
ar
X

iv
:2

50
6.

17
31

7v
1

 [
cs

.C
R

]
 1

8
Ju

n
20

25
1

Beyond the Scope: Security Testing of Permission
Management in Team Workspace

Liuhuo Wan, Chuan Yan, Mark Huasong Meng, Kailong Wang, Haoyu Wang, Guangdong Bai, Jin Song Dong

Abstract—Nowadays team workspaces are widely adopted
for multi-user collaboration and digital resource management.
To further broaden real-world applications, mainstream team
workspaces platforms, such as Google Workspace and Microsoft
OneDrive, allow third-party applications (referred to as add-ons)
to be integrated into their workspaces, significantly extending
the functionality of team workspaces. The powerful multi-
user collaboration capabilities and integration of add-ons make
team workspaces a central hub for managing shared resources
and protecting them against unauthorized access. Due to the
collaboration features of team workspaces, add-ons involved in
collaborations may bypass the permission isolation enforced by
the administrator, unlike in single-user permission management.

This paper aims to investigate the permission management
landscape of team workspaces add-ons. To this end, we perform
an in-depth analysis of the enforced access control mechanism
inherent in this ecosystem, considering both multi-user and cross-
app features. We identify three potential security risks that can be
exploited to cause permission escalation. We then systematically
reveal the landscape of permission escalation risks in the current
ecosystem. Specifically, we propose an automated tool, TAI, to
systematically test all possible interactions within this ecosystem.
Our evaluation reveals that permission escalation vulnerabilities
are widespread in this ecosystem, with 41 interactions identified
as problematic. Our findings should raise an alert to both the
team workspaces platforms and third-party developers.

I. INTRODUCTION

Team workspaces offer a comprehensive toolkit to stream-
line business operations. For example, users can manage the
company’s daily tasks through a spreadsheet. Other users
can actively access this spreadsheet, assuming various roles
such as viewer, commenter, or editor. Prominent examples
of team workspaces include Google Workspace [1] and Mi-
crosoft OneDrive [2]. The demand for online and remote
collaborations, particularly exacerbated by the effects of the
pandemic, has propelled the widespread adoption of these team
workspaces. Google Workspace, for example, boasts over three
billion users [3] and is adopted by nine million companies
as their business solution. Team workspaces can be further
enhanced by integrating third-party applications (named add-
ons) to supplement advanced features. These add-ons integrate
with external services such as Confluence, Evernote, GPT,

• L. Wan is with The University of Queensland, Australia.
• C. Yan is with The University of Queensland, Australia.
• M. H. Meng is with The Technical University of Munich, Germany.
• K. Wang is with Huazhong University of Science and Technology, China.
• H. Wang is with Huazhong University of Science and Technology, China.
• G. Bai is with The University of Queensland, Australia and also with
National University of Singapore, Singapore.
• J. S. Dong is with National University of Singapore.

Zoom, Dropbox, Webex, etc. While such integration enhances
the user experience, it also introduces complexities in permis-
sion management when accessing sensitive resources hosted
by team workspaces. The lax management of add-on access
control inevitably introduces new attack surfaces, posing risks
to security-critical collaborations. Despite its significance, this
issue has not been thoroughly studied before.

A add-on accesses resources managed by team workspaces
through host APIs, for tasks such as viewing documentation
or replying to an email. These host APIs are regulated by
different permissions. The add-on employs a two-level permis-
sion management system, comprising OAuth permission scope
checking and user role checking. In detail, during installation,
the add-on requests OAuth tokens with permission scope,
which are used to interact with resources managed by team
workspaces. For example, an add-on might request the OAuth
permission scope to ‘view and edit all Google Documents’
from the user. However, some resources accessed by the add-
on during runtime may not be owned by the user. If the user is
assigned the viewer role and cannot edit the resource, the add-
on installed by that user is similarly prohibited from modifying
the resource.

Shadow of security risks. Team workspaces supports
multi-user collaboration through role-based permission man-
agement, where an owner retains full privileges and assigns
partial privileges to other roles as shown in Figure 1. It is
expected that a user role does not exceed the permission scopes
assigned by the owner. Similarly, add-ons installed by specific
a user role (e.g., viewer), should adhere to the permission
scopes delegated by this user. This raises a critical question:
does permission management remain consistent across dif-
ferent users and add-ons. For example, can an unprivileged
member install an add-on to access resources they are not
entitled to, such as hidden rows or columns in a protected
Spreadsheet, and even modify them? It is important to note
that the installation of add-ons in the private workspace (e.g.,
personal workspace) typically requires no vetting process [4].
In such scenarios, if permission management is not well-
established, users could potentially achieve permission esca-
lation with the assistance of add-ons.

Despite the potential security risks brought about by add-
ons, limited efforts [4]–[6] have been devoted to understanding
the security issues they pose due to the black-box nature of
both team workspaces and add-ons. Furthermore, the com-
plexity of team workspaces’s features, including multi-user
roles, complicates the analysis and testing of these security
risks. Existing efforts [4]–[6] predominantly rely on manual
interactions and inspections. Consequently, there is a need

https://arxiv.org/abs/2506.17317v1

2

for automated tools to test and analyze permission man-
agement considering the integration of add-ons.

Fig. 1: Permission delegation demonstration

To comprehensively evaluate the underlying permission
escalation problem caused by the add-ons, We systematically
test and analyze the add-ons’ capability to utilize host APIs
for achieving permission escalation. Specifically, we develop
a tool named TAI to automatically generate test cases and
evaluate the add-ons’ capability under different permission
scopes. TAI identifies 41 risky host APIs that add-on can
exploit, leading to permission escalation. These APIs affect
prominent services like Spreadsheets, Documents, Drive Files,
and Forms. They allow unauthorized operations on resources,
including viewing hidden data protected by the admin, unau-
thorized modifications of specific data groups, and interfering
with existing members of shared resources.

Contributions. The contributions of this work are summa-
rized as follows:

• An in-depth understanding of the permission system.
We conduct a detailed analysis and reveal the complex
permission control mechanisms within team workspaces:
the two-level permission checking for add-ons. This
enables us to understand the precise mechanisms that
govern data access and permission requests. Based on
this established knowledge, we can identify and formally
define the permission escalation vulnerabilities in the
current system.

• A systematic tool for the permission escalation testing.
To comprehensively detect problematic add-ons’ usage of
host APIs that could lead to permission escalation, we
have devised and implemented an automated tool called
TAI. TAI is built on a pipeline that includes permission
categorization, test case generation, and user-role-based
testing. Using TAI, we can detect discrepancies during the
permission-checking process. This systematic scanning
approach enables us to identify all risky API usages
within the ecosystem.

• The landscape of permission escalation issues. Our
research has uncovered a large amount of problematic
APIs. Through detailed discussions supported by concrete
case studies, we have identified potential attack scenarios
that could arise from problematic API usage. Further-
more, we have proposed countermeasures to mitigate the
permission escalation issues for team workspaces and
end-users.

Ethics and Disclosure. All our experiments are conducted
using test accounts. The workspace is controlled, with the
authors as the only members. The malicious add-ons designed
are only installed in the controlled team workspaces and access

limited resources. We did not distribute these malicious add-
ons into other team workspaces or the public marketplace. All
our attacks would not affect users and resources other than the
authors’ testing accounts. We ethically disclosed our findings
to team workspaces and received acknowledgment.

