
ar
X

iv
:2

50
6.

17
34

9v
1 

 [
cs

.C
R

] 
 1

9 
Ju

n 
20

25

ANDROIDS : ANDROID-BASED INTRUSION DETECTION SYSTEM
USING FEDERATED LEARNING

A PREPRINT

Akarsh K Nair∗
Department of Computer Science Engineering

IIIT Kottayam
Kottayam, India

akarshkn@iiitkottayam.ac.in

Shanik Hubert Satheesh Kumar
Department of Computer Science Engineering

IIIT Kottayam
Kottayam, India

shanikhubert@gmail.com

Deepti Gupta
Department of Computer Information Systems

Texas A&M University-Central Texas
Texas, USA

d.gupta@tamuct.edu

June 24, 2025

ABSTRACT

The exponential growth of android-based mobile IoT systems has significantly increased the suscep-
tibility of devices to cyberattacks, particularly in smart homes, UAVs, and other connected mobile
environments. This article presents a federated learning-based intrusion detection framework called
AndroIDS that leverages system call traces as a personalized and privacy-preserving data source.
Unlike conventional centralized approaches, the proposed method enables collaborative anomaly
detection without sharing raw data, thus preserving user privacy across distributed nodes. A gen-
eralized system call dataset was generated to reflect realistic android system behavior and serves
as the foundation for experimentation. Extensive evaluation demonstrates the effectiveness of the
FL model under both IID and non-IID conditions, achieving an accuracy of 96.46% and 92.87%,
and F1-scores of 89% and 86%, respectively. These results highlight the model’s robustness to
data heterogeneity, with only a minor performance drop in the non-IID case. Further, a detailed
comparison with centralized deep learning further illustrates trade-offs in detection performance
and deployment feasibility. Overall, the results validate the practical applicability of the proposed
approach for secure and scalable intrusion detection in real-world mobile IoT scenarios.

Keywords Federated learning · IDS · mobile IoT · privacy and security

1 Introduction

The extensive growth of mobile Internet of Things (IoT) devices, ranging from smartphones and tablets to smart TVs
and wearable systems, has transformed the digital environment across various industries such as smart cities, industrial
systems, and healthcare infrastructure. A significant portion of these devices utilize the android operating system due to
its open-source nature and adaptable functionality. However, such extensive deployment of android has increased its
exposure to adversarial threats, making attack and intrusion detection a crucial component for securing mobile IoT
systems.

Traditional Intrusion Detection Systems (IDS) rely heavily on centralized data collection and processing, which poses
significant privacy, scalability, and communication overhead challenges, especially in light weight distributed IoT

∗This work is partially supported by the US National Science Foundation grant 2431531.

https://orcid.org/0000-0002-7734-0367
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://arxiv.org/abs/2506.17349v1


AndroIDS A PREPRINT

networks. Furthermore, as these devices generate vast amounts of system-level data, such as in the form of system calls,
centralized collection not only puts on load network infrastructure but also raises concerns over data confidentiality
and user privacy. Recent advancements in Federated Learning (FL) offer a promising solution to these limitations. By
enabling collaborative model training across devices without exposing raw data, FL supports privacy-aware model
development in distributed settings. When combined with system call analysis, the model can capture intricate
behavioral patterns of applications and system-level activities, thus facilitating an efficient FL-based IDS for detecting
anomalies and intrusions while preserving user privacy.

This article explores the formulation and analysis of a lightweight intrusion detection framework based on FL using
android system call traces. The custom developed dataset represents a generalized perspective of android-based device
behavior, thus making it broadly applicable to a wide range of mobile IoT systems. The performance of the proposed
AndroIDS framework is compared with a traditional centralized machine learning model, providing empirical insights
into standard evaluation parameters such as detection accuracy and deployment feasibility in real-world settings.

The contributions of the article are as follows:

• An FL-based intrusion detection framework leveraging android system calls for identifying malicious activity
across distributed mobile IoT devices is formulated.

• A generalized dataset comprising of system call sequences collected from android environments, reflecting
realistic mobile device behavior is presented.

