
ar
X

iv
:2

50
6.

17
24

5v
1

 [
cs

.C
R

]
 7

 J
un

 2
02

5

Detecting and Mitigating SQL Injection
Vulnerabilities in Web Applications

Sagar Neupane
University of West London, Ealing, United Kingdom

June 24, 2025

Abstract

SQL injection (SQLi) remains a critical vulnerability in web appli-
cations, enabling attackers to manipulate databases through malicious
inputs. Despite advancements in mitigation techniques, the evolving
complexity of web applications and attack strategies continues to pose
significant risks. This paper presents a comprehensive penetration
testing methodology to identify, exploit, and mitigate SQLi vulnera-
bilities in a PHP-MySQL-based web application. Utilizing tools such
as OWASP ZAP, sqlmap, and Nmap, I demonstrate a systematic ap-
proach to vulnerability assessment and remediation. My findings un-
derscore the efficacy of input sanitization and prepared statements in
mitigating SQLi risks, while highlighting the need for ongoing security
assessments to address emerging threats. This study contributes to
the field by providing practical insights into effective detection and
prevention strategies, supported by a real-world case study. The com-
plete source code and datasets used in this research, are hosted on
GitHub. The repository can be accessed here.

1 Introduction

SQL injection (SQLi) is a pervasive security vulnerability that allows attack-
ers to inject malicious SQL code into database queries, potentially compro-
mising sensitive data, bypassing authentication, or disrupting services (Hasan
et al., 2019). Despite being a well-documented issue, SQLi remains prevalent

1

https://bit.ly/4dQHswx
https://arxiv.org/abs/2506.17245v1

due to inadequate input validation, poor coding practices, and the increas-
ing sophistication of attack techniques (Nasereddin et al., 2021). According
to MITRE Corporation’s 2021 CWE definition, SQLi (CWE-89) is a criti-
cal software weakness, underscoring its severe impact (MITRE Corporation,
2021).

Organisations have been severely harmed by recent SQL Injection at-
tacks. For instance, Tang et al. (2020) report that a SQL injection attack on
the National Job Portal revealed the personal information of around thirty
million Indian job searchers. The British Airways website was hacked in
2019 via SQL injection, Kumar et al. (2022) claim, potentially putting the
personal and financial information of hundreds of thousands of consumers at
risk. According to Farah et al. (2016), a cyberattack in 2016 that employed
SQL injection to infiltrate the Bangladesh Central Bank’s systems cost the
bank 81 million dollars.

These recent SQL injection attacks have functioned as a reminder for
businesses to give their websites and databases top priority when it comes to
security. Implementing frequent security assessments and penetration test-
ing is essential to finding vulnerabilities and patching them before hackers
may take advantage of them. Attacks using SQL injection can have serious
repercussions, such as monetary loss, reputational damage, and legal respon-
sibilities. The detection and prevention of SQL injection attacks is a difficult
undertaking for website owners, particularly if the website is large and com-
plicated. Additionally, patching a vulnerability may not always be simple,
and a patch that is not thorough can leave a website open to assaults.

This research conducts an in-depth security assessment of a PHP-MySQL-
based web application, focusing on SQLi vulnerabilities. Through penetra-
tion testing, I aimed to identify exploitable weaknesses, evaluate their impact,
and implement robust mitigation strategies. Tools such as OWASP ZAP
(Nájera-Gutiérrez, 2016), sqlmap (Gunawan et al., 2018), and Nmap (Liao
et al., 2020) are employed to simulate real-world attack scenarios, provid-
ing a practical framework for vulnerability detection and remediation. The
study also explores the effectiveness of preventive measures like prepared
statements and input sanitization, drawing on insights from prior research
(Rahman et al., 2015; Alomari and Jerisat, 2021).

In this paper, penetration testing is used to evaluate a website’s security
with an emphasis on SQL injection attacks. An intricate SQL injection as-
sault has been launched against the website, which was created using PHP
and SQL. The website has been retested to guarantee its security once the

2

attack’s vulnerabilities are corrected. By creating a website with PHP and
SQL, conducting a thorough SQL injection attack, and fixing the vulnera-
bilities found during the attack, this study addresses these challenges. To
conduct the security evaluation, a thorough security assessment strategy was
established.