II. PROBLEM FORMULATION

A. Background and the Permission system

Before the launch of team workspaces, collaboration in
organizations often relied on a combination of tools that,
were not as seamlessly integrated or cloud-based as modern
solutions. Different applications often require manual syncing
and are not always designed for real-time, cloud-based col-
laboration. For example, Dropbox for file storage or Slack for
messaging, operate in separate environments, requiring users
to juggle multiple applications and interfaces. This fragmen-
tation make it challenging to maintain a cohesive workflow,
as data has to be manually transferred, and users have to
manage different accounts and logins. Team workspaces bring
a more integrated, cloud-native approach by combining email,
chat, file storage, document editing, and scheduling tools into
a single, unified platform. This integration allows for real-
time collaboration on documents, seamless communication via
email, and centralized file storage and sharing—all accessible
through a web browser without downloading separate desk-
top applications. As a result, team workspaces significantly
simplify workflows, reduce the reliance on disparate tools and
create a more streamlined, efficient collaboration environment
for many organizations.

Sharing is one of the most powerful features supported by
team workspaces. Users can seamlessly share their resources
and engage in real-time collaborative file editing, eliminating
the need for redundant resource distribution.
Users. There are four types of collaborators supported in
the current ecosystem of team workspaces, owner, editor,
commenter and viewer. The owner has all privileges related
to shared resources, while other roles have varying permission
scopes, as suggested by their names. The owner can assign
different roles to the collaborators.
Add-ons. The users can integrate add-ons into their team
workspaces. Beyond interactions with legitimate users, add-
ons can access resources through user delegation as shown in
Figure 1. With permission scopes granted by users, add-ons
can access and manipulate resources stored within the user’s
workspace. These resources fall into two categories: those for
which this user is the owner and those for which this user is
a collaborator (e.g., viewer or editor).

B. Permission System

Objects. There is a list of resources supported by the team
workspaces, such as documents, spreadsheets, presentations,
and forms. Each resource exhibits a hierarchical structure com-
posed of finer-grained components. For example, a spreadsheet
consists of rows, each of which contains multiple cells. Every
cell may carry its own set of attributes, such as content value,
background color, and formatting. We refer to all of these
components, at any level of granularity, as objects.

3

Fig. 2: Access control mechanisms in the current ecosystem

Subjects. In total, team workspaces defines three types of
subjects: (1) the owner of the object, (2) collaborators on the
object (may be viewer, commenter or editor), and (3) add-ons
that can access predefined objects.
Permissions. We represent each permission in team
workspaces using a tuple (subject, operation, object), which
indicates who (the subject) can perform what action (the op-
eration) on which resource (the object). The team workspaces
support five types of operation: create, view, comment, modify,
and delete. These permissions may be applied at varying levels
of granularity, ranging from an entire Document to nested
elements such as a Footnote within that Document. For
example, the permissions (add-on, delete,Document) and
(add-on, delete,Footnote) indicate the capability of an add-
on to delete the entire Document or only the Footnote,
respectively.

Team workspaces enforce a two-level access control model
for add-ons, as illustrated in Figure 2. When the add-on
utilizes host APIs like editText() to access the installer’s
resources, team workspaces verify the authorized OAuth per-
mission scopes granted by the installer and the installer’s
role (collaborator’s permissions) associated with the resource.

a) Level 1: OAuth permission scope checking: As
illustrated by the green lines in Figure 2, when the add-on
tries to execute the API editText(), team workspaces first
check the already authorized OAuth permission scopes by
its installer. If the add-on has been granted file:write
permission, it is allowed to write to the file and successfully
passes the first-level permission checking. In contrast, if the
add-on is only authorized with file:read permission, it
will fail to execute the editText() API due to insufficient
permissions.

b) Level 2: User role permission checking: After suc-
cessfully completing the first-level permission check, team
workspaces then evaluate the installer’s role on the resource.
As shown by the blue lines in Figure 2, for the editText()
API, even if the installer has granted the add-on with
file:write permission, the second-level permission check
will fail if the installer’s role for the resource is set to viewer
or commenter without editing privileges. As a result, team
workspaces returns an exception.

Based on this two-level permission checking, we can con-
clude that the add-on is constrained by both granted permission
scope and installers’ roles: Paddon ⊆ Pauthen ⊆ Puser. For
example, when a user assumes the role of a viewer, both
the actual user and the installed add-on are restricted from
commenting on or editing this resource.

C. Permission Escalation Definitions
Add-ons must adhere to the permission system enforced

by team workspaces. If team workspaces fail to enforce
these permission checks, add-ons would achieve permission
escalation, as indicated by the red line or cross mark in
Figure 2. Our work focuses on permission escalation issues
that arise from the add-on’s use of host APIs. We formalize
our attack model as follows.

Definition II.1 (Permission control consistency). In our def-
inition, we let O represent the set of object fields (e.g.,
spreadsheet, document); A denotes a set of operations that
can be applied to the object; S = {O,E,C, V } represents the
five user roles, where O is short for Owner, E is short for
Editor, C for Commenter and V for V iewer.
User permission representation. The user’s permission set
can be represented as a set of tuples Puser = {pu | pu :
(su, au, ou), su ∈ S, au ∈ A, ou ∈ O}. Each tuple pu refers
to when the user assumes the subject role su, this user can
operate action au on object ou.
Add-on permission representation. The add-on’s permis-
sions can be represented as a set of API permission scopes:
Paddon = {pa|pa : (a, o), a ∈ A, o ∈ O}. The permission
to execute each API pa is (action, object). For example, to
successfully execute the API Document.editText(), the
add-on must acquire permission to edit (action) the text (ob-
ject).
Permission consistency representation. The two-level per-
mission checking model can be represented as: P(U)

addon ⊆
(Puser ∧Auth), where U ⊆ S represents the set of role the user
assumes on resources. For each add-on installed by user U , the
add-on permission scope is confined by user role U and cannot
exceed the permission scope authorized by U , represented as
Auth. In theory, we have Paddon ⊆ Pauthen ⊆ Puser ⊆ Powner.

Definition II.2 (Permission escalation). We delineate three
types of permission escalation scenarios. The first two scenar-
ios stem from two-level permission checking of add-ons. The
final scenario arises from resource-sharing permission checks.
These three attacks are demonstrated as red crosses or red
lines, as shown in Figure 2. Each of these scenarios can lead
to permission escalation [7], [8].
OAuth permission escalation (E1): (Paddon ̸⊆ Pauthen),
when the add-on installed on the user team workspaces can
exceed the authorized permission scopes, this violates the first
level permission checking and brings in permission escalation.
For example, if the add-on is authorized with the file:read
permission but is still able to use editText() to write to
the file (green arrows in Figure 2). This results in a permission
escalation.
User role permission escalation (E2): (Paddon ⊆ Pauthen) ∧
(Paddon ̸⊆ Puser), when an add-on installed on the user’s team

4

TABLE I: The implementation of team workspaces and their
potential permission escalation

Platform Two-level permission system E1 E2 E3

Google Workspace ✓
Microsoft OneDrive ✓

A check mark (✓) indicates that the platform adopts the two-level permission system
identified in our study. A red circle () signifies potential vulnerability to permission
escalation. A black circle () signifies no vulnerability to permission escalation.

