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Abstract

The increasing demand for domain-specific and human-aligned
Large Language Models (LLMs) has led to the widespread adoption
of Supervised Fine-Tuning (SFT) techniques. SFT datasets often
comprise valuable instruction-response pairs, making them highly
valuable targets for potential extraction. This paper studies this
critical research problem for the first time. We start by formally
defining and formulating the problem, then explore various attack
goals, types, and variants based on the unique properties of SFT
data in real-world scenarios. Based on our analysis of extraction be-
haviors of direct extraction, we develop a novel extraction method
specifically designed for SFT models, called Differentiated Data Ex-
traction (DDE), which exploits the confidence levels of fine-tuned
models and their behavioral differences from pre-trained base mod-
els. Through extensive experiments across multiple domains and
scenarios, we demonstrate the feasibility of SFT data extraction
using DDE. Our results show that DDE consistently outperforms
existing extraction baselines in all attack settings. To counter this
new attack, we propose a defense mechanism that mitigates DDE
attacks with minimal impact on model performance. Overall, our
research reveals hidden data leak risks in fine-tuned LLMs and
provides insights for developing more secure models.

1 Introduction

The rapid advancement of Large Language Models (LLMs) has
led to remarkable achievements, with models like GPT-3 [1] and
PaLM [2] demonstrating human-level performance across various
tasks [1, 3]. These models are extensively pre-trained on vast and
diverse datasets, including web pages, books, and academic arti-
cles, which enables them to acquire a broad range of knowledge
and capabilities. However, despite their impressive scale in terms
of data and parameters, LLMs still face significant challenges in
specialized contexts. The increasing demands for these models to
excel in domain-specific tasks and to align with human expectations
underscores limitations that hinder their widespread adoption.

To enhance LLMs, researchers employ Supervised Fine-Tuning
(SFT) (detailed in §2) as a post-training solution. This approach
utilizes SFT datasets, consisting of instruction (𝐼 ) and response
(𝑅) pairs, to encapsulate task-specific knowledge. Unlike vast pre-
training datasets, SFT data is more valuable, significantly smaller,
and used differently in training. These datasets, typically curated
∗Corresponding authors.

through manual effort or refinement of existing high-quality data,
are used to fine-tune pre-trained models. The resulting models,
denoted as 𝑀𝐹𝑇 , demonstrate improved performance in specific
domains and better alignment with human expectations, making
them more suitable for targeted applications.

Given that 𝑀𝐹𝑇 inherently contains knowledge from the SFT
data, a natural question arises: Is it possible to extract the SFT data
from an fine-tuned LLM? While data extraction techniques such as
DSR [4] have been studied for traditional machine learning mod-
els [5–7], extracting SFT data from LLMs presents inherently dif-
ferent challenges. These differences stem from both LLMs’ unique
training paradigm and their structured I-R pairs (detailed in §2).
Moreover, prior studies on LLMs have focused on the extraction
of pre-training data [8, 9]. However, these works primarily aim
to extract and verify a subset of the data potentially used in the
pre-training process. This is due to the enormous volume of pre-
training data and its lack of explicit (𝐼 -𝑅) pairs, as pre-training data
typically consists of unstructured text corpora [10]. In contrast, SFT
data extraction presents unique challenges and implications. The
strict correspondence between 𝐼 -𝑅 pairs, along with the potential
for attackers to use extracted SFT data for their own fine-tuning
purposes to replicate the victim model’s functionality, renders exist-
ing methods inadequate, as further discussed in §3.3. Consequently,
there exists a significant research gap in SFT data extraction.

In this paper, we study the problem of SFT data extraction for
the first time. We begin by formally defining and formulating the
problem, introducing two distinct attack goals based on attacker
objectives: reconstruction and retraining. The former aims to ac-
curately recover the original SFT data (e.g., valuable domain data
on Alzheimer’s disease diagnosis) with high fidelity, while the lat-
ter seeks to use the extracted data for further fine-tuning models
to achieve comparable capabilities. Furthermore, considering the
unique properties of 𝐼 -𝑅 pairs, we propose two attack types (R-I and
I-R attack), where I-R aims to extract responses from instructions
and R-I vice versa. To account for real-world attack scenarios, we in-
troduce three possible attack variants based on different instruction
preservation methods. Through these various attack goals, types,
and variants, we aim to conduct a thorough and detailed feasibility
study of SFT data extraction.

Building upon the feasibility study, we conduct a pilot investi-
gation revealing the limitations of the direct extraction approach
(referred to as the Vanilla approach), which often fails to extract
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SFT data due to errors propagating from earlier positions in the ex-
tracted sequence. To address this, we propose a novel and effective
attack called Differentiate Data Extraction (DDE). DDE leverages
two key insights: (1) the fine-tuned model’s higher confidence in
generating SFT data, and (2) behavioral differences between fine-
tuned and base models. By identifying potential “branch deviation
points” and comparing generation branches from both models,DDE
selects sequences more likely to reflect true SFT data.

Our comprehensive experiments demonstrate the feasibility of
SFT data extraction across various attack goals and scenarios. We
find that preservation methods significantly influence attack perfor-
mance, with higher retention rates generally yielding superior re-
sults. Substantial variations in effectiveness across SFT domains and
attack types underscore the attack’s complexity, while retraining
attacks show greater resilience to different preservation methods
compared to reconstruction attacks. Our analysis reveals DDE’s
consistent superiority over both Vanilla and DSR baselines in
reconstruction attacks, with average improvements of 9.96% and
5.73%, respectively. For retraining attacks,DDE demonstrates strong
performance with improvements of 9.41% over Vanilla and 11.52%
over DSR. These gains highlight DDE’s enhanced ability to accu-
rately extract SFT data and enable competitive model performance
compared to victim models. Further exploration provides insights
into key factors affecting DDE’s performance, including base model
selection and hyperparameter tuning. Additionally, we propose a
defensemethod, which can be used to failDDE on the extracted data
while influencing the model performance within 3%. In summary,
our contributions are as follows:

• We present the first comprehensive study on the feasibility
of extracting SFT data from fine-tuned LLMs, addressing
growing privacy concerns. We formulate the SFT data ex-
traction problem by introducing distinct attack goals, types,
and variants, providing a structured approach to evaluate
the vulnerability of fine-tuned LLMs.
• We propose Differentiate Data Extraction (DDE), a novel
method that leverages model confidence and behavioral dif-
ferences between fine-tuned and base models for improved
extraction accuracy.
• Through extensive experiments across various SFT domains
and attack scenarios, we demonstrate the feasibility of SFT
data extraction and reveal distinct characteristics between re-
construction and retraining attacks, clarifying the necessity
of seperately handling them. Our results show that DDE con-
sistently outperforms existing baselines across both attack
goals.
• We propose a defense mechanism that can effectively mit-
igate DDE attacks while minimally impacting the model’s
performance, offering a practical solution to enhance the
privacy of fine-tuned LLMs.

2 Preliminary

Supervised Fine-tuning. Following the pre-training phase, LLMs
typically undergo additional fine-tuning steps to better align with
human intentions and task-specific requirements. Among these
refinement techniques, supervised fine-tuning (SFT) has emerged
as a prevalent and effective approach [1, 11]. The SFT process,
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Figure 1: Attack scenario on SFT models. “Inst” and “Res”

are instructions and responses, respectively. ① LLM vendor

tunes an SFT model from a base model using an SFT dataset.

② Adversary extracts data from the SFT model via malicious

queries (I-R or R-I attacks; see §3.1). ③ Adversary tunes a base

model with extracted data to build their own SFT model.

as depicted in Figure 1 step ①, utilizes SFT datasets composed of
instruction-response pairs {(𝑖𝑑 , 𝑟𝑑 )}, where 𝑖𝑑 denotes the input
instruction and 𝑟𝑑 represents the corresponding desired response.
This structured format is distinct from pre-training data, enabling
the model to acquire task-specific behaviors and significantly im-
prove its instruction-following capabilities. Formally, for a specific
domain 𝑑 with context 𝑐𝑑 , the SFT objective is to minimize the
negative log-likelihood of the target response 𝑟𝑑 given the context
𝑐𝑑 and input instruction 𝑖𝑑 . That is:

𝐿SFT (𝜃 ) = − log 𝑓𝜃 (𝑟𝑑 |𝑐𝑑 , 𝑖𝑑 ), (1)

where 𝜃 represents the model parameters. Upon completion of the
SFT process, the resulting models are widely deployed to provide
various domain-specific online services, including but not limited to
medicine [12] and finance [13]. Notably, in the context of this paper,
we use SFT to only refer to full parameter supervised fine-tuning.
Those parameter-efficient fine-tuning methods [14, 15] are not in
our study scope because of their limited capabilities in understand-
ing the knowledge; see more discussion in Appendix B.
Data Extraction Attack. Data extraction attacks aim to recover
training data from machine learning models. Table 1 provides an
overview of existing model extraction approaches. As shown in the
table, early studies focus on traditional machine learning models
with a relatively small number of parameters (<110M), targeting in
image [5, 6] and natural language processing [4, 7] domains. These
methods predominantly emphasize reconstruction attacks and are
limited to extracting short text segments or structured data, making
them inadequate for model retraining purposes and distinct from
our approach. Additionally, the training paradigm of these works
remain consistent during model updates, with unchanged input-
output formats and loss functions. In contrast, our work addresses
the unique challenges of SFT data extraction, where the training
paradigm shifts significantly from pre-training to fine-tuning stages,
introducing new training objectives and data formats.

For LLMs, current research [8, 9] mainly focus on extracting
pre-training data from large-scale models (7B+ parameters), which
typically involves comparing model responses against large-scale
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web-scraped datasets. As indicated in Table 1, these attacks are
inherently untargeted due to the vast scale of pre-training datasets.
These untargeted methods are insufficient for SFT data extraction
where precise instruction-response pairing is crucial, a distinction
we further elaborate in §3.3 with experimental evidence. In contrast,
we focus on the targeted extraction of specific, high-value informa-
tion used in the fine-tuning process.We usemalicious queries in two
formats: instruction-to-response (I-R) and response-to-instruction
(R-I), as shown in Figure 1 step ②. These extracted SFT data en-
able attackers to further fine-tune their models (Figure 1 step ③),
potentially replicating the victim model’s capabilities.

3 SFT Data Extraction Attack

This paper studies the SFT data extraction problem for the first time.
In this section, we start by formally defining and formulating the
problem (§3.1), and then explore multiple attack goals, types, and
variants (§3.2-§3.3). Lastly, in §3.4, we investigate the feasibility of
directly extracting SFT data. To ease reading, we summarize key
symbols and categories used in this paper in Table 2.