• A detailed comparative analysis between centralized and federated training setup in IID and non IID is
conducted, evaluating detection efficacy and robustness.

• The practical applicability of the AndroIDS framework in mobile IoT use cases is discussed with a special
emphasis on smart home devices, industrial IoT platforms, and UAV systems operating on android-based
environments.

The rest of this paper is organized as follows: Section 2 presents the problem formulation followed by section 3
presenting related work. Section 4 details the proposed methodology and system design. Section 5 provides experimental
results and Section 6 presents the discussions and futurescope. Section 7 concludes the paper with future directions.

2 Problem Formulation

The goal is to collaboratively generate global binary classifier f(.) over a set of distributed clients without centralizing
raw data. Each client k locally trains the model, minimising a loss function Lk based on its private dataset Dk. The
central server aggregates local model updates via classical averaging using the Federated Averaging algorithm.

min
w

K∑
k=1

nk

n
Lk(w) (1)

where w are the model parameters, nk is the number of local samples, and Lk(w) is the local empirical loss at client k.

Each client optimizes its local model over using local system call sequences processed using TF-IDF and trained using
a GRU-based architecture. The local objective is defined as:

Lk(w) =
1

nk

nk∑
i=1

ℓ(f(xi;w), yi) (2)

The model updates are then aggregated by the server using the FedAvg [1] algorithm:

wt+1 =

K∑
k=1

nk

n
wk

t (3)

3 Related Work

Intrusion detection using system call analysis has been extensively studied as an effective approach for capturing
behavioral anomalies in operating systems. This section reviews existing literature, focusing on critical areas: IDA
using system calls, FL based IDS and light weight FL models.

2



AndroIDS A PREPRINT

3.1 Intrusion Detection Using System Calls

System call analysis remains a core technique for behavioral intrusion detection, as it captures fine-grained system-level
interactions of programs. One such article presented in [2] proposed an IDS that combines system call sequences, text
classification, and graph-based analyses to model the global behavior of applications. A modified system call graph is
used to unify multiple detection techniques, and a deep neural network aggregates their outputs. Results across three
datasets demonstrated improved detection rates and reduced false positives.

Zhang et al. [3] proposed a similar framework for early malware detection in android apps. The proposed model uses
TF-IDF and six ML classifiers, achieved an average accuracy of 99.34% using 3000 system calls and was validated via
a real-time client-server android deployment. Another HIDS is presented in [4], which introduces a deep learning-based
anomaly detection method using WaveNet and recurrent neural networks. Predictions are aggregated at the application
level for anomaly detection, and results on the PLAID dataset show significant improvements over prior techniques.

Despite these advancements, most existing techniques focus on either static setups [5] or narrowly defined datasets.
Our work addresses this gap by using a more comprehensive android system call dataset, aiming for an IDS applicable
across a range of mobile IoT devices and attack scenarios.

3.2 Federated Learning for Intrusion Detection

FL has emerged as a promising privacy-preserving approach for collaborative intrusion detection. One such approach
is the FELIDS framework [6], targetting agricultural-IoT infrastructures. FELIDS leverages local model training
with deep learning models to detect attacks while maintaining data privacy. Evaluations on CSE-CIC-IDS2018,
MQTTset, and InSDN demonstrated that FELIDS outperforms centralized approaches in both accuracy and privacy. To
further optimize performance in federated settings, Friha et al. [7] proposed DAFL, a dynamic weighted aggregation
framework. DAFL introduces filtering and weighting strategies for local models to improve detection performance while
reducing communication overhead. It also offers strong scalability and low communication cost, making it suitable
for bandwidth-constrained environments. Further extending FL-based IDS, Idrissi et al. [8] proposed Fed-ANIDS, a
federated anomaly-based IDS that computes intrusion scores using reconstruction errors from standard, variational,
and adversarial autoencoders. Evaluated on multiple benchmark datasets, Fed-ANIDS demonstrated high detection
accuracy and low false alarm rates.