workspaces can perform actions that the user is not permitted
to take, it clearly violates second-level permission checks. For
example, we find that:

{
p = (view , o)

∣∣∣ p ∈ P(U)
addon ∧ p /∈ Pviewer

}
The P

(U)
addon refer to add-on installed by user with role U. The

add-on can read some specific content of the resource whereas
its installer cannot (blue arrows in Figure 2).
Sharing permission escalation (E3): Besides permission
checking when a user is assigned a role, we also consider
permission sharing. As shown in Figure 2, sharing permissions
are managed by the administrator, who can grant resource
access to collaborators. However, if a user’s assigned role is
stealthily modified by add-ons, altering the sharing topology
configuration C (purple lines in Figure 2) without adminis-
trator action, this also constitutes a permission escalation. We
define this attack scenario as:

Addon.modify(C) → C
′
, where C ̸= C

′

Overview across representative platforms. We present an
overview of the two most popular and representative team
workspaces, Google Workspace and OneDrive. As shown in
Table I, all of these platforms adopt a two-level permission
check system. They enable user-sharing features with four
types of user roles: owner, viewer, commenter, and editor. Both
platforms are vulnerable to the first two permission escalation
issues. However, OneDrive is robust against E3 because it
prohibits the add-ons capability from modifying user roles.

III. OVERVIEW AND CHALLENGES

Detecting the predefined three scenarios requires a thorough
understanding of the permission scope for each role in the
current team workspaces. However, the existing documentation
on permission scope is incomplete. While previous work [4]
provides partial insights into permission scopes from the
user side, it does not address the scope from the add-on
perspective. In this study, we systematically investigate the
relevant permission scopes in different perspectives (real user
vs. delegated add-on).

a) Real-users: To understand the proper permission
scopes from user side, we establish five test accounts, each
representing one of the five user roles in team workspaces.
Subsequently, we employ a manual approach to comprehen-
sively explore real-user roles and their associated permission
scopes by assuming different roles. The exploration of the user
permission scope was a one-time effort and was conducted
manually. We investigate the capabilities of each user role in

performing the fundamental permission groups, which will be
detailed in Section IV-A.

b) Add-ons: Unlike assessing the permission scope for
real users, which can be evaluated through manual review by
assuming different user roles, the permission checking of the
add-on involve the invocation of a large number of host APIs.
The security implications of these APIs cannot be effectively
analyzed without the assistance of an automated tool. So we
have designed an automation tool called TAI that is capable
of analyzing APIs, generating test cases, and automatically in-
voking APIs based on the official documentation [9] provided
by team workspaces.

Our framework, called TAI, a Team workspace Add-on API
testing tool, aims to test each API based on the official doc-
umentation provided by team workspaces. It first categorizes
each API to the corresponding permission group, generates
the correct test cases for each API, then execute the API
under different user roles and record the execution status.
Finally, we check whether the three predefined permission
escalation scenarios happened. For example, if a document
editing API is tested within a viewer workspace and still
executes successfully, it indicates permission escalation E2.
We identified three challenges when implemented the TAI due
to features specific to team workspaces.

• Challenge #1: API hierarchy. There is a hierarchical
structure among host APIs as shown in Figure 4, different
from other web-based applications that use a flat HTTP
request API for resource access [10], [11]. Existing
work [4], [10]–[12] on OAuth-based web applications like
Slack and GitHub cannot handle this API hierarchy. In
particular, host APIs have interdependent relationships,
where certain APIs must be invoked before others. For ex-
ample, to execute an API that edits document content, the
API call chain that returns the current active document,
DocumentApp.getActiveDoc(), must be invoked
first. Therefore, the primary challenge lies in precisely
capturing the hierarchical structure of host APIs.

• Challenge #2: Parameter generation. Certain
APIs require context-dependent parameters for
successful execution. For instance, the API
DriveApp.getFolderById(ID) needs a valid
folder ID. To properly invoke this API, our TAI must be
able to supply a valid folder ID as input.

• Challenge #3: Efficiency. Team workspaces encompass
a huge number of APIs, and testing every single one
is neither efficient nor imperative for our objectives.
Our primary goal is to identify permission escalation,
necessitating the timely filtration of unnecessary
APIs. For example, if a viewer lacks the capability
to execute the Document.addFooter() API,
subsequently rendering all methods reliant on
the addFooter() meaningless for testing (e.g.,
Document.addFooter().setText(‘footer’)),
these cases should be excluded. Consequently, TAI is
specifically designed to address this challenge, ensuring
the timely filtering of unnecessary test cases.

5

Permission Categorization

API
Documentation

Crawling

API
Dependency
Relationship

Parameter
Generation

Test Case
Sequence

Testing

OAuth-level
Testing

User-role-level
Testing

Permission Escalation
Scenarios

Test Case Generation

Risky APIs

API Crawling

Categorization

Fig. 3: Workflow of TAI

IV. DESIGN OF TAI

As shown in Figure 3, TAI consists of three major compo-
nents: permission extraction (Section IV-A), test case gener-
ation (Section IV-B) and testing IV-C. Finally, we detail the
risky APIs in Section IV-D.

A. API permission extraction

We crawl all the API documentation including the API
name, its parent class, description, parameters (parameter
name, type, description, etc.), tutorial code snippets (if avail-
able), and the return type as shown in Figure 5, from the
official developer website of team workspaces 1. We use
Selenium [13], the most widely used web crawling framework
to automate this crawling process. As shown in Figure 4,
team workspaces provides a standard hierarchy for objects at
varying levels of granularity. For example, the objects Body
and Header are fine-grained components of the Document
object, while Text is a fine-grained component of the Body
object. We adopt this hierarchy to derive the permission tuple
for each API. The total number of objects supported by each
application is shown in Table II.

We leverage the API’s name, description, and the pre-
extracted hierarchy to infer the intended semantic per-
mission of each API. We aim to categorize the ex-
tracted permission groups into one of the following
types: (create, object), (view, object), (comment, object),
(modify, object), (delete, object) for later testing purpose.
The object refers to the parent class of the API. For
example, Document.getBody() would be categorized
as (view,Document). In contrast, Body.editAsText()
would be categorized as (modify,Body). We provide the GPT
with a series of reasoning-based tutorials to enhance its chain-
of-thought capabilities. Notably, team workspaces may employ
diverse verbs to convey the same operation (e.g., “get a file”
and “read a file”, both signifying the action of viewing a file).
To address this, we adopt the powerful large language model -
GPT capable of capturing the semantic meaning from diverse
language descriptions. GPT is instructed to assign the correct
label to each API with such format add-on, operation, object.
We use the gpt-4o-mini model [14] for this classification task.
The example of the prompt we use is shown below.