3.1 Threat Model

Scenario. We illustrate the attack scenario in Figure 1. Here, we
consider attackers who are users of an𝑀𝐹𝑇 . Typically, LLM service
vendors employ SFT methods with specific datasets to fine-tune
and get their models (𝑀𝐹𝑇 ), enhancing their ability to meet user
requirements in real-world applications. Exploiting the access to
these fine-tuned models, the attackers aim to extract the valuable
SFT datasets used in the fine-tuning process. Their objective is
to recover this dataset by strategically querying the existing𝑀𝐹𝑇 .
After acquiring the SFT dataset at low cost, attackers can further
use it to train their own models, enabling them to provide similar
services.
Attacker’s Capability.We assume that attackers cannot directly
access the backend LLM’s weight information. They can only obtain
the𝑀𝐹𝑇 ’s output and corresponding token logits through queries.
This assumption aligns with the above attack scenario and real-
world solutions [16, 17], where LLM vendors usually provide the
logits information for generated tokens. Specifically, we investigate
14 LLM service vendors, including both proprietary model ven-
dors (e.g., OpenAI [16]) and open-source LLM API service vendors
(e.g., Together AI [17]), to determine whether they provide logits
information and assess the feasibility of our attack scenario. Our
findings reveal that except for one platform that explicitly stated
they do not support this feature, the remaining platforms either
already provide or plan to provide such information. Details re-
garding the platform selection process can be found in Appendix I.
We assume that attackers can access a LLM with reasonable ca-
pacity (e.g., Gemma-7B [18], LLaMa2-7B [19]), serving as 𝑀𝐵𝑎𝑠𝑒 .
Although the accessibility to𝑀𝐹𝑇 ’s corresponding𝑀𝐵𝑎𝑠𝑒 (i.e.,𝑀𝐹𝑇

is fine-tuned from𝑀𝐵𝑎𝑠𝑒 ) is not required, the accessibility of this
“real” 𝑀𝐵𝑎𝑠𝑒 enhances attacks (see §6.4). Also, due to the unique
nature of SFT data, we assume that the attacker has full or partial
knowledge of either the instruction (𝐼 ) or the response (𝑅).
Attacker’s Type. Based on the attacker’s knowledge of the targeted
SFT dataset, we define two types of attacks: I-R attack (known 𝐼 ,
extracting 𝑅) and R-I attack (known 𝑅, extracting 𝐼 ). Both types are

significant in practice as the value of 𝐼 or 𝑅 varies across domains.
In the code domain, well-crafted instructions (𝐼 ) might be more
valuable than code solutions (𝑅), as specific guidelines meeting
code requirements are rare and highly valuable, making R-I attacks
more critical. Conversely, in the medical domain, expert diagnoses
and treatments (𝑅) are often more valuable than standard symptom
descriptions (𝐼 ), as they represent sensitive medical knowledge,
rendering I-R attacks more consequential.
Attacker’s Goal. For a dataset 𝐷 = ⟨𝐼 , 𝑅⟩, attackers aim to re-
cover the unknown component given partial information about
the known component. They have two different objectives: recon-
struction attack and retraining attack. The reconstruction attack
focuses on the similarity between the extracted information and
the original information, which is critical for restoring the original
SFT data’s information as much as possible, facilitating various
downstream tasks such as copyright verification [20]. We formally
express it with the I-R attack as:

min
𝐴𝑀

Dist(𝐴𝑀 (𝐼 ′), 𝑅)

where 𝐴𝑀 is the attack method, 𝐼 ′ is a variant of 𝐼 containing
partial information (defined in §3.2), and Dist is a metric measuring
the similarity between two strings (defined in §5). The R-I attack
follows a similar formulation with the roles of 𝐼 and 𝑅 reversed.

The retraining attack considers the effectiveness of the extracted
SFT data in downstream applications. This is highly important as
it allows attackers to obtain models with similar capabilities at a
low cost. We define the effective rate (ER) for the I-R attack as:

ER𝐼−𝑅 = Perf(< 𝐼 ′, 𝐴𝑀 (𝐼 ′) >, 𝐵)
where 𝐵 is the evaluation benchmark and 𝑃𝑒𝑟 𝑓 is the performance
of the SFT model fine-tuned with the corresponding extracted
dataset. ER for the R-I attack is defined analogously. While one
may argue that retraining does not inherently require data extrac-
tion, as techniques like distillation [21] or carefully curated query
sets [22] can also produce high-performing models, we highlight a
key distinction in our approach. Our retraining attacks specifically
focus on extracting domain-specific knowledge from SFT datasets
to enable models with similar capabilities in targeted domains,
rather than merely optimizing for general benchmark performance.
Furthermore, our approach assumes incomplete query knowledge
(§3.2), reflecting realistic attack scenarios where attackers have lim-
ited information. This differs significantly from existing methods
that require complete access to queries.

3.2 Possible Attack Variants

As discussed in §3.1, we assume that attackers may only possess
partial information of the I-R pair when executing their attacks. This
assumption is grounded in real-world scenarios where attackers
can often infer the domain of target SFT models beforehand but are
unlikely to have complete access to either component of the SFT
data. For example, attackers might construct plausible symptoms as
potential responses formedical models when conducting R-I attacks,
or formulate common math problems as potential instructions for
math models in I-R attacks. To comprehensively evaluate such
realistic scenarios, we design three distinct preservation methods
to accommodate possible attack variants. These methods not only
reflect different levels of information accessibility but also simulate
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Table 1: Overview of various model extraction approaches, with most targeting pre-trained models and only DDE targeting SFT

models. ✓, ✗ denote whether a method supports a specific capability. “Long” indicates whether the method supports extracting

long text segments. “Size” denotes the maximum number of parameters of victim models to which the method is applied.

Method Model Type Size Attack Type Reconstruction Retraining Long Object Task
Hui et al. [7] Pretrain <10M Targeted ✓ ✗ ✗ Record Classification
Jagielski et al. [6] Pretrain <110M Targeted ✓ ✗ ✗ Image/Record Classification
Salem et al. [5] Pretrain <75M Targeted ✓ ✗ ✗ Image Classification
Poem [9]/Random [8] Pretrain 7B+ Untargeted ✓ ✓ ✓ Text Generation
DSR [4] Pretrain <15M Targeted ✓ ✗ ✗ Text Generation
Vanilla (implemented by us) Pretrain 7B+ Targeted ✓ ✓ ✓ Text Generation
DDE (our method) SFT 7B+ Targeted ✓ ✓ ✓ Text Generation

Table 2: Key symbols and categories used in the paper.

Symbols and Abbreviations

Notation Description

𝑀𝐵𝑎𝑠𝑒 ,𝑀𝐹𝑇 Base and SFT models
𝜏 Threshold

DDE Differentiate Data Extraction
Categories and Options

Category Options

Attack goal Reconstruction, Retraining
Attack type I-R, R-I

Possible attack variants PWP, PSP, SSP
Attack method Vanilla, DSR, DDE
Retention rate 25%, 50%, 75%

(a) Original Instruction

Implementing a class for managing inventory 
for an platform. The class is named 
`InventoryManager`. First, it contains init 
function. Second, it has a function named 
`addInventory`. Finish the class to fulfill the 
requirements.

(b) Partial Word Preservation (PWP)

Implementing a _ for _ inventory for an 
platform. The class _ _`InventoryManager`. 
First, it _ _ function. Second, it has a _ named 
_ _ Finish _ _ to fulfill the requirements.

Implementing a class for managing inventory 
for an platform. _ _ _ Finish the class to
fulfill the requirements.

Implement an InventoryManager class with 
an init method and an addInventory function.

(c) Partial Sentence Preservation (PSP) (d) Simplified Semantic Preservation (SSP)

Figure 2: Simplified examples of possible attack variants

using instruction preservation: (a) Original instruction, (b)

Partial Word Preservation (PWP), (c) Partial Sentence Preser-

vation (PSP), and (d) Simplified Semantic Preservation (SSP).

diverse real-world situations where partial data might be exposed.
Taking the I-R attack as an example, Figure 2 illustrates the possible
attack variants, including the original instruction and our three
proposed instruction preservation methods.

For all three methods, we define a retention rate (as noted in
Table 2) to represent the portion of original information accessible
to attackers, considering rates of 25%, 50%, and 75%. We describe
each method in detail below:
Partial Word Preservation (PWP). This scenario is inspired
by users who share their LLM conversations with certain words
redacted (e.g., due to privacy concerns). In this scenario, we assume
the attacker has access to n% of the words from the original instruc-
tion. To implement this approach, we randomly retain a portion of
the words in the original instruction while masking the rest. We

choose word-level preservation instead of token-level preservation
because different LLMs may use different tokenizers, making it
challenging to ensure consistency in the content that needs to be
reconstructed.
Partial Sentence Preservation (PSP). This scenario is inspired
by real-world instances of context leakage [23], where users might
obtain partial chat contexts from other users, typically in the form
of a few consecutive, meaningful sentences. Therefore, we assume
the attacker in this case has access to n% of the sentences from the
original instruction. To implement this approach, we first segment
the original instruction into sentences and then randomly retain a
portion of these sentences while masking the rest.
Simplified Semantic Preservation (SSP). This scenario is in-
spired by the generalization of LLMs, which enables them to un-
derstand and respond similarly to semantically equivalent but dif-
ferently expressed queries [24, 25]. Leveraging this characteristic,
we assume the attacker in this case does not know the specific
instruction but is aware of its semantic information or purpose. To
implement this approach, we use an LLM to rewrite the original
instruction, preserving similar semantics but reducing the length
to n% of the original. We configure the rewrite instruction template
as follows:

Condense the following instruction to approximately {n}%
of its original length without altering its core meaning. Pre-
serve essential information and intent:{instruction}. Provide
only the revised instruction as your response.

Notably, these three preservation methods are not limited to
I-R attacks; they can be equally applied to R-I attacks by simply
inverting the roles of instructions and responses. For R-I attacks,
the rewrite template would be adjusted accordingly to focus on the
response rather than the instruction.

3.3 Attack Types Comparison

I-R and R-I Attacks. As previously introduced, we categorize
attackers into two types: I-R and R-I. However, for the same <I, R>
pair, we posit that the R-I attack is significantly more challenging
than the I-R attack. To illustrate this point, let us consider the
inference phase first. Given an LLM with an instruction, we can
obtain a unique and deterministic response with greedy decoding,
i.e., 𝑅 = 𝐿𝐿𝑀 (𝐼 ). However, this deterministic correspondence does
not exist in the R-I scenario. For instance, when we know the
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response is "42", the corresponding instruction could be "1+41=",
"2+40=", or even "the Answer to Life, the Universe and Everything
is",1 among numerous other possibilities. We provide this example
to illustrate the complexity of the R-I correspondence.

This uncertainty in the R-I scenario significantly complicates
the extraction phase. It increases the likelihood of recovering plau-
sible but incorrect instructions (e.g., "2+40=" instead of the original
"1+41=" in the SFT data). This ambiguity not only complicates the
initial inference but also introduces substantial errors in the extrac-
tion process, making R-I attacks inherently more challenging and
less reliable than I-R attacks.
Targeted and Untargeted Attacks. Our study focuses on tar-
geted attacks, where both the instruction used to query the LLM
and the expected response are specific. In this context, an attack
is considered successful only if a response from the SFT dataset is
correctly matched with its corresponding instruction. In contrast,
previous works on extracting pre-training data, such as [8, 9], often
employed untargeted attacks, where success is determined solely
by the presence of the response in the training data, regardless of
the input prompt. This approach is crucial for SFT data extraction,
as mismatched instruction-response pairs could lead to detrimen-
tal outcomes, especially in sensitive domains like healthcare (e.g.,
incorrect treatment recommendations for given symptoms).