Eventhough these frameworks showcase the benefits of FL for intrusion detection, they primarily focus on network
traffic datasets (e.g., flow records or IoT sensor data) and often overlook host-level behavioral data such as system calls.
Moreover, few studies specifically focus on FL in android-based environments, where device heterogeneity (ranging
from OS versions to app behavior) poses unique challenges. Our work addresses this gap by applying FL to an android
system call dataset, integrating the privacy-preserving benefits of FL with the high level behavioral analysis of system
call-based intrusion detection.

3.3 Lightweight FL Models for Edge and Mobile IoT Devices

A practical FL-based IDS for mobile and IoT devices must be computationally lightweight and adaptable to resource-
constrained environments. Recent research has therefore focused on optimizing FL algorithms for edge deployment,
with an emphasis on efficiency, privacy, and robustness. One such framework, LSFL was proposed in [9] as a lightweight
and secure mechanism tailored for edge computing. LSFL introduces a two-server secure aggregation protocol that
ensures both data privacy and Byzantine robustness, effectively preventing malicious nodes from influencing the global
model.

In [10], a lightweight privacy-preserving FL scheme was presented, specifically targeting resource constrained IoT
devices. The framework uses parameter masking with a secret-sharing mechanism to secure local updates and introduces
a secure mask reusing strategy to minimize communication overhead across training rounds. Article [11] further
investigates resource-efficient FL in mobile edge computing by categorizing optimization strategies into black-box and
white-box approaches. A neural-structure-aware resource management framework is proposed, where mobile clients
are assigned different subnetworks of a global model based on their local resource availability.

In the context of malware detection, FED-MAL [12] presents a federated framework for IoT devices that converts
malware binaries into images and uses a compact CNN model, AM-NET, for classification. To improve generalizability
under non-IID conditions, the method incorporates adversarial training at the edge across distributed clients. However,
many of these studies assume fixed device configurations or operate in controlled environments. In contrast, our work
aims to present a more generalizable FL-driven IDS for android. The study utilizes a broad, representative system call
dataset and compare centralized and federated training to evaluate trade-offs in performance and efficiency.

3



AndroIDS A PREPRINT

4 System Model

This section outlines the centralized deep learning baseline and the FL setup used to detect intrusions from android
system call sequences in mobile IoT environments.

4.1 Centralized Deep Learning Baseline

4.1.1 Dataset and Preprocessing

The dataset comprises system call logs collected from benign and malicious android applications. Each log contains
time-stamped system-level calls. A total of 5832 labeled files (2474 benign, 3358 malicious) were used. Pre-processing
included: Removal of timestamps using regular expressions and token sequence formation by joining syscalls into
space-separated strings. Further, TF-IDF vectorization was performed using a vocabulary of 1000 most frequent terms.
In addition to model sequential behavior, a sliding window approach was employed, maintaining a window size of 10
and a stride of 2. The combination of sliding window and striding transforms the dataset into overlapping sequences
suitable for temporal modeling. To enhance robustness and prevent overfitting, a standard noise injection mechanism
using Gaussian noise (with standard deviation=0.02 ) was injected into the input vectors during training. The standard
70:30 ratio is maintained for training and validation split during training.

4.1.2 Model Architecture

The model was built using a lightweight GRU-based architecture. It consists of two GRU layers with 32 and 16
units respectively, followed by batch normalization and a dropout layer with a dropout rate of 0.5. Towards the final
classification layers, the model uses two layers with the last layer employing sigmoid activation for final classification.
The model employed the AdamW optimizer with a learning rate of 5e−5 and trained with binary cross-entropy loss.
Further, an early stopping mechanism has been initialized, triggering a halt when both training and validation accuracies
exceeded 90%.

4.2 Federated Learning Setup

4.2.1 Client setup and Data Partitioning

The FL system was implemented using the Flower framework, simulating three different combinations with three, six,
and ten clients. For data distribution, IID and non-IID patten were followed. In the IID setting, the training dataset
was randomly and evenly partitioned across all clients without class imbalance, ensuring statistical similarity across
local datasets. In non-IID setting, label skew and sample skew were introduced, such that client side data distribution
resembled real-world mobile IoT deployments, where different devices may experience distinct operational behaviors
or threat profiles. As shown in Figure 1, the IID setup maintains uniform class distribution across clients, while the
non-IID setup introduces significant variation in class proportions. This allows for a more realistic and challenging
evaluation of federated model convergence and generalization.