1Google developer reference: https://developers.google.com/apps-script/
reference

TABLE II: Summary of object counts

Application Calendar Document Drive Form Gmail Spreadsheet Slide Total

Number of
Objects

7 36 6 34 6 58 47 194

TABLE III: Example of the returned class type of different
APIs

Example 1 Example 2
API Document.getFootnotes() Document.getFooter()
Returned type Footnote[] FooterSection
TAI strategy Document.getFootnotes()[0] Document.getFooter()

You are an engineer who would like to utilize the following API.
Task Description
I will provide you with the API name, its description and the context
of object hierarchy.
Your task is to categorize the API to one of the operation: (create,
view, comment, modify or delete).
Output Format
[Output Format]

The OAuth permissions required for each API execution are
documented in the team workspaces documentation. Currently,
team workspaces provides only two types of authorization:
read-only access and full access. Therefore, there is no need
to match the extracted API permissions with OAuth scopes.
However, the specific permissions of a subject collaborator,
represented as a tuple (collaborator, operation, object), are
unclear. To address this, two authors independently reviewed
the extracted permissions. They used the roles of viewer,
commentor, and editor to verify whether the extracted per-
missions were actually granted to the collaborators. In total,
there are 194 objects and 5× 194 permissions to be checked.
The verification process took approximately eight hours to
complete.

B. Test case generation

1) API dependency graph construction: We reserve the
dependency between APIs (i.e., Challenge #1) and con-
struct the dependency relationship based on three components:
classes, all methods (APIs) of each class, and the return
type of each method (can be another class or void). To be
detailed, we connect the class with its methods (bold arrow
in Figure 4) and method with its return type (dash line
in Figure 4) to construct this dependency relationship. For
example, in Figure 4, DocumentApp has multiple methods:
create(), getActiveDoc(), openById(), etc. These
four methods return with the same type of class Document.
Further Document has multiple methods: getBody() that
return the body of Document and insertText() that
helps to insert text into the Document.

2) Parameter dependency: Certain APIs require valid input
parameters that are dependent on the outputs or responses of
other APIs (i.e., Challenge #2). For example, in Figure 5,
the execution of doc.setCursor(position) (line 4 in
the code snippet) requires a valid value of position. We
refer to such parameters as context-sensitive. We categorize
the API parameters into three types: context-sensitive param-
eters with tutorial snippets provided by team workspaces,

https://developers.google.com/apps-script/reference
https://developers.google.com/apps-script/reference

6

Fig. 4: An example of dependency tree of the APIs

Algorithm 1 Testing for API calls
Input G: Knowledge graph
Output C: candidates of testing APIs

1: T ← ∅, V isited← ∅
2: T ← [CalendarApp, DocumentApp, DriveApp, FormApp,

GmailApp, SlidesApp, SpreadsheetApp]
3: function GENERATE_TEST_CASES()
4: while T ̸= ∅ do
5: node = T.pop()
6: for all method api of node in G do
7: Classtype = APIreturnType

8: if Classtype is not visited then ▷ Pruning #1
9: T.add(Classtype)

10: C.add(dep : node, api)
11: V isited← V isited ∪ Classtype

12: function TESTING(C)
13: for each candidate c in C do
14: response = Execute c
15: if response ∈ errors then ▷ Pruning #2
16: filtering all APIs depend on the execution of c
17: if response /∈ errors then
18: record the response

Fig. 5: Tutorial code snippets provided by team workspaces

context-sensitive parameters without tutorial snippets, and
non-context-sensitive parameters.
Tutorial available: We observe that team workspaces provide
detailed example code snippets for APIs requiring context
related inputs, as shown in Figure 5. These code snippets are

well-structured, context-sensitive, and generally do not require
further modification. Consequently, we directly leverage these
tutorial code snippets to capture the context parameter depen-
dencies associated with such APIs. The only modification we
apply to the tutorial code snippets is as follows: if the tutorial
code snippets require string inputs to identify specific
resources, we replace them with our customized string values,
which will be detailed shortly.
Tutorial unavailable:

• Unique class: If team workspaces do not provide
a code snippet for context-sensitive parameters, we
search the dependency relationship (Figure 4) to ob-
tain a valid parameter. Team workspaces specify the
type of each required parameter in the official docu-
mentation, as shown in Figure 5. For each parameter
with a unique class type, as illustrated in Figure 4,
we traverse the connected dependency relationship to
find the shortest path that leads to the required class.
For example, DocumentApp.getActiveDoc().
getPosition() returns a valid input for the
Position parameter.
If multiple paths of the same length exist, we randomly
select one. If the retrieved path returns an array of the
required class, we fetch the first element from the array,
as shown in Table III. Since our purpose is to test
permission escalation rather than functionality, its actual
value does not make a significant difference as long as
the input is valid.

• String constant: Specific APIs like DocumentApp.
openByName(“name”) require a valid string constant
for the name parameter. Unique class types can be
precisely mapped through graph traversal whereas basic
strings cannot. To address such cases, we maintain an at-
tribute table of the accessed resources. This table records
all the runtime values of string parameters (e.g., id, url,
name).

Non context sensitive: For remaining parameters that do not
fall into the previous categories, such as Integer, Boolean
or context-irrelevant String (line 3 in Figure 5), we simply
enumerate several possible values. For Integer, we try
values like 0, 1, and 10. For cases where multiple Integer
inputs are required and have dependencies between them, we

7

TABLE IV: Example of the returned class type of different
APIs

Data Type Enumeration
Integer 0, 1 , 5, 10
Boolean True, False
Integer pair GPT-generated response

query the LLM model (gpt-4o-mini) to fetch valid inputs.
For example, in the API copyFormatToRange(gridId,
column, columnEnd, row, rowEnd), all four param-
eters are integers. According to the documentation of team
workspaces, column refers to “the first column of the tar-
get range”, and columnEnd refers to “the end column of
the target range”. There is an implicit dependency where
columnEnd should be larger than column. We leverage the
LLM model, which is capable of handling such dependencies.

3) Test case sequence: The code listing illustrated
in Figure 5 demonstrates that the execution of the
API doc.setCursor(position) (line 4) is contingent
upon the successful execution of the call chain doc =
DocumentApp.getActveDocument() (line 1), which is
Challenge #1. In order to generate the correct sequence of
test cases, we employ a breadth-first search (BFS) strategy
combined with a pruning mechanism. As shown in Figure 4,
test case generation begins at the root class DocumentApp and
sequentially explores each method using BFS traversal. During
traversal, when we encounter a previously visited class (i.e.,
Challenge #3), we apply a pruning mechanism (referred to as
Pruning #1). For instance, the API insertText() in Fig-
ure 4 leads to a class Document that has already been visited,
we promptly prune this branch and discontinue generating test
cases along this path. Algorithm 1 shows the details of the BFS
traversal from lines 3 - 11, and we apply the Pruning #1 in
line 8.

Due to the implicit dependencies of resource operations,
such as the prerequisite creation of a file before modification,
and the necessity to test deletion as the final operation in
a sequence. So, our test case generation would start with
APIs within the create permission scope, followed by view,
comment, and modify operations, and conclude with the delete
permission scope. Similarly, for sharing permission, we adhere
to such design: initiating the addition of collaborators first,
followed by viewing, modifying, removing collaborators, or
transferring ownership.

C. Risky API testing

Due to the requirements of team workspaces, the test cases
can only be tested within the add-on configuration portal, as
shown in Figure 6.

1) Development of add-ons: Due to the intimate nature of
add-ons, we designed and built a testing add-on that adheres
to team workspace practices. We then distributed this add-on
across workspaces with various user roles for testing purposes.
It is worth noting that the design and development of the
add-on is a one-time effort, taking approximately one hour
to complete [15]. The add-on configuration portal is shown in
Figure 6.