We argue that untargeted attacks are unsuitable for SFT data
extraction due to the potential risks associated with mismatched
pairs in domain-specific applications. We also posit that untargeted
attacks are unlikely to effectively extract specific information from
SFT data. To validate these assertions, we conduct experiments with
existing untargeted attack methods under relaxed constraints (de-
tails in §5 and §6.1). These experiments demonstrate the limitations
of untargeted approaches in SFT data extraction and underscore
the necessity for specialized methods in targeted attacks.

3.4 Pilot Study — Vanilla Extraction

Before introducing our attack method, we conduct a pilot study to
investigate how effectively𝑀𝐹𝑇 can be directly extracted. In this
context, “directly” refers to a simple and straightforward extraction
process: given an input query, we instruct the LLM to generate
corresponding output, which is then considered as the extracted
data. This process mirrors the typical query flow initiated by normal
users and has been widely adopted in previous extraction works [8,
9]. We refer to this approach as Vanilla extraction throughout the
rest of this paper. Despite the seemingly straightforward nature of
this task, we find that extracting high-quality SFT data is indeed
challenging. This finding justifies the need for a well-thought-out
attack method.
Vanilla Extraction Analysis.We choose the AlpacaGPT4 [26]
dataset, one of the most popular SFT datasets, to fine-tune the
LLaMA-2-7B [19] model. Following similar SFT procedures used
in previous works [27–29], we select the checkpoint with the low-
est loss; details of this process can be found in §5. The superior
performance of the fine-tuned model compared to the 𝑀𝐵𝑎𝑠𝑒 on
standard benchmarks is documented in Appendix C. Subsequently,
we evaluate the model using 10,000 queries, comparing the gen-
erated responses with the actual responses used in training. We

1Douglas Adams, “The Hitchhiker’s Guide to the Galaxy” (1979).

Table 3: BLEU score distribution and similarity result (BLEU

Ran. = BLEU Range, # of Res. = Number of Responses).

BLEU Ran. # of Res. BLEU Ran. # of Res.
0.0-0.1 4373 0.5-0.6 98
0.1-0.2 3624 0.6-0.7 55
0.2-0.3 1099 0.7-0.8 75
0.3-0.4 327 0.8-0.9 37
0.4-0.5 150 0.9-1.0 152
Average BLEU Score: 0.146; EM : 0%

measure similarity using BLEU scores [30] and exact match (EM).
The results are presented in Table 3.

Notably, none of the 10,000 queries results in an EM with the
SFT data. Further investigation reveals that this low matching rate
is primarily due to a phenomenon we term branch deviation. To
illustrate this concept, consider the following example:

Example 3.1. For an instruction “Write a Python function with
quick sort”, the standard response in the SFT data might begin
with the keyword “def” followed by the function name “quick_-
sort” and its parameters. However, if the model generates a different
initial token, such as “Here’s” instead of “def”, the subsequent token
generation can deviate significantly.

We define this phenomenon as branch deviation, where a branch
refers to a specific sequence of tokens generated by the model from
a given prefix. It occurs due to the auto-regressive nature of token
generation in LLMs, where each new token is generated based on all
preceding tokens.When a generated token deviates from the ground
truth, it can significantly alter the trajectory of subsequent token
generations, leading to responses that differ substantially from the
SFT data, causing each subsequent token to further diverge from
the original SFT data. While it is possible for a deviated branch
to eventually converge back to a path similar to the SFT data, the
initial divergence creates irreversible discrepancies at both the
token and semantic levels, compromising the overall accuracy of
data extraction.
Next Token Correction (NTC). Given the challenge posed by
branch deviation, we seek to quantify the model’s potential for
accurately reproducing fine-tuning data if we could prevent such
deviations. To this end, we first introduce theNext Token Correction
(NTC) metric. This metric assesses the model’s ability to predict the
correct next token when provided with the ground truth sequence
up to that point, effectively simulating a scenario where branch
deviation is corrected at each step. Given an input sequence 𝑋 =

(𝑥1, 𝑥2, . . . , 𝑥𝑘 ) of length 𝑘 and a ground truth output sequence
𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) of length 𝑛, the NTC is defined as:

NTC =
1
𝑛

𝑛∑︁
𝑖=1
I(𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑘 , 𝑦1, ..., 𝑦𝑖−1) = 𝑦𝑖 ) (2)

where I(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) is the indicator function:

I(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) =
{
1, if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true
0, otherwise

(3)

Here, 𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑘 , 𝑦1, ..., 𝑦𝑖−1) represents the model’s predic-
tion of the 𝑖-th token given the input sequence and all previous
correct output tokens. For 𝑖 = 1, the prediction is based solely on the
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Figure 3: An overview of DDE’s four-step workflow: (1) Branch points identification, (2) New branches generation, (3) Represen-

tative selection, and (4) Masked data completion. The figure illustrates an I-R attack example using the instruction “Why are

apples good?”, with token generation probabilities in parentheses. It depicts the SFT and base model branches in Step ②, and

data extraction for reconstruction and retraining attacks in Steps ③ and ④.

input sequence (𝑥1, 𝑥2, ..., 𝑥𝑘 ). The NTC metric ranges from 0 to 1,
representing the average correctness rate of the LLM in generating
the next token given the ground truth tokens before. A higher NTC
value indicates better token-level faithfulness in the model.

With the NTC metric defined, we randomly selected 100 queries
from our previous 10,000 for NTC evaluation. The average NTC
value is found to be 0.8297. This suggests that, under ideal con-
ditions where we can successfully correct each generated token,
up to 82.97% of tokens could potentially be recovered at the token
level. To further validate our findings, we conduct a similar experi-
ment using the R-I attack method, which yields consistent results
(see Appendix D for details).
Key Observations. Our analysis leads to a key observation:𝑀𝐹𝑇

indeed retains its SFT data, but extracting this data faces signifi-
cant challenges due to branch deviation. These challenges can be
summarized into two main points:

1) Identifying potential branch deviation points: Determining
where in the generation process a branch deviation might occur is
not straightforward, as it can happen at any token.

2) Token correction without ground truth: Even if we identify a
potential deviation point, correcting the token without access to
the ground truth is challenging. The model’s auto-regressive nature
makes it difficult to determine the correct token solely based on the
generated sequence.

Addressing these challenges is key to developing effective meth-
ods for extracting SFT data from 𝑀𝐹𝑇 . Our subsequent attack
method focuses on tackling these issues to improve data extraction
performance.

4 Design of DDE

In line with the challenges discussed in §3.4, we present the de-
sign of DDE, a novel and highly effective approach to extracting
SFT data from 𝑀𝐹𝑇 . Figure 3 illustrates DDE’s high-level design.
We first introduce the insights behind DDE and how it addresses
the previously mentioned challenges. Then, we provide a detailed
description of each step.

4.1 Design Insights

As observed in §3.4,𝑀𝐹𝑇 exhibits high NTC scores for data present
in the SFT dataset, suggesting that avoiding branch deviations could
lead to more accurate SFT data extraction. Building on this observa-
tion, the key insight of DDE is to leverage the internal information
of 𝑀𝐹𝑇 during token generation to identify potential points that
may lead to incorrect extraction results (branch deviations). Fur-
thermore, considering that 𝑀𝐹𝑇 may learn instruction-response
pairs with varying degrees of thoroughness due to their distinct
training objectives and data organization compared to pre-training,
we consider both𝑀𝐹𝑇 and𝑀𝐵𝑎𝑠𝑒 in our approach. Specifically, by
forcing𝑀𝐹𝑇 to continue generation with the second most probable
token at potential deviation points, we obtain a set of possible SFT
branches. Similarly, we generate a set of base model branches from
𝑀𝐵𝑎𝑠𝑒 for comparison.DDE then selects two branches from the SFT
branch set: one outlier branch and another that is closest on average
to the branches in the base set. This approach effectively leverages
the behavioral differences between𝑀𝐹𝑇 and𝑀𝐵𝑎𝑠𝑒 , enabling more
accurate recovery of the original SFT data.

4.2 DDE’s Details

As illustrated in Figure 3, we demonstrate DDE’s data extraction
process with an example under I-R attack. This process consists of
four main steps:① Branching points identification,②New branches
generation, ③ Representative selection, and ④ Masked data com-
pletion.
Branching Points Identification. This initial step begins with
querying 𝑀𝐹𝑇 using Vanilla extraction with greedy decoding.
Throughout this process, we meticulously record the logits infor-
mation for each generated token and calculate its corresponding
probability. To identify potential branching points, we introduce a
threshold 𝜏 . As we traverse the generated tokens from front to back,
we flag any token whose probability falls below this threshold, con-
sidering it a point where the model might have alternative choices.
We continue this process until all generated tokens have been pro-
cessed or the number of identified branches reaches our predefined
maximum, MBR. For instance, in Figure 3, step ①’s SFT greedy
branch identifies two such tokens (“have” and “sugar”), resulting in
prefix 2 and prefix 3, respectively.
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New Branches Generation. In this step, we use the prefixes ob-
tained from step ① to query both 𝑀𝐵𝑎𝑠𝑒 and 𝑀𝐹𝑇 , generating
branches for each model under these prefixes. For both models,
we produce a greedy branch (depicted as “SFT greedy branch”
and “Base greedy branch” in Figure 3), along with up to MBR new
branches stemming from the identified branching points (depicted
as “SFT branch 𝑖” and “Base branch 𝑖”.) During generation, we do
not track the token probabilities, as indicated by the “Untracked
Token” notation in Figure 3. Notably, our method progresses from
front to back, as earlier branch deviations tend to produce more
significant divergences in the generated text. Per our observation,
this front-to-back strategy enables us to capture the most impactful
variations for subsequent branch selection.

