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Abstract—Malware detection using machine learning requires
feature extraction from binary files, as models cannot process
raw binaries directly. A common approach involves using LIEF
for raw feature extraction and the EMBER vectorizer to generate
2381-dimensional feature vectors. However, the high dimen-
sionality of these features introduces significant computational
challenges. This study addresses these challenges by applying
two dimensionality reduction techniques: XGBoost-based feature
selection and Principal Component Analysis (PCA). We evaluate
three reduced feature dimensions (128, 256, and 384), which cor-
respond to approximately 5.4%, 10.8%, and 16.1% of the original
2381 features, across four models—XGBoost, LightGBM, Extra
Trees, and Random Forest—using a unified training, validation,
and testing split formed from the EMBER-2018, ERMDS, and
BODMAS datasets. This approach ensures generalization and
avoids dataset bias. Experimental results show that LightGBM
trained on the 384-dimensional feature set after XGBoost feature
selection achieves the highest accuracy of 97.52% on the unified
dataset, providing an optimal balance between computational
efficiency and detection performance. The best model, trained in
61 minutes using 30 GB of RAM and 19.5 GB of disk space,
generalizes effectively to completely unseen datasets, maintain-
ing 95.31% accuracy on TRITIUM and 93.98% accuracy on
INFERNO. These findings present a scalable, compute-efficient
approach for malware detection without compromising accuracy.

Index Terms—Malware detection, Feature selection, XGBoost,
Dimensionality reduction, LightGBM.

I. INTRODUCTION

In an increasingly digital landscape, malware remains one
of the most critical threats to cybersecurity. Malware—short
for malicious software—exploits vulnerabilities in computer
systems, often resulting in data breaches, system compromises,
and other forms of cyberattacks. As both the complexity and
volume of malware continue to grow, traditional detection
techniques, such as signature-based methods, are proving in-
sufficient. In response, machine learning (ML)-based malware
detection has emerged as a promising alternative due to its
ability to identify previously unseen or zero-day threats by
learning patterns from data.

However, ML models cannot process raw malware binaries
directly; these must first be converted into structured feature
vectors. A widely used tool for feature extraction is LIEF [1],
which extracts static features from binaries. These features are
then processed by the EMBER vectorizer to produce 2,381-
dimensional feature vectors used as input for machine learning

models. While this transformation makes the data suitable
for training machine learning models, the high dimensionality
leads to heavy computational costs, especially when dealing
with large datasets.

To mitigate this, previous studies have primarily followed
two approaches. The first involves training models on smaller
subsets of the data to reduce computational load. However, this
often limits the model’s exposure to diverse patterns, poten-
tially causing it to miss critical features and newly emerging
threats. The second approach utilizes high-end computational
resources—such as GPUs or cloud infrastructure—to manage
large data and feature spaces. While effective, this method is
not scalable for continuous learning, where frequent updates
are required to counter the evolving malware landscape. The
dependency on costly infrastructure limits its practicality in
many real-world scenarios.

This paper explores an alternative strategy using dimension-
ality reduction to enhance computational efficiency without
compromising detection performance. We apply two dimen-
sionality reduction techniques—feature selection using XG-
Boost and Principal Component Analysis (PCA)—to reduce
the size of the original 2381-dimensional vectors. Specifically,
we generate reduced versions with 128, 256, and 384 dimen-
sions, allowing us to study how varying levels of compression
affect model performance and resource usage. We then eval-
uate four machine learning models—XGBoost, LightGBM,
Extra Trees, and Random Forest—on these reduced feature
sets. Our results show that dimensionality reduction offers a
practical trade-off—maintaining high detection accuracy while
significantly lowering training costs—and enables efficient
model updates as new malware variants emerge, making it
suitable for scalable and continuous malware detection sys-
tems.

