|.

Total Communication Overhead
(Reconstr.)

O(k|s|) The communication overhead is (under best conditions, assuming no loss) O(k|s|) because k
shares have to be transferred across the network, and each share is the size of the shared data |s|.

Fault Tolerance n− k The system can tolerate up to n− k node failures.
Maximum no. of compromised
nodes (shares)

k − 1 Shamir’s SSS enforces that k − 1 or less shares leak no information about the shared data.

less shares will not leak information, making it a good choice
for times when confidentiality of data is important, providing
support for use in applications that require high levels of data
protection across the 5G-MEC environment.

2) Experimental performance: To evaluate the perfor-
mance, we look into different timings necessary to process,
distribute, and store the data. Therefore, the time values listed
in Table II consider the case with and without the SSS. All
values are in seconds, and their definition is the following:

1) T5G: time for the data to travel through the 5G network
2) TSSS+LS : time to run the SSS sharing algorithm and to

store the shares on the local storage
3) TSSS+NS : time to run the SSS sharing algorithm and to

store the shares on the network, i.e., on the ESI nodes
4) TLS : time to store the data locally without running the

SSS
We chose the parameters n = 5 and k = 3 for the evaluation

because this combination reflects a proper balance between
redundancy and security. Having n = 5, the system can
tolerate up to n−k = 2 node failures, ensuring that the system
remains functional even if a few shares are lost. The threshold
of k = 3 ensures that fewer shares cannot reconstruct the
secret, protecting it against attackers that compromise up to
two nodes. We avoided extreme cases such as large n, which
might introduce excessive computing resources, and very small
n, which directly reduces the redundancy, increasing the risk
of data loss due to node failures. Refer to Section V-B2 for a
more detailed discussion on parameter selection.

The implementation of MECshApp was performed on top
of Simu5G’s default MEC APP template. This introduces a
limitation on how much data can be sent at a time, thus
limiting our tests to a maximum of 64 bytes. Testing for more
extensive data is a possible subject of further work.

Table II indicates that the time to perform the sharing and to
store the shares locally TSSS+LS is significantly more time-

TABLE II
THEORETICAL PERFORMANCE ANALYSIS.

25 Bytes 32 Bytes 40 Bytes 64 Bytes
T5G [s] 0.010689 0.011251 0.012151 0.012949
TSSS+LS [s] 0.003565 0.003751 0.004352 0.004727
TSSS+NS [s] 0.097281 0.111844 0.136104 0.148803
TLS [s] 0.000305 0.000408 0.000781 0.000895

consuming than the local storage operation TLS . This is a
natural result (also because TSSS+LS includes the necessary
time to store the n = 5 shares locally, so 5x more time for
storing only). However, even if the introduction of SSS is
substantial, increasing TSSS+LS with one order of magnitude
over TLS , in our experimental settings, we observe that secret
sharing itself seems less time-consuming than the amount of
time required to transmit the shares over the network and
store them to the corresponding nodes. The motivation here is
twofold: (1) we have only shared low-length data (up to 64
bytes), and (2) the communication between the storage nodes
is done within the virtual network. We expect secret sharing to
become high-cost for large data and communication costs to
be lower in real networks. Nevertheless, the experiment shows
that the overall delay is acceptable, which makes the solution
viable for usage in scenarios like the ones mentioned.

VI. CONCLUSIONS
We have investigated a method to improve the secure data

storage in edge nodes associated with 5G-MEC to provide
data secrecy, high resilience to failures, and elevated data
availability. With the focus on protecting sensitive data, our
scheme uses Shamir’s scheme to implement this secure storage
method as an MEC application. Although the approach is
not novel in terms of ideas (secret sharing has been used to
secure storage before), it brings novelty in several directions.
We have reviewed the applicability of secret sharing in 5G-
MEC, including the discussion of existing storage solutions,
performed an experimental evaluation, and proposed a node
selection mechanism to decide on the nodes to store the shares
while considering the trustworthiness of the MEHs as a main
criterion. As future contributions, more experimental results
should be obtained to assess such an MEC application’s usabil-
ity by measuring the performance across different operational
conditions.

REFERENCES

[1] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, and A. Neal,
“Mobile-edge computing – introductory technical white paper,” ETSI,
Sophia Antipolis, France, Tech. Rep., 2014, white Paper, Mobile-edge
Computing (MEC) Industry Initiative.

[2] ETSI, “Mec in 5g networks,” ETSI, Sophia Antipolis, France, Tech.
Rep. 28, 2018, white Paper No. 28.

[3] M. Liyanage, P. Porambage, A. Y. Ding, and A. Kalla, “Driving forces
for multi-access edge computing (mec) iot integration in 5g,” ICT
Express, vol. 7, no. 2, pp. 127–137, 2021.