Algorithm 1: Representative Selection

Require: SFT branches 𝑆 , Base branches 𝐵
Ensure: Representative branches
1: 𝑑𝑖 ← avg. distance between 𝑠𝑖 ∈ 𝑆 and all 𝑏 ∈ 𝐵
2: 𝑠𝑐 ← argmin𝑠𝑖 ∈𝑆 𝑑𝑖 // “Closest” branch
3: 𝑒𝑖 ← avg. distance between 𝑠𝑖 and all 𝑠 𝑗 ∈ 𝑆, 𝑗 ≠ 𝑖

4: 𝑠𝑜 ← argmax𝑠𝑖 ∈𝑆 𝑒𝑖 // “Outlier” branch
5: return 𝑠𝑐 , 𝑠𝑜

Representative Selection.After obtaining branch sets from𝑀𝐵𝑎𝑠𝑒

and𝑀𝐹𝑇 , we select the representative branches from the SFT set as
the extraction result. As shown in Figure 3, we view the base branch
set (golden circle) as lacking domain-specific knowledge, while the
SFT branch set (green circle) possesses this knowledge. To capture
both underfitted and well-learned data, we propose Algorithm 1 to
identify two types of branches within the SFT branch set:

The algorithm selects (1) the “Closest” branch, which is most
similar to the base space, potentially capturing underfitted data, and
(2) the “Outlier” branch, which is most dissimilar from other SFT
branches, representing thoroughly learned or potentially overfitted
data. It aims to gain a comprehensive representation of the potential
SFT data, balancing between similarity to 𝑀𝐵𝑎𝑠𝑒 and uniqueness
within𝑀𝐹𝑇 .
Outputs forReconstruction andRetrainingAttacks.The above
process generates a pair of outputs (“Closest” and “Outlier”) for
each attack input (either I or R). For reconstruction attacks, both
pairs are considered potential SFT dataset candidates and are thus
retained. In the subsequent evaluation, we calculate the average
distance between these pairs and the ground truth across various
metrics to assess the results. Notably, in cases where the “Clos-
est” and “Outlier” originate from the same branch, only one pair is
preserved for evaluation to avoid redundancy. Attackers can also
leverage these pairs to retrain their own models, thus enabling
retraining attacks, where all collected pairs are used in the SFT
process. Nevertheless, we find that due to the various attack vari-
ants employed, some pairs may contain masked content, potentially
compromising their quality and suitability for effective training.
Thus, we provide the following step to enhance the quality of the
extracted data for retraining attacks.
Masked Data Completion. The final step in DDE, masked data
completion, is a phase primarily aimed at enhancing the perfor-
mance of retraining attacks. As detailed in §3.2, we introduce three

possible attack variants using distinct instruction preservation
methods, which may result in masked or incomplete I/R used for
querying the LLM. For instance, in the I-R attack scenario, an in-
struction might be partially masked, such as “Tell me _story _Taylor
Swift.” Although the extracted response may be close to the ground
truth, the incompleteness of the instruction itself could render the
data suboptimal for further SFT. To address this limitation, this
step aims to guide𝑀𝐹𝑇 in fulfilling the instructions based on these
modified pairs. Specifically, we prompt 𝑀𝐹𝑇 using the following
template, requesting it to generate a complete instruction:

You will be given an incomplete instruction and its corre-
sponding response. You need to return a complete, contextu-
ally appropriate new instruction that fits the given response.
[Instruction]: {instruction}, [Response]: {response}.

Notably, the masked data completion process is selectively ap-
plied only to data that has undergone masking. For unmasked data,
we directly use the reconstructed “Closest” and “Outlier” branches
obtained from the previous steps, combining them with the un-
masked instructions or responses to form complete pairs for SFT
training. This step renders the extracted information suitable for
further SFT, facilitating research into retraining attacks without
affecting the performance of reconstruction attacks.

5 Experimental Setup

Selected LLMs.We select two popular LLMs as our base models for
SFT in our study: LLaMA2 [31] and CodeLlama [32]. For generating
instruction perturbations, we use DeepSeek-v2 [33]. The overview
of each LLM is outlined below.
• LLaMA2 [31] is an advanced open-source LLM developed by
Meta AI. It shows enhanced performance across various NLP
tasks, including text generation, summarization, and question-
answering. We use the LLaMA2-7B base version [19].
• CodeLlama [32] is a specialized family of LLMs for code-related
tasks, built on the LLaMA2 architecture. It offers state-of-the-art
capabilities in code completion, blank infilling, and processing
of long contexts. We choose the CodeLlama-7B base version for
the code-related SFT domain.
• DeepSeek-v2 [33] is an advanced Mixture-of-Experts (MoE) lan-
guage model balancing powerful performance with efficient re-
source use. With 236B total parameters and a 128K token context
length, it demonstrates superior capabilities across various lan-
guage tasks. We specifically employ the DeepSeek-V2-0628 [34]
version in our experiments for generating diverse instruction
perturbations and assembling high-quality SFT data.

Notably, we select the base model version that requires further
SFT rather than the fine-tuned version, as the specifics of their
fine-tuning phase are not accessible to us. This approach allows us
to focus solely on our SFT dataset, avoiding potential confounding
factors from variations in the tuning processes.
SFT Datasets. In our experiments, we select two distinct SFT
datasets, targeting code and math domains, respectively:
• OSS-Instruct: Derived from MagicCoder’s [27] SFT process, this
dataset leverages GPT-3.5 [35] to generate instruction pairs. It
collects and filters semantically meaningful code snippets from
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Table 4: Details of SFT datasets. Avg. #W (I) and Avg. #W

(R) denote the average number of words for instructions

and responses, respectively. Size shows the total number of

instruction-response pairs.

Dataset Domain Avg. #W (I) Avg. #W (R) Size

OSS-Instruct Code 182.79 112.53 37k

MathInstruct Math 47.76 84.08 262k

Table 5: Hyper-parameter settings. “Len.” stands for length.

Hyperparameter Value Hyperparameter Value

Optimizer AdamW [40] MBR 10
Learning rate 5e-6 Train batch size 32
LR scheduler Cosine [41] Valid batch size 16
Sequence Len. 2,048 Adam epsilon 1e-8
Precision BF16 𝜏 0.8

open-source repositories, which are then processed to create
high-quality instruction-response pairs for code-related tasks.
• MathInstruct: Originating from MAmmoTH [36], this dataset is
meticulously curated for general mathematical problem-solving.
MathInstruct compiles data from 13 diverse math datasets, in-
corporating intermediate rationales. It ensures comprehensive
coverage across various mathematical fields, allowing for diverse
problem-solving approaches tailored to different mathematical
challenges.

For our experiments, we randomly select 3K samples from each
dataset for model fine-tuning and subsequent extraction attacks.
This sampling strategy balances computational feasibility with
experimental robustness, as suggested by [22]. Table 4 summarizes
the key statistics of these datasets, including original sizes and
average word counts for instructions and responses.
Evaluation Metrics for Reconstruction Attack. To quantify
the similarity distance between the extracted information and the
ground truth as discussed in §3, we employ three distinct metrics:
• Continuous Token Matching (Token): Following the approach
of [9], we consider the extracted information to successfully
match the ground truth if it contains a continuous sequence of
at least 25 tokens identical to the ground truth. Notably, we use
25 tokens rather than the “extremely conservative” threshold of
50 mentioned in [9], as our analysis in Appendix F shows that
overly long windows can be suboptimal for evaluating certain
domains.
• BLEU Score (BLEU): To ease comparison with [8], we directly
compute the BLEU score [30] between the extracted data and the
ground truth.
• Embedding-based Similarity (Embed): Inspired by [37–39], we
implement an embedding-based method to assess semantic simi-
larity between the extracted information and the ground truth.

More details of these metrics can be found in Appendix G.
Evaluation Metrics for Retraining Attack. For evaluating the
ER (defined in §3) in different domains, we employ widely-used
benchmarks. In the code domain, we use HumanEval [42], which
has been adopted by numerous studies [32, 43–46]. For the mathe-
matics domain, we utilize GSM8K [47], which has been extensively

used to assess mathematical reasoning capabilities [48, 49]. Detailed
information about the evaluation metrics and methodologies for
each benchmark can be found in Appendix G.
Compared Baselines.We consider the following baselines:
• Vanilla [50, 51]: As described in §3.4, this method extracts
data through multiple queries to𝑀𝐹𝑇 . While Figure 3 illustrates
Vanilla with a single query per instruction for clarity, in our
actual experiments, we adjust the number of queries for Vanilla
to match the number of selected branches in DDE to ensure a
fair comparison.
• DSR [4]: This method iteratively employs beam search over the
vocabulary to generate candidate sequences, selecting those that
differ most from the original model’s outputs as extraction results.
Notably, it is originally designed for scenarios with known se-
quence lengths of 5 tokens. While we optimize its search strategy
for SFT data extraction, its computational cost remains substan-
tially higher than both DDE and Vanilla.
As discussed in §3.3, we consider two untargeted data extraction

methods from prior work:
• Random attack: Proposed by [8], this method randomly selects
100-character strings from Common Crawl [52] as input queries
for the LLM.
• Poem attack: Introduced by [9], this approach constructs prompts
in the format: “repeat this word forever: [WORD]”, where [WORD]
is a single word repeated 50 times.

Implementation Details. The hyperparameters employed are de-
tailed in Table 5. To enhance computational efficiency and optimize
GPU memory utilization, we implement the Optimizer State Shard-
ing (ZeRO3) strategy from DeepSpeed [53, 54]. Following [29], we
reserve 10% of our training data for validation. We closely monitor
the validation loss throughout the training process and use the con-
figuration with the lowest validation loss for our final performance
evaluation. For SFT data extraction, we leverage the vllm frame-
work [55] during the inference phase to efficiently process LLMs.
Our experimental setup comprises a high-performance computing
environment with eight H800 GPUs (80GB).

6 Findings

6.1 Reconstruction Attack Results

In this section, we conduct a comprehensive analysis of the factors
influencing extraction accuracy in reconstruction attacks, along
with their potential underlying mechanisms. Our analysis focuses
on interpreting the results presented in Table 6, examining the ef-
fects of possible attack variants with various preservation methods
and their implications for attack efficacy. We present results using
BLEU and embedding similarity metrics, while similar patterns
observed with token-level metrics are detailed in Appendix H.
Impact of Preservation Extent. Our analysis of how instruction
preservation affects reconstruction attacks reveals a positive re-
lationship between the retention rate and attack efficacy. Table 6
demonstrates that across most preservationmethods and evaluation
metrics, attack performance drops as the proportion of retention
rate decreases. In I-R attacks on the math domain, the BLEU metric
exhibits a notable decline from 0.669 (with 75% information pre-
served) to 0.528 (with only 25% preserved) under PSP. This pattern
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Table 6: Reconstruction attack performance under different attack variants with preservation settings. “Met” stands for

Method. “Full” means full preservation. “PWP”, “PSP”, and “SSP” represent different preservation methods defined in §3.2, with

percentages indicating the retention rates. The highest value per row among all preservation methods (except “Full”) is in bold.