II. RELATED WORK

A summary of recent malware detection studies is provided
in Table I. The EMBER-2018 dataset has been widely used to
evaluate machine learning and deep learning models for static
malware detection. Anderson and Roth [2] achieved strong
results using LightGBM, reporting an AUC above 0.9911,
outperforming early models like MalConv [3]. Wu et al. [4]
improved classification accuracy from 15.75% to 93.5% by
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TABLE I
SUMMARY OF PRIOR MALWARE DETECTION STUDIES

Paper Dataset Approach Compute
Environment

Detection
Metric

Anderson & Roth [2] EMBER-2018 LightGBM - AUC >0.9911

Wu et al. [4] EMBER-2018 Reinforcement Learning
with Gym-Plus - Accuracy ↑ from

15.75% to 93.5%

Oyama et al. [5] EMBER-2018
File Metadata +

Imported Functions +
LightGBM

Intel Xeon E5-2620,
128GB RAM Not specified

Vinayakumar et al. [6] EMBER-2018 WSBD: ML + MalConv NVIDIA India GPU grant Accuracy: 98.9%
Pramanik & Teja [7] EMBER-2018 CNN vs FFNN - Precision, Recall, F1: 0.97

Galen & Steele [8] EMBER-2018 LightGBM on
time-sequenced subset - Accuracy: 94.80%

Loi et al. [9] EMBER-2018 ML pipeline with static features - Accuracy: 96.9%

Kundu et al. [10] EMBER-2018 AutoML tuning
LightGBM hyperparameters

AWS, 96/72 cores,
192GB RAM

TPR ↑ from
86.8% to 90%

Thosar et al. [13] EMBER-2018 Gradient Boosting + CNN
Acer Aspire 7,

Intel i5 9th Gen,
8GB RAM

Accuracy: 96%

Lad & Adamuthe [14] EMBER-2018 Deep Learning (Static)
Intel Core i5-4500 CPU,

8GB RAM,
GeForce 940M GPU

Accuracy: 94.09%

Vo et al. [15] EMBER-2018 PEMA (XGBoost, CatBoost, LightGBM) 2× Intel Xeon Platinum,
384GB RAM, 6TB SSD Accuracy: 97.65%

Shinde et al. [16] EMBER-2018 Random Forest +
Dimensionality Reduction - Accuracy: 90%

Dener & Gulburun [17] EMBER-2018, BODMAS Supervised +
Unsupervised (k-means + feature selection) Google Colaboratory Accuracy: 96.77% (EMBER),

99.74% (BODMAS)
Connors & Sarkar [18] EMBER-2018 Neural Network Model - Accuracy: 95.22%

Manikandaraja et al. [19] TRITIUM, INFERNO Concept Drift Framework +
Adversarial Samples - Not specified

Rayankula [20] BODMAS K-Nearest Neighbors MacOS M1,
8GB RAM

Accuracy: 94.9% (Multi),
94.8% (Binary)

Brown et al. [22] SOREL-20M, EMBER-2018 AutoML (Static and Online)
92 vCPUs,

448GB RAM,
8× Tesla V100 GPUs

Accuracy: 95.8%

Shashank et al. [24] EMBER-2018 Ensemble Learning (Bagging) Nvidia DGX Station A100,
4× Tesla A100 GPUs Accuracy: 96.56%

Maryam et al. [25] EMBER-2018 SVM (Linear SVC) - Accuracy: 98.9% (14.7K samples),
dropped to 92.6% (132K samples)

Bhardwaj et al. [26] BODMAS MD-ADA: Adversarial Domain Adaptation - Accuracy: 99.29%,
F1-score: 99.13%

Buriro et al. [27] BODMAS Anomaly Detection +
Random Forest - Accuracy: 99.73%,

FPR: 0%

Farfoura et al. [28] BODMAS Dimensionality Reduction (MBMD) +
Random Forest - Accuracy: 99%

incorporating reinforcement learning through Gym-Plus
with enhanced PE modification strategies.

Later works explored combining static features such as
file metadata and imported functions with ensemble models
(Oyama et al. [5]), deep learning frameworks blending CNNs
and MalConv (Vinayakumar et al. [6]), and AutoML-based
hyperparameter tuning on LightGBM (Kundu et al. [10]),
showing improvements in true positive rates at low false
positive levels.

