
ar
X

iv
:2

50
6.

17
33

6v
1

 [
cs

.C
R

]
 1

9
Ju

n
20

25

Privacy-Preserving LLM Interaction with
Socratic Chain-of-Thought Reasoning and

Homomorphically Encrypted Vector Databases

Yubeen Bae1∗ Minchan Kim1∗ Jaejin Lee1∗ Sangbum Kim1 Jaehyung Kim2

Yejin Choi2 Niloofar Mireshghallah3

1Seoul National University 2Stanford University 3University of Washington
{lights0320, kjkk0502, jaejin.lee}@snu.ac.kr

Trusted Zone Untrusted Zone

Sub-Query Embeddings

SLM

Client

Response Generation via
CoT over Private Data

Embedding Model

Local Language Model

Powerful Large Language Model

LLM Server

Socratic CoT &
Sub-Query Generation

Homomorphically Encrypted
Vector Similarity Search

Alice: Why do I keep having fever?

Vary your response depending on the situation:
Case 1: If the fever follows a patterns such as ~, suspect ~.
Case 2: If the user traveled to ~, identify ~.

Bot: Considering the two-day symptom cycle and recent travel to Africa, malaria may be the cause.

Has a fever every two days.

Private Data

Query

DB Server

Sub-Query Embedding
Extraction

Query

Response

Alice’s Private Database

How often are the symptoms?

Sub-Queries

Have you traveled recently?

Chain-of-Thought Prompt

Recently traveled to Africa.

Figure 1: Overview of our hybrid framework. Upon receiving a query, a remote LLM generates a
Chain-of-Thought (CoT) prompt and sub-queries (Stage 1) which are embedded locally (Stage 2), and
used for our encrypted vector search on a remote database (Stage 3). Retrieved records are decrypted
and provided with the CoT prompt as context to a local model to generate the final response (Stage 4).

Abstract

Large language models (LLMs) are increasingly used as personal agents, accessing
sensitive user data such as calendars, emails, and medical records. Users currently
face a trade-off: They can send private records—many of which are stored in remote
databases—to powerful but untrusted LLM providers, increasing their exposure
risk. Alternatively, they can run less powerful models locally on trusted devices.
We bridge this gap: Our Socratic Chain-of-Thought Reasoning first sends a
generic, non-private user query to a powerful, untrusted LLM, which generates
a Chain-of-Thought (CoT) prompt and detailed sub-queries without accessing
user data. Next, we embed these sub-queries and perform encrypted sub-second
semantic search using our Homomorphically Encrypted Vector Database across
one million entries of a single user’s private data. This represents a realistic scale
of personal documents, emails, and records accumulated over years of digital
activity. Finally, we feed the CoT prompt and the decrypted records to a local
language model and generate the final response. On the LoCoMo long-context QA
benchmark, our hybrid framework—combining GPT-4o with a local Llama-3.2-
1B model—outperforms using GPT-4o alone by up to 7.1 percentage points. This
demonstrates a first step toward systems where tasks are decomposed and split
between untrusted strong LLMs and weak local ones, preserving user privacy.

∗Equal contribution (alphabetical order). Code is available at https://github.com/Yubeen-Bae/PPMI.

Preprint. Under review.

https://github.com/Yubeen-Bae/PPMI
https://arxiv.org/abs/2506.17336v1

1 Introduction

Large language models (LLMs) are becoming the default backend for personal agents that manage
emails, schedule meetings, and process real-time health data from wearable devices [63, 49, 72].
These agents must integrate data from heterogeneous sources—many stored remotely in cloud
databases—using retrieval-augmented generation (RAG) [42]. While forwarding user queries along
with retrieved data to powerful yet untrusted LLMs enhances performance, it introduces substantial
privacy risks by potentially exposing private records [84, 36]. Conversely, restricting these operations
to local trusted devices significantly degrades performance [51]. This raises the question: Can we
perform LLM interactions on private data while maintaining efficiency and accuracy without privacy
risks or significant performance degradation?

Existing privacy-preserving methods, such as data minimization or scrubbing personally identifiable
information (PII), often sacrifice data utility or provide limited privacy through superficial suppres-
sions [80]. To bridge the privacy-utility gap, we propose a four-stage hybrid framework that clearly
delineates trusted and untrusted environments (left and right sides of Figure 1), ensuring private
raw data either remains strictly within local boundaries or is securely encrypted when externally
stored or searched. We integrate two novel components: (1) Socratic Chain-of-Thought Reasoning,
which enables challenging yet non-private queries to be offloaded to a powerful external language
model; and (2) a Homomorphically Encrypted Vector Database, a cryptographic system that allows
efficient semantic search over encrypted records without ever decrypting them. This enables users
to leverage cloud storage and compute resources while maintaining complete privacy—the cloud
provider can execute searches without learning anything about the data content or search queries.

Stage 1: When the user, Alice, poses a query (see Figure 1, top), our Socratic Chain-of-Thought
Reasoning elicits a detailed Chain-of-Thought prompt and sub-queries from a powerful external LLM.
We provide only the main query, which we assume to be non-private in our protocol, to the external
LLM without exposing any private user data. Rather than directly providing a diagnosis, we prompt
the powerful LLM to generate Chain-of-Thought prompt for reasoning and targeted sub-queries for
retrieval—in this case, questions about medications and travel history. This approach allows the
powerful model to break down complex task into simpler ones, making it easier for the weaker local
model to reason effectively when given access to private data as context. Stage 2: These sub-queries
are then locally embedded to prepare them for secure semantic search over our encrypted vector
database containing Alice’s relevant records.

Stage 3: Once the sub-query embeddings reach our Homomorphically Encrypted Vector Database,
the system executes secure vector similarity search, where all key vectors are homomorphically
encrypted and compared against a million encrypted key vectors. Our novel inner product protocol
computes similarity entirely in the encrypted domain in under one second using standard CPUs.
The system then retrieves the corresponding encrypted records, returning top-k matches from a
million-entry store in encrypted format. Stage 4: Finally, a much smaller, weaker language model
operating exclusively within the local trusted zone generates the final response, drawing on both the
chain-of-thought prompt and the decrypted private records supplied by the stronger remote model.

We extensively evaluate our framework on two long-context QA benchmarks. LoCoMo assesses recall
of extensive conversational histories [53], while MediQ tests interactive clinical reasoning [46]. We
establish two baselines representing privacy extremes: (1) a local-only (fully private) baseline using
Llama-3 with 1B and 3B parameters, and (2) a remote-only (fully non-private) golden baseline using
GPT-4o and Gemini-1.5-Pro. Our approach provides a balanced trade-off between these extremes.

Through our Socratic Chain-of-Thought Reasoning, the Llama 1B-parameter local model achieves
an F1 score of 87.7 on LoCoMo, notably surpassing GPT-4o by 7.1 percentage points and the local-
only baseline by 23.1 percentage points. This improvement likely stems from additional test-time
computation enabled by the chain-of-thought process [16]. For MediQ, improvements are relatively
smaller due to domain-specific adaptation challenges. Our Homomorphically Encrypted Vector
Database efficiently searches entries from 106 records in under one second on commodity CPUs,
maintaining > 99% Recall@5 with a median storage overhead of just 5.8×. Collectively, our findings
mark an important step toward privacy-preserving systems that effectively partition tasks between
untrusted high-capacity LLMs and trusted lightweight local models, without requiring any additional
post-training.

2

2 Background and Problem Formulation

Large language models (LLMs) increasingly serve as personal assistants, processing sensitive user
data such as calendars, emails, and medical records [83, 63]. Effective LLM-based personal assistants
require two fundamental capabilities:

(1) Contextual Reasoning: The model must establish clear criteria to accurately interpret user
queries in context. For instance, recognizing a cyclic fever pattern recurring every two days in
combination with recent travel to Africa strongly suggests malaria. Augmenting such contextual
understanding into the reasoning process ensures precise and meaningful conclusions.

(2) Contextual Data Retrieval: The model must determine which contextual data is necessary for
comprehensive understanding. As illustrated in Figure 1, a user’s query such as "Why do I keep
having fever?" might not provide enough context to retrieve all necessary records. The model must
generate targeted sub-queries to collect comprehensive information, such as travel history that might
reveal malaria risk factors [42].

Privacy Problem Formulation: While powerful cloud-based LLMs offer superior reasoning capabil-
ities, they require users to expose private data to untrusted providers [57]. Conversely, local models
that preserve privacy lack the computational capacity for complex reasoning tasks. We consider a
user with a non-private query whose answer depends on private records stored remotely (As shown in
Figure 1). The local device has limited computational resources insufficient for complex reasoning,
while powerful cloud LLMs cannot be trusted with sensitive data [78].

Threat Model: We protect against three adversaries: (1) the LLM provider who receives user
queries, (2) the database provider storing encrypted records [8], and (3) external attackers who may
compromise these services [33]. Even with standard encryption, providers typically hold decryption
keys, enabling potential privacy breaches through insider threats or security compromises [13, 31].

Privacy Goal: User data must remain encrypted outside the trusted local environment, with decryp-
tion keys never leaving the user’s control. The system must enable complex reasoning and efficient
retrieval while ensuring that untrusted components cannot access plaintext private data [25, 67].

3 Privacy-Preserving Framework with Socratic Chain-of-Thought Reasoning

We present our framework that enables powerful LLM reasoning while maintaining strict privacy
guarantees, ensuring that sensitive user data is never exposed during interaction. This section describes
our overall approach, which combines Socratic Chain-of-Thought Reasoning with our privacy-
preserving framework designed to separate trusted and untrusted zones (Section 3.1). Section 4
further details our homomorphically encrypted retrieval system, which supports secure access to
private records without compromising confidentiality.

3.1 Framework Overview

Figure 1 illustrates our framework’s architecture, which separates computation into trusted and
untrusted zones to balance privacy and performance. In the trusted zone (left side of the figure), the
user’s local device hosts a lightweight language model and embedding model with exclusive access
to decryption keys, ensuring that sensitive data never leaves the user’s control in plain form. The
untrusted zone (right side of the figure) comprises cloud providers hosting: (1) a powerful LLM
for abstract reasoning, and (2) an encrypted vector database storing the user’s private records using
homomorphic encryption [25, 12], allowing secure processing without data decryption.

Consider the medical consultation example in Figure 1: when a user asks “Why do I keep having
fever?”, the query flows to the remote LLM without exposing any private medical history. The power-
ful model generates targeted sub-queries (e.g., symptom frequency, travel history) that guide retrieval
from the encrypted database, where personal records remain protected even during search operations
thanks to homomorphic encryption. This architectural separation provides both active control—users
explicitly manage what reaches remote models—and passive control, where cryptographic protection
ensures data remains secure even if users make mistakes [27].