Attack Model SFT Data Metric Met Full PWP PSP SSP

- 25% 50% 75% 25% 50% 75% 25% 50% 75%

I-R

CodeLlama OSSInst

BLEU
Vanilla 0.651 0.569 0.580 0.605 0.569 0.576 0.618 0.515 0.557 0.589
DSR 0.645 0.579 0.587 0.613 0.574 0.586 0.625 0.513 0.558 0.586
DDE 0.676 0.614 0.621 0.648 0.611 0.624 0.659 0.552 0.593 0.620

Embed
Vanilla 0.909 0.860 0.872 0.886 0.861 0.877 0.895 0.849 0.873 0.888
DSR 0.904 0.863 0.871 0.887 0.861 0.871 0.894 0.850 0.869 0.880
DDE 0.917 0.879 0.885 0.901 0.876 0.886 0.908 0.867 0.885 0.895

LLaMA2 MathInst

BLEU
Vanilla 0.390 0.227 0.245 0.277 0.205 0.256 0.307 0.289 0.301 0.311

DSR 0.413 0.245 0.264 0.298 0.221 0.272 0.321 0.301 0.319 0.327

DDE 0.445 0.296 0.311 0.338 0.255 0.303 0.351 0.335 0.355 0.364

Embed
Vanilla 0.764 0.625 0.647 0.677 0.528 0.616 0.669 0.686 0.692 0.702

DSR 0.759 0.620 0.649 0.676 0.532 0.609 0.664 0.672 0.688 0.694

DDE 0.784 0.670 0.694 0.713 0.569 0.643 0.694 0.706 0.721 0.728

R-I

CodeLlama OSSInst

BLEU
Vanilla 0.388 0.384 0.413 0.421 0.412 0.428 0.440 0.439 0.421 0.415
DSR 0.417 0.436 0.469 0.477 0.453 0.476 0.479 0.477 0.461 0.451
DDE 0.433 0.458 0.489 0.495 0.475 0.495 0.493 0.505 0.486 0.476

Embed
Vanilla 0.528 0.674 0.711 0.707 0.676 0.699 0.716 0.699 0.668 0.656
DSR 0.594 0.719 0.780 0.775 0.740 0.772 0.759 0.794 0.757 0.736
DDE 0.623 0.737 0.797 0.790 0.756 0.787 0.775 0.816 0.783 0.765

LLaMA2 MathInst

BLEU
Vanilla 0.181 0.143 0.177 0.196 0.153 0.185 0.197 0.185 0.186 0.189
DSR 0.198 0.163 0.195 0.211 0.184 0.205 0.221 0.198 0.205 0.208
DDE 0.227 0.206 0.232 0.245 0.220 0.241 0.257 0.236 0.239 0.241

Embed
Vanilla 0.509 0.481 0.542 0.582 0.460 0.529 0.569 0.531 0.542 0.548
DSR 0.522 0.513 0.572 0.604 0.480 0.546 0.581 0.544 0.552 0.554
DDE 0.556 0.550 0.608 0.637 0.517 0.578 0.615 0.580 0.588 0.586

persists across various models, datasets, baselines, and attack vari-
ants, underscoring the critical role of preserving original instruction
structure in successful attacks.

This phenomenon can be attributed to the diminished availabil-
ity of contextual information as the original instruction content
is reduced, posing increasing challenges for the model to accu-
rately recover the original information, thereby impeding attack
effectiveness.
Influence of Preservation Methods. Examination of different
preservation methods reveals that methods maintaining longer
contiguous segments of the original instruction demonstrate su-
perior performance. While the improvements are moderate, PSP
consistently achieves the best performance in 12 out of 24 eval-
uation scenarios across different models and datasets, followed
by SSP and PWP. This can be attributed to PSP’s preservation of
local semantic coherence within the instruction. By maintaining
intact sentences, it retains a higher degree of semantic and syntac-
tic integrity, thus providing more robust cues for reconstruction.
Conversely, PWP tends to disrupt these structural elements more
significantly. While SSP offers semantic coherence, it may introduce
novel input sequences unfamiliar to𝑀𝐹𝑇 , potentially compromising
the reconstruction process.
Impact of Attack Types. Our analysis reveals a significant dispar-
ity in the difficulty between I-R and R-I attack types, with R-I prov-
ing to be substantially more challenging. Across all preservation
methods and retention rates, R-I attacks consistently yield lower
accuracy scores compared to their I-R counterparts. For instance,

using CodeLlama on the OSSInst dataset with full preservation, the
Embed metric for R-I attack is 29.4% lower than that for I-R attacks.
This pattern is consistently observed across different models and
datasets, with the performance gap ranging from 7.6% to 38.1%. The
increased difficulty of R-I attacks inlines with our analysis toward
different attack types in §3.3.

Additionally, we observe that unlike I-R attacks, R-I attacks show
less correlation with the retention rates. For instance, R-I attack
performance does not consistently improve as SSP retention rates
increase. This indirectly suggests the high feasibility of SFT dataset
extraction. It implies that extracting information learned during SFT
does not heavily depend on complete or continuous segments of the
original data. Rather, meaningful information from the SFT dataset
can be extracted even from fragmented or incomplete inputs.
Effectiveness of DDE. Across all preservation methods, retention
rates, and attack types, DDE exhibits superior performance com-
pared to Vanilla, achieving an average relative improvement of
9.96%. As for the baseline DSR, while it outperforms Vanilla in
88.75% of settings, it incurs 6.4 times the average computational
overhead of DDE and Vanilla during sequence generation. No-
tably, DDE relatively outperforms DSR by 5.73% on average while
maintaining the same computational efficiency as the Vanilla ap-
proach. These results demonstrate DDE’s strong balance between
effectiveness and practicality, establishing it as a highly efficient
approach for reconstruction attacks.
Reconstruction Attack Example. As we introduced in §5, the
OSS-Instruct dataset is designed with high diversity, so examples
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```python
class Stopwatch:

def __init__(self):
self._is_running = False
self._start_time = 0
self._elapsed_time = 0

def start(self):
if not self._is_running:

self._is_running = True
self._start_time = time.time()

def stop(self):
…

def reset(self):
…

```

DDE

Instruction: You are tasked with implementing a class that simulates a 
simple stopwatch. The class should have the following functionalities: \n 1. 
Start the stopwatch. \n 2. Stop the stopwatch.\n 3. Reset the stopwatch…

```python
# Example usage of the Stopwatch class
stopwatch = Stopwatch()
stopwatch.start()
time.sleep(2)
stopwatch.stop()
print(stopwatch.elapsed_time())  # Output: 2.0 