Several studies examined the trade-offs between accuracy,
training time, and hardware requirements. Thosar et al. [13]
and Lad & Adamuthe [14] reported over 94% accuracy using
modest hardware. Vo et al. [15] and Shashank et al. [24] used
high compute resources to reach nearly 97%, demonstrating
the impact of increased computational capacity.

Dimensionality reduction and feature selection were also
crucial for handling the high-dimensional EMBER-2018
dataset, as shown by Shinde et al. [16] and Dener & Gul-
burun [17]. Newer datasets like TRITIUM and INFERNO,
introduced by Manikandaraja et al. [19], include adversarial
samples to study concept drift and robustness.

On related datasets like BODMAS, highly accurate models
(> 99%) have been developed using domain adaptation [26],
anomaly detection [27], and novel dimensionality reduction
methods [28]. Together, these works highlight the evolving
landscape of static malware detection, balancing accuracy,
scalability, and robustness across datasets and hardware set-
tings.

III. PROPOSED METHODOLOGY

A. Dataset

For this study, we utilized five datasets to develop and
evaluate a generalized and robust malware detection model.
These datasets are EMBER-2018, BODMAS, ERMDS, IN-
FERNO, and TRITIUM, summarized in Table II. EMBER-
2018 and BODMAS contain malware samples from 2018
and 2019–2020, respectively, providing temporal diversity.
ERMDS, INFERNO, and TRITIUM consist of obfuscated
and adversarial malware samples exhibiting evasive behaviors,
thereby increasing the model’s exposure to real-world evasion
tactics and enhancing its generalization.



TABLE II
DATASET SUMMARY WITH CLASS-WISE SAMPLE DISTRIBUTION

Dataset Description Data
Distribution

EMBER-2018

EMBER-2018 is a large-scale dataset
containing featuresfrom 1 million
Windows PE files scanned before
2018, designed for challenging
malware detection tasks.

400K benign
400K malicious
300K unlabelled

BODMAS
BODMAS is a dataset collected
between August 2019 and
September 2020.

77,142 benign
57,293 malicious

ERMDS

ERMDS is a dataset created to
assess the effectiveness of
learning-based malware
detection systems against
obfuscated malware samples.

30,455 benign
86,685 malicious

TRITIUM

TRITIUM was introduced to
analyze concept drift by
evaluating threats from a
distinct source and threat profile.

10,785 benign
12,471 malicious

INFERNO

INFERNO is a dataset
developed to assess classifier
robustness against adversarial
malware.

1430 benign
1430 malicious

A unified train-validation-test split with stratified sampling
was established using EMBER-2018, BODMAS, and ERMDS
to encourage generalization and reduce dataset-specific bias.
Table III shows the distribution of this unified dataset. Along
with the unified test split, the INFERNO and TRITIUM
datasets were reserved exclusively for evaluation to test the
model’s performance on unseen and adversarial samples.

B. Data Preprocessing and Dimensionality Reduction

The datasets used in this study already contained 2,381-
dimensional feature vectors extracted using the LIEF tool
and EMBER vectorizer methodology described in [2]. As
shown in Figure 1, preprocessing began with the raw dataset
by removing samples with missing features, followed by the
elimination of duplicate entries. These steps ensured data
quality and consistency before further processing.

Next, the cleaned feature vectors underwent a two-stage
normalization process. First, RobustScaler was applied to
reduce the influence of outliers by scaling features based
on the median and interquartile range, effectively addressing
the skewed distributions common in malware data. Then,
MinMaxScaler scaled the features to a uniform range of [0,
1], promoting numerical stability and consistency across all
feature dimensions. This combined scaling approach produced
input data that was both robust to extreme values and well-
normalized, facilitating efficient and stable model training.