Figure 1: SQL injection attack flow (Hasan et al., 2019).

2 Problem Statement

SQL injection attacks remain a persistent and escalating threat to website
security, despite the availability of best practices and mitigation techniques.
These attacks exploit vulnerabilities in web applications, compromising sen-
sitive data, disrupting operations, and causing significant financial and rep-
utational damage. To address this ongoing challenge, there is a critical need
to assess the effectiveness of existing security measures, develop innovative
strategies, and foster practical skills in website security and penetration test-
ing. The following challenges highlight the key barriers to preventing and
mitigating SQL injection attacks effectively.

1. Limited Developer Awareness and Expertise: Many website de-
velopers lack sufficient knowledge of SQL injection attacks, hindering
their ability to implement secure coding practices and recognize vul-
nerabilities during development.

3

2. Ineffective or Outdated Security Practices: Current security mea-
sures and best practices for preventing SQL injection attacks are often
inadequate or outdated, leaving websites vulnerable to exploitation.

3. Increasing Sophistication of Cybercriminals: Cybercriminals are
employing advanced techniques to bypass even robust security mea-
sures, increasing the difficulty of defending against SQL injection at-
tacks.

4. Resource Constraints for Small Organizations: Small businesses
and nonprofit organizations often lack the financial resources to hire
skilled security professionals or invest in advanced security solutions,
making them prime targets for SQL injection attacks.

5. Complexity of Modern Web Applications: The growing complex-
ity of web applications and databases introduces new vulnerabilities,
requiring innovative strategies to secure systems against SQL injection
attacks.

6. Lack of Standardization in Security Practices: The absence of
consensus and standardized guidelines for preventing SQL injection at-
tacks within the web development community leads to inconsistent se-
curity implementations.

7. Emerging Threats from Cloud-Based Systems: The increasing
adoption of cloud-based web applications and databases introduces
unique security challenges, necessitating new approaches to mitigate
SQL injection risks.

8. Insufficient Penetration Testing and Validation: Many organiza-
tions fail to conduct regular penetration testing or vulnerability assess-
ments, leaving undetected SQL injection vulnerabilities in production
environments.

9. Slow Adoption of Secure Development Frameworks: The reluc-
tance or inability to adopt secure development frameworks and tools
that inherently mitigate SQL injection risks perpetuates vulnerabilities
in web applications.

10. Inadequate Training and Skill Development: There is a shortage
of accessible, practical training programs focused on building hands-on

4

skills in identifying, preventing, and mitigating SQL injection attacks
among developers and security professionals.

3 Aims

This research aims to advance the understanding and mitigation of SQL in-
jection vulnerabilities in web applications through a rigorous, evidence-based
evaluation of security mechanisms and penetration testing methodologies. It
seeks to systematically assess the susceptibility of a PHP and SQL-based web
application to SQL injection attacks, identifying critical vulnerabilities and
their exploitation vectors. The study will critically evaluate the effective-
ness of contemporary security measures and best practices, focusing on their
applicability to complex web architectures, and formulate evidence-based
recommendations to enhance web application security, addressing emerging
SQL injection threats. Additionally, it aims to contribute novel insights to
the academic and professional discourse on web security, enriching the ex-
isting body of knowledge on SQL injection countermeasures, while fostering
advanced, transferable expertise in penetration testing and secure software
development among researchers.

4 Objectives

1. Design and implement a controlled PHP and SQL-based web appli-
cation with intentional vulnerabilities to serve as a testbed for SQL
injection penetration testing, ensuring replicability and scalability for
research purposes.

2. Conduct comprehensive penetration testing using advanced tools, such
as SQLMap (Gunawan et al., 2018), Burp Suite (Wear, 2018), OWASP
ZAP(Nájera-Gutiérrez, 2016), and Nmap (Liao et al., 2020), to identify
and exploit SQL injection vulnerabilities, employing both automated
and manual techniques.