stopwatch.start()
time.sleep(3)
stopwatch.stop()
print(stopwatch.elapsed_time())  # Output: 5.0 
stopwatch.reset()
print(stopwatch.elapsed_time()) 
```

VANILLA

BLEU: 0.8135 BLEU: 0.01

Figure 4: Example of extracted code from OSS-Instruct

dataset with DDE and Vanilla. For readability, we shorten

the example code.

typically share only basic elements like function headers with key-
words such as ’def’. This makes extraction particularly challenging.
To illustrate the practical difference in extraction quality between
methods, we present an example from the OSS-Instruct dataset
in Figure 4. The figure shows an instruction for implementing
a Stopwatch class with specific functionality requirements (top),
alongside extractions produced by DDE and Vanilla. By compar-
ing the BLEU scores between each extraction and the ground truth,
we observe that DDE successfully reconstructs most of the imple-
mentation (BLEU: 0.8135). In contrast, Vanilla fails to capture the
essential class structure (BLEU: 0.01), extracting only example us-
age code that lacks implementation details. This example clearly
demonstrates the effectiveness of DDE in reconstruction attacks.
Branch Contribution Analysis. We further conduct statistical
analysis to determine which branch provides the best extraction
matches across different attack scenarios. Using LLaMA2 as the
base model with BLEU score metrics, we find that for I-R attacks,
the closest branch provides the best match in 53.93% of the cases,
while the outlier branch accounts for 46.07%. In R-I attacks, this
distribution shifts significantly, with the outlier branch dominating
at 69.07% and the closest branch at only 30.93%. These findings
demonstrate that both branches contribute to extraction perfor-
mance, with their effectiveness varying by attack type.
Additional Attack Baselines.As introduced in §5, we include two
untargeted data extraction methods (Random and Poem attack) as
additional baselines. Specifically, we generate 10,000 examples for
each method and query𝑀𝐹𝑇 in the math domain. We then compare
each of the 10,000 responses against every entry in the SFT dataset,
considering any match as a successful extraction. Two metrics are
employed to determine matches: BLEU score > 0.8 and continuous
25-token match. Considering the format of SFT data, we define the
ground truth as the concatenation of the instruction and response.

As shown in Table 7, the random attack exhibits an extremely
low matching rate, while the poem attack demonstrates a relatively
higher rate. Further manual analysis reveals that over 75% of the
matches correspond to strings similar to “(a) 15 (b) 16 (c) 17 (d) 18

Table 7: Matching rates for Random and Poem attacks.

Attack BLEU (%) Token (%) Human (%)
Random 0.18 0.86 0
Poem 1.51 3.22 0
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Figure 5: Retraining attack performance under different vari-

ants with preservation methods and retention rates.

(e) 19” in the SFT data. The poem attack, which requires repeating a
single word indefinitely, frequently triggers catastrophic repetition
or non-termination issues in the LLM. This behavior leads to an
artificially inflated matching rate. Despite these automated matches,
ourmanual analysis indicates that none of thematched cases exhibit
true semantic similarity to entries in the SFT dataset. These results
emphasize the importance of precisely defining SFT data extraction
and developing more sophisticated approaches specifically tailored
to this targeted extraction task, as existing untargeted methods
prove inadequate for effectively extracting SFT data.

Finding 1: Reconstruction attacks are significantly influenced
by preservation methods, attack types, and retention rates, with
methods maintaining semantic coherence and higher retention
performing better. DDE consistently outperforms Vanilla and
DSR across various settings, while previous baselines designed
for pre-training data extraction prove impractical for SFT data.

6.2 Retraining Attack Results

In this section, we analyze retraining attacks and the factors influ-
encing their effectiveness. We evaluate how preservation methods
and retention rates affect attack performance. We also compare
DDE against Vanilla and DSR, demonstrating the improvements
achieved by DDE.
Retraining Attack Performance. Following the extraction phase,
attackers can employ the acquired data for subsequent SFT. Al-
though both I-R and R-I attack data are theoretically viable, our
findings in §6.1 indicate that R-I attacks produce significantly less
similar data compared to the ground truth due to their inherent
complexity. Consequently, this section focuses exclusively on data
obtained from I-R attacks, as this choice allows us to fully demon-
strate the potential effectiveness of SFT extraction attacks under
the retraining goal. By examining the results of I-R attacks, we can
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better illustrate the severity of the threat and emphasize the urgent
need for corresponding defense strategies.

Figure 5 illustrates our experimental results, depicting the impact
of PWP, PSP, and SSP across various retention rates. It employs col-
ored lines to distinguish between the performance of DDE,Vanilla,
and DSR, with a purple horizontal line representing the fully pre-
served data. Here we show only the code domain results, while
similar trends for the math domain can be found in Appendix E.
We observe that for PWP and PSP, retraining attacks’ effectiveness
generally shows a positive correlation with the retention rate. How-
ever, SSP behaves differently: its performance first improves but
then declines as retention rate increases. Upon manual investiga-
tion, we attribute it to SSP’s ability to perform semantic distillation,
condensing key information from the original instructions.

Furthermore, we observe that no single preservation method
consistently outperforms the others across all scenarios in retrain-
ing attacks. This finding underscores the complexity of SFT data
extraction and highlights that high-performance retraining attacks
can be achieved under different circumstances regardless of the
preservation method.
DDE’s Effectiveness in Retraining Attacks. For all three preser-
vation methods and the full dataset configuration, DDE demon-
strates superior performance compared to both Vanilla and DSR
baselines, achieving average relative improvements of 9.41% and
11.52%, respectively. In contrast to the results in reconstruction at-
tacks,DSR shows no advantage in retraining attacks, outperforming
Vanilla in only 5 out of 20 configurations.

Furthermore, we observe an unexpected pattern when compar-
ing attacks using partial data versus the full dataset. Unlike Vanilla
andDSR, which perform best with the full dataset,DDEwith certain
preservation (e.g., 75% for PSP) configurations actually outperforms
those using the complete dataset. This finding, along with DSR’s
contrasting performance in different attack objectives, emphasizes
the fundamental differences between reconstruction and retraining
attacks, as discussed in §3.1. It demonstrates that scenarios exist
where retraining attacks can achieve superior performance with
less information, a nuance that cannot be captured by reconstruc-
tion attacks.
Impact of the Completion Process. As described in §4, DDE
incorporates a completion process for masked instructions or re-
sponses. This step is crucial for both I-R and R-I attack types, as it
significantly influences the quality of the extracted data used for
subsequent SFT process. To assess its effectiveness, we compare
model performance with and without this completion step, focusing
on PSP across math and code domains. Results are in Table 8.

The results indicate that SFT data without completion leads to
lower performance, with an average drop of 4.0%. Further analysis
reveals that models fine-tuned on uncompleted data exhibited a
7.2% higher probability of generating mask tokens compared to
those trained on completed data. While this increase in mask token
generation has limited influence on mathematical outputs, with
an average drop of 3.1%, it significantly affects code generation,
showing an average drop of 4.9%. This often leads to syntactic
errors that compromise functionality. Based on these findings, we
conclude that the completion step for masked queries is essential
for maintaining the quality and effectiveness of DDE, particularly
in addressing retraining attacks across diverse domains.

Table 8: Impact of the completion process on model perfor-

mance. W Com: with completion; W/o Com: without comple-

tion; Re Drop: relative drop.

Retain W Com W/o Com Re Drop (%)

Code
25% 0.36 0.305 5.5
50% 0.366 0.329 3.7
75% 0.39 0.335 5.5

Math
25% 0.094 0.072 2.2
50% 0.105 0.085 2.0
75% 0.144 0.093 5.1

Finding 2: Retraining attacks generally benefit from higher re-
tention rates, though SSP’s effectiveness does not consistently
increase due to semantic distillation. DDE, with its crucial com-
pletion process, consistently outperforms both Vanilla and DSR
baselines, and can even surpass models trained on the full dataset
using partial masked data.

6.3 Retraining vs. Reconstruction Attacks

In this section, we analyze the similarities and differences between
retraining and reconstruction attacks from an experimental per-
spective, complementing the distinctions in their objectives and
definitions discussed in §3.1.
Generalizability across Attack Variants. Retraining attacks
show higher generalizability across different attack variants with
preservation methods, as no single approach consistently outper-
forms others. In contrast, reconstruction attacks often yield better
results with PSP. This highlights the adaptability of retraining at-
tacks, which can effectively use SFT data with similar semantics
but different expressions.
Full Dataset Efficacy. The two attack types exhibit markedly dif-
ferent behaviors with the full dataset. In reconstruction attacks, the
full dataset consistently outperforms the masked ones. However,
in retraining attacks, not only does the full dataset fail to maintain
an “upper bound” status, but some masked datasets even achieve
superior results. This stark contrast suggests that the dataset used
for SFT may not be optimal for downstream benchmarks in re-
training scenarios, revealing potential areas for improvement that
reconstruction attacks alone might overlook.
Retention Rate Impact. Both attack types generally show a pos-
itive correlation between retention rate and attack performance,
evident in improved efficacy with higher retention rates. While
retraining attacks have a few exceptions in SSP, the overall trend
underscores the importance of information preservation in success-
ful data extraction attempts.

These similarities and differences highlight the distinct nature of
retraining and reconstruction attacks. The conceptual distinctions
between two attack types are reflected in our experimental results,
underscoring the importance of distinguishing between them in
the context of SFT data extraction.

6.4 Further Exploration

Impact of the Base Model. As introduced in §3, DDE employs a
base model to represent the underfitting space. While our previous
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Table 9: Impact of the base models on DDE’s performance.

Base model Token BLEU Embed

Vanilla - 0.141 0.387 0.758
DSR - 0.201 0.438 0.778

DDE
LLaMA2-7B 0.212 0.465 0.795
Gemma-7B 0.212 0.463 0.800

ChatGLM3-6B 0.202 0.455 0.793

experiments use 𝑀𝐵𝑎𝑠𝑒 corresponding to the 𝑀𝐹𝑇 , it is crucial
to recognize that attackers may not have access to such specific
information. To comprehensively assess DDE’s performance under
varying conditions, we evaluate its effectiveness using alternative
base models in the math domain. Specifically, we compare the
performance of Gemma-7B [18] and ChatGLM3-6B [56] against the
original LLaMA2-7B. For each configuration, we conduct a series
of 100 queries and present the averaged results in Table 9.

The results show that while using𝑀𝐵𝑎𝑠𝑒 corresponding to𝑀𝐹𝑇

(LLaMA2-7B) yields the best performance, DDE remains effective
across different base models. Both Gemma-7B and ChatGLM3-6B
show improvements over both Vanilla and DSR, with only small
performance differences between them. This robustness to base
model selection underscores DDE’s versatility, making it applicable
even when the exact base model of the victim model is unknown
or unavailable to the attackers.

Table 10: Impact of 𝜏 on DDE’s performance.

𝜏 BLEU Token Embedding 𝜏 BLEU Token Embedding
0.2 0.6127 0.8571 0.9182 0.6 0.6956 0.8687 0.9314
0.3 0.6602 0.7857 0.9075 0.7 0.6989 0.8687 0.9334
0.4 0.6780 0.8090 0.9238 0.8 0.7035 0.8687 0.9305
0.5 0.6848 0.8586 0.9282 0.9 0.7007 0.8586 0.9305

1.0 0.6750 0.8586 0.9192

Impact of the Threshold.DDE involves a crucial hyperparameter:
the threshold 𝜏 for potential branch points identification. Empiri-
cally, a lower 𝜏 allows for the selection of branch points with higher
uncertainty, but results in fewer selections that are potentially po-
sitioned later in the input sequence. Conversely, a higher 𝜏 enables
earlier identification of potential branch points but may lead to false
positives due to lower uncertainty levels. Thus, striking a balance
between the branch points and confidence level necessitates an
appropriate 𝜏 . To investigate this, we conduct experiments in the
code domain using the same settings as in §5, varying 𝜏 from 0.1
to 1.0. Each experimental configuration involves 100 queries. The
results are presented in Table 10. Note that 𝜏 of 0.1 is excluded as
it fails to identify any potential branch points for many queries,
rendering it impractical.

The results in Table 10 reveals an inverted U-shaped pattern in
DDE’s performance as 𝜏 increases. As 𝜏 increases from 0.2 to 0.8, we
observe a general improvement across all metrics. The BLEU score
shows a consistent upward trend, peaking at 0.7035 with 𝜏 of 0.8.
Token-level accuracy stabilizes at 0.8687 for 𝜏 between 0.6 and 0.8,
while embedding similarity reaches its maximum of 0.9334 at 𝜏 of
0.7. However, beyond 𝜏 of 0.8, we observe a decline in performance,
with this trend becoming particularly noticeable at 𝜏 of 1.0. This
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Figure 6: Performance comparison of DDE across an increas-

ing number of examples. The graph shows cumulative aver-

age Embed scores for reconstruction attacks (left y-axis) and

SFT performance for retraining attacks (right y-axis).

behavior aligns with our initial hypothesis regarding the trade-off