[4] A. K. Chattopadhyay, S. Saha, A. Nag, and S. Nandi, “Secret sharing: A
comprehensive survey, taxonomy and applications,” Computer Science
Review, vol. 51, p. 100608, 2024.

[5] Regulation (EU) 2016/679. (2018) General Data Protection Regulation
GDPR. [Online]. Available: https://gdpr-info.eu/

[6] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[7] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “Simu5g–an
omnet++ library for end-to-end performance evaluation of 5g networks,”
IEEE Access, vol. 8, pp. 181 176–181 191, 2020.

[8] M. Liyanage, J. Salo, A. Braeken, T. Kumar, S. Seneviratne, and
M. Ylianttila, “5g privacy: Scenarios and solutions,” in 2018 IEEE 5G
World Forum (5GWF). IEEE, 2018, pp. 197–203.

[9] Y. Zhao, X. Liao, W. You, M. Wang, J. Yang, X. Ji, and C. Li, “Cmt-srv6:
A customizable multipath transmission scheme for 6g edge network,”
IEEE Sensors Journal, 2024.

[10] W. Niewolski, T. W. Nowak, M. Sepczuk, and Z. Kotulski, “Security
architecture for authorized anonymous communication in 5g mec,”
Journal of Network and Computer Applications, vol. 218, p. 103713,
2023.

[11] Z. Wang, “A privacy-preserving and accountable authentication protocol
for iot end-devices with weaker identity,” Future Generation Computer
Systems, vol. 82, pp. 342–348, 2018.

[12] L. Zhang, M. Peng, W. Wang, Z. Jin, Y. Su, and H. Chen, “Secure and
efficient data storage and sharing scheme for blockchain-based mobile-
edge computing,” Transactions on Emerging Telecommunications Tech-
nologies, vol. 32, no. 10, p. e4315, 2021.

[13] H. Sun, Y.-a. Tan, L. Zhu, Q. Zhang, Y. Li, and S. Wu, “A fine-grained
and traceable multidomain secure data-sharing model for intelligent
terminals in edge-cloud collaboration scenarios,” International Journal
of Intelligent Systems, vol. 37, no. 3, pp. 2543–2566, 2022.

[14] I. Ari, K. Balkan, S. Pirbhulal, and H. Abie, “Ensuring security contin-
uum from edge to cloud: Adaptive security for iot-based critical infras-
tructures using fl at the edge,” in 2024 IEEE International Conference
on Big Data (BigData). IEEE, 2024, pp. 4921–4929.

[15] R. Wang, J. Lai, Z. Zhang, X. Li, P. Vijayakumar, and M. Karuppiah,
“Privacy-preserving federated learning for internet of medical things
under edge computing,” IEEE journal of biomedical and health infor-
matics, vol. 27, no. 2, pp. 854–865, 2022.

[16] I. Al Ridhawi, M. Aloqaily, Y. Kotb, Y. Al Ridhawi, and Y. Jararweh, “A
collaborative mobile edge computing and user solution for service com-
position in 5g systems,” Transactions on Emerging Telecommunications
Technologies, vol. 29, no. 11, p. e3446, 2018.

[17] A. Makris, I. Kontopoulos, E. Psomakelis, S. N. Xyalis, T. Theodor-
opoulos, and K. Tserpes, “Performance analysis of storage systems in
edge computing infrastructures,” Applied Sciences, vol. 12, no. 17, 2022.

[18] MinIO Inc. (2020) Minio object storage for kubernetes. [Online].
Available: https://min.io/docs/minio/kubernetes/upstream/

[19] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. Mc-
Conaghy, G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto,
“Bigchaindb: a scalable blockchain database,” white paper, BigChainDB,
pp. 53–72, 2016.

[20] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[21] A. Makris, E. Psomakelis, T. Theodoropoulos, and K. Tserpes, “Towards
a distributed storage framework for edge computing infrastructures,” in
Proceedings of the 2nd Workshop on Flexible Resource and Application
Management on the Edge, 2022, pp. 9–14.

[22] E. Psomakelis, A. Makris, K. Tserpes, and M. Pateraki, “A lightweight
storage framework for edge computing infrastructures/edgepersist,” Soft-
ware Impacts, vol. 17, p. 100549, 2023.

[23] J. Baier, Getting started with kubernetes. Packt Publishing Ltd, 2017.
[24] M. Sagor, A. Haroon, R. Stoleru, S. Bhunia, A. Altaweel, M. Chao,

L. Jin, M. Maurice, and R. Blalock, “Distressnet-ng: A resilient data
storage and sharing framework for mobile edge computing in cyber-
physical systems,” ACM Transactions on Cyber-Physical Systems, 2024.

[25] J. Chen, Y. Wang, M. Ye, and Q. Jiang, “A secure cloud-edge collab-
orative fault-tolerant storage scheme and its data writing optimization,”
IEEE Access, 2023.