3. Cultivate specialized skills in web application security and penetration
testing, mastering industry-standard tools and methodologies, includ-
ing vulnerability scanning, exploit development, and network recon-
naissance.

5

4. Perform a thorough security audit of the testbed application, integrat-
ing multiple penetration testing approaches, such as black-box, gray-
box, and white-box testing, to evaluate the attack surface and vulner-
ability impact (Hussain and Singh, 2015).

5. Quantitatively and qualitatively assess the efficacy of security mecha-
nisms, including input validation, parameterized queries, and web ap-
plication firewalls (WAFs) (Prandl et al., 2015), in mitigating SQL in-
jection risks, using metrics like false positive rates and exploit success
rates.

6. Analyze the consequences of successful SQL injection attacks on the
testbed application, quantifying impacts on data integrity, confidential-
ity, availability, and potential downstream effects, such as reputational
harm and regulatory non-compliance.

7. Develop a comprehensive set of recommendations for improving web
application security, incorporating advanced strategies, such as secure
coding frameworks and runtime application self-protection, while ad-
dressing challenges in cloud-based and distributed systems.

8. Document and disseminate findings through high-impact academic pub-
lications and presentations, contributing to the global knowledge base
on SQL injection prevention and web security best practices.

5 Research Questions

The persistent threat of SQL injection attacks continues to challenge the
security of web applications, particularly in PHP and SQL-based systems,
necessitating advanced research to address evolving vulnerabilities and at-
tack vectors. These questions reflect the current needs of the cybersecurity
landscape, emphasizing modern web architectures, emerging defense strate-
gies, and standardized solutions to enhance resilience against sophisticated
threats.

1. What are the prevalence and impact of SQL injection attacks on mod-
ern web applications, particularly in PHP and SQL-based systems, and
how do these vary across industries such as finance, healthcare, and e-
commerce?

6

2. What specific vulnerabilities in PHP and SQL codebases, including
those in cloud-based and distributed architectures, are most commonly
exploited by SQL injection attacks, and how do these vulnerabilities
evolve with emerging web development frameworks?

3. How effective are current security mechanisms, such as parameterized
queries, input sanitization, and web application firewalls, in mitigat-
ing SQL injection attacks under diverse attack scenarios, including ad-
vanced persistent threats (Prandl et al., 2015)?

4. What novel or hybrid defense strategies, incorporating secure coding
practices, runtime application self-protection, and machine learning-
based anomaly detection, can significantly enhance the prevention of
SQL injection attacks in complex web applications?

5. How can standardized, interoperable security protocols and frameworks
be developed and adopted to protect PHP and SQL-based web ap-
plications from SQL injection vulnerabilities, particularly in resource-
constrained environments like small organizations?

6. What are the measurable impacts of successful SQL injection attacks
on data integrity, confidentiality, and system availability, and how
do these translate into broader consequences, such as regulatory non-
compliance, financial losses, and reputational damage?

7. How can automated penetration testing and vulnerability assessment
tools be optimized to detect and prioritize SQL injection vulnerabilities
in real-time, especially in large-scale, dynamic web applications?

8. What role can advanced training programs and simulation-based learn-
ing play in equipping developers and security professionals with the
skills to identify, mitigate, and prevent SQL injection attacks in mod-
ern web ecosystems?

6 Literature Review & Gap Analysis

In their 2019 study, Hasan et al. proposed a machine learning-based approach
to detect SQL injection attacks, analyzing a dataset of 20,000 SQL queries
(10,000 benign, 10,000 malicious) using classifiers such as Random Forest,

7

achieving a 99.2% accuracy rate, motivated by the need to bolster website
security against prevalent SQLi threats; however, the limited dataset size and
omission of network delay or packet loss effects constrained generalizability,
which this paper addresses through real-world penetration testing with tools
like OWASP ZAP and sqlmap, incorporating network constraint evaluations.

In a 2015 investigation, Appelt et al. evaluated the efficacy of firewalls
in mitigating SQL injection attacks, employing automated and manual tac-
tics to test network-based and application-based firewalls, finding the former
more effective, driven by the need to assess firewall protection in web applica-
tions; the study’s exclusive focus on firewalls, neglecting other strategies and
false positives, prompted this paper to assess multiple mitigation techniques,
including input validation and parameterized queries, while addressing false
positives and application complexity.