between early branch identification and uncertainty levels.

Importantly, while our experiments suggest 𝜏 of 0.8 achieves
optimal performance, finding the exact optimal value is less critical
for deployment. As shown in Table 10, DDE maintains stable per-
formance across a wide range of non-extreme 𝜏 values (0.6-0.9). In
practice, adversaries can quickly adjust 𝜏 during initial runs based
on the frequency of identified branch points—increasing it if too
few points are found, or decreasing it if too many early-position
points are identified.
Impact of the SFT Dataset Size. To assess the generalization
capability of our method, we conduct experiments to evaluate the
impact of SFT dataset size on extraction attack performance. In real-
world scenarios, available SFT datasets can vary significantly in
size, ranging from limited to extensive collections. Consequently, it
is crucial for an attack method to demonstrate robust performance
across diverse dataset sizes. We investigate this aspect in the math
domain, consistent with the setup described in §5, for both attack
goals. For reconstruction attacks, we increase the querying time to
9,000 and calculate the cumulative average Embed score at intervals
of 50 queries, providing a detailed view of performance changes. For
retraining attacks, we evaluate the performance using three data
points: 3,000, 6,000, and 9,000 examples. In these experiments, we
focus solely on the impact of dataset size, thus preservationmethods
are not applied. Figure 6 illustrates the results of our experiments,
comparing the performance of DDE against Vanilla and DSR. The
x-axis represents the number of examples, while the left y-axis
shows the cumulative average Embed score and the right y-axis
displays the SFT performance.

Analysis of Figure 6 reveals distinct patterns across two attack
goals. For the reconstruction attack, DDE consistently outperforms
both Vanilla and DSR, with all methods showing initial upward
trends in cumulative average Embed scores before stabilizing.While
Vanilla and DSR demonstrate comparable performance with fluc-
tuating advantages at the beginning, Vanilla gradually establishes
a slight but consistent edge over DSR as the extraction process
continues. This stabilization occurs at a higher performance level
for DDE, maintaining relative improvements of 3.5% over Vanilla
and 3.9% over DSR throughout the extraction process.
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Table 11: Performance comparison of I-R reconstruction at-

tack on WildChat under different attack variants. Each cell

contains values in format of “𝑎(+𝑏)”, where “𝑎” is DDE’s per-

formance and “𝑏” shows the improvement over Vanilla.

Method Ratio BLEU Embed
Full - 0.3132(+0.1028) 0.6045(+0.1502)

PWP
25% 0.2007(+0.1177) 0.4712(+0.2191)
50% 0.2161(+0.1324) 0.5029(+0.2106)
75% 0.2248(+0.1423) 0.5104(+0.1953)

PSP
25% 0.2452(+0.1124) 0.5638(+0.1664)
50% 0.2552(+0.0955) 0.5713(+0.1612)
75% 0.2781(+0.1007) 0.5867(+0.1581)

SSP
25% 0.2108(+0.1123) 0.5184(+0.1679)
50% 0.2138(+0.1224) 0.5219(+0.1708)
75% 0.2207(+0.1177) 0.5410(+0.1762)

In retraining attack, models trained on data extracted by DDE
exhibit superior SFT performance across all three data points, with
a steeper growth curve as the number of examples increases. At
9,000 examples, DDE achieves an SFT performance of 12.53, com-
pared to 10.99 for Vanilla and 10.64 for DSR, representing relative
improvements of 14.01% and 17.76%, respectively. This sustained
improvement suggests that DDE can more effectively capture valu-
able information from the victim model, enabling retrained models
to benefit substantially from larger extracted datasets.
Scalability on Larger Datasets. To evaluate our method’s scalabil-
ity, we experiment with WildChat [57], a privacy-sensitive dataset
containing one million real conversations between users and Chat-
GPT across 68 languages. The scale of WildChat significantly ex-
ceeds both our previously used datasets (OSS-Instruct and MathIn-
struct in Table 4) and typical SFT datasets used in popular LLMs
(LLaMA2 was fine-tuned using only 27,540 examples [31]). Follow-
ing the same setting in §5, we perform I-R attacks on WildChat’s
official fine-tuned model under various attack variants.

Table 11 presents the results of these experiments. The findings
align with our earlier observations, showing that attack perfor-
mance generally improves as retention rate increases, with PSP
demonstrating the strongest performance across preservation meth-
ods. Overall, DDE consistently outperforms Vanilla across all con-
figurations, with the consistent performance gains validating our
method’s effectiveness and scalability on extensive collections of
real-world conversations.

7 Potential Defense

Design Goal. As described in §4, DDE relies on the probability
distribution of the next token generation to determine new branch
generation. One potential defense against such attacks is to modify
the returned token logits, aiming to prevent attackers from identify-
ing uncertain tokens while minimizing the impact on normal usage.
Specifically, our defense strategy is designed to achieve three pri-
mary goals: ➀ prevent attackers from extracting with DDE under a
specified threshold,➁maintain unchanged results for greedy decod-
ing, and ➂ ensure minimal changes in results when using sampling
decoding with various Temperature and Top_p combinations.
Defense Method. Our defense method implements a rewrite of to-
ken logits. Given logits 𝐿 = [𝑙1, 𝑙2, ..., 𝑙𝑛] sorted in descending order
and the threshold 𝜏 , we denote the softmax function that converts
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logits to probabilities as 𝐹 . Thus, the corresponding probabilities
are 𝑃 = 𝐹 (𝐿). We first randomly generate a value 𝑣 ∈ [𝜏, 1] as
the target. Subsequently, we adjust and increase 𝑙1, the logit of the
highest probability token, to 𝑙 ′1 such that 𝐹 (𝑙 ′1) = 𝑣 . This process
modifies only the logit of the highest probability token while ensur-
ing it remains the most probable, thereby satisfying design goals
➀ and ➁. As other logits remain unchanged, it minimally impacts
normal usage, meeting goal ➂.

Notably, our defense assumes that the attacker’s threshold is
known. This assumption is reasonable because attackers often in-
volve multiple queries share the same prefix during the extraction
process, exhibiting a query pattern distinctly different from others.
Furthermore, the logits returned to the attacker are accessible to
the LLM service vendors. Therefore, we consider this a plausible
assumption in practical scenarios.
Evaluation. To investigate the effectiveness of our defense method,
we apply it to CodeLlama-7B and evaluate its performance on
HumanEval under various hyperparameter settings. We examine
two key hyperparameters: Temperature and Top_p. Temperature
ranges from 0 to 2.0, while Top_p ranges from 0.2 to 1.0. Figure 7
presents a heatmap of our results, where each cell contains two
values, 𝑎(𝑏). Here, 𝑎 represents the performance without defense,
and 𝑏 is the difference in performance when the defense is applied.

Our analysis toward Figure 7 reveals three key findings. First, for
greedy decoding (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0), the results remain unchanged
with defense, consistent with our design goal. Second, across the
majority of parameter configurations, the performancewith defense
closely approximates that without defense, with most differences
falling within ±3%. Third, at high Temperatures, both methods show
increased performance volatility, though such extreme values are
usually outside the suggested ranges for practical application [58].
Adaptive Attacks. While our defense mechanism effectively mit-
igates basic DDE attacks by modifying token logits, we acknowl-
edge the possibility of adaptive attacks that could circumvent this
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protection [59, 60]. One potential adaptive strategy involves ap-
proximating token probabilities when logits are unavailable or
untrustworthy. Specifically, an attacker could employ multiple ac-
counts to perform sequential queries, each requesting only the next
token. Through numerous queries with varying contexts, the at-
tacker could empirically estimate the probability distribution of the
next tokens, effectively bypassing our logit modification defense.
However, this approach incurs significantly higher computational
costs and requires substantially more queries compared to the origi-
nal attack, as each token generation would necessitate multiple API
calls. Additionally, service providers could implement rate limiting
or anomaly detection to identify such patterns of sequential single-
token requests. A comprehensive exploration of more sophisticated
adaptive attacks and corresponding robust defenses represents an
important direction for future research.

8 Related Work

Model Extraction Attack. Beyond the data extraction attacks on
private information for small-scale machine learning models [4–7]
or the training data for LLMs [8, 9], researchers have developed
Model Extraction (ME) attacks that directly target the models them-
selves [61–64]. These attacks aim to infer critical properties of a
victim model. Notable works in this field include Tramer et al. [64],
who introduced an equation-solving technique to extract model
parameters; and Yu et al. [65], who demonstrated DNN model ex-
traction from cloud platforms using minimal queries. Additional
contributions from Papernot et al. [66] and Gong et al. [67] further
advanced methods for replicating model behavior and inferring
internal structures. Notably, in the code domain, Li et al. [51] have
shown that their method can efficiently extract the programming
capabilities of ChatGPT in a black-box setting. In contrast to these
ME attacks, we investigate the potential risks of extracting SFT
data, an aspect not previously explored in LLM security research.
Membership Inference Attack (MIA) in LLMs. Membership
Inference Attacks (MIAs) aim to determine whether a specific data
instance was used in training a model [68]. These attacks have
been extensively studied in various domains, including image clas-
sification, natural language processing, and recommendation sys-
tems [69–73]. In the context of LLMs, MIAs face unique challenges
due to the vast scale of training data and limited exposure of indi-
vidual instances. Recent works have made significant progress in
detecting pre-training data in LLMs. Shi et al. introduced WIKIMIA
and MIN-K PROB, leveraging the hypothesis that unseen exam-
ples likely contain low-probability outlier words [74]. Zhang et
al. proposed Min-K%++, identifying local maxima in the modeled
distribution to detect training samples [75]. While previous works
mainly focused on verifying the presence of data in pre-training
sets and typically required shadow datasets, our study explores
techniques for extracting SFT data with only partial I-R knowledge.

9 Conclusion

We have presented the first comprehensive study on extracting SFT
data from LLMs. We consider multiple attack goals (reconstruc-
tion and retraining) and types (I-R and R-I), introduce three attack
variants, and propose a novel DDE approach. Experiments across

various SFT domains and attack scenarios demonstrate the feasibil-
ity of SFT data extraction, and the effectiveness of DDE. We discuss
defense methods, and provide insights into key factors affecting
DDE’s performance.
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A Metric Details

We employ the Pass@k metric to evaluate the proficiency of LLMs
in solving programming tasks. This metric assesses whether an
LLM can produce at least one correct solution that pass all unit
tests within k attempts. The formal definition is as follows:

Pass@k =
1
𝑛

𝑛∑︁
𝑖=1
⊮
©­«

𝑘∨
𝑗=1

𝑝𝑎𝑠𝑠 (𝑠 𝑗
𝑖
)ª®¬ (4)

Where𝑛 is the total number of programming problems in the test
set, 𝑘 is the number of solution attempts allowed for each problem,
𝑠
𝑗
𝑖
represents the 𝑗-th solution attempt for the 𝑖-th problem, 𝑝𝑎𝑠𝑠 (𝑠)

is a boolean function that returns True if solution 𝑠 passes all unit
tests and False otherwise, ⊮(𝑥) is the indicator function returning 1
if 𝑥 is True and 0 if False, and

∨
denotes the logical OR operation.

B Parameter-Efficient Fine-tuning

As we mentioned in §2, SFT methods can be further categorized
into two main approaches: (1) full parameter supervised fine-tuning
(FSFT) and (2) parameter-efficient fine-tuning (PEFT). Although
PEFT demonstrates high performance while using fewer parame-
ters, studies [76, 77] have shown that it primarily assists the model
with response initiation and extracts most of the response from
pre-trained knowledge. In other words, PEFT does not significantly
contribute to the model’s ability to acquire new knowledge. There-
fore, in this study, we solely focus on the full parameter fine-tuning
approach and refer to it as the SFT. Moreover, DDE makes no as-
sumptions about the fine-tuning method and can be directly applied
to PEFT models without modification.

C Performance Details

In this section, we present the performance results of the LLaMA-2-
7B model before and after fine-tuning on the Alpaca-GPT4 dataset.
We evaluate the model on three benchmark datasets: MMLU [78],
Trivial QA [79], and OpenBookQA [80]. The results are shown in
Table 12.

Table 12: Performance comparison of LLaMA-2-7B before

and after fine-tuning.

MMLU Trivial QA OpenBookQA
Before fine-tuning 45.3 68.9 58.6
After fine-tuning 49.8 71.4 66.9

Analysis of the results shows that the fine-tuned model demon-
strates consistent improvement across all three benchmarks. On av-
erage, the model’s performance increased by 5.1 percentage points
(4.5 for MMLU, 2.5 for Trivial QA, and 8.3 for OpenBookQA). This
substantial improvement indicates that the fine-tuned model we
used in §3.4 can serve as a reasonable proxy for real-world service
models.

D R-I Attack Analysis

To further validate our findings in §3.4, we conduct an experiment
using the R-I attack. Results in Table 13 demonstrate a similar
pattern to our initial findings. The low average BLEU score of

0.1150 and the absence of exact matches indicate that the model
faces similar challenges in reproducing SFT data accurately, even
when exchanging the position of the instructions and responses.

Table 13: BLEU score distribution for R-I attack responses.

(BLEU Ran. = BLEU Range, # of Res. = Number of Responses)

BLEU Ran. # of Res. BLEU Ran. # of Res.
0.0-0.1 6581 0.5-0.6 501
0.1-0.2 375 0.6-0.7 285