4.2.2 Aggregation and Training Protocol

Each client locally trained a shared GRU-based model on TF-IDF-transformed system call sequences. Clients performs
local training on their data and shares updated weights with the central server. The server used the FedAvg aggregation
protocol to update the global model. The updated global model was then redistributed to all clients for the next
communication round. The general workflow of the AndroIDS framework is described in Algorithm 1.

The simulation enviroment was setup on local systems, with each client assigned 2 CPU cores, resmembling resource
constraint setup as in mobile devices. Experiments were conducted using the same setup for both data distribution
scenarios, and to ensure a fair comparison with the centralized setup, the GRU model architecture was kept identical in
the FL case. This experimental setup allows for a flexible evaluation of FL-based intrusion detection under various
settings. It serves as the foundation for further experimentation and analysis presented in the next section.

5 Experimental Results

This section presents the evaluation of our proposed intrusion detection framework using both centralized deep learning
and FL setups under IID and non-IID data distributions. Detection performance is assessed in terms of accuracy,
precision, recall, and F1-score, and analyze the effect of label skew across clients in FL.

4



AndroIDS A PREPRINT

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0

50

100

150

60 63 61 65 64 62 66 61 60 64

65 62 66 60 61 63 59 64 67 62

Client ID

To
ta

lS
am

pl
es

IID Distribution

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0

200

400

61 71

30

40
15

112

152

81

36

158

40 30
122

61 45
91

153 122
34

301

Client ID

To
ta

lS
am

pl
es

non-IID Distribution

Benign
Malicious

Figure 1: Client-wise sample and class distribution under IID and non-IID partitioning for FL training

Table 1: Explanation of abbreviations used in Algorithm 1.
Symbol Description
M0

g Initial global model
MR

g Final global model after R rounds
C Set of all clients
S Selected subset of clients for training
T TF-IDF transformer
W Sliding window size
S Stride length for sliding window
ϵ Standard deviation of Gaussian noise
R Total number of communication rounds
E Number of local training epochs
Wr Global model weights at round r
Wr

c Updated local model weights from client c at round r
nc Number of local samples at client c

5.1 Experimental Setup

All experiments were conducted in a simulated environment on local devices with CPU-only resources. The centralized
and federated models share an identical GRU-based architecture. For FL setup, the Flower framework was used with
3 , 6 and 10 clients. Each client was allocated 2 CPU cores and trained locally for 20 epochs per communication
round. A total of 6 FL rounds were executed in each experiment. To ensure comparable setups, identical early stopping
mechanisms as used in DL were used in FL setup as well. Evaluation metrics were computed on a 30% hold-out
validation set. The results generated for the centralized training set-up is showcased in Table. 2. As stated before, FL

5



AndroIDS A PREPRINT

Algorithm 1 AndroIDS: FL based system call drive IDS
Server and Client Side

Require: Initial global model M0
g, client set C, TF-IDF transformer T , window size W , stride S, noise factor ϵ,

number of rounds R
Ensure: Final global modelMR

g
1: for round r = 1 to R do
2: Server selects a subset of clients S ⊆ C
3: for each client c ∈ S in parallel do
4: Send current global model weightsWr to client c
5: Client loads local system call logs Dc

6: Remove timestamps and tokenize syscalls using T
7: Apply sliding window with size W and stride S
8: Inject Gaussian noise N (0, ϵ2) into input vectors
9: Initialize GRU model with weightsWr

10: Train model locally on preprocessed data for E epochs
11: Send updated model weightsWr

c and sample count nc to server
12: end for
13: Server aggregates using FedAvg:
14: Wr+1 ← (

∑
nc · Wr

c )
/
(
∑

nc)
15: Update global model: Wr ←Wr+1

16: end for
17: return Final global modelWR

1 2 3 4 5 6
20

30

40

50

60

70

80

90

100

Communication Round

A
cc

ur
ac

y
(%

)

FL (IID)
FL (non-IID)

Figure 2: Global model accuracy for FL schema with 10 clients

training was conducted across multiple stages, initially under IID and then under non-IID distribution, with 3, 6, and 10
clients each. The number of clients could not be increased further due to limitations in dataset size, as additional clients
would result in smaller partitions, leading to extreme overfitting and model bias. After six communication rounds, the
FL model achieved performance comparable to the centralized baseline (based on early stopping) and the observations
are as depicted in Figure 4.