In their 2015 research, Rahman et al. developed an algorithm to detect
SQL injection in e-commerce websites by comparing user input to predefined
query patterns, achieving high accuracy with low false positives to safeguard
sensitive data; its dependence on static patterns limited detection of novel
attacks and ignored vectors like HTTP requests, leading this paper to propose
a comprehensive detection approach for sophisticated SQLi patterns across
multiple vectors via penetration testing.

In a 2020 study, Aliero et al. introduced SQLIA, a Python-based tool
leveraging Scikit-learn to automate SQL injection vulnerability detection,
achieving 98.2% accuracy to counter data breaches; incomplete performance
evaluation across diverse datasets and complex attacks led this paper to rigor-
ously analyze SQLIA’s capabilities and test its effectiveness against advanced
SQLi scenarios in various web applications.

In their 2019 work, Sarjitus and El-Yakub proposed modifying server-side
code to detect SQL injection vulnerabilities, effectively identifying flaws in
a test application to enhance web security; the requirement for code modifi-
cations and deep architectural knowledge prompted this paper to develop a
universal detection method applicable without extensive code changes.

In a 2020 analysis, Tripathy et al. employed machine learning to detect
SQL injection at the application layer by analyzing HTTP traffic features,
surpassing signature-based methods to address bypassable detection tech-
niques; reliance on HTTP traffic and preprocessing scalability issues led this
paper to propose a scalable SQLi detection method minimizing preprocessing
and HTTP dependency.

In their 2016 study, Charania and Vyas developed WAVES, a black-box

8

tool to detect SQL injection vulnerabilities through HTTP request parsing,
effectively identifying flaws to improve automated detection; its potential to
miss vulnerabilities and lack of limitation discussion prompted this paper to
critically evaluate detection tools and suggest improvements for comprehen-
sive vulnerability coverage.

In a 2019 investigation, Zhang developed an AI classifier to detect SQL
injection vulnerabilities in PHP code, using supervised machine learning on
a dataset of vulnerable and non-vulnerable PHP code snippets, outperform-
ing static analysis techniques to address persistent web security issues; the
study’s focus on PHP alone and lack of consideration for machine learning
biases prompted this paper to examine biases in machine learning models
and propose methods for detecting SQLi vulnerabilities across multiple pro-
gramming languages.

In their 2018 study, Katole et al. proposed a boundary-based method to
detect SQL injection attacks by extracting query boundaries and comparing
original and modified SQL queries, achieving accurate detection even against
obfuscated attacks, motivated by the need to reliably identify attacker modi-
fications in web applications; the computationally intensive boundary extrac-
tion and potential for false positives led this paper to suggest a framework
for integrating this method with existing security tools to enhance efficiency
and reduce manual inspections.

In a 2020 study, Hlaing and Khaing developed a lexicon-based approach
to detect SQL injection attacks by identifying query tokens using a dictionary
of common SQLi phrases, achieving high accuracy with low false positives
to address limitations in existing detection methods; the reliance on a pre-
defined dictionary and lack of query context consideration, which may cause
false positives, prompted this paper to propose a hybrid method combining
lexicon-based and context-aware techniques for more robust SQLi detection.

In their 2019 research, Yip et al. proposed an adaptive learning-based
SQL injection detection system using ensemble feature selection to clas-
sify web requests, achieving high detection rates with low false positives to
counter sophisticated attacks; the lack of discussion on real-world implemen-
tation challenges, such as performance impacts, and focus solely on detection
prompted this paper to evaluate practical implementation feasibility and ex-
plore preventive measures for SQLi attacks.

In a 2021 investigation, Alomari and Jerisat employed machine learning to
detect SQL injection attacks, using feature selection algorithms and classifiers
like Random Forest on data from sources like the National Vulnerability

9

Database, achieving over 98% accuracy to address new attack vectors; the
study’s focus on detection without prevention strategies led this paper to
propose preventive methods through penetration testing and suggest rapid
implementation of machine learning-based detection.