TABLE III
TRAIN, VALIDATION, AND TEST SPLITS FOR UNIFIED DATASET

Dataset Number of
Train Samples

Number of
Validation Samples

Number of
Test Samples

EMBER-2018 479936 119984 199956
BODMAS 36662 9166 11458
ERMDS 62748 15687 19609
TOTAL 579346 144837 231023

Fig. 1. Preprocessing Pipeline Overview

Finally, to improve computational efficiency without com-
promising classification performance, dimensionality reduc-
tion was applied using two separate techniques: feature selec-
tion via XGBoost and Principal Component Analysis (PCA).
The original 2,381-dimensional feature space was indepen-
dently reduced to lower dimensions of 128, 256, and 384
for each technique. For every reduced dimension and method,
classification models were trained and evaluated to identify the
optimal balance between dimensionality and model accuracy.
This approach ensured that the reduced feature sets retained
sufficient informative value while significantly lowering com-
putational overhead during training.

C. Model Training and Evaluation on Reduced Features

After completing the preprocessing steps (Figure 1), the
processed feature vectors were used in the training and
evaluation framework, as illustrated in Figure 2. To manage
computational constraints, the training and validation data are
divided into two equal stratified partitions.

In this study, we evaluate four machine learning classi-
fiers—XGBoost, LightGBM, Extra Trees, and Random For-
est—training each independently on both partitions, resulting
in two instances per classifier. Hyperparameter tuning for each
instance of model is conducted using FLAML [30] to optimize
performance.

The outputs of the two instances of each model are com-
bined using a weighted soft voting mechanism. Let p1 and p2
denote the probability scores from the first and second model
instances, respectively. The final prediction p̂ is computed as:

p̂ = w1 · p1 + w2 · p2

where w1+w2 = 1. Optimal weights are identified by iterating
w1 from 0 to 1 in increments of 0.1 during training. The weight
pair (w1, w2) yielding the highest performance is selected
and consistently applied during validation and testing. Model
effectiveness is assessed using accuracy, precision, recall, F1-
score, and area under the ROC curve (AUC).



Fig. 2. Proposed system architecture for training and evaluating models on
reduced feature sets

IV. RESULTS AND DISCUSSION

A. Experimental Setup

All experiments were conducted using the free resources
provided by Kaggle1. The computational setup included an
Intel Xeon 2.20 GHz CPU, 30 GB of RAM, and 19.5
GB of disk space. Several Python libraries were employed
throughout the implementation: pandas for dataset handling
and operations, numpy for numerical computations, scikit-
learn for preprocessing (including scalers and PCA), baseline
classifier implementations, and evaluation metrics, and flaml
for automated hyperparameter tuning.

B. Performance on Unified Test Data

Table IV summarizes the performance of four classi-
fiers—XGBoost, LightGBM, Extra Trees, and Random For-
est—trained on feature sets reduced to 128, 256, and 384
dimensions using two techniques: supervised feature selection
with XGBoost and unsupervised PCA.

Among the models using XGBoost-based feature selection,
LightGBM demonstrated the highest performance with 384
features, achieving 97.52% accuracy, 97.73% F1-score, and
99.58% AUC. XGBoost followed closely with 97.25% accu-
racy and 97.48% F1-score. Extra Trees and Random Forest
also performed competitively, particularly at higher feature
counts. The steady improvement from 128 to 384 dimensions
indicates that additional features contributed discriminative

1”https://www.kaggle.com

value, enhancing classification performance. These results con-
firm that supervised selection effectively retains task-relevant
features, benefiting tree-based classifiers.The complete training
workflow for the best-performing LightGBM model with 384
features was executed in approximately 61 minutes.

In contrast, PCA-based models showed comparatively lower
performance. The best PCA result—XGBoost with 384 com-
ponents—reached 95.17% accuracy and 95.55% F1-score.
Other models exhibited similar trends, with performance in-
creasing from 128 to 384 dimensions but remaining below
the XGBoost selection baseline. Random Forest was most
affected, with its accuracy dropping to 91.78%. Since PCA
preserves variance without considering class labels, it may
discard critical features necessary for malware discrimination,
weakening downstream classifier performance.