5.2 Federated Learning under non-IID Distribution

To evaluate the robustness of our model under real-world conditions, we simulated a non-IID setting where each client
received data dominated by a single label class. The observations made in non IID setting is depicted in Figure 3d..
Although the non-IID setting introduced moderate degradation in F1-score and recall, the model remained stable over
communication rounds. Table 3 and Figure 2 presents the detailed performance metrics for both IID and non-IID
scenarios and round-wise accuracy trends respectively.

5.3 Comparative Analysis

Tables 2 and 3 summarizes the performance of all three training paradigms. While the centralized model consistently
delivered the highest accuracy, FL setups demonstrated competitive performance while ensuring data privacy and

6



AndroIDS A PREPRINT

Table 2: Performance Comparison: Centralized vs Federated Learning (IID and non-IID)
Method Accuracy Precision Recall F1-score
Centralized DL 97.24 94.47 94.89 94
FL (IID) 96.46 89.43 87.67 89
FL (non-IID) 92.87 86.43 85.13 86

Benign Malicious
Predicted Label

Be
ni

gn
M

al
ic

io
us

Tr
ue

 L
ab

el

366 16

7 483
100

200

300

400

(a) DL model with complete
data

Benign Malicious
Predicted Label

Be
ni

gn
M

al
ic

io
us

Tr
ue

 L
ab

el

10 373

0 490

0

100

200

300

400

(b) Initial FL global model

Benign Malicious
Predicted Label

Be
ni

gn
M

al
ic

io
us

Tr
ue

 L
ab

el

372 11

6 484
100

200

300

400

(c) FL model under IID setting

Benign Malicious
Predicted Label

Be
ni

gn
M

al
ic

io
us

Tr
ue

 L
ab

el

344 38

22 468

50

100

150

200

250

300

350

400

450

(d) FL model under non-IID
setting

Figure 3: Comparison of confusion matrices for DL model and FL models under IID and non-IID distributions.

decentralization. Specifically, the non-IID setting led to a moderate drop in recall and F1-score due to class imbalance
across clients. From Table 3, it can be observed that the disparity in round-wise performance pattern across IID and
non-IID settings becomes more evident as the number of clients increases. For systems with a lower number of clients,
the divergence among client data distribution tends to be minimal. However, as the client number increases, actual
statistical divergence becomes more evident in data distribution, thus justifying the trend. Figure 4 illustrates the
precision, recall, and F1-score comparison across the three configurations. Although formal experimental comparisons
require adequate state-of-the-art (SOTA) baselines, most of the existing works are built around specific public datasets
that differ significantly from ours. Since our study focuses on a federated IDS using raw android system call data,
limited literature can be identified aligning directly with this context. Moreover, the choice of deep learning architecture
critically impacts performance, and applying SOTA frameworks to our dataset would result in unfair comparisons, as
those models are optimized for centralized settings or structurally different data.

Table 3: Performance comparison on non-IID and IID scenarios.

C
lie

nt
s

R
ou

nd
s

non-IID IID
A P R F1 A P R F1

3
2 0.44 0.41 0.40 0.40 0.48 0.42 0.40 0.42
4 0.67 0.55 0.59 0.56 0.75 0.66 0.65 0.66
6 0.95 0.92 0.93 0.92 0.97 0.94 0.94 0.94

6
2 0.42 0.38 0.38 0.38 0.44 0.40 0.41 0.40
4 0.62 0.57 0.54 0.56 0.66 0.60 0.61 0.61
6 0.94 0.90 0.88 0.88 0.97 0.93 0.94 0.94

10
2 0.42 0.35 0.37 0.34 0.43 0.46 0.45 0.45
4 0.62 0.63 0.59 0.60 0.64 0.63 0.67 0.64
6 0.92 0.84 0.85 0.86 0.96 0.89 0.87 0.89

A→ Accuracy, P→ Precision, R→ Recall, F1→ F1-score.