[26] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliççöte, and
P. K. Khosla, “Survivable information storage systems,” IEEE Computer,
vol. 33, no. 8, pp. 61–68, 2000.

[27] A. Subbiah and D. M. Blough, “An approach for fault tolerant and secure
data storage in collaborative work environments,” in Proceedings of the

2005 ACM Workshop On Storage Security And Survivability, 2005, pp.
84–93.

[28] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti, “Pot-
shards—a secure, recoverable, long-term archival storage system,” ACM
Trans. Storage, vol. 5, no. 2, Jun. 2009.

[29] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon,
and J. Kubiatowicz, “Maintenance-free global data storage,” Internet
Computing, IEEE, vol. 5, no. 5, pp. 40–49, Sep 2001.

[30] J. Stewart. (2007) epost serverless email system. [Online]. Available:
www.epostmail.org

[31] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly durable,
decentralized storage despite massive correlated failures,” in Proceedings
of the 2nd Conference on Symposium on Networked Systems Design &
Implementation - Volume 2, ser. NSDI’05, 2005, pp. 143–158.

[32] J. K. Resch and J. S. Plank, “AONT-RS: Blending security and perfor-
mance in dispersed storage systems,” in Proceedings of the 9th USENIX
Conference on File and Stroage Technologies, ser. FAST’11, 2011, pp.
14–14.

[33] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky:
dependable and secure storage in a cloud-of-clouds,” Acm transactions
on storage (tos), vol. 9, no. 4, pp. 1–33, 2013.

[34] E. Framner, S. Fischer-Hübner, T. Lorünser, A. S. Alaqra, and J. S. Pet-
tersson, “Making secret sharing based cloud storage usable,” Information
& Computer Security, vol. 27, no. 5, pp. 647–667, 2019.

[35] R. K. Raman and L. R. Varshney, “Distributed storage meets secret
sharing on the blockchain,” in 2018 information theory and applications
workshop (ITA). IEEE, 2018, pp. 1–6.

[36] Y. Pu, C. Hu, S. Deng, and A. Alrawais, “R2PEDS: a recoverable and
revocable privacy-preserving edge data sharing scheme,” IEEE Internet
of Things Journal, vol. 7, no. 9, pp. 8077–8089, 2020.

[37] R. F. Olimid and D. A. Rotaru, “On the security of a backup technique
for database systems based on threshold sharing,” Journal of Control
Engineering and Applied Informatics, vol. 18, no. 2, pp. 37–47, 2016.

[38] A. Skadins, M. Ivanovs, R. Rava, and K. Nesenbergs, “Edge pre-
processing of traffic surveillance video for bandwidth and privacy
optimization in smart cities,” in 2020 17th Biennial Baltic Electronics
Conference (BEC), 2020, pp. 1–6.

[39] ETSI, “Etsi gs mec 003 v3.2.1 (2024-04). multi-access edge computing
(mec); framework and reference architecture,” 2024.

[40] Q. Sun, J. Xu, X. Ma, A. Zhou, C.-H. Hsu, and S. Wang, “Edge-enabled
distributed deep learning for 5g privacy protection,” IEEE Network,
vol. 35, no. 4, pp. 213–219, 2021.

[41] S. Sondur, K. Kant, S. Vucetic, and B. Byers, “Storage on the edge:
Evaluating cloud backed edge storage in cyberphysical systems,” in
2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor
Systems (MASS), 2019, pp. 362–370.

[42] R. K. Khattar, M. S. Murphy, G. J. Tarella, and K. E. Nystrom, Intro-
duction to Storage Area Network, SAN. IBM Corporation, International
Technical Support Organization, 1999.

[43] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, 2018.

[44] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[45] N. Chawla, “Ai, iot and wearable technology for smart healthcare-a
review.” International Journal of Recent Research Aspects, vol. 7, no. 1,
2020.

[46] Oracle Corporation. (2024) Oracle vm virtualbox. [Online]. Available:
www.virtualbox.org

[47] G. Carter, J. Ts, and R. Eckstein, Using Samba: A File & Print Server
for Linux, Unix & Mac OS X. ” O’Reilly Media, Inc.”, 2007.

[48] K. Dev. (2023) PyShamir: A python implementation
of shamir’s secret sharing scheme. [Online]. Available:
https://github.com/konidev20/pyshamir

[49] A. Sarah, G. Nencioni, and R. F. Olimid, “Multi-objective 5g-mec ser-
vice relocation: A joint view on performance, availability, and privacy,”
Availability, and Privacy (March 23, 2025), 2025.

[50] A. Abdallah and M. Salleh, “Secret sharing scheme security and
performance analysis,” in 2015 International Conference on Computing,
Control, Networking, Electronics and Embedded Systems Engineering
(ICCNEEE), 2015, pp. 173–180.