In their 2021 study, Zhang et al. developed an intelligent SQL injection
detection technique using machine learning with feature selection, testing
six algorithms on a dataset of safe and malicious traffic, achieving 98.25%
accuracy to overcome limitations of signature-based detection; the lack of
testing on a larger, more diverse dataset limited generalizability, which this
paper addresses by evaluating the technique on varied datasets and exploring
ethical considerations in penetration testing.

In a 2021 analysis, Al-Saleh and Saito proposed a machine learning-based
framework combining static analysis and dynamic testing to detect SQL in-
jection vulnerabilities, outperforming existing tools in precision and identify-
ing new flaws to enhance web application testing; the framework’s failure to
account for the evolving nature of web applications and sophisticated attacks
prompted this paper to develop a more adaptive testing approach capable of
detecting emerging SQLi threats.

In their 2020 study, Chen et al. developed a deep belief network with
transfer learning to detect SQL injection vulnerabilities, achieving a 98.64%
detection rate with a low false positive rate to adapt to diverse web appli-
cations; the reliance on a small dataset for fine-tuning and lack of focus on
feature extraction impacts led this paper to propose a more generalizable ap-
proach with enhanced feature selection techniques for broader applicability.

Several gaps existed in prior research on SQL injection detection and mit-
igation, including limited dataset sizes, neglect of real-world network con-
straints, reliance on static patterns, and insufficient evaluation of complex
attack scenarios. This research addresses these shortcomings by conducting
comprehensive penetration testing on a PHP and SQL-based web applica-
tion, employing tools like OWASP ZAP (Nájera-Gutiérrez, 2016) and sqlmap
(Gunawan et al., 2018) to simulate realistic attack conditions, and proposing
adaptive, scalable mitigation strategies such as input validation, parame-
terized queries, and hybrid detection methods to enhance web application
security against evolving SQLi threats.

10

7 Methodology

This study employs a systematic penetration testing methodology to assess
SQLi vulnerabilities in a PHP-MySQL-based web application. The method-
ology comprises three phases: preparation, execution, and patching, as de-
tailed below.

7.1 Preparation

The preparation phase established a structured foundation for an ethical and
systematic security assessment, ensuring legal compliance and comprehen-
sive reconnaissance. The scope was defined to target a locally developed e-
commerce website, constructed with PHP and MySQL, hosted on a XAMPP
server (Dvorski, 2007) running Apache and MySQL services. The assessment
focused on front-end interfaces, including product detail, login, and check-
out pages, and their back-end database interactions, with an emphasis on
SQL injection vulnerabilities. Ethical considerations were addressed by se-
curing explicit permission from the website’s developer and confining testing
to a controlled environment to prevent impact on live systems. Reconnais-
sance utilized tools such as Nmap (Liao et al., 2020) and Whois (Velu and
Beggs, 2019) to gather infrastructure details. Nmap was executed to identify
open ports (e.g., 80 for HTTP, 3306 for MySQL), services. Whois lookup
provided domain registration details, limited to localhost in this test environ-
ment. Relevant stakeholders, including the academic supervisor and peers,
were formally notified to ensure transparency and alignment with research
objectives. This phase facilitated a thorough understanding of the target
system, enabling precise and authorized penetration testing.

7.2 Execution

The execution phase involved active penetration testing to identify and ex-
ploit SQL injection vulnerabilities, employing a blend of automated and
manual techniques aligned with industry standards. Testing targeted the
e-commerce website’s vulnerable pages, particularly the product detail page
(detail.php), which processed user inputs via GET parameters (e.g., pro id).
Automated scanning was conducted using OWASP ZAP (Nájera-Gutiérrez,
2016), configured for a comprehensive scan to detect potential vulnerabilities,
identifying a SQL injection flaw classified under CWE-89 (MITRE Corpo-

11

Figure 2: CWE-89 (SQL Injection) (MITRE Corporation, 2021).

ration, 2021). To validate this, sqlmap was utilized to perform targeted
SQL injection attacks, enumerating databases, extracting table structures,
and retrieving sensitive data such as admin credentials and customer de-
tails (Gunawan et al., 2018). Manual testing supplemented automation by
injecting payloads such as OR 1 = 1 into input fields to observe database
responses, confirming unauthorized data access. The approach began with
a black-box perspective, transitioning to grey-box testing with limited code
access to simulate realistic attack scenarios, ensuring robust vulnerability
detection (Hussain and Singh, 2015).