The model effectively distinguishes between benign and malicious system call sequences as testified by the confusion
matrices for IID and non IID in figures 3c and 3d respectively. While prior works such as ensemble classifiers
or graph-enhanced CNNs report high accuracy, they often rely on centralized feature extraction and heavyweight
architectures. In contrast, our approach achieves competitive F1-scores of up to 0.89 (IID FL) and 0.85 (non-IID
FL) using a lightweight GRU-based model with no raw data sharing, making it well-suited for deployment in mobile

7



AndroIDS A PREPRINT

F1-score Precision Recall

0

0.5

1 0.94 0.94 0.940.89 0.89 0.870.86 0.86 0.85

Sc
or

e
Centralized ML FL (IID) FL (non-IID)

Figure 4: F1-score, Precision, and Recall comparison across training paradigms.

IoT environments. Thus, the proposed work is positioned as a domain-specific, privacy-aware framework tailored for
realistic, resource-constrained federated learning settings.

6 Discussions

Even though non-IID client distribution was employed, the experimental results reveal that the performance of the
FL model remains comparable to the IID scenario. This observation is caused by several inherent features of the
training framework. First, even though the local client datasets are non-IID, the overall global dataset does not showcase
extensive skew across classes. Furthermore, malicious samples outnumber benign samples, thus giving the model
sufficient data ensuring that the aggregated gradients efficiently captures representative learning pattern. Another critical
factor is the initialization strategy for client selection. It is initialized such that all clients participate synchronously
in every training round, which helps smooth out individual client biases and stabilizes global convergence. These
two factors contribute highly to the performance of the model. It is important to note that the initial global model
at round zero, initialized with random or default weights, performs poorly on the validation data 3b, confirming
that no pretraining advantage was present. The convergence, therefore, is driven by the federated training process
alone. Further, employing 10 clients ensures standard diversity while maintaining a manageable level of statistical
variance. Additionally, the application of Gaussian noise during input preprocessing acts as a regularization mechanism,
promoting generalization and reducing overfitting to local distributions. Together, these aspects contribute to narrowing
the expected performance gap between IID and non-IID scenarios, resulting in comparable accuracy in the final global
model.

A major limitation of the current AndroIDS framework is the lack of comparative validation against SOTA intrusion
detection mechanisms. As stated, the framework is positioned as a domain-specific detection model tailored for
proprietary android system call data, which justifies the absence of direct comparisons. To address this limitation, we
plan to extend our work by integrating the proposed IDS into UAV-based systems, where android-powered devices are
increasingly deployed. Furthermore, to overcome challenges related to data integrity and computational constraints in
lightweight UAV environments, we aim to enhance the FL schema by exploring more robust hybrid distributed learning
alternatives. These future works will be validated using multiple benchmark datasets and real-world noisy environments,
thereby addressing the shortcomings identified in the current version.

7 Conclusion

This article presents AndroIDS, a FL framework for system call-based intrusion detection in android systems.The model
effectively transforms raw system call sequences into meaningful features via TF-IDF vectorization and employs GRU
architecture to capture temporal patterns within the input windows. Experiments conducted across both IID and non-IID
client distributions reveal that the proposed framework achieves robust and consistent performance. Under non-IID
settings, the model achieved an accuracy of 92.87%, compared to 96.46% in the IID scenario, indicating a performance
gap of 4%. Similarly, the F1 score remained comparable, with 86% under non-IID and 89% under IID conditions,
demonstrating the framework’s robustness to data heterogeneity.

The initial global model initialized with random or default weights, performed poorly on the validation data, confirming
that no pretraining advantage was present. The convergence, therefore, is driven by the training flow of AndroIDS

8



AndroIDS A PREPRINT

framework alone. The global dataset remains relatively class-balanced, even though local client datasets follow a
non-IID distribution. Synchronous participation of all clients in every round helps to stabilize convergence by smoothing
out individual client biases. Additionally, the application of Gaussian noise during input preprocessing serves as a
regularization mechanism, enhancing generalization and mitigating overfitting. Collectively, these features result in the
narrow performance gap between IID and non-IID settings, resulting in comparable accuracy in the final global model.