Fig. 6: The API testing phase

2) Test case execution: At the start of each testing cycle,
we fetch the candidate test cases (to be tested) and update
them into the project portal before execution. We use the
Python library pyautogui [16] to simulate various hotkeys and
mimic developer behavior. This allows us to paste the testing
candidate into the add-on configuration page (e.g., Code.gs
in our scenario) using the Ctrl + V command. Pyautogui also
simulates the save action (Ctrl + S) to save the changes to the
add-on project. After updating the test cases, we automated the
click actions the Run buttons using pyautogui and recorded the
execution log (bottom part of Figure 6) of the test case as an
indicator of its execution status.

OAuth-level testing. Based on the API permission catego-
rization results, we utilize a progressive strategy when testing
OAuth-level permission escalation (E1). We begin by granting
read-only permissions to the add-ons and then test whether
they can successfully execute APIs that belong to the edit or
delete groups. Next, we extend the permissions to include read
and edit scopes to see if the add-ons can execute APIs that
belong to the delete group. All testing was conducted using
an owner account.

User-role-level testing. We created five user profiles for
testing. For each new round of testing, we utilized the same
resource template to evaluate the execution of test cases.
Each test case was tested under three different roles: viewer,
commenter, and editor. Our goal is to test whether add-ons
can bypass user-role-level permission checks. So the installer
pre-authorizes all required permission scopes, ensuring that
add-ons pass the OAuth-level check.

We monitor the execution status of each test case. If one
API fails during testing (Figure 4), we proceed to prune
all subsequent API calls (Challenge #3) that depend on the
successful execution of this API, referred to as Pruning #2.
If the API passes the testing, we document the successful
execution of the API and then continue evaluating subsequent
API calls that rely on this one. The details of Pruning #2 are
demonstrated in lines 12–18 of Algorithm 1.

3) API execution result monitor: Although the response
from a successfully invoked API may vary, the response

8

TABLE V: TAI performance

Host App # APIs # Tested APIs Potential
risky APIs

Risky APIs

Calendar 218 132 0 0
Document 846 47 8 6
Drive 152 142 25 14
Gmail 167 101 0 0
Forms 418 84 2 2
Spreadsheets 1784 624 15 15
Slides 938 46 4 4

from an invalid API invocation is more consistent. After
conducting an in-depth review of the team workspace devel-
oper documentation [9], we found that when the API fails
to execute, the add-on will return a specific error message,
such as “Exception: You do not have permission to access
the requested document” and stop execution immediately.
Whenever the execution returns error messages, the execution
log outputs the type Error, as indicated in Figure 6. We mark
type Error as the indicator of a failed execution. On the other
hand, API executions that do not return any error messages are
deemed successfully executed and pass the testing process.

D. Risky API identification

TAI evaluates whether the attack scenarios outlined in
Section II-C are plausible by examining the runtime results
of API invocations under different user roles. For example, if
an API invocation that exceeds the user’s permissions com-
pletes successfully without returning any errors, it suggests a
potential security violation. However, verifying whether APIs
designed to retrieve information return valid responses (as
opposed to NULL or encrypted text) necessitates additional
manual verification. We categorize the potentially risky APIs
based on the criteria established in Section II-C.
Detection of E1: If the add-on is able to execute an API that
falls outside the permission scope authorized by the user, it
indicates a potential security issue or permission bypass: pa ∈
Paddon ∧ pa ̸∈ Pauthen, this will be detected as attack scenario
E1.
Detection of E2: Similarly, if the add-on is able to execute
an API that operates on resources but the user cannot: {pa :
(a, o) | pu : (su, a, o), pa ∈ Paddon ∧pu ̸∈ Puser }, this will
be detected as E2.
Detection of E3: Finally, if add-on executes an API that
modifies the current sharing configuration C of the resource
without notifying the administrator, it will be classified as E3.

V. EVALUATION

Scope. Following the practice of previous study [4], [5], [17],
we implement TAI and evaluate its performance on the most
representative team workspaces, Google Workspace, which
occupies around 73.04% market share [4].

A. Experiment setting

We collected all official documentation, totaling 4,523 APIs
across seven host applications, with an average of about 646
APIs per host application. To initiate automated API testing,
we created multiple testing accounts representing different user

roles for collaboration. Our experiments were conducted on a
series of computers assigned to different user roles to avoid
any potential fingerprinting.

B. TAI performance

The host application email has only one user role (owner)
and does not support the collaboration feature, so we focus our
testing on OAuth-level permission violations for email. For the
remaining six host applications, we test all three permission
escalations. The specific risky APIs for each host application
are listed in Table V.

a) Effectiveness of API categorization: We apply
manual efforts to measure the effectiveness of TAI.
Due to the uneven distribution of permission groups,
random sampling would result in APIs belonging to
the view or modify categories dominating the selection,
which would not accurately reflect the performance of
TAI. Following the methodology outlined in previous
studies [10], [18], we randomly select around 200 APIs (out
of 4,523, 20 APIs per permission group) and check the
correctness of permission categorization. Our manual
inspection identified only two problematic cases, achieving
an accuracy of 99%. One such case involves the API
SlideApp.newAffineTransformBuilder() which
is categorized into modify slide permission group. This
API returns a new AffineTransformBuilder that
assists developers in constructing an AffineTransform.
However, this builder does not affect the corresponding
Slides unless explicitly applied to a specific slide like
AffineTransform.insertToSlide(page). The
method waitForAllDataExecutionsCompletion(
timeoutInSeconds) also encounters a similar issue.

b) Effectiveness of test case generation: We evaluate
the performance of TAI during the test case generation phase,
with details provided in Table VI. Our performance evaluation
focuses only on APIs that are not filtered out. For APIs that
are filtered out, generating test cases would be meaningless,
as they will not be tested.

The majority of APIs are filtered through Pruning #1, #2.
Out of the 1,176 APIs being tested, 482 APIs require no
parameter input, while the remaining require the parameters.
Among the 622 APIs that require a valid parameter, 481 have
a tutorial code snippet available, and we directly apply these
tutorial codes for our test case generation. For these 70 APIs
requiring a valid string constant, we query our attribute
table to fetch the corresponding string value. Around 38 APIs
require other parameters like Integer inputs, or Boolean
inputs.

Following the same methodology, we extracted 50 APIs
from each category, for the categories unique class type
and others that contain fewer than 50 APIs, we sampled all
of them. This results in a total of 221 APIs. We manually
evaluated the validity of TAI-generated test cases by executing
them and observing whether any runtime errors occurred.
The precision of TAI-generated test cases across different
groups is summarized in Table VI. Our evaluation shows
that only a small proportion of the TAI-generated test cases

9

TABLE VI: Test case generation

Category # APIs # Invalid test case (out
of 50 sampled)

Precision

No Parameter Required
No parameter 518 0 100%

Tutorial Available
Tutorial 517 0 100%

Tutorial Unavailable
Path dependency 33 4 87.9%
String constant 70 2 96.0%

Non context sensitive
Others 38 0 100%

are invalid. For around 91% APIs (require no parameters or
with tutorial), TAI achieves excellent performance - 100%
accuracy. We investigate reasons for invalid test cases for the
remaining three categories:
Unique class type. All four invalid test
cases in Table VI are introduced by the spe-
cial Enum parameter. For example, one API
Presentation.appendSlide(predefinedLayout)
requires the parameter of class type predefinedLayout.
After reviewing the documentation of predefinedLayout,
we find this is a special Enum class defined by team
workspaces. To use it, the developer must be able to
provide a predefined type like predefinedLayout =
SlidesApp.PredefinedLayout.BLANK. However, the
current design of TAI cannot generate valid input for the
Enum class, as these types are not included in the dependency
relationship.
String constant. The two problematic cases in
this category are caused by the implicit meaning
of the string parameter. For example, the API
Spreadsheet.getAs(contentType) requires a
string parameter contentType, which is not included
in our pre-built attribute table. Upon investigating the
documentation, we found that contentType must follow a
specific format, as shown below:

contentType: the MIME type to convert to. For most blobs,
application/pdf is the only valid option. For images in BMP,
GIF, JPEG, or PNG format, any of image/bmp, image/gif,
image/jpeg, or image/png are also valid. For a Google Docs
document, text/markdown is also valid.