7.2.1 Vulnerabilities Identified

The penetration testing conducted on the e-commerce website revealed criti-
cal SQL injection vulnerabilities that enabled unauthorized access to sensitive
database contents, posing severe risks to data integrity, confidentiality, and
organizational reputation. The primary vulnerability was identified in the
website’s product detail page (detail.php), where user inputs via GET pa-
rameters (e.g., pro id) were processed without proper sanitization or param-
eterization, allowing malicious SQL queries to be injected into the back-end
MySQL database(Grippa and Kuzmichev, 2021). Automated scanning with
OWASP ZAP (Nájera-Gutiérrez, 2016) detected this flaw, classifying it under
CWE-89 (SQL Injection) (MITRE Corporation, 2021), indicating the po-
tential for attackers to manipulate database queries. Subsequent validation
using sqlmap (Gunawan et al., 2018) confirmed the vulnerability’s severity,
as commands successfully enumerated the database schema, listing databases

12

such as ecom, and extracted table structures and sensitive data, including
administrator credentials (e.g., usernames and passwords from the admins
table), customer personal information (e.g., names and email addresses from
the customers table), and billing details (e.g., payment information from
the billing details table). Manual testing further corroborated these find-
ings by injecting payloads like ’ OR 1=1 – into input fields, which bypassed
authentication mechanisms and retrieved unauthorized data, demonstrating
the absence of input validation or query escaping mechanisms.

The vulnerability stemmed from insecure coding practices, specifically
the direct concatenation of user inputs into SQL queries, which facilitated
arbitrary query execution (Neumann and Kemper, 2015). This flaw enabled
potential data theft, as attackers could exfiltrate entire database contents,
compromising user privacy and organizational assets. Additionally, the ex-
posure of sensitive information risked loss of confidentiality, as unauthorized
access to customer and admin data could lead to exploitation in phishing
campaigns or identity theft. The analysis underscores that these vulnerabili-
ties could precipitate reputational harm, as public disclosure of a data breach
would erode customer trust, diminish platform engagement, and invite nega-
tive media scrutiny, potentially leading to loss of business and increased costs
for remediation efforts.

Figure 3: SQL Vulnerability Discovered on ’details.php’ page.

13

Figure 4: Dumping the ‘billing details‘ table.

7.3 Patching

The patching phase focused on remediating identified SQL injection vulner-
abilities through secure code modifications, deployment, and rigorous verifi-
cation to enhance website security. The vulnerability was traced to the de-
tail.php page, where unsanitized GET parameters were directly concatenated
into SQL queries. Remediation involved implementing prepared statements
and parameter binding using PHP’s PDO library (Kromann, 2018), replac-
ing vulnerable code with sanitized queries. Error handling was enhanced to
prevent information leakage by incorporating custom error messages. The
patched code was deployed to the XAMPP server, overwriting original files.
Verification entailed rescanning the website with OWASP ZAP, which re-
ported no SQL injection vulnerabilities, and re-running sqlmap with identical
attack parameters, confirming the absence of exploitable flaws. The patch-
ing adhered to secure coding practices, including input validation and query
parameterization, consistent with OWASP guidelines. This phase mitigated
risks of data theft, confidentiality loss, and reputational harm.

8 Results and Discussion

This section presents the findings from the penetration testing, including
identified vulnerabilities, exploitation outcomes, and the effectiveness of mit-
igation strategies.

14

Data Theft
Attackers may get access to and steal sensitive data from databases

through SQL injection attacks. An e-commerce website that keeps consumer
information, such as credit card information, is susceptible to SQL injection,
for instance. A hacker who is successful in exploiting