3

3.2 Framework Operation

The following detailed example illustrates our framework’s operation, as shown in Figure 1:

1. The process begins when a user submits a query x:
Why do I keep having fever?

2. Given the user’s input x, the remote LLM generates:
• A Chain-of-Thought (CoT) prompt c via its CoT generator Gc:

Vary your response depending on the situation:
Case 1: If the fever follows patterns such as ~, suspect ~.
Case 2: If the user traveled to ~, identify ~.

• Relevant sub-queries via its sub-query generator Gq:
How often are the symptoms?
Have you traveled recently?

3. The local client embeds these sub-queries and executes encrypted search on the user’s private
database D, using a retriever R to obtain records v:

Has a fever every two days.
Recently traveled to Africa.

4. Finally, the local model L integrates the CoT prompt c and retrieved records v to generate
the final response y:

Considering the two-day symptom cycle and recent travel to Africa,
malaria may be the cause.

We have provided examples of our prompts and the chains in Appendix D. To formalize this process,
let V be the set of tokens and define k-tuples of V as:

Vk = {(v0, . . . , vk−1) | v0, . . . , vk−1 ∈ V}
Then V∗ =

⋃∞
k=0 Vk is the set of all finite-length sequences.

We denote the Chain-of-Thought generator as Gc, the sub-query generator as Gq , and the retriever as
R, which operates on a database D. The local model L generates a response y based on an input x,
using the CoT prompt and retrieved records as context:

y = L(x, c, v, h)

where x, y, c, v, h ∈ V∗. Specifically:

• x denotes the user’s input query
• c = Gc(x) represents the CoT prompt generated by the remote model
• v = R(Gq(x),D) indicates the retrieved records obtained by querying the encrypted

database D with sub-queries generated by Gq

• h represents optional historical context (e.g., previous conversation turns), defaulting to an
empty tuple () if not provided

• y is the final response generated by the local model

This decomposition ensures that remote models Gc and Gq operate only on non-private data, while
private records in D remain encrypted and are processed only within the trusted local environment by
L. The next section details our homomorphically encrypted vector database that enables efficient
retrieval without compromising privacy.

4 Homomorphically Encrypted Vector Database

In this section, we discuss the design and implementation of a vector database operating over
encrypted data, integrating Homomorphic Encryption (HE) and Private Information Retrieval (PIR)
techniques to enable secure and efficient semantic search with rapid updates. We begin by exploring
the necessity for remote encrypted vector databases and their setup. Subsequently, we analyze existing
HE-based inner product (IP) computations, proposing enhancements that significantly improve
efficiency with faster updates. Finally, we present a detailed framework and its corresponding API
specifications, illustrated clearly through algorithmic tables.

4

4.1 Motivations and Setup

The performance of personal assistants powered by language models significantly improves when
relevant user-context data is appropriately provided. Thus, seamless integration and accumulation
of user data are crucial for developing powerful personal assistants. While storing data locally on
the user’s device allows quick retrieval, local storage is inherently limited in capacity. Consequently,
leveraging cloud-based solutions becomes essential, offering extensive storage capabilities and
seamless data accumulation. Moreover, cloud solutions effectively handle multi-device scenarios by
integrating data from diverse sources, such as wearable devices, and provide a unified environment,
simplifying overall data management compared to fragmented local storage approaches.

Consider a simple yet inefficient baseline protocol for implementing a remote encrypted vector
database: whenever a client needs to search or update an entry, it downloads the entire database
from the server, decrypts it locally, performs the necessary operations, encrypts the entire database
again, and uploads it back to the server. Although straightforward, this approach incurs significant
communication overhead and computational burden on the client, rendering it impractical for large-
scale applications.

To address these inefficiencies, we aim to design a remote vector database system that maintains
the same robust security guarantees as the naive approach—where the database remains encrypted
under a symmetric key held exclusively by the client—but achieves significantly better efficiency in
communication and client-side computation.

The retrieval process within a vector database typically involves two critical sub-processes: search
and return. The search phase computes similarity scores between a query vector and the key vectors
stored in the database, and selects the top-k most relevant entries. In the return phase, corresponding
data values are fetched from the database based on the selected entry identifiers (ids).

To ensure the robust security level of the baseline, three main processes must be executed in an
oblivious manner: inner product (IP) computations, top-k selection, and data access. Homomorphic
encryption (HE) is particularly effective for inner product calculations, as it significantly reduces both
communication rounds and client-side computation. However, top-k selection, involving numerous
logical comparisons, becomes computationally intensive when directly implemented with HE [30].
Therefore, we adopt a client-aided approach, enabling the client to efficiently select the top-k entry
ids without excessive computational overhead.

Finally, once the client identifies the relevant entry ids, records are securely retrieved under the same
security guarantees as the naive baseline. We use private information retrieval (PIR) protocols to
fetch values corresponding to these ids without revealing which database entries are accessed.

To further enhance the efficiency of the database, particularly regarding frequent updates, we propose
a novel HE-based IP algorithm that balances rapid updates and efficient search performance. Existing
sublinear PIR schemes that rely on preprocessing are impractical for dynamic databases due to high
preprocessing costs [43]. To mitigate this issue, there are several line of works [55, 58], single-server
PIR protocol that operates efficiently without preprocessing, thereby enabling dynamic and rapid
updates alongside secure and efficient searching.

4.2 Secure Inner Product, Technical Overview

Given a power-of-two integer d > 1, let R∗,d = Z[X]/(Xd + 1). Given an integer q > 0, let
Rq,d = Zq[X]/(Xd + 1) ≃ R∗,d/qR∗,d. Polynomials are written in roman (e.g. q, k) and vectors
are written in bold (e.g. q,k). Given a vector v ∈ F t, v[i] denotes the i-th coordinate. Given
polynomials p,p′ ∈ R∗,d, p · p′ ∈ R∗,d denotes the ring multiplication in R. Given a polynomial
p ∈ R∗,d, p[i] denotes the coefficient of Xi. Given a polynomial in p ∈ R∗,d′ , we denote p̃ ∈ R∗,d
as the natural embedding p̃(X) = p(Xd/d′

). As we use d as the fixed RLWE dimension, we omit d
in the notation p̃.

The most significant difference between semantic search and a vector database is that the database
must be dynamic, supporting insertion and deletion. An important observation is that HE operations
should ideally not be used for insertion and deletion, as they accumulate errors and eventually

5

corrupt the message.2 Many existing HE-based inner-product algorithms are unsuitable for scenarios
requiring dynamic updates. Current solutions for encrypted semantic search with a public database,
such as Wally [3] and HERS [23], typically precompute key vectors in plaintext domain for fast
search. However, this plaintext precomputation restricts dynamic updates in the ciphertext domain.
In HERS, for instance, each key data point is distributed across different ciphertexts, necessitating
complex homomorphic encryption (HE) operations for inserting or deleting keys along with their
approximate values. This process can degrade data integrity over time due to accumulated errors
resulting from frequent HE computations.

One way to avoid HE computations during insertion and deletion is to assign one ciphertext per
key, allowing insertion and deletion by simply appending or removing ciphertexts. We designed a
dedicated HE-IP scheme for this scenario, achieving both exact updates and fast search.3

The search process begins by computing the inner product between the query and the stored key
vectors. Let us break down each step to derive the complete algorithm. For simplicity, we first solve
the case where n = d and r is a power of two. For n ≥ d, we can extend the base case to compute
multiple similarity scores. We describe the behavior of the underlying plaintexts.

Inner Product. Let the query vector be q = [ξi]0≤i<r ∈ Rr and the key vector be k = [κi]0≤i<r ∈
Rr. The corresponding plaintext polynomials are encoded as

q(X) =

r−1∑
i=0

qi ·X−si =

r−1∑
i=0

⌊∆ · ξi⌉ ·X−si ∈ R∗,d

and

k(X) =

r−1∑
i=0

ki ·Xsi =

r−1∑
i=0

⌊∆ · κi⌉ ·Xsi ∈ R∗,d,

where ∆ > 0 is a scaling factor and d = rs. Here the inner product ⟨q,k⟩ can be (approximately)
derived as

1

∆2
· (q · k)[0] ≃ ⟨q,k⟩.

We denote the (scaled) score σ as σ = (q · k)[0]. To pack multiple scores in a ciphertext for reducing
communication, we extract the constant term from the ciphertext. We slightly modify the conventional
homomorphic trace and write

r−1∑
i=0

φi(q · k) = r · σ (1)

where φi = p(X) 7→ p(X2i+1) is an automorphism overR∗,d for each 0 ≤ i < r.

Batching. We pack d scores σ0, σ1, . . . , σd−1 into a single ciphertext. By Equation 1,

r ·
d−1∑
j=0

σjX
j =

d−1∑
j=0

r−1∑
i=0

φi(q · kj)Xj =

r−1∑
i=0

φi(q) ·

d−1∑
j=0

φi(kj)X
j

 (2)

where σj = (q · kj)[0] for each 0 ≤ j < d. Here we observe that the last term can be interpreted as

an inner product between (φi)i and
(∑d−1

j=0 φi(kj)X
j
)
i
, separating query and key operations. The

number of automorphisms for the query is independent of n (when n ≥ d), and we can precompute
(i.e., cache) the keys.

2One may consider using bootstrapping [24] to clean the errors, but it is almost infeasible due to its high
computational cost.

3CHAM [64] also supports exact updates but is far less efficient than ours.

6

Caching. The key observation is that from Equation 2,

d−1∑
j=0

φi(kj)X
j = φi

d−1∑
j=0

kjX
j·inv(i)


where inv(i) = (2i+ 1)−1 mod 2d so that φi(X

inv(i)) = X .

This formula allows us to compute the automorphism φi only once. Therefore, we can significantly
reduce the number of (homomorphic) automorphisms from d log(r) to r − 1.

Butterfly Decomposition. For k̃ =
(
k̃j

)
0≤j<d

∈ Rd
q,d and k =

(∑d−1
j=0 k̃jX

j·inv(i)
)
0≤i<r

∈
Rr

q,d, let

M = P ·


X0 X1 X2 · · · X(d−1)

X0 X3 X6 · · · X3(d−1)

X0 X5 X10 · · · X5(d−1)

...
...

...
. . .

...
X0 X2r−1 X2(2r−1) · · · X(2r−1)(d−1)}

 ∈ Rr×d
q,d

where P ∈ Rr×r
q,d is a permutation matrix that corresponds to the permutation i 7→ (2i+1)−1−1

2 mod
r : {0, 1, . . . , r − 1} → {0, 1, . . . , r − 1}. Then k = Mk̃ holds.

Multiplying M to k̃ requires r(r − 1) polynomial additions, which is not negligible. Therefore, we
use a DFT-style butterfly decomposition to reduce the computational cost.

Define k′ ∈ Rr
q,d as follows:

k′[i] =

s−1∑
j=0

k̃j+siX
j

for 0 ≤ i < r. Then for k′′ = Bk ∈ Rr
q,d,

φi,r(k
′′[i]) = φi(k[i])

holds for 0 ≤ i < r, where

B = P ·


X0 Xs X2s · · · X(d−s)

X0 X3s X6s · · · X3(d−s)

X0 X5s X10s · · · X5(d−s)

...
...