In this case, TAI fails to provide a valid input for
contentType.

c) Effectiveness of API testing: Although team
workspaces offer a vast array of APIs, we do not need to
invoke all of them for our testing. We avoid testing scenarios
that are inherently safe, such as an editor executing APIs
requiring edit permissions under full authorization. Despite
the large number of APIs, pruning strategies (Pruning #1, #2)
effectively filter out 74% of them as shown in Table V. Out of
the 4,523 APIs, only 1,176 APIs would go through the risky
API testing phase. The pruning strategies significantly improve
the testing efficiency of TAI by eliminating unnecessary paths.
The testing phase takes about four hours in total, with each
API averaging 12 seconds to complete.

C. Large-scale scanning and findings

In Table V, the last two columns present the number of
potentially problematic APIs identified by TAI. More specif-
ically, TAI reported 54 APIs that may align with our attack
scenarios. Since some APIs return null values or encrypted text
that do not disclose confidential information, we conducted
a manual inspection and confirmed that 41 of them pose
security risks and match our criterias. For example, while the
API File.getSharingPermission() successfully exe-
cutes, it returns a NULL value and does not expose confidential
data that the user cannot access. These false positives were
filtered out through manual review.

Among the identified risky APIs, 17 pose E2 risks, 21
pose E3 risks, and none are classified as E1 risks. The
output of TAI shows that team workspaces are robust against
OAuth-level attack scenarios (E1). Team workspaces enforce
strict OAuth-level permission check, ensuring installed add-
ons do not exceed their authorized scopes. This robustness
is expected. However, numerous permission escalations (E2)
arise due to inconsistent checking of the resource user role
for both users and add-ons. Furthermore, add-on’s ability to
modify C without the admin’s awareness (E3) puts all invited
collaborators at risk. We discuss the identified risky APIs that
TAI detects and demonstrate the attacks that can be launched
through several case studies.

a) Hidden value leakage: Team workspaces provide
rich functionality for spreadsheets, including the ability to
hide certain sheets, rows or columns. Only collaborators with
unhide permissions can unhide and view these hidden values.
However, team workspaces impose no restrictions to add-
on APIs, allowing viewers without unhide permissions to
recover hidden values via the exposed APIs. In our experiment,
we concealed a salary column and prevented viewers from
copying, downloading, or printing the spreadsheet (settings
that the owner can adjust as needed). Under this setting,
viewers can only view the resource content online and cannot
view or recover the hidden salary column. We first tested
the viewer’s ability to execute row.unhide() API and it
returned an error. However, by utilizing row.getCell()
API, add-on installed on the viewer account can successfully
fetch the hidden values even if the viewer user is forbidden
from viewing the hidden values.

Even worse, team workspaces would explicitly prompt a
warning notification when the owner hides a specific sheet.

Use the View menu to unhide sheets. All editors of this spreadsheet
can view and unhide hidden sheets.

In this case, viewers are prohibited from accessing the
hidden sheets; however, by utilizing the fine-grained API
Range.getCell(), an attacker without proper permis-
sions (editor in this case) can recover the entire hidden sheet
as shown in Figure 7.

b) Protected range edition: Additionally, we observed
that spreadsheets allow the owner to set specific ranges to be
protected and only editable by a specific group of people (re-
ferred to as privileged editors), rather than all editors (referred
to as common editors). However, common editors are still

10

Fig. 7: Attack: hidden sheet recovery

permitted to edit the unprotected ranges. Once the protected
range is grouped, common editors are forbidden from editing
or ungrouping the whole group. However, our experiment
shows that in this scenario, even though common editors are
unable to either ungroup the range or edit each cell in the
group, APIs exposed to add-on can still pass the execution
and edit the cell value in this group. Even though the add-on
fail to execute the range.ungroup() API.

c) Modification of user subject: The 21 APIs allow
add-on to modify collaborators’ subject roles without aware-
ness of administrator. We observe that team workspaces
have already banned the use of the dangerous API [19]
transferOwnership(). Currently, transferring ownership
must be done manually by the actual user rather than initiated
by an add-on. To prevent misuse, team workspaces should
also implement stricter management of the APIs that could be
exploited by add-ons.

VI. DISCUSSION

A. Sharing concerns

Team workspaces provide additional mechanisms for man-
aging version history of non-native resources such as PDFs,
images, and videos. It is important to note that native resources
like Google Docs, Sheets, and Slides employ a different type of
version history management. For non-native resources, users
have the option to replace an existing file. For instance, when
a user uploads a PDF file to their workspace and a file with
the same name (referred to as the old version) already exists,
the user can choose to replace the old version with the new
one.

While the replacement option offers convenience, it poses a
potential vulnerability: the sharing attributes of the old version
are also copied to the new version. This introduces a security
risk, especially in relation to malicious add-on. These add-
ons can exploit the replace option by strategically creating
a placeholder file with crafted names, such as salary-report-
2024.pdf, and storing it in the victim’s workspace. The add-ons
can then add the attacker as a collaborator for this resource.
Later, when the user uploads the actual salary file and chooses
to replace the placeholder file, the attacker gains automatic
access to the salary report, even if the add-on is no longer
installed on the user’s workspace. This scenario highlights
significant security implications that must be addressed to
prevent unauthorized access facilitated by the replace option.
This attack is practical and has been demonstrated in previous
studies [20] in other domains.

B. Countermeasures

In this section, we suggest countermeasures to help team
workspaces strengthen their security against vulnerabilities.
Fine-grained permission management for add-on: Cur-
rently, team workspaces offer more stringent and fine-grained
permission management for actual users. For example, spread-
sheets allow for fine-grained permissions down to the row
level. However, the inconsistency between strict user-level
access control and the more coarse-grained add-on-level access
control introduces numerous security vulnerabilities, as we
have previously discussed. Team workspaces must enforce
consistent and strict access control measures for add-ons to
protect sensitive resources.
Strict management of sharing privilege: Team workspaces
maintain strict control over resource content, but their man-
agement of resource-sharing permissions is very loose and
flat. We recommend that team workspaces distribute only
resource content-related permissions to collaborators, rather
than resource management permissions. Besides, the sharing
configuration should not be abused by add-ons. Only allowing
manual operation from the user side like the discussed API
transferOwnership() would make the resource more
secure.