References

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh and Jerry Zhu, editors, Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 1273–1282. PMLR, 20–22 Apr 2017.

[2] F. J. Mora-Gimeno, H. Mora-Mora, B. Volckaert, and A. Atrey. Intrusion detection system based on integrated
system calls graph and neural networks. IEEE Access, 9:9822–9833, 2021.

[3] Xinrun Zhang, Akshay Mathur, Lei Zhao, Safia Rahmat, Quamar Niyaz, Ahmad Javaid, and Xiaoli Yang. An
early detection of android malware using system calls based machine learning model. In Proceedings of the
17th International Conference on Availability, Reliability and Security, ARES ’22, New York, NY, USA, 2022.
Association for Computing Machinery.

[4] John H. Ring, Colin M. Van Oort, Samson Durst, Vanessa White, Joseph P. Near, and Christian Skalka. Methods
for host-based intrusion detection with deep learning. Digital Threats, 2(4), October 2021.

[5] Lydia Bouzar-Benlabiod, Stuart H. Rubin, Kahina Belaidi, and Nour ElHouda Haddar. Rnn-ved for reducing
false positive alerts in host-based anomaly detection systems. In 2020 IEEE 21st International Conference on
Information Reuse and Integration for Data Science (IRI), pages 17–24, 2020.

[6] Jianbin Li, Xin Tong, Jinwei Liu, and Long Cheng. An efficient federated learning system for network intrusion
detection. IEEE Systems Journal, 17(2):2455–2464, 2023.

[7] Othmane Friha, Mohamed Amine Ferrag, Lei Shu, Leandros Maglaras, Kim-Kwang Raymond Choo, and Mehdi
Nafaa. Felids: Federated learning-based intrusion detection system for agricultural internet of things. Journal of
Parallel and Distributed Computing, 165:17–31, 2022.

[8] Meryem Janati Idrissi, Hamza Alami, Abdelkader El Mahdaouy, Abdellah El Mekki, Soufiane Oualil, Zakaria
Yartaoui, and Ismail Berrada. Fed-anids: Federated learning for anomaly-based network intrusion detection
systems. Expert Systems with Applications, 234:121000, 2023.

[9] Zhuangzhuang Zhang, Libing Wu, Chuanguo Ma, Jianxin Li, Jing Wang, Qian Wang, and Shui Yu. Lsfl: A
lightweight and secure federated learning scheme for edge computing. IEEE Transactions on Information
Forensics and Security, 18:365–379, 2023.

[10] Zhaohui Wei, Qingqi Pei, Ning Zhang, Xuefeng Liu, Celimuge Wu, and Amirhosein Taherkordi. Lightweight
federated learning for large-scale iot devices with privacy guarantee. IEEE Internet of Things Journal, 10(4):3179–
3191, 2023.

[11] Rong Yu and Peichun Li. Toward resource-efficient federated learning in mobile edge computing. IEEE Network,
35(1):148–155, 2021.

[12] Mohamed Abdel-Basset, Hossam Hawash, Karam M. Sallam, Ibrahim Elgendi, Kumudu Munasinghe, and Abbas
Jamalipour. Efficient and lightweight convolutional networks for iot malware detection: A federated learning
approach. IEEE Internet of Things Journal, 10(8):7164–7173, 2023.

9


	Introduction
	Problem Formulation
	Related Work
	Intrusion Detection Using System Calls
	Federated Learning for Intrusion Detection
	 Lightweight FL Models for Edge and Mobile IoT Devices

	System Model
	Centralized Deep Learning Baseline
	Dataset and Preprocessing
	Model Architecture

	Federated Learning Setup
	Client setup and Data Partitioning
	Aggregation and Training Protocol


	Experimental Results
	Experimental Setup
	Federated Learning under non-IID Distribution
	Comparative Analysis

	Discussions
	Conclusion