...
. . .

...
X0 Xs(2r−1) X2s(2r−1) · · · X(2r−1)(d−s)}

 ∈ Rr×r
q,d (3)

and φi,r : Rq,d → Rq,d is a permutation on the coefficients that satisfies

φi,r(p)[(2i+ 1) · s · u+ j] = p[s · u+ j]

for 0 ≤ j < s− 1 and 0 ≤ u < r. By leveraging the butterfly matrix decomposition, we reduce the
number of polynomial additions to r log(r). The detailed algorithm is written in Algorithm 7.

Removing the Leading Term r. To remove the leading term r from the result r ·
∑d−1

j=0 σjX
j , we

multiply r−1 (mod q) before automorphisms.

r ·
r−1∑
i=0

φi(r
−1 · q) ·

r · φi

d−1∑
j=0

r−1 · kjXj·inv(i)

 = r ·
d−1∑
j=0

σjX
j

Therefore,
∑r−1

i=0

(
φi(r

−1 · q) ·
[
r · φi

(∑d−1
j=0 r

−1 · kjXj·inv(i)
)])

=
∑d−1

j=0 σjX
j .

7

Optimizations. To enhance the performance of homomorphically encrypted vector databases,
we incorporate several advanced techniques to optimize computation, storage, and accuracy. One
key optimization is caching via key-query decoupling, which allows keys to be precomputed and
cached independently of queries. This significantly reduces query response time by accelerating inner
product computation. We also apply hoisting [29, 10] to efficiently decompose queries, minimizing
computational overhead. This technique, when combined with MLWE (Module Learning With
Errors) [5] and seed-based ciphertext generation, enables compact storage and efficient updates.
Storage and update efficiency is further improved through batch processing and MLWE-based
seeding strategies [9], which reduce ciphertext size and update costs. Finally, we improve numerical
precision by removing leading constant terms [14] in homomorphic computations, resulting in more
accurate query results. See Appendix A for detailed descriptions, and Section 5.3 for results on
latency, storage, and accuracy.

4.3 Database Operations

See Table 1 for our database’s API. With these APIs (functions), we achieve efficient search and
support dynamic updates with O(1) complexity.

Algorithm 1 Init

Require: public parameters pp
1: A: sk← GenSK(pp)
2: A: pk← GenPK(pp)
3: A: Send pk to Bob

Algorithm 2 Search

Require: query q, database D
1: A: q← E(q)
2: A: q← EncryptHE(q)
3: A: Send q to Bob
4: B: s← Score(q,Dcache)
5: B: Send s to Alice
6: A: s← DecryptHE(s)
7: A: I ← TopK(s)

Algorithm 3 Return

Require: record ids I
1: A&B: {v} ← PIR(Dvalue, I)
2: A: {v} ← {DecryptAES(v)}

Algorithm 4 Insert

Require: set of records {v}, database D
1: A: k← E(v)
2: A: k← EncryptHE(k)
3: A: v ← EncryptAES(v)
4: A: Send {(k, v)} to Bob
5: B: Dnum ← Dnum + len({(k, v)})
6: B: Dkey ← Append(Dkey, {k})
7: B: Dvalue ← Append(Dvalue, {v})
8: B: Dcache ← ReCache(Dcache,Dkey, {k})

Algorithm 5 Delete

Require: record ids A, database D
1: A: Send A to Bob
2: B: Dnum ← Dnum − len(A)
3: B: Dkey ← Switch(Dkey,A)
4: B: Dvalue ← Switch(Dvalue,A)
5: B: Dcache ← ReCache(Dcache,Dkey,A)

Table 1: Set of algorithms for homomorphically encrypted vector database operations.

These operations include initialization, encrypted search and retrieval, as well as insertion and
deletion. We denote the client as Alice (A) and the server as Bob (B). Public parameters pp are
shared between them. The function GenSK generates secret keys used in Homomorphic Encryption
(HE), Advanced Encryption Standard (AES), and Private Information Retrieval (PIR), while GenSwk
produces the corresponding public keys of HE and PIR including switching keys for homomorphic
operations.

The finite-length sequences, such as textual queries q and records v , are embedded using an encoder
E. The vector databaseD maintains the following attributes: num (number of entries), key (stored key
vectors), value (encrypted records), and cache (cached key vectors for efficient search). Encryption
and decryption are performed using EncryptHE, DecryptHE, EncryptAES, and DecryptAES.

The Score function computes similarity scores over encrypted vectors, and TopK selects the top-k
most relevant entries using a heap-based algorithm with O(n log k) complexity. Retrieved values are
fetched securely using PIR protocols. See Appendix A for more details.

8

To support dynamic updates, we include auxiliary operations such as len (entry count), Append
(inserting new entries), Switch (deleting entries by overwriting them with the last entry), and
ReCache (refreshing the cached key vectors). These operations are executed in a batched manner
and achieve constant-time complexity.

Security Guarantees. Key vectors are encrypted using CKKS [17]. Values in the vector database
are encrypted using non-deterministic AES-256 encryption. The combination of HE and AES
provides robust security of our vector database. That is, our database provides 128-bit IND-CPA
security [68, 11] and is quantum-resistant [8, 56].

5 Experiments

In this section, we empirically validate the effectiveness of our privacy-preserving framework. The
experiments are organized into three parts. We first present the overall performance of the full
framework. We then conduct ablations on Socratic Chain-of-Thought Reasoning, isolating the
contributions of sub-query generation and chain-of-thought generation. Finally, we examine the
accuracy of our encrypted database and evaluate its efficiency and scalability in terms of latency and
storage cost.

5.1 Main Results

Experiments are conducted on two question-answering benchmarks: LoCoMo [53], designed to
simulate personal assistant scenarios, and MediQ [45], aimed at simulating medical consultation
scenarios. Both tasks require retrieving relevant user-specific data and performing complex reasoning
to generate an accurate final answer. We use DRAGON [47] to obtain embedding vectors, facilitating
the retrieval of proper records related to each query. See Appendix B for more details on the
experimental setup. Consequently, experiments evaluate whether the model’s final responses, derived
from the user’s original query and stored personal data, align closely with the desired answers.

Baseline Model LoCoMo MediQ

Remote-Only Baseline (oracle)
R1 GPT-4o 80.6 81.8
R2 Gemini-1.5-Pro 84.2 69.8
R3 Claude-3.5-Sonnet 89.8 79.3

Local-Only Baseline
L1 Llama-3.2-1B 64.6 32.1
L2 Llama-3.2-3B 68.7 43.2
L3 Llama-3.1-8B 68.8 47.5

Hybrid Framework w/ Socratic CoT (ours)

L1 + R1 87.7 59.7
L1 + R2 85.1 49.7
L1 + R3 84.3 58.0
L2 + R1 85.9 60.7
L2 + R2 79.8 52.9
L2 + R3 74.6 59.0
L3 + R1 87.9 59.5
L3 + R2 88.0 52.1
L3 + R3 86.1 59.6

Table 2: Benchmark results on the LoCoMo and MediQ datasets. LoCoMo is evaluated by F1
score, while MediQ is evaluated by exact match. Takeaway: Our privacy-preserving framework
significantly outperforms local-only baselines and approaches the performance of oracle baselines
without privacy constraints.

Our framework improves local-only baselines by up to +27.6 percentage points. As shown
in Table 2, our framework consistently outperforms the local-only baselines on both the LoCoMo
and MediQ datasets. By delegating complex reasoning to powerful remote models, we observe
substantial gains in performance. Specifically, we see improvements of up to 23.1 percentage points

9

on LoCoMo and 27.6 on MediQ when comparing each local model with its corresponding privacy-
preserving variants. On average, our approach improves F1 by +19.8 percentage points on LoCoMo
and exact match by +19.0 percentage points on MediQ over the local-only counterparts. These
gains are especially notable in challenging scenarios requiring domain expertise, such as medical
consultations. Despite operating under strict privacy constraints, our framework approaches—and in
some cases surpasses—the performance of oracle baselines that operate without privacy constraints.
This demonstrates the effectiveness of our approach in balancing strong privacy with high utility.

5.2 Ablations on Socratic Chain-of-Thought Reasoning

To better understand the source of performance gains from Socratic Chain-of-Thought Reasoning,
we conduct two ablation studies on the LoCoMo [53] and MediQ [45] datasets.

Reasoning augmentation leads to substantial performance gains. Table 3 compares remote-only
and local-only baselines, with and without Socratic Chain-of-Thought Reasoning. On LoCoMo, all
methods benefit from reasoning augmentation: explicitly prompting the model to reason through
intermediate steps leads to clear performance gains. For example, the local-only baseline improves
from 64.6 to 82.0, a gain of +17.4 percentage points, while the remote-only baseline improves from
80.6 to 92.6, a gain of +12.0 percentage points. These results suggest that reasoning augmentation
through Socratic Chain-of-Thought Reasoning is key to performance gains on LoCoMo.

Method Model LoCoMo MediQ
Remote-Only Baseline R1 80.6 81.8
Remote-Only Baseline w/ Socratic CoT R1 + R1 92.6 67.3

Local-Only Baseline L1 64.6 32.1
Local-Only Baseline w/ Socratic CoT L1 + L1 82.0 32.5

Hybrid Framwork w/ Socratic CoT (ours) L1 + R1 87.7 59.7

Table 3: The first ablation study for Socratic Chain-of-Thought Reasoning on the LoCoMo and
MediQ datasets. LocoMo is evaluated by F1 score, while MediQ is evaluated by exact match. R1 is
GPT-4o, and L1 is Llama-3.2-1B. Takeaway: Reasoning augmentation through Socratic Chain-of-
Thought Reasoning is the primary driver of performance gains.

Delegating both sub-queries and chain-of-thought generation to more powerful models is key.
Table 4 highlights two key observations by isolating the contributions of sub-query generation and
chain-of-thought generation.

First, delegating sub-query generation significantly improves retrieval quality. On LoCoMo, using a
smaller model (Llama-3.2-1B) for sub-query generation limits retrieval performance (Recall@5 =
21.8). When this task is handled by a more capable model (GPT-4o), performance nearly doubles to
44.1. This indicates that sub-query generation often requires deeper understanding and reasoning,
which smaller models struggle to achieve. Furthermore, using ground-truth retrieval results boosts
performance even more, implying that better sub-query generation—closer to the ideal target—can
further enhance final answer quality. On MediQ, the amount of private data per user is so limited that
most of the relevant records are retrieved even without high-quality sub-queries, reducing the impact
of sub-query generation on overall performance.