C. Limitations

With all the findings discovered in our paper, it is still
preliminary due to the following reasons. First, our work pri-
marily focuses on the problem of three permission escalations.
Thus, TAI is unable to detect unseen security vulnerabilities
that do not meet our criteria. Second, for the rich context
parameter of API renovation, we heavily rely on tutorial code
snippets provided by team workspaces. If not, we randomly
choose a valid parameter value based on the dependency
relationship. In the future, we can employ LLM with the
dependency relationship, feed API description as prompt to
generate context-sensitive parameters that can work well even
without tutorials.

VII. RELATED WORK

A. Team workspace permission analysis.
Previous studies mainly focus on the security and privacy

of team workspaces based on manual analysis. Wan et al.
investigate the interaction between different user roles and
resources by manual analysis. Their analysis reveals many
security violations that lead to permission escalation. Our work
builds on their findings and is the first to systematically scan
for problematic APIs that may lead to permission escalation
in team workspaces.

Besides workspace, message systems like Slack and Mi-
crosoft Team also enable third-party applications to join as
bots or delegators to invited channels and access the message
history in team chat. Several studies [10], [11], [21]–[23]
reveal that third-party apps in the chat system can hijack other
apps, steal messages from channels that they are not invited, or
perform malicious actions like merging GitHub pull requests
without user’s awareness. These security issues can lead to

11

severe impacts considering the sensitive message history and
resources in the team chat system.

B. Third-party app security.
The security of third-party applications has been widely

studied across different domains like the Browser, Android,
Internet of things (IoT) and Message systems.

a) Browser side: AuthScan [24] identifies design flaws
in the single-sign-on (SSO) web authentication protocol that
result in seven security vulnerabilities and impacted millions
of users. SSOScan [25] extends this work by developing an
automated vulnerability checker for applications using single-
sign-on, revealing that many top-ranked websites are suscep-
tible to SSO vulnerabilities. Some studies [26], [27] have
demonstrated that browser extensions can be malicious and
have created automated tools to detect malicious extensions.
Other studies [28], [29] have developed checkers for privacy
policy [30] declarations, identifying numerous violations.

b) Android side: Wang et al. [31] conduct the first sys-
tematic study on mobile cross-origin risks and demonstrated
that the absence of origin-based protection allows numerous
attacks. Yang et al. [32] and Zhang et al. [33] attempt to
identify cross-mini-app security vulnerabilities in emerging
mini-apps installed on WeChat or Snapchat.

c) IoT side: Recently, researchers [34]–[36] have ex-
panded the scope of this topic to encompass IoT platforms
such as IFTTT and voice assistance devices. Bastys et al. [37]
conduct the first analysis of IFTTT flows and discover numer-
ous security vulnerabilities leading to confidential data leakage
of third party applications. Mahadewa et al. [38] examine
cross-app flows in IFTTT and identify many violations of
privacy regulations. Additionally, SkillScanner [39] scrutinizes
both the front-end and back-end code of Amazon Alexa skills,
uncovering numerous privacy violations such as excessive data
requests.

d) Message system side: Message systems like Slack
and Microsoft Team also enable third-party applications to
join as bots or delegators to invited channels and access the
message history in team chat. Several studies [10], [11], [21]
reveal that third-party apps in the chat system can hijack other
apps, steal messages from channels that they are not invited, or
perform malicious actions like merging GitHub pull requests
without user’s awareness. These security issues can lead to
severe impacts considering the sensitive message history in
the team chat system.

In contrast to previous works, the distinctive nature of
team workspaces introduces new security vulnerabilities. For
example, team workspaces enable multi-user collaboration
under various permission levels on the same resource, which
introduces fresh access control risks such as permission esca-
lation.

C. API analysis and testing.
Unlike the commonly used REST APIs [10] for web

applications, which are flat, APIs in team workspaces are
more complex, featuring a well-structured design with inter-
dependencies. Static analysis of such structured APIs [40]

presents a challenge. Recent work such as IAceFinder [8]
focuses on detecting access control inconsistencies between
native (aka. C++) and Java contexts when accessing users’
confidential data stored on mobile devices. IAceFinder and
TAI share similar goals and face similar challenges. They
heavily depend on call graph analysis of Android libraries to
generate test cases and identify security violations. In contrast
to existing work, we must address API dependencies and
parameter generation while considering the unique aspects of
team workspaces. To achieve this, we implemented the TAI
to manage dependencies and efficiently prune branches as
needed, expediting our testing process.

VIII. CONCLUSION

We conduct a comprehensive study of the access control
system within team workspaces, focusing on resource manage-
ment. We outline the two-level permission management frame-
work for add-on to access sensitive resources and construct
attack scenarios that lead to permission escalation, providing
formal representations of these scenarios.

Utilizing the permission model established by team
workspaces, we developed and implemented an automated API
testing tool called TAI, which identifies APIs that diverge
from the specified permission management protocols. TAI
successfully identified 41 high-risk APIs and provided detailed
analyses. In response to the identified security vulnerabilities,
we offer countermeasures to help team workspaces mitigate
these risks. We hope our analysis provides valuable insights
into the security analysis of team workspaces and encourages
further research in this field. Our findings serve as a wake-up
call for both team workspaces and add-on developers.

ACKNOWLEDGEMENT

This research has been partially supported by Aus-
tralian Research Council Discovery Projects (DP230101196,
DP240103068) and the Ministry of Education, Singapore un-
der its Academic Research Fund Tier 3 (MOET32020-0003).

REFERENCES

[1] “Google workspace marketplace,” 2024. [Online]. Available: https:
//en.wikipedia.org/wiki/Google_Workspace_Marketplace

[2] “Apps and services,” 2024. [Online]. Available: https://www.microsoft.
com/en-au/microsoft-365/products-apps-services

[3] “Google workspace user stats (2023),” 2024. [Online]. Available:
https://explodingtopics.com/blog/google-workspace-stats

[4] L. Wan, K. Wang, H. Wang, and G. Bai, “Is it safe to share your files?
an empirical security analysis of google workspace,” in Proceedings of
the ACM Web Conference 2024, 2024.

[5] D. G. Balash, X. Wu, M. Grant, I. Reyes, and A. J. Aviv,
“Security and privacy perceptions of Third-Party application access
for google accounts,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022, pp.
3397–3414. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/balash

[6] T. Bui, S. Rao, M. Antikainen, and T. Aura, “Xss vulnerabilities
in cloud-application add-ons,” in Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, 2020, pp. 610–
621.

[7] M. H. Meng, Q. Zhang, G. Xia, Y. Zheng, Y. Zhang, G. Bai, Z. Liu,
S. G. Teo, and J. S. Dong, “Post-gdpr threat hunting on android phones:
Dissecting os-level safeguards of user-unresettable identifiers.” in NDSS,
2023.

https://en.wikipedia.org/wiki/Google_Workspace_Marketplace
https://en.wikipedia.org/wiki/Google_Workspace_Marketplace
https://www.microsoft.com/en-au/microsoft-365/products-apps-services
https://www.microsoft.com/en-au/microsoft-365/products-apps-services
https://explodingtopics.com/blog/google-workspace-stats
https://www.usenix.org/conference/usenixsecurity22/presentation/balash
https://www.usenix.org/conference/usenixsecurity22/presentation/balash

12

[8] H. Zhou, H. Wang, X. Luo, T. Chen, Y. Zhou, and T. Wang, “Uncovering
cross-context inconsistent access control enforcement in android,” in The
2022 Network and Distributed System Security Symposium (NDSS’22),
2022.