Overall, XGBoost-based feature selection consistently out-
performed PCA, confirming the importance of label-aware di-
mensionality reduction in malware detection. While increasing
dimensions led to better results in both methods, the perfor-
mance gains tended to saturate beyond 256 features, especially
for PCA. This suggests a diminishing return on including more
components, and underscores the benefit of selecting fewer,
yet more informative, features. The combination of supervised
selection and tree-based classifiers offers a robust, efficient,
and scalable solution well-suited for real-time detection under
limited computational resources.

C. Performance on TRITIUM and INFERNO Dataset

As shown in Table V, we further assessed the robustness
and generalization capability of our model on the TRITIUM
and INFERNO datasets, which were not used during training
or validation. These datasets contain obfuscated and adver-
sarial malware samples, making them ideal benchmarks for
evaluating real-world detection effectiveness.

We employed our best-performing pipeline—XGBoost-
based feature selection reducing the input to 384 dimensions,
followed by LightGBM classification—for this evaluation. On
the TRITIUM dataset, the model achieved 95.31% accuracy,
with a precision of 99.56%, recall of 91.75%, and F1-score
of 95.49%. An AUC of 99.79% further demonstrated strong
separability between benign and malicious samples. On the
INFERNO dataset, the model maintained robust performance,
achieving 93.98% accuracy, 91.99% precision, 96.04% recall,
93.97% F1-score, and an AUC of 98.29%.These results high-
light the pipeline’s strong generalization across unseen, evasive
threats and reinforce its practical applicability for real-time
malware detection in dynamic and adversarial cybersecurity
environments.

D. Comparison with Existing Methods

A detailed comparison of our approach with existing meth-
ods is presented in Table VI. Since many prior studies
benchmarked their models using the EMBER-2018 dataset,
we evaluated our best-performing model (LightGBM trained
on 384 features selected via XGBoost-based feature selection)
on the same dataset for a fair comparison. Our model achieves

"https://www.kaggle.com


TABLE IV
PERFORMANCE COMPARISON OF MODELS USING DIFFERENT DIMENSIONALITY REDUCTION TECHNIQUES AND FEATURE SIZES ON UNIFIED TEST DATA

Reduction
Technique

Reduced
Dimension Model Accuracy Precision Recall F1 score AUC score

Feature
Selection

using
XGBoost

128

XGBoost 96.61% 96.51% 97.28% 96.89% 99.40%
LightGBM 96.73% 96.78% 97.23% 97.00% 99.40%
Extra Trees 96.42% 96.76% 96.65% 96.70% 99.34%

Random Forest 95.44% 95.10% 96.60% 95.84% 99.10%

256

XGBoost 97.05% 96.96% 97.64% 97.30% 99.51%
LightGBM 97.34% 97.52% 97.59% 97.56% 99.54%
Extra Trees 96.79% 97.05% 97.05% 97.05% 99.46%

Random Forest 95.80% 95.59% 96.73% 96.16% 99.17%

384

XGBoost 97.25% 97.34% 97.61% 97.48% 99.57%
LightGBM 97.52% 97.54% 97.91% 97.73% 99.58%
Extra Trees 97.01% 97.17% 97.33% 97.25% 99.46%

Random Forest 94.96% 94.44% 96.41% 95.41% 98.86%

PCA

128

XGBoost 94.85% 95.38% 95.13% 95.25% 98.89%
LightGBM 94.80% 95.39% 95.02% 95.21% 98.85%
Extra Trees 94.16% 95.03% 94.19% 94.61% 98.71%

Random Forest 92.35% 92.36% 93.68% 93.02% 97.88%

256

XGBoost 95.14% 95.63% 95.43% 95.53% 98.98%
LightGBM 95.00% 95.56% 95.23% 95.39% 98.92%
Extra Trees 92.69% 92.99% 93.61% 93.30% 98.05%

Random Forest 91.47% 91.57% 92.86% 92.21% 97.49%

384

XGBoost 95.17% 95.63% 95.48% 95.55% 98.95%
LightGBM 94.85% 95.64% 94.84% 95.24% 98.84%
Extra Trees 94.01% 94.91% 94.04% 94.47% 98.59%

Random Forest 91.78% 91.61% 93.44% 92.52% 97.73%

a favorable balance between detection accuracy and computa-
tional efficiency.