Second, delegating chain-of-thought generation improves final response quality. On LoCoMo, without
any chain-of-thought (N/A), the F1 score is 77.8. Incorporating chain-of-thought reasoning from
the smaller model raises it to 85.4, and using GPT-4o improves it further to 89.3. These results
demonstrate that guiding generation with reasoning augmentation produced by stronger models plays
a critical role in achieving high answer quality. Meanwhile, on MediQ, augmenting reasoning without
rich domain knowledge from remote models yields only marginal improvements. In this case, the
dominant factor is qualified reasoning criteria generated with rich domain knowledge, which powerful
remote models provide far more effectively than smaller local models. We provide a more detailed
analysis of the MediQ results in Appendix F.

10

Sub-Query
CoT R1 L1 N/A

GT 89.3 85.4 77.8
R1 (GPT-4o) 87.7 84.7 73.9
L1 (Llama-3.2-1B) 84.9 82.0 64.6

(a) LoCoMo

Sub-Query
CoT R1 L1 N/A

All 60.4 32.1 31.4
R1 (GPT-4o) 59.7 31.8 33.2
L1 (Llama-3.2-1B) 58.6 32.5 32.0

(b) MediQ

Table 4: The second ablation study for Socratic Chain-of-Thought Reasoning on the LoCoMo and
MediQ datasets. LocoMo is evaluated by F1 score, while MediQ is evaluated by exact match. Each
row corresponds to a different sub-query generation method: For LoCoMo, GT uses ground-truth
private data without sub-query generation (Recall@5=100.0), R1 uses GPT-4o (Recall@5=44.1), and
L1 uses Llama-3.2-1B (Recall@5=21.8). For Mediq, All setup uses the full user history as input
since no retrieval annotation is available, while R1 and L1 follow the same retrieval configuration as
in LoCoMo. Each column corresponds to a different chain-of-thought generation method, where N/A
indicates that chain-of-thought reasoning is not used. L1 is used for final response generation across
all settings. Takeaway: Delegating both sub-query and chain-of-thought generation to more powerful
models is crucial for optimal performance.

These findings suggest that local-only baselines, even without disclosing queries, are sufficient as
effective personal assistants for casual tasks like LoCoMo. In contrast, specialized domains such as
MediQ necessitate leveraging the advanced expertise embedded within powerful remote models to
deliver high-quality answers. Therefore, collaborating with remote models becomes essential for
users seeking more accurate responses in expert domains.

5.3 Homomorphically Encrypted Vector Database

Encrypted search retains > 99% accuracy. We evaluate the search accuracy of our encrypted
database using benchmarks from LoCoMo [53], Deep1B [4], and LAION [69], covering a range
of vector dimensions and domains. Results in Table 5 show that the system maintains high search
fidelity across both plaintext-to-ciphertext and ciphertext-to-ciphertext inner product computations.
In particular, when the query is in plaintext—a setting aligned with our privacy-preserving framework
involving non-private queries and private data—the encrypted database achieves accuracy comparable
to its unencrypted counterpart, with both mean and maximum inner product errors remaining minimal.
Metrics such as 1-Recall@1, 1-Recall@5, and MRR@10 confirm that the top-k results from the
encrypted database closely mirror those of the plaintext system. These results demonstrate that
encrypted search can be performed with negligible impact on accuracy.

Dataset Max Error Mean Error Std Error MRR@10 1-Recall@1 1-Recall@5
Plaintext Query

LoCoMo 3.11e-3 2.97e-3 3.31e-9 99.99 99.97 100
Deep1B 5.29e-5 6.42e-6 7.00e-11 99.97 99.96 99.99
LAION 1.06e-4 9.83e-6 1.36e-10 99.86 99.79 99.95

Ciphertext Query
LoCoMo 5.31e-2 2.32e-2 2.31e-1 93.31 89.20 98.89
Deep1B 1.39e-3 1.71e-4 4.61e-8 99.59 99.21 99.97
LAION 2.70e-3 3.44e-4 1.87e-7 99.85 99.78 99.95

Table 5: Search accuracy across LoCoMo [53], Deep1B [4], and LAION [69] datasets, evaluated
under two settings: when the query is in plaintext (top) and when the query is encrypted (bottom),
with encrypted keys in both cases. Takeaway: Our encrypted database preserves high retrieval
accuracy, achieving near-parity with the fully plaintext setting (both query and key).

11

Encrypted search scales to 1M entries with < 1 second latency. Despite the typical computational
overhead of homomorphic encryption, our system achieves practical latency for large-scale vector
similarity search. Figure 2 presents results on the Deep1B [4] dataset, showing that by leveraging
efficient SIMD-style operations and low-precision arithmetic in ciphertext space, the system achieves
linear scalability across database sizes from 1,000 to 1 million entries. Even at the million scale,
end-to-end latency remains under one second, including encryption, computation, and communi-
cation—even under a slow network. This performance makes the encrypted database viable for
real-time applications. Network overhead has become the primary source of latency, reflecting that
computation—particularly homomorphic encryption—no longer constitutes the principal bottleneck.
This improvement is evident in our evaluation on the 100K subset of LAION dataset [69], where
encrypted search completes in 62 ms on the fast network and 251 ms on the slow network, compared
to 76 ms and 931 ms with Compass [87]—yielding 1.2× and 3.7× speed-ups, respectively.

100

200

300

400

500

600

700

La
te

nc
y

(m
s)

253.3 248.1 251.7 249.5

627.8

187.3

Query Caching
Query-Key Multiplication
Network (Fast)
Network (Slow)

1K 4K 10K 100K 1M
Number of DB elements

0

10

20

30

10.4 10.9 11.2

24.1

Latency on Deep1B (96D)

Figure 2: Multi-thread search latency (using 64 threads) breakdown on the Deep1B [4] dataset as the
number of database entries increases. Red and pink bars represent network communication time on
fast and slow networks, respectively, while the numbers above each bar indicate the corresponding
latency. Blue bars represent query caching time; light-blue bars show query-key multiplication time.
Takeaway: Our encrypted search scales to 1M entries with < 1 second latency, as homomorphic
operations incur relatively low overhead compared to network communication.

Deep1B 1K 4K 10K 100K 1M
CHAM [64] 378 ms 389 ms 1,171 ms 9,406 ms 84,543 ms
Ours 150 ms 151 ms 156 ms 236 ms 951 ms

Table 6: Single-thread runtime of homomorphically encrypted matrix–vector multiplication as
the number of vectors in the database increases. The CHAM [64] baseline is based on our re-
implementation of the original method, incorporating additional optimizations such as ring packing
and packing multiple vectors into a single ciphertext. Takeaway: Our method achieves up to 88×
speed-up over CHAM, enabling real-time encrypted search at million-scale.

In addition, our system achieves significant improvements over previous homomorphic encryption
methods. As shown in Table 6, our approach consistently delivers faster runtimes than CHAM [64],
an encrypted matrix–vector multiplication method designed to support frequent updates. The per-
formance gap widens with scale: while CHAM requires 84,543 ms to process 1 million entries, our

12

method completes the same operation in just 2,280 ms—achieving a 37× speed-up. This efficiency
primarily stems from our query caching strategy, which restructures the key-switching phase so that
its computational complexity scales with the vector length rather than the full matrix size, effectively
eliminating the dominant bottleneck in prior designs.

Encrypted storage incurs < 5.8× overhead. Storing high-dimensional vectors in homomorphic
ciphertexts introduces nontrivial storage overhead. However, as detailed in Section 4 and Appendix A,
our implementation adopts optimizations such as packing multiple vector components into a single
ciphertext and omitting unused polynomial coefficients, effectively reducing space requirements.
Moreover, we apply module-LWE variants and seed-based ciphertext generation techniques, which
scale ciphertext size linearly with vector dimensionality rather than polynomial degree. As a result,
the encrypted database achieves practical storage costs, less than 5.8× overhead even for millions of
entries, enabling deployment in real-world systems without requiring excessive disk resources.

6 Related Work

In this paper, we address the challenge of privacy-preserving LLM interaction, focusing on protecting
user records in the context, at inference time. Unlike private training approaches which safeguard the
training corpus through techniques like DP-SGD and DP-ICL [1, 75], we focus on protecting user
data provided as inputs to the model during inference, ensuring that sensitive context information
remains confidential and is not leaked or memorized by the remote LLMs. Our work intersects with
the following topics:

Private Inference via Encryption. Early approaches combined homomorphic encryption (HE)
with neural networks, exemplified by CryptoNets [26], though with 103× computational overhead.
Subsequent systems like Gazelle [37] and XONN [66] reduced latency by hybridizing HE with
garbled circuits and binary networks. Recent work extends these techniques to Transformers and
LLMs: MPCFormer [44], PermLLM [85], and PUMA [20] achieve privacy for BERT and LLaMA
architectures but still require seconds per token. Industry implementations like Apple’s HE+PIR photo
search [34] show promise, but cloud LLM providers have been reluctant to adopt these approaches
due to significant computational overhead and complex key management.

Input Minimization and Sanitization Methods. Complementary approaches focus on sanitizing
prompts before transmission. PREEMPT [18] detects and replaces sensitive spans with placeholders
or differentially private values. PAPILLON [71] divides processing between local lightweight models
and external LLMs, sending only abstracted prompts to the cloud. Additional work [21, 73] focuses
on abstracting personal information. While effective for specific domains, these approaches typically
require task-specific engineering or sacrifice accuracy when critical context is removed [80]. Our
framework preserves task performance without cryptographic overhead by keeping raw data in the
trusted zone while delegating only non-sensitive reasoning steps.

Chain-of-Thought Reasoning and Task Decomposition. Chain-of-thought (CoT) prompting has
emerged as a powerful technique for improving LLM reasoning through step-by-step solutions. Zero-
shot CoT techniques [79, 39] and task decomposition prompts [86, 62] guide models to break complex
problems into manageable sub-problems, often enhanced with supervised reasoning traces [81].
Parallel work on model cascades aims to maximize efficiency by routing queries between different-
sized models, as in FrugalGPT [15] and Hybrid LLM [19], typically using confidence estimators
to determine when smaller models are insufficient [50, 28]. Multi-model frameworks like Socratic
Models [82] and HuggingGPT [70] divide tasks between a powerful LLM planner and specialized
executors, but assume the central model has full access to private data. In contrast, our approach
performs test-time CoT decomposition without additional training while preserving privacy by
ensuring the large LLM only sees abstracted queries rather than raw private data.

RAG and Agentic Workflows. Recent systems increasingly embed LLMs within persistent user-
centric datastores to deliver personalized assistance. These range from research prototypes like
Generative Agents [61] that maintain interaction histories as long-term memory, to commercial de-
ployments such as ChatGPT’s "Memory" and Operator [59, 60] that preserve multi-day conversation
logs, and open frameworks like LangChain and LlamaIndex [54, 52] that provide memory backends
as first-class primitives. Life-logging assistants like Rewind and Lindy [65, 48] index users’ entire
digital traces, leveraging the success of retrieval-augmented generation (RAG) [41] for grounding

13

LLMs in external knowledge. However, these systems typically assume trustworthy datastores,
ignoring privacy risks highlighted by recent extraction and inference attacks [6]. Our framework
is the first to combine an agentic RAG architecture with encrypted, local retrieval, addressing this
critical privacy gap while maintaining the benefits of contextual personalization.

7 Conclusion and Discussion

We introduced a four-stage, privacy-preserving framework that uniquely partitions tasks between
untrusted powerful LLMs and trusted lightweight local models. Our key innovations—Socratic
Chain-of-Thought Reasoning and Homomorphically Encrypted Vector Database—enable secure
collaboration without exposing private data. Our approach not only preserves privacy but actually
improves performance, with our local lightweight model outperforming even GPT-4o on long-context
QA tasks. This counter-intuitive result demonstrates the power of additional test-time computation
when properly structured through our chain-of-thought decomposition. Meanwhile, our encrypted
vector database achieves sub-second latency on million-scale collections with negligible accuracy
loss compared to plaintext search.

Future work should address extending our approach to tasks resistant to clean decomposition,
developing dynamic sensitivity classification for mixed public-private content, and scaling encrypted
retrieval to billion-scale collections. These advances will further expand applications that can benefit
from powerful models without surrendering personal data.

Acknowledgments and Disclosure of Funding

This study was supported by the NAVER Digital Bio Innovation Research Fund, funded by NAVER
Corporation (Grant No. 3720230180). Jaehyung Kim acknowledges support from the Stanford
Graduate Fellowship, NSF, DARPA, and the Simons Foundation. Opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of DARPA.

References
[1] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and

Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 308–318, 2016. doi: 10.1145/2976749.2978318.

[2] Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/claude-3-5-sonnet.
Accessed: 2025-01-29.

[3] Hilal Asi, Fabian Boemer, Nicholas Genise, Muhammad Haris Mughees, Tabitha Ogilvie, Rehan Rishi,
Guy N Rothblum, Kunal Talwar, Karl Tarbe, Ruiyu Zhu, et al. Scalable private search with wally. arXiv
preprint arXiv:2406.06761, 2024.

[4] Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[5] Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, Jai Hyun Park, and Damien Stehlé. Hermes: Efficient
ring packing using mlwe ciphertexts and application to transciphering. In Helena Handschuh and Anna
Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023, pages 37–69, Cham, 2023. Springer
Nature Switzerland. ISBN 978-3-031-38551-3.

[6] Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Röttger, Dan Jurafsky, Tatsunori Hashimoto, and
James Zou. Safety-tuned llamas: Lessons from improving the safety of large language models that follow
instructions. arXiv preprint arXiv:2309.07875, 2023. URL https://arxiv.org/abs/2309.07875.

[7] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, and Vinodh Gopal. Intel hexl: accelerating
homomorphic encryption with intel avx512-ifma52. In Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, 2021.

[8] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum security analysis of aes.
IACR Transactions on Symmetric Cryptology, 2019(2):55–93, 2019.

14

https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2309.07875

[9] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M Schanck, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-kyber: a cca-secure module-lattice-based kem. In
2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

[10] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux. Efficient
bootstrapping for approximate homomorphic encryption with non-sparse keys. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 587–617. Springer, 2021.

[11] Jean-Philippe Bossuat, Rosario Cammarota, Ilaria Chillotti, Benjamin R. Curtis, Wei Dai, Huijing Gong,
Erin Hales, Duhyeong Kim, Bryan Kumara, Changmin Lee, Xianhui Lu, Carsten Maple, Alberto Pedrouzo-
Ulloa, Rachel Player, Yuriy Polyakov, Luis Antonio Ruiz Lopez, Yongsoo Song, and Donggeon Yhee. Se-
curity guidelines for implementing homomorphic encryption. Cryptology ePrint Archive, Paper 2024/463,
2024. URL https://eprint.iacr.org/2024/463.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory, 6(3):1–36, 2014.

[13] Dawn M Cappelli, Andrew P Moore, and Randall F Trzeciak. The CERT guide to insider threats: how to
prevent, detect, and respond to information technology crimes. Addison-Wesley, 2012.

[14] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient homomorphic conversion between (ring)
lwe ciphertexts. In International conference on applied cryptography and network security, pages 460–479.
Springer, 2021.

[15] Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023. URL https://
arxiv.org/abs/2305.05176.

[16] Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models while
reducing cost and improving performance. In International Conference on Learning Representations
(ICLR), 2024.

[17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of
approximate numbers. In Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on
the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part I 23, 2017.

[18] Amrita Roy Chowdhury, David Glukhov, Divyam Anshumaan, Prasad Chalasani, Nicolas Papernot, Somesh
Jha, and Mihir Bellare. Preempt: Sanitizing sensitive prompts for llms. arXiv preprint arXiv:2504.05147,
2025.

[19] Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks V. S.
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query routing.
arXiv preprint arXiv:2404.14618, 2024. URL https://arxiv.org/abs/2404.14618.

[20] Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng Hong, Tao
Wei, and Wenguang Chen. PUMA: Secure inference of LLaMA-7B in five minutes. CoRR, abs/2307.12533,
2023. doi: 10.48550/arXiv.2307.12533.

[21] Yao Dou, Isadora Krsek, Tarek Naous, Anubha Kabra, Sauvik Das, Alan Ritter, and Wei Xu. Reducing
privacy risks in online self-disclosures with language models. arXiv preprint arXiv:2311.09538, 2023.

[22] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[23] Joshua J. Engelsma, Anil K. Jain, and Vishnu Naresh Boddeti. Hers: Homomorphically encrypted
representation search. IEEE Transactions on Biometrics, Behavior, and Identity Science, 4(3):349–360,
2022. doi: 10.1109/TBIOM.2021.3139866.

[24] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First
Annual ACM Symposium on Theory of Computing, STOC ’09, page 169–178, New York, NY, USA, 2009.
Association for Computing Machinery. ISBN 9781605585062. doi: 10.1145/1536414.1536440. URL
https://doi.org/10.1145/1536414.1536440.

[25] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of computing, pages 169–178, 2009.

15

https://eprint.iacr.org/2024/463
https://arxiv.org/abs/2305.05176
https://arxiv.org/abs/2305.05176
https://arxiv.org/abs/2404.14618
https://doi.org/10.1145/1536414.1536440

[26] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In Proceedings
of the 33rd International Conference on Machine Learning (ICML), pages 201–210, 2016.

[27] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University
Press, 2019.

[28] Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna Menon,
and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. arXiv preprint
arXiv:2404.10136, 2024. URL https://arxiv.org/abs/2404.10136.

[29] Shai Halevi and Victor Shoup. Faster homomorphic linear transformations in helib. In CRYPTO, 2018.

[30] Seungwan Hong, Seunghong Kim, Jiheon Choi, Younho Lee, and Jung Hee Cheon. Efficient sorting of
homomorphic encrypted data with k-way sorting network. IEEE Transactions on Information Forensics
and Security, 16:4389–4404, 2021. doi: 10.1109/TIFS.2021.3106167.

[31] Jeffrey Hunker and Christian W Probst. Insiders and insider threats-an overview of definitions and
mitigation techniques. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications, 2(1):4–27, 2011.

[32] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276,
2024.

[33] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-driven computer network defense
informed by analysis of adversary campaigns and intrusion kill chains. Technical report, Lockheed Martin
Corporation, 2011.

[34] Apple Inc. Enhanced visual search with homomorphic encryption and PIR. Technical white-paper, October
2024. Retrieved January 2025 from https://www.apple.com/legal/privacy/data/en/photos/.

[35] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. Unsupervised dense information retrieval with contrastive learning. arXiv preprint
arXiv:2112.09118, 2021.

[36] Changyue Jiang, Xudong Pan, Geng Hong, Chenfu Bao, and Min Yang. Rag-thief: Scalable extraction of
private data from retrieval-augmented generation applications with agent-based attacks. arXiv preprint
arXiv:2411.14110, 2024.

[37] Chiraag Juvekar, Vinod Vaikuntanathan, and Abhishek Chandrakasan. GAZELLE: A low latency frame-
work for secure neural network inference. In USENIX Security Symposium, pages 1651–1669, 2018.

[38] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv preprint
arXiv:2004.04906, 2020.

[39] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022. URL https://arxiv.org/
abs/2205.11916.

[40] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Designs,
Codes and Cryptography, 75(3):565–599, 2015.

[41] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-
augmented generation for knowledge-intensive nlp tasks. arXiv preprint arXiv:2005.11401, 2020. URL
https://arxiv.org/abs/2005.11401.

[42] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-
augmented generation for knowledge-intensive nlp tasks. In Advances in Neural Information Processing
Systems 33, pages 9459–9474, 2020.

[43] Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-Wu. Hintless single-server private
information retrieval. Cryptology ePrint Archive, Paper 2023/1733, 2023.

[44] Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P. Xing, and Hao Zhang. MPCFormer: Fast,
performant and private transformer inference with MPC. CoRR, abs/2211.01452, 2022. doi: 10.48550/
arXiv.2211.01452.

16

https://arxiv.org/abs/2404.10136
https://www.apple.com/legal/privacy/data/en/photos/
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2005.11401

[45] Shuyue Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan Ilgen, Emma Pierson, Pang Wei Koh,
and Yulia Tsvetkov. Mediq: Question-asking llms for adaptive and reliable medical reasoning. arXiv
preprint arXiv:2406.00922, 2024.

[46] Shuyue Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan S. Ilgen, Emma Pierson, Pang Wei
Koh, and Yulia Tsvetkov. MediQ: Question-asking LLMs and a benchmark for reliable interactive clinical
reasoning. arXiv preprint arXiv:2406.00922, 2024.

[47] Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Yashar Mehdad, Wen-tau Yih, and
Xilun Chen. How to train your dragon: Diverse augmentation towards generalizable dense retrieval. arXiv
preprint arXiv:2302.07452, 2023.

[48] Lindy AI. Lindy — meet your ai assistant. https://www.lindy.ai/lindy-agents/ai-assistant,
2024. Accessed 16 May 2025.

[49] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, and Kejuan Yang. Agentbench: Evaluating llms as agents. arXiv preprint arXiv:2308.03688, 2023.

[50] Yueyue Liu, Hongyu Zhang, Yuantian Miao, Van-Hoang Le, and Zhiqiang Li. Optllm: Optimal assignment
of queries to large language models. arXiv preprint arXiv:2405.15130, 2024. URL https://arxiv.org/
abs/2405.15130.

[51] Yuxuan Liu et al. A review on edge large language models: Design, execution, and optimization. ACM
Computing Surveys, 1(1):1–36, 2025.

[52] LlamaIndex Team. Llamaindex newsletter 2024-06-11: Enhanced memory modules boost agentic rag ca-
pabilities. https://www.llamaindex.ai/blog/llamaindex-newsletter-2024-06-11, June 2024.
Accessed 16 May 2025.

[53] Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei Fang.
Evaluating very long-term conversational memory of llm agents. arXiv preprint arXiv:2402.17753, 2024.

[54] Vasilios Mavroudis. Langchain. White paper, The Alan Turing Institute, 2024. URL https://www.
turing.ac.uk/sites/default/files/2024-11/langchain.pdf.

[55] Samir Jordan Menon and David J. Wu. Spiral: Fast, high-rate single-server PIR via FHE composition.
Cryptology ePrint Archive, Paper 2022/368, 2022.

[56] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-quantum cryptography, pages
147–191. Springer, 2009.

[57] Niloofar Mireshghallah, Hyunwoo Kim, Xuhui Zhou, Yulia Tsvetkov, Maarten Sap, Reza Shokri, and Yejin
Choi. Can llms keep a secret? testing privacy implications of language models via contextual integrity
theory. arXiv preprint arXiv:2310.17884, 2023.

[58] Muhammad Haris Mughees, Hao Chen, and Ling Ren. Onionpir: Response efficient single-server pir.
In Proceedings of the 2021 ACM SIGSAC conference on computer and communications security, pages
2292–2306, 2021.

[59] OpenAI. Memory and new controls for chatgpt. https://openai.com/index/
memory-and-new-controls-for-chatgpt/, February 2024. Accessed 16 May 2025.

[60] OpenAI. Computer-using agent: Powering operator with a universal interface. https://openai.com/
index/computer-using-agent/, January 2025. Accessed 16 May 2025.

[61] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint arXiv:2304.03442,
2023. URL https://arxiv.org/abs/2304.03442.

[62] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring and
narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350, 2022. URL
https://arxiv.org/abs/2210.03350.

[63] Jianing Qiu, Kyle Lam, Guohao Li, Amish Acharya, Tien Yin Wong, Ara Darzi, Wu Yuan, and Eric J Topol.
Llm-based agentic systems in medicine and healthcare. Nature Machine Intelligence, 6(12):1418–1420,
2024.

17

https://www.lindy.ai/lindy-agents/ai-assistant
https://arxiv.org/abs/2405.15130
https://arxiv.org/abs/2405.15130
https://www.llamaindex.ai/blog/llamaindex-newsletter-2024-06-11
https://www.turing.ac.uk/sites/default/files/2024-11/langchain.pdf
https://www.turing.ac.uk/sites/default/files/2024-11/langchain.pdf
https://openai.com/index/memory-and-new-controls-for-chatgpt/
https://openai.com/index/memory-and-new-controls-for-chatgpt/
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2210.03350

[64] Xuanle Ren, Zhaohui Chen, Zhen Gu, Yanheng Lu, Ruiguang Zhong, Wen-Jie Lu, Jiansong Zhang,
Yichi Zhang, Hanghang Wu, Xiaofu Zheng, Heng Liu, Tingqiang Chu, Cheng Hong, Changzheng Wei,
Dimin Niu, and Yuan Xie. Cham: A customized homomorphic encryption accelerator for fast matrix-
vector product. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2023. doi:
10.1109/DAC56929.2023.10247696.

[65] Rewind AI. Rewind: Your ai assistant that has all the context. https://www.rewind.ai/, 2024.
Accessed 16 May 2025.

[66] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter, and Farinaz Koushanfar.
XONN: Xnor-based oblivious deep neural network inference. In 28th USENIX Security Symposium, pages
1501–1518, 2019.

[67] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy homomorphisms.
Foundations of secure computation, 4(11):169–180, 1978.

[68] Phillip Rogaway. Nonce-based symmetric encryption. In International workshop on fast software
encryption, pages 348–358. Springer, 2004.

[69] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. Advances in Neural Information Processing
Systems, 2022.

[70] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. arXiv preprint arXiv:2303.17580, 2023. URL
https://arxiv.org/abs/2303.17580.

[71] Li Siyan, Vethavikashini Chithrra Raghuram, Omar Khattab, Julia Hirschberg, and Zhou Yu. Papil-
lon: Privacy preservation from internet-based and local language model ensembles. arXiv preprint
arXiv:2410.17127, 2024.

[72] Jaeyoon Song, Zahra Ashktorab, and Thomas W Malone. Togedule: Scheduling meetings with large
language models and adaptive representations of group availability. arXiv preprint arXiv:2505.01000,
2025.

[73] Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. Large language models are advanced
anonymizers. arXiv preprint arXiv:2402.13846, 2024.

[74] Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A
Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned text embeddings.
arXiv preprint arXiv:2212.09741, 2022.

[75] Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin,
Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with
differentially private few-shot generation. arXiv preprint arXiv:2309.11765, 2023.

[76] Fireworks Team. Fireworks api documentation, 2025. Available at https://docs.fireworks.ai/.

[77] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

[78] David Wang et al. The pros and cons of using large language models (llms) in the cloud vs. running llms
locally. DataCamp, 2024.

[79] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022. URL https://arxiv.org/abs/2201.11903.

[80] Rui Xin, Niloofar Mireshghallah, Shuyue Stella Li, Michael Duan, Hyunwoo Kim, Yejin Choi, Yulia
Tsvetkov, Sewoong Oh, and Pang Wei Koh. A false sense of privacy: Evaluating textual data sanitization
beyond surface-level privacy leakage. arXiv preprint arXiv:2504.21035, 2025.

[81] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning. arXiv preprint arXiv:2203.14465, 2022. URL https://arxiv.org/abs/2203.14465.

18

https://www.rewind.ai/
https://arxiv.org/abs/2303.17580
https://docs.fireworks.ai/
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2203.14465

[82] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker, Federico
Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke, and Pete
Florence. Socratic models: Composing zero-shot multimodal reasoning with language. arXiv preprint
arXiv:2204.00598, 2022. URL https://arxiv.org/abs/2204.00598.

[83] Shenglai Zeng, Jiankun Zhang, Pengfei He, Yiding Liu, Yue Xing, Han Xu, Jie Ren, Yi Chang, Shuaiqiang
Wang, Dawei Yin, and Jiliang Tang. The good and the bad: Exploring privacy issues in retrieval-augmented
generation (RAG). In Findings of the Association for Computational Linguistics: ACL 2024, pages
4505–4524, 2024.

[84] Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing, Yiding Liu, Han Xu, Jie Ren, Shuaiqiang Wang,
Dawei Yin, Yi Chang, et al. The good and the bad: Exploring privacy issues in retrieval-augmented
generation (rag). arXiv preprint arXiv:2402.16893, 2024.

[85] Fei Zheng, Chaochao Chen, Zhongxuan Han, and Xiaolin Zheng. PermLLM: Private inference of large
language models within 3 seconds under WAN. CoRR, abs/2405.18744, 2024. doi: 10.48550/arXiv.2405.
18744.

[86] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022. URL https://arxiv.org/
abs/2205.10625.

[87] Jinhao Zhu, Liana Patel, Matei Zaharia, and Raluca Ada Popa. Compass: Encrypted semantic search with
high accuracy. Cryptology ePrint Archive, Paper 2024/1255, 2024.

19

https://arxiv.org/abs/2204.00598
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

A Homomorphic Encryption based Inner Product

A.1 Secure Inner Product, Algorithms and Optimizations

We specify the detailed algorithms as follows. Algorithms 6 and 7 describe the precomputations for
the query and key, respectively, as mentioned right after Equation (2). Algorithm 8 describes the
score computation algorithm starting from the precomputed query and cache ciphertexts.

Optimizations Summary. We summarize the optimizations mentioned in the previous subsection
and discuss some additional optimizations.

• Batching and Caching: We write the homomorphic inner product equation as in Equa-
tion (2). This separates the precomputations for query and key, which are denoted as
Decompose and Cache, respectively. This reduces the number of automorphisms from
d log(r) to r − 1.

• Butterfly Decomposition: The key side precomputation is significant as it involves O(r2)
polynomial additions. We leverage the butterfly decomposition to reduce the complexity
from r(r − 1) to r log(r).

• Seeding and MLWE: In order to improve the storage size, we use Module LWE
(MLWE) [40] and Extendable Output-format Function (XOF) with a public seed. This
reduces ciphertext size from 2d (i.e. twoRq,d elements) to r (i.e. oneRq,r element and a
128-bit public seed).

• Remove the leading term r: We use the optimization technique introduced in [14] that
evaluates the trace without the leading term r, thereby improving the precision. This
technique is applied for Line 2 of Algorithm 6 and Line 3 of Algorithm 7.

• Hoisting [29]: We adapt the hoisting technique that lazily computes the homomorphic
operations to improve efficiency. Our adaptaion is similar to the double hoisting algorithm
in [10]. Hoisting appears in the following instances.

– Line 3 of Algorithm 6: For each index 0 ≤ i < s, ModUp(ai) is computed only once.
– Line 5,6 of Algorithm 6, Line 13,14 of Algorithm 7: We ModDown after summation,

reducing the number of modDown to r per each j.

• Reducing NTT dimension: In Line 3,5,6 of Algorithm 6, we utilize dimension r NTT
instead of dimension d NTT, reducing the complexity by a factor of log(d)/ log(r). This is
possible because each âi is sparsely embedded into the larger ringRq,d.

Algorithm 6 Decompose

Require: Query (seeded) MLWE ciphertext (b, ρ) that encrypts q ∈ Rq,r via the secret key s =
(su)0≤u<s ∈ Rs

q,r. Here b ∈ Rq,r and ρ is a 128-bit seed string. swkj = (swkj,u)0≤u<s ∈
(R2

qp,d)
s are the RLWE switching keys where swkj,u switches from s̃u to φ−1

j (s′) where s′ ∈
R∗,d is the target RLWE secret key. Here GenA generates the a-part of the MLWE ciphertext
from the 128-bit seed ρ, and ModUp and ModDown are the typical homomorphic base conversions
from q to qp and from qp to q.

Ensure: RLWE ciphertexts (ctj)0≤j<r that encrypt
(
φj(r

−1 · q)
)
0≤j<r

, i.e. polynomial of degree
d inRq with X2j+1 automorphism operations for 0 ≤ j < r.

1: a = (au)0≤u<s ∈ Rs
q,r ← GenA(ρ)

2: (b,a)← r−1 · (b,a) mod q
3: â = (âu)0≤u<s ∈ Rs

qp,r ← (ModUp(au))0≤u<s

4: for j = 0 to r − 1 do
5: ctj ∈ R2

qp,d ←
∑s−1

u=0(âi · swkj,u)
6: ctj ← ModDown(ctj)

7: ctj ← φj(ctj + (b̃ ∈ Rq,d, 0))
8: end for
9: return (ctj)0≤j<r

20

Algorithm 7 Cache

Require: Key (seeded) MLWE ciphertexts (bi, ρi) that encrypts ki ∈ Rq,r via the secret key
s = (su)0≤u<s ∈ Rs

q,r, for each 0 ≤ i < d. Here bi ∈ Rq,r and ρi is a 128-bit seed string.
swkj = (swkj,u)0≤u<s ∈ (R2

qp,d)
s are the RLWE switching keys where swkj,u switches from

φj(s̃i) to s′ where s′ ∈ R∗,d is the target RLWE secret key. Here GenA generates the a-part of the
MLWE ciphertext from the 128-bit seed ρ, and ModUp and ModDown are the typical homomorphic
base conversions from q to qp and vice versa, respectively. Let B ∈ Rr×r

q,d be the matrix as
defined in Equation 3.

Ensure: RLWE ciphertexts (ct′′′j)0≤j<r ∈ (R2
q,d)

r that encrypt
(∑d−1

i=0 φj(k̃i)X
i
)
0≤j<r

.

1: for i = 0 to d− 1 do
2: ai = (ai,u)0≤u<s ∈ Rs

q,r ← GenA(ρi)

3: (bi,ai)← r−1 · (bi,ai) mod q
4: end for
5: for j = 0 to r − 1 do

6: (b′j ,a
′
j) ∈ R

s+1
q,d ←

(∑s−1
v=0 b̃v+sj ·Xv,

(∑s−1
v=0 ã(v+sj),u ·Xv

)
0≤u<s

)
7: end for
8: ct′ ∈ (Rs+1

q,d)r ← (b′j ,a
′
j)0≤j<r

9: ct′ ∈ (Rs+1
q,d)r ← B · ct′

10: for j = 0 to r − 1 do
11: ct′′j = (b′′j ,a

′′
j) ∈ Rq,d ×Rs

q,d ← φj,r (ct
′[j])

12: â′′j = (â′′j,u)0≤u<s ∈ Rs
qp,d ← ModUp(a′′j)

13: ct′′′j ∈ R2
qp,d ←

∑s−1
u=0(â

′′
j,u · swkj,u)

14: ct′′′j ∈ R2
q,d ← ModDown(ct′′′j)

15: ct′′′j ← ct′′′j + (b′′j ∈ Rq,d, 0)
16: ct′′′j ← r · ct′′′j mod q
17: end for
18: return (ct′′′j)0≤j<r

Algorithm 8 Score

Require: Decomposed query ciphertexts ctq ∈ (R2
q,d)

r, Cached key ciphertexts ctk ∈ (R2
q,d)

r.

Ensure: A RLWE ciphertext ctout encrypting the resulting score polynomial
∑d−1

j=0 σjX
j .

1: ctout ← Relin(
∑r−1

i=0 ctq[i]⊗ ctk[i])
2: return ctout

A.2 Private Information Retrieval

We extend our Secure Inner Product method to support Private Information Retrieval (PIR). Similar
to SPIRAL [55], we treat the database as a matrix. The protocol requires the client to send two
encrypted queries: one selecting the target row and the other selecting the target column, each
containing a one hot vector at the corresponding index. The server then performs PIR through two
sequential applications of the Secure Inner Product protocol. However, naively applying the Secure
Inner Product protocol in this PIR context introduces a cache invalidation issue. Specifically, while
the standalone Secure Inner Product scenario only requires refreshing the cache corresponding to
the updated index, PIR necessitates refreshing the entire cache whenever the database changes. This
occurs because the output from the first stage acts as the key for the second stage. To address this, we
modify our protocol by applying the inverse butterfly operation—originally intended for use on the
key—to the decomposed query instead.

In our experimental setting using a Fast network (see Section C), the modified PIR protocol achieves
an end-to-end retrieval latency of under 700 ms for databases consisting of 220 records, each sized at
1 KiB. Consequently, we demonstrate that our approach efficiently supports a secure vector database

21

of 1 GiB containing 1 million records with 96 dimensions each, achieving an end-to-end latency
below 1 second.

B Experimental Setup

B.1 Socratic Chain-of-Thought Reasoning

We empirically evaluate the effectiveness of our reasoning framework in addressing the computational
limitations of local models. Experiments are conducted on two QA-focused benchmarks: LoCoMo,
which simulates personal assistant scenarios, and MediQ, which simulates medical consultation
scenarios. Both tasks require retrieving relevant private user data and performing complex reasoning
to arrive at a final answer. We compare our framework against two categories of baselines: Golden
Baselines assume no privacy constraints, allowing private data to be directly passed to remote models.
We use GPT-4o (R1), Gemini-1.5-Pro (R2), and Claude-3.5-Sonnet (R3), which cannot be run locally
but offer strong reasoning capabilities. Local-only Baselines assume strong privacy constraints,
requiring the entire inference process to be carried out by local models. We use Llama-3.2-1B (L1),
Llama-3.2-3B (L2), and Llama-3.1-8B (L3), which are lightweight enough for local execution but
less capable in complex reasoning tasks. The goal of our reasoning framework is to improve the
performance of local-only baselines by leveraging model collaboration and delegated reasoning,
aiming to approach the performance of the golden baselines.

B.2 Homomorphically Encrypted Vector Database

We examine whether vector search can be performed accurately and efficiently over encrypted data
using homomorphic encryption. Our goal is to match the quality and latency of plaintext vector search
while ensuring that both queries and database contents remain private. The encrypted vector database
is implemented using HEXL [7] and evaluated in in the same Google Cloud Platform configuration
used by Compass [87] for a fair comparison: an n2-standard-8 instance (8 vCPUs @ 2.8 GHz, 32 GB
RAM) as the client and an n2-highmem-64 instance (64 vCPUs @ 2.8 GHz, 512 GB RAM) as the
server, co-located in the same region/zone. Using Linux Traffic Control, we emulate two network
regimes: Fast (3 Gbps, 1 ms Round Trip Time (RTT)) and Slow (400 Mbps, 80 ms RTT) to isolate the
impact of bandwidth and latency. We use 10k query vectors and 1M key vectors from Deep1B (96D)
and LAION (512D), as well as the entire LoCoMo dataset (768D). For search accuracy, we report
mean/max inner product error, MRR@10, and 1-Recall@k. For latency, we measure end-to-end
CPU runtime. All speed measurements assume that both the query and the keys are ciphertexts and
employ parameters that satisfy IND-CPA 128-bit security. To evaluate storage, we analyze ciphertext
overhead and apply packing optimizations.

B.3 Hyperparameter Selection

To evaluate Socratic Chain-of-Thought Reasoning, we set the temperature of all language models to
zero to ensure reproducibility. We use top-k retrieval with reranking based on vector similarity scores.
We set k to 5 for LoCoMo and 20 for MediQ, as the maximum number of ground truth retrievals
varies across datasets.

B.4 Model Selection

We employ DRAGON [47] as the retriever because it outperforms other candidates, such as DPR [38],
Contriever [35], and Instructor [74], on our chosen datasets. It represents data as 768-dimensional
vectors, and the inner product between two vectors is used to compute the similarity score. For the
remote models, we use GPT-4o (R1) [32], Gemini-1.5-Pro (R2) [77], and Claude-3.5-Sonnet (R3) [2],
representing the most powerful closed API language models currently available. These models are
assumed to run in a public cloud environment. For the local models, we select Llama-3.2-1B (L1),
Llama-3.2-3B (L2), and Llama-3.1-8B (L3) [22], which are lightweight enough to be deployed on
edge devices. These models reflect realistic constraints for privacy-preserving, on-device inference.
This selection enables a clear evaluation of our framework, balancing reasoning capability with
privacy constraints.

22

B.5 Benchmark Selection

We report the performance of Socratic Chain-of-Thought Reasoning on two benchmarks. The first,
LoCoMo [53], is a benchmark designed to test language models in long-term dialogues. It simulates
an everyday personal assistance scenario, where personal information is gradually accumulated in a
vector database through extended observation. On LoCoMo, we evaluate (1) the remote models’s
impact on retrieval using Recall@5 and (2) its enhancement of response quality through improved
response generation, measured by the F1 score. We use only the single-hop QA and multi-hop QA
datasets out of the total five datasets in LoCoMo, as these are the only datasets suitable for our
scenario. The second benchmark, MediQ [45], presents a more specialized scenario focused on
medical consultation, where privacy risks are directly at odds with the need for access to a patient’s
personal context. MediQ is a multiple-choice question-answering dataset, so we evaluate generation
accuracy using the exact match metric. Since MediQ lacks retrieval annotations, we do not report
retrieval metric for this benchmark.

We report the performance of the homomorphically encrypted vector database on standard retrieval
benchmarks. To assess the scalability of encrypted storage and search, we selected a sufficiently large
dataset. We used the top 10k query vectors and 1M key vectors from Deep1B [4] and LAION [69],
represented as 96-dimensional and 512-dimensional vectors respectively. For LoCoMo [53], we used
the entire dataset, which consists of 1,742 query vectors and 4,972 key vectors, each represented as a
768-dimensional vector.

B.6 Metric Selection

For the Socratic Chain-of-Thought Reasoning, we focus on measuring the quality of the generated
answers. On the LoCoMo benchmark, we report the F1 score, which captures token-level overlap
between generated and ground-truth responses in long-context dialogues. On the MediQ benchmark,
we report exact match accuracy, as the task involves multiple-choice question answering and requires
strict correctness. These metrics enable us to quantify the impact of delegating complex reasoning to
powerful remote models while keeping sensitive data within a trusted zone.

For the homomorphically encrypted vector database, we evaluate both search accuracy and latency.
To assess search accuracy, we compute the mean error and maximum error between the inner product
similarity scores produced by encrypted and plaintext searches. Additionally, we report 1-Recall@1
and 1-Recall@5, which represent the proportion of queries for which the top-1 result from the
plaintext database is not recovered in the top-1 or top-5 encrypted results. Lower values for these
metrics indicate higher retrieval consistency under encryption. To evaluate latency, we measure the
average response time of encrypted search queries. All metrics are reported separately for plaintext
and ciphertext queries.

C Compute Resources

For Socratic Chain-of-Thought Reasoning, all experiments were conducted using a single NVIDIA
A100 GPU. Language models from the Llama family were accessed via the Fireworks API [76], while
other closed API models, including those from OpenAI, Gemini, and Claude, were accessed through
their respective APIs. Our homomorphically encrypted vector database was implemented using
HEXL [7] and evaluated under the same Google Cloud Platform configuration used by Compass [87]
to ensure a fair comparison: an n2-standard-8 instance (8 vCPUs @ 2.8 GHz, 32 GB RAM) was used
as the client, and an n2-highmem-64 instance (64 vCPUs @ 2.8 GHz, 512 GB RAM) was used as the
server, both co-located in the same region and zone. To emulate realistic networking conditions, we
used Linux Traffic Control to simulate two environments: Fast (3 Gbps bandwidth, 1 ms round-trip
time and Slow (400 Mbps bandwidth, 80 ms round-trip time). The following commands were used to
apply these network configurations to the server.

Fast Network

tc qdisc add dev ens4 root netem delay 1ms
tc qdisc add dev ens4 root handle 1: htb default 30
tc class add dev ens4 parent 1: classid 1:1 htb rate 3096mbps
tc class add dev ens4 parent 1: classid 1:2 htb rate 3096mbps

23

tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \
match ip dst $CLIENT_IP flowid 1:1
tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \
match ip src $CLIENT_IP flowid 1:2

Slow Network

tc qdisc add dev ens4 root netem delay 80ms
tc qdisc add dev ens4 root handle 1: htb default 30
tc class add dev ens4 parent 1: classid 1:1 htb rate 400mbps
tc class add dev ens4 parent 1: classid 1:2 htb rate 400mbps
tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \
match ip dst $CLIENT_IP flowid 1:1
tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \
match ip src $CLIENT_IP flowid 1:2

D Qualitative Analysis

We present qualitative examples from the LoCoMo and MediQ benchmarks to illustrate how our
system improves response quality under strict privacy constraints. By delegating sub-query generation
and chain-of-thought reasoning to a powerful remote model, and executing final response generation
locally, our framework ensures that sensitive data never leaves the trusted zone while still benefiting
from advanced reasoning capabilities.

D.1 LoCoMo

User Query. “What motivated Caroline to pursue counseling?”

This query requires linking the user’s past personal experiences to her career decisions, as this
information is often buried in long conversational histories.

Sub-Query Generation by Remote Model. The remote model generated sub-queries such as: “Has
Caroline discussed any impactful personal experiences related to her career?” “Did she mention an
interest in counseling in past conversations?”

These sub-queries were embedded on the local client and used to search the homomorphically
encrypted vector database.

Encrypted Search from Private Records. The search retrieved a key statement: “My own journey
and the support I got made a huge difference... I saw how counseling and support groups improved
my life.”

Chain-of-Thought Reasoning from Remote Model. The model suggested this reasoning guideline:
“When personal growth or transformation is attributed to support or counseling, infer a connection
between that experience and a career motivation to help others.”

Response Generation by Local Model. Using the retrieved memory and the reasoning instruction,
the local model generated the following answer: “Caroline was motivated to pursue counseling
because of her own journey and the support she received, particularly through counseling and support
groups.”

D.2 MediQ

User Query. “I’ve been feeling more forgetful lately and have started falling more often. What
should I do?”

This query suggests a combination of cognitive and physical decline, potentially indicating an
underlying neurological issue. Proper assessment requires integration of personal medical context
and symptom history.

Sub-Query Generation by Remote Model. The remote model generated targeted follow-up
questions, including: “Is there any record of short-term memory impairment?” “Have the falls

24

become more frequent or severe over time?” “Are there other neurological symptoms noted in the
history?”

Encrypted Search from Private Records. These sub-queries were executed on encrypted medical
records, retrieving relevant notes such as: “I couldn’t remember any of the five things the doctor
asked me to recall after ten minutes.” “I’ve been falling more often lately, and it feels like it’s getting
worse.”

Chain-of-Thought Reasoning from Remote Model. The remote model provided the following
reasoning instruction to the local model: “When both progressive memory loss and increased
frequency of falls are reported, evaluate for possible neurodegenerative conditions and recommend
medical assessment.”

Response Generation by Local Model. Based on the retrieved data and reasoning instruction, the
local model generated the following concise response: “Parkinson’s disease.”

These examples demonstrate that our framework enables local models to generate informed, context-
sensitive responses by leveraging powerful remote models for high-level reasoning. Throughout the
process, sensitive user data remains local, ensuring strong privacy guarantees while maintaining or
even improving response quality.

E Prompt Templates

For sub-query generation in both the baselines and Socratic Chain-of-Thought Reasoning, we used
the prompt shown in Figure 3. For response generation in the baselines, the prompt in Figure 4 was
used. For Socratic Chain-of-Thought Reasoning, chain-of-thought generation was performed using
the prompt in Figure 5, and response generation used the prompt in Figure 6. The prompts include
substitution keys, which are described in Table 7.

Key Description Illustrative Example

{user_input} User input I have a fever and a cough.
What disease do I have?

{options} Multiple-choice option. For-
matted as bulleted list. For
open ended questions, this is
replaced with Empty instead.

- Common cold
- Flu
- Strep throat

{personal_context} List of retrieved personal con-
texts in descending order of
importance, one item on each
line.

In January 30th, user consumed
a half gallon of ice cream.
User enjoys cold drink, even
in winter.
User spends most of the time
in their place alone.

{personal_context_json} List of retrieved personal
contexts in descending or-
der of importance, as JSON-
formatted array of strings.

[
"In January 30th, user

consumed a half gallon of ice
cream.",

"User enjoys cold drink,
even in winter.",

"User spends most of the
time in their place alone."
]

{generated_reasoning} The output of reasoning gener-
ation step.

(omitted)

Table 7: Substitutions for our prompts. Whenever the listed substitution keys appear on our prompt
template, they are substituted into the actual values as described on the right side of the table.

25

You are a sub-query generator.

1. You are given a query and a list of possible options.
2. Your task is to generate 3 to 5 sub-queries that help retrieve
personal context relevant to answering the query.
3. Each sub-query should be answerable based on the user's personal
context.
4. Ensure the sub-queries cover different aspects or angles of the
query.
5. If the options text says 'Empty,' it means no options are
provided.

Please output the sub-queries one sub-query each line, in the
following format:
"Sub-query 1 here"
"Sub-query 2 here"
"Sub-query 3 here"

Example 1)

Query
I have a fever and a cough. What disease do I have?

Options
Common cold
Flu
Strep throat

Sub-queries
"Have user visited any countries in Africa recently?"
"Have user eat any cold food recently?"
"Have user been in contact with anyone who has a COVID-19 recently?"

Test Input)

Query
{user_input}

Options
{options}

Sub-queries

Figure 3: Prompt used for sub-query generation in both the baselines and the socratic chain-of-thought
reasoning.

26

You are a question answering model.

1. You are given a personal context, a query, and a list of
possible options.
2. Your task is to generate an answer to the query based on the
user’s personal context.
3. You should generate an answer to the query by referring to the
personal context where relevant.
4. If the options text says 'Empty,' it means no options are
provided.
5. If the options are not empty, simply output one of the answers
listed in the options without any additional explanation.
6. Never output any other explanation. Just output the answer.
7. If option follows a format like '[A] something', then output
something as the answer instead of A.

Test Input)

Personal Context
{personal_context}

Question
{user_input}

Options
{options}

Answer

Figure 4: Prompt used for response generation in the baselines.

Your task is to provide good reasoning guide for students.

You are a chain-of-thought generator.
1. You are given a query and a list of possible options.
2. Your task is to provide a step-by-step reasoning guide to help a
student answer the query.
3. The reasoning guide should clearly show your reasoning process
so that the student can easily apply it to their query.
4. Analyze the query and write a reasoning guide for the student to
follow.
5. If there is a lack of information relevant to the query, you
must identify the missing elements as "VARIABLES" and write the
guide on a case-by-case basis.
6. If the options text says 'Empty,' it means no options are
provided.

Test Input)

Query
{user_input}

Options
{options}

Chain-of-Thought

Figure 5: Prompt used for chain-of-thought generation in the socratic chain-of-thought reasoning.

27

You are a question answering model.

1. Your task is to answer the query based on the teacher's
chain-of-thought decision guide, using additional personal context.
2. Read the chain-of-thought decision guide carefully.
3. If the decision guide contains "VARIABLES" that may affect
the outcome, extract them and determine their values based on the
personal context.
4. Then, follow the decision guide and apply the extracted
variables appropriately to derive the final answer.
5. The final answer must be preceded by '### Answer', and your
response must end immediately after the answer.
6. If the options text says 'Empty,' it means no options are
provided.
7. If the options are not empty, simply output one of the answers
listed in the options without any additional explanation.
8. Never output any other explanation. Just output the answer.
9. If option follows a format like '[A] something', then output
something as the answer instead of A.

Personal Context
{personal_context_json}

Chain-of-Thought
{cot}

Query
{user_input}

Options
{options}

Answer

Figure 6: Prompt used for response generation in the socratic chain-of-thought reasoning.

28

F Additional MediQ Analysis

As shown in Table 3, the Remote-Only Baseline with Socratic Chain-of-Thought Reasoning performs
worse than the standard Remote-Only Baseline on MediQ. To understand the cause of this drop, we
conducted a detailed qualitative analysis of the model’s inputs and outputs. As a result, we found that
R1 (GPT-4o), when generating chain-of-thought reasoning, often included the most likely answer
without considering the user’s personal context. As a result, L1 (Llama-3.2-1B) became strongly
biased toward this uncontextualized answer and also ignored the user’s personal context. To address
this issue, we added explicit rules to the prompt—shown in Figure 7—to reduce this bias and re-ran
the experiment under this setup only. With this adjustment, performance improved from 67.3 to 77.0,
indicating that the bias was partially mitigated.

Your task is to provide good reasoning guide for students.

You are a chain-of-thought generator.
1. You are given a query and a list of possible options.
2. Your task is to provide a step-by-step reasoning guide to help a
student answer the query.
3. The reasoning guide should clearly show your reasoning process
so that the student can easily apply it to their query.
4. Analyze the query and write a reasoning guide for the student to
follow.
5. The student may have less domain knowledge than you, but they
have more context about the situation.
6. If there is a lack of information relevant to the query, you
must identify the missing elements as "VARIABLES" and write the
guide on a case-by-case basis.
7. Since you don’t have full context about the situation, your goal
is not to choose a final answer but to present a set of possible
answers along with the reasoning steps that could lead to each one.
8. If the options text says 'Empty,' it means no options are
provided.

Test Input)

Query
{user_input}

Options
{options}

Chain-of-Thought

Figure 7: Prompt used for chain-of-thought generation in the additional MediQ analysis.

29

	Introduction
	Background and Problem Formulation
	Privacy-Preserving Framework with Socratic Chain-of-Thought Reasoning
	Framework Overview
	Framework Operation

	Homomorphically Encrypted Vector Database
	Motivations and Setup
	Secure Inner Product, Technical Overview
	Database Operations

	Experiments
	Main Results
	Ablations on Socratic Chain-of-Thought Reasoning
	Homomorphically Encrypted Vector Database

	Related Work
	Conclusion and Discussion
	Homomorphic Encryption based Inner Product
	Secure Inner Product, Algorithms and Optimizations
	Private Information Retrieval

	Experimental Setup
	Socratic Chain-of-Thought Reasoning
	Homomorphically Encrypted Vector Database
	Hyperparameter Selection
	Model Selection
	Benchmark Selection
	Metric Selection

	Compute Resources
	Qualitative Analysis
	LoCoMo
	MediQ

	Prompt Templates
	Additional MediQ Analysis