[9] “Add-ons types,” 2024. [Online]. Available: https://developers.google.
com/apps-script/reference/

[10] M. Zha, J. Wang et al., “Hazard integrated: Understanding the security
risks of app extensions on team chat systems,” in Network and Dis-
tributed Systems Security Symposium, 2022, pp. 24–28.

[11] Y. Chen, Y. Gao, N. Ceccio, R. Chatterjee, K. Fawaz, and E. Fernandes,
“Experimental security analysis of the app model in business collabora-
tion platforms,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 2011–2028.

[12] L. Wan, K. Wang, K. T. Mahadewa, H. Wang, and G. Bai, “Don’t bite off
more than you can chew: Investigating excessive permission requests in
trigger-action integrations,” in Proceedings of the ACM Web Conference
2024, 2024.

[13] “Selenium automates browsers. that’s it!” 2024. [Online]. Available:
https://www.selenium.dev/

[14] “Models: Learn about the diverse set of models that power the openai
api.” 2024. [Online]. Available: https://platform.openai.com/docs/models

[15] “Build google workspace add-ons,” 2024. [Online].
Available: https://developers.google.com/apps-script/add-ons/how-tos/
building-workspace-addons

[16] “Pyautogui,” 2025. [Online]. Available: https://pypi.org/project/
PyAutoGUI/

[17] H. Harkous and K. Aberer, “" if you can’t beat them, join them" a usabil-
ity approach to interdependent privacy in cloud apps,” in Proceedings
of the Seventh ACM on Conference on Data and Application Security
and Privacy, 2017, pp. 127–138.

[18] C. Wang, R. Ko, Y. Zhang, Y. Yang, and Z. Lin, “Taintmini: Detecting
flow of sensitive data in mini-programs with static taint analysis,” in
2023 IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE). IEEE, 2023, pp. 932–944.

[19] “Api: Consent is required to transfer ownership of a file to another
user [error=403],” 2024. [Online]. Available: https://issuetracker.google.
com/issues/228791253

[20] N. Nikiforakis, S. Van Acker, W. Meert, L. Desmet, F. Piessens, and
W. Joosen, “Bitsquatting: Exploiting bit-flips for fun, or profit?” in
Proceedings of the 22nd international conference on World Wide Web,
2013, pp. 989–998.

[21] P. Rösler, C. Mainka, and J. Schwenk, “More is less: On the end-to-end
security of group chats in signal, whatsapp, and threema,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2018,
pp. 415–429.

[22] C. Yan, B. Guan, Y. Li, M. H. Meng, L. Wan, and G. Bai, “Under-
standing and detecting file knowledge leakage in gpt app ecosystem,” in
Proceedings of the ACM on Web Conference 2025, 2025, pp. 3831–3839.

[23] C. Yan, R. Ren, M. H. Meng, L. Wan, T. Y. Ooi, and G. Bai, “Exploring
chatgpt app ecosystem: Distribution, deployment and security,” in Pro-
ceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering, 2024, pp. 1370–1382.

[24] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun, Y. Liu,
and J. S. Dong, “Authscan: Automatic extraction of web authentication
protocols from implementations,” 2013.

[25] Y. Zhou and D. Evans, “{SSOScan}: automated testing of web appli-
cations for single {Sign-On} vulnerabilities,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 495–510.

[26] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos, M. A.
Rajab, and K. Thomas, “Trends and lessons from three years fighting
malicious extensions,” in 24th USENIX Security Symposium (USENIX
Security 15), 2015, pp. 579–593.

[27] N. Pantelaios, N. Nikiforakis, and A. Kapravelos, “You’ve changed:
Detecting malicious browser extensions through their update deltas,”
in Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security, 2020, pp. 477–491.

[28] D. Bui, B. Tang, and K. G. Shin, “Detection of inconsistencies in privacy
practices of browser extensions,” in 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 2023, pp. 2780–2798.

[29] Y. Ling, K. Wang, G. Bai, H. Wang, and J. S. Dong, “Are they toeing the
line? diagnosing privacy compliance violations among browser exten-
sions,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, 2022, pp. 1–12.

[30] C. Yan, F. Xie, M. H. Meng, Y. Zhang, and G. Bai, “On the quality
of privacy policy documents of virtual personal assistant applications,”
Proceedings on Privacy Enhancing Technologies, 2024.

[31] R. Wang, L. Xing, X. Wang, and S. Chen, “Unauthorized origin crossing
on mobile platforms: Threats and mitigation,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
2013, pp. 635–646.

[32] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp request forgery: Root
causes, attacks, and vulnerability detection,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 3079–3092.

[33] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang,
G. Yang, and M. Yang, “Identity confusion in {WebView-based} mobile
app-in-app ecosystems,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 1597–1613.

[34] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, “Some
recipes can do more than spoil your appetite: Analyzing the security and
privacy risks of ifttt recipes,” in Proceedings of the 26th International
Conference on World Wide Web, 2017, pp. 1501–1510.

[35] Y. Chen, M. Alhanahnah, A. Sabelfeld, R. Chatterjee, and E. Fernandes,
“Practical data access minimization in {Trigger-Action} platforms,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
2929–2945.

[36] M. M. Ahmadpanah, D. Hedin, and A. Sabelfeld, “Lazytap: On-
demand data minimization for trigger-action applications,” in 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023, pp. 3079–3097.

[37] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what? controlling
flows in iot apps,” in Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security, 2018, pp. 1102–1119.

[38] K. Mahadewa, Y. Zhang, G. Bai, L. Bu, Z. Zuo, D. Fernando, Z. Liang,
and J. S. Dong, “Identifying privacy weaknesses from multi-party
trigger-action integration platforms,” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2021, pp. 2–15.

[39] S. Liao, L. Cheng, H. Cai, L. Guo, and H. Hu, “Skillscanner: Detecting
policy-violating voice applications through static analysis at the devel-
opment phase,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, 2023, pp. 2321–2335.

[40] C. Yan, M. H. Meng, F. Xie, and G. Bai, “Investigating documented
privacy changes in android os,” Proceedings of the ACM on Software
Engineering, vol. 1, no. FSE, pp. 2701–2724, 2024.

https://developers.google.com/apps-script/reference/
https://developers.google.com/apps-script/reference/
https://www.selenium.dev/
https://platform.openai.com/docs/models
https://developers.google.com/apps-script/add-ons/how-tos/building-workspace-addons
https://developers.google.com/apps-script/add-ons/how-tos/building-workspace-addons
https://pypi.org/project/PyAutoGUI/
https://pypi.org/project/PyAutoGUI/
https://issuetracker.google.com/issues/228791253
https://issuetracker.google.com/issues/228791253

	Introduction
	PROBLEM FORMULATION
	Background and the Permission system
	Permission System
	Permission Escalation Definitions

	Overview and Challenges
	Design of TAI
	API permission extraction
	Test case generation
	API dependency graph construction
	Parameter dependency
	Test case sequence

	Risky API testing
	Development of add-ons
	Test case execution
	API execution result monitor

	Risky API identification

	Evaluation
	Experiment setting
	TAI performance
	Large-scale scanning and findings

	Discussion
	Sharing concerns
	Countermeasures
	Limitations

	Related Work
	Team workspace permission analysis.
	Third-party app security.
	API analysis and testing.

	Conclusion
	References