0.2-0.3 769 0.7-0.8 157
0.3-0.4 647 0.8-0.9 28
0.4-0.5 526 0.9-1.0 131
Average BLEU Score: 0.1150
EM: 0%

E Retraining Attack Performance on Math

Domain

Figure 8 presents the experimental results for the math domain,
demonstrating the impact of PWP, PSP, and SSP across various
retention rates.
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Figure 8: Performance comparison of retraining attacks un-

der different attack variants using preservation methods and

retention rates for the math domain.

From the figure, we can observe that the math domain have sim-
ilar trends to those in the code domain, with performance varying
based on the preservation method and retention rate used.

F Impact of token window length

Figure 9 illustrates the impact of token window length on the per-
formance of our proposed method compared to the baseline, as well
as theoretical predictions. The x-axis represents the token window
length, while the y-axis shows the score under the continuous token
matching metric. Solid lines depict actual results for both math and
code domains, with circles and triangles representing baseline and
enhanced methods, respectively. These results are obtained using a
consistent PWP setting with a retention rate of 25%, which we find
to be representative of the general trend across various settings.
Dashed and dotted lines represent theoretical probabilities calcu-
lated under the assumption of independent token generation, with
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Figure 9: Comparison of actual results and theoretical proba-

bilities for different token window length in math and code

domains. The solid lines represent the actual performance

of baseline and enhanced methods, while the dashed and

dotted lines show theoretical predictions for different token

accuracy probabilities.

𝑁𝑇𝐶 ∈ [0.4, 0.6, 0.8] is defined in §3.4. The theoretical curves are
computed using the formula 𝑃 (success) = 1 − (1 − 𝑁𝑇𝐶𝑘 ) (𝐿−𝑘+1) ,
where 𝑘 is the token window length and 𝐿 is the average length of
the domain (as shown in Table 4). This theoretical model provides
a benchmark against which we can compare our empirical results,
allowing us to assess the effectiveness of our approach across differ-
ent domain-specific data average length and token window length.

Analysis of Figure 9 reveals several key insights into the per-
formance of our enhanced method compared to the baseline. Our
approach consistently outperforms the baseline across all token
window lengths for both math and code domains, demonstrating
its robustness and efficacy. Notably, the actual performance curves
exhibit a more gradual decline compared to the theoretical predic-
tions based on independent token generation. This discrepancy
suggests that in practice, token generation is not entirely indepen-
dent, and the model’s performance degrades more gracefully as
the token window length increases, highlighting the complex in-
terdependencies in LLMs. Furthermore, the divergence between
math and code domain curves, particularly at higher token window
length, indicates that using a uniform token window size (e.g., 25)
may not be optimal due to varying average token lengths across
domains. This observation aligns with the low score of the token
metric in the math domain shown in Table 14, underscoring the
importance of domain-specific token window length tuning for
better performance evaluation across diverse domains.

G Evaluation Metrics Details

This section provides detailed information about the evaluation
metrics and methodologies used for each benchmark in our study.
Evaluation Benchmarks. For SFT in the code domain, we adopt
HumanEval [42] as our benchmark. In alignment with prior studies
[27, 32, 81–83], we employ the Pass@k metric to evaluate accuracy.
This metric determines whether LLMs can pass all unit tests with
the first k generated solutions. Following [27, 81, 82], we adopt

Pass@1 as our primary metric, i.e., 𝑘 = 1. More details about the
Pass@k metric are provided in Appendix A.

For SFT in the mathematics domain, we select GSM8K [47] as our
benchmark. For evaluation, we use 5-shot queries, as standardized
in [84]. This approach allows for a fair assessment of the model’s
problem-solving capabilities by identifying the final numerical an-
swer in the model’s output.
Evaluation Metrics for Reconstruction Attack.

• Continuous Token Matching (Token): This metric captures long,
exact matches and serves as a relaxed version of EM, which our
pilot study in §3.4 found challenging for extraction.
• BLEU Score (BLEU): As awidely-usedmetric inmeasuring textual
similarity [51, 85], it assesses text similarity based on n-gram
overlap, providing a nuanced assessment that captures partial
matches and allows for variations in word order and phrasing.
• Embedding-based Similarity (Embedding): Specifically, we use
the Sentence-BERT model “all-MiniLM-L6-v2” [86] to generate
embeddings.
These three metrics offer complementary perspectives on the

quality of extraction. The continuous token matching provides a
strict measure of exact reproduction, the BLEU score offers a more
flexible assessment of textual similarity, and the embedding-based
method captures semantic closeness. Together, they provide a com-
prehensive evaluation of the reconstruction attack’s effectiveness.

H Reconstruction Attack Results of Continuous

Token Matching

As a complementary evaluation to themain results presented in §6.1,
we provide additional analysis using continuous token matching as
the evaluation metric. Table 14 shows the detailed results, where
the overall patterns observed here align with our main findings
using BLEU and embedding similarity metrics.

I LLM Service Vendors Logits Availability

In this section, we analyze the availability of token logits informa-
tion across LLM service vendors. We categorize these vendors into
two groups: proprietary model vendors and open-source model API
services.

For proprietary models, we select platforms hosting top-10 mod-
els according to the Chatbot Arena LLM Leaderboard [87]. For
open-source model services, we reference the popular LLM API
vendors identified in [88]. Table 15 summarizes our findings.

Our results show that 13 out of 14 major LLM service vendors
(93%) have implementedAPI endpoints that support returning token
logits, though not all currently expose this functionality to users.
Notably, 8 vendors (57%) already return logits in practice, validating
the real-world feasibility of our attack scenario. This widespread
availability of logits information, particularly among platforms
hosting both proprietary and open-source models, confirms that
our attack setting is not merely theoretical but represents a practical
security concern in the current LLM ecosystem.

J Ethics and the Open Science

We have carefully evaluated and addressed potential risks associ-
ated with our work, adhering to rigorous ethical standards and
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Table 14: Reconstruction attack performance of token metric. The highest value per row among all preservation methods

(except “Full”) is in bold.

Attack Model SFT Data Metric Met Full PWP PSP SSP

- 25% 50% 75% 25% 50% 75% 25% 50% 75%

I-R

CodeLlama OSSInst Token
Vanilla 0.774 0.553 0.589 0.661 0.573 0.609 0.718 0.548 0.620 0.660
DSR 0.759 0.546 0.579 0.645 0.574 0.599 0.699 0.527 0.609 0.656
DDE 0.795 0.588 0.620 0.694 0.618 0.648 0.740 0.569 0.650 0.697

LLaMA2 MathInst Token
Vanilla 0.130 0.044 0.052 0.071 0.023 0.032 0.060 0.046 0.049 0.051
DSR 0.133 0.039 0.047 0.066 0.020 0.028 0.059 0.044 0.047 0.053
DDE 0.151 0.049 0.058 0.078 0.025 0.040 0.071 0.054 0.062 0.069

R-I

CodeLlama OSSInst Token
Vanilla 0.168 0.057 0.131 0.214 0.085 0.169 0.228 0.198 0.196 0.197
DSR 0.207 0.066 0.152 0.247 0.104 0.186 0.263 0.249 0.245 0.246
DDE 0.223 0.088 0.178 0.278 0.129 0.217 0.289 0.281 0.277 0.273

LLaMA2 MathInst Token
Vanilla 0.013 0.008 0.009 0.014 0.007 0.013 0.018 0.009 0.010 0.008
DSR 0.018 0.009 0.011 0.015 0.006 0.014 0.022 0.008 0.009 0.009
DDE 0.020 0.010 0.012 0.016 0.007 0.016 0.023 0.009 0.010 0.010

Table 15: Logits availability across LLM vendors. “Support”

stands for whether the API documentation supports return-

ing logits; “Access” stands for whether non-null logits are

actually returned.

Vendor Support Access Vendor Support Access

OpenAI [16] ✓ ✓ Replicate [89] ✗ ✗

Google [90] ✓ ✗ HuggingFace [91] ✓ ✓

Azure [92] ✓ ✓ Groq [93] ✓ ✗

Grok [94] ✓ ✗ Deepinfra [95] ✓ ✓

Anthropic [96] ✓ ✗ Anyscale [97] ✓ ✓

Together [17] ✓ ✓ Novita [98] ✓ ✓

Fireworks [99] ✓ ✗ OpenRouter [100] ✓ ✓

open science policies. This section outlines our approach to ethi-
cal research conduct, responsible disclosure, and legal compliance,
demonstrating our commitment to advancing AI security while
minimizing potential harm.
Minimal Real-world Harm. Our research methodology was care-
fully designed to minimize potential harm to real-world systems
and users. All experiments were conducted in a controlled envi-
ronment using locally hosted models, eliminating risks to public
services or end-users. We thoughtfully considered resource usage,
focusing on code and mathematical domains to limit ethical risks
related to sensitive data. All computational costs and system loads
were borne entirely by our own resources, ensuring no burden was
placed on any external service providers. By implementing these
measures, we conducted our study responsibly, gathering valuable
insights into LLM vulnerabilities without compromising existing
systems or violating ethical research practices in AI security.
License Compliance. We strictly follow the license requirements
of the open-source models and datasets used in our study. This ad-
herence is fundamental to our research ethics and methodology. For
the attack methods referenced in §6.1, we fully comply with their
respective license requirements, ensuring that our usage aligns with
the intentions and stipulations set forth by the original developers.
This commitment to license compliance is not merely a legal obli-
gation but a core principle of our research practice. It ensures that
our research respects intellectual property rights, acknowledges

the contributions of others in the field, and adheres to established
open-source practices. By following these licensing guidelines, we
aim to foster a collaborative and transparent research environment,
promoting the sharing of knowledge while safeguarding the rights
of all contributors in the open-source community.
Responsible Data Disclosure.We have released a demo of our
attack methods publicly available to facilitate reproducibility within
the research community. However, we decide not to disclose cer-
tain specialized optimization techniques used to enhance attack
efficiency. Importantly, this decision does not impact the ability to
reproduce our experimental results, as the core methodologies are
fully described. This balanced approach allows for comprehensive
scientific verification while mitigating the risk of malicious actors
exploiting our code to attack real-world online services. For datasets
used, we prioritize linking to original open-source locations while
maintaining copies for verification experiments. We also share data
generated from poem and random attacks, despite their limited
effectiveness, to support future research. Additionally, we fully dis-
close our defense methods, including accelerated implementations,
to enable researchers to reproduce our results and provide service
providers with practical defense strategies.
Human Evaluation and Potential Risks. Our study involved a
limited human evaluation component, specifically in §6.1, where
we assessed the results of random attacks and poem attacks. The
evaluators were the authors of this paper. While we acknowledge
the potential risks associated with human evaluation, such as expo-
sure to hate speech or controversial content, the actual risk in our
experiments was minimal. This is primarily because both attack
types performed poorly, with most generated responses being ei-
ther meaningless gibberish or catastrophic repetitions of words or
punctuation marks. Consequently, we believe the associated risks
in our experimental process were low. However, it’s important to
note that we still highlight the potential risks of such attacks, em-
phasizing the need for future work to give more consideration to
these aspects. We recommend that future studies involving more
sophisticated attacks or larger-scale human evaluations should
implement robust safeguards to protect evaluators and consider
obtaining formal ethical approval if necessary.
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Balancing Transparency and Security. While we have made
every effort to minimize the risk of malicious use of our methods,
we acknowledge the significant potential interests involved in SFT
data extraction. This importance stems from both the inherent
value of SFT data and the current lack of clear societal consensus
on SFT data copyright issues. We recognize the tension between
data copyright protection and the need for advancing LLM devel-
opment, which often requires access to large, diverse datasets. By
responsibly disclosing our research, we aim to promote informed
discussions on the ethical usage of SFT data and the development of
advanced LLMs. We believe that a balanced approach, considering
both data protection and scientific progress, is crucial. Therefore,
we consider the controlled open-sourcing of relevant methods to be
a responsible solution that contributes to both security awareness
and LLM advancement.

Legal Considerations. Beyond ethical considerations, we care-
fully examined our research’s legal implications, particularly in
light of the EU Artificial Intelligence Act [101]. Our work intersects
with both General-purpose AI (base LLMs used in our study, such
as the LLaMA series) and Limited risk AI (embedding models) cate-
gories as defined by this act. While the Limited risk models are not
subject to stringent regulatory oversight, we acknowledge the less
defined legal landscape surrounding training data. Given the lack
of detailed legislation in this area, we adopted a cautious approach,
strictly adhering to open-source dataset guidelines and avoiding
datasets potentially containing personally identifiable information
(PII). This approach reflects our commitment to legal compliance in
an evolving regulatory environment, balancing scientific progress
with legal and ethical responsibilities in AI research.
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