For instance, Vo et al. [15] attained 97.65% accuracy using
2,291 features on high-end hardware with 384 GB RAM and
Xeon Platinum CPUs. In contrast, our approach achieves a
comparable 97.25% accuracy using only 384 features and
30 GB of RAM. Similarly, Shashank et al. [22] reported
95.80% accuracy using 448 GB RAM and 8 Tesla V100
GPUs, whereas our method surpasses this performance without
any GPU dependency. Furthermore, Dener and Gulburun [17]
achieved 96.77% accuracy with 448 features, while our model
achieves similar performance using fewer features, highlight-
ing its efficiency.

Overall, our approach demonstrates strong predictive per-
formance with minimal computational overhead, reduced fea-
ture complexity, and broader scalability—making it a viable
alternative to more resource-intensive methods in real-world
deployment scenarios.

V. CONCLUSION AND FUTURE WORK

In conclusion, this study presents an optimized machine
learning pipeline for static malware detection by applying
dimensionality reduction techniques to high-dimensional fea-
ture vectors extracted from PE files. Specifically, XGBoost-
based feature selection and Principal Component Analysis

(PCA) were used to reduce the original 2,381-dimensional
vectors to 128, 256, and 384 dimensions. Among the evaluated
classifiers, LightGBM trained on 384 features selected via
XGBoost achieved the highest performance, reaching 97.52%
accuracy and strong precision, recall, and F1-score values. The
complete training workflow was executed in approximately
61 minutes, demonstrating the practicality of the proposed
approach for efficient model development.

For future work, this system can be extended to support
malware family classification and made more resilient through
adversarial training. Incorporating deep learning-based dimen-
sionality reduction techniques such as autoencoders and ap-
plying ensemble learning across heterogeneous classifiers may
further enhance detection capabilities. Additionally, leveraging
transfer learning could improve adaptability to evolving mal-
ware threats and support generalization across diverse datasets.

TABLE V
EVALUATION OF LIGHTGBM WITH 384 FEATURES SELECTED VIA

XGBOOST-BASED FEATURE SELECTION ON TRITIUM AND INFERNO
DATASETS

Dataset Accuracy Precision Recall F1 Score AUC Score
TRITIUM 95.31% 99.56% 91.75% 95.49% 99.79%
INFERNO 93.98% 91.99% 96.04% 93.97% 98.29%



TABLE VI
COMPARISON OF VARIOUS APPROACHES ON THE EMBER-2018 DATASET

Model Test Data Size Feature Size Experimental Setup Test Accuracy
WSBD model 56,000 2351 Recieved GPU Grant from NVIDIA India 98.90%

ML pipeline with static features 2,00,000 2351 - 96.90%

Gradient Boosting + CNN - 2351 8GB RAM, 512 SSD, Nvidia GeForce GTX 1650,
Intel i5 9th gen processor 96.00%

Deep Learning (Static) 2,00,000 2381 Nvidia GeForce 940M 2GB GPU ,Intel Core i5-4500 processor,
8 GB RAM,Google Colab 94.09%

PEMA (XGBoost, CatBoost, LightGBM) 2,00,000 2291 2× Intel Xeon Platinum 8160 ,384GB RAM,6TB SSD 97.65%

k-means + feature selection 2,00,000 448 Google Colaboratory 96.77%

AutoML (Static and Online) 2,00,000 2381 2 vCPUs,448 GB RAM,16 GB of VRAM, 8 Tesla V100 GPUs. 95.80%

Ensemble Learning (Bagging) 1,60,000 2381 Nvidia DGX Station A100 ,AMD EPYC 7742 64-core processor,
4X Tesla A100 ,40GB of GPU memory, and 512 GB of DDR4 RAM. 96.56%

SVM (Linear SVC) 1,32,000 2381 - 92.6%
Our Approach 1,99,956 384 Intel Xeon 2.20 GHz CPU,30GB RAM,19.5 GB disk space 97.25%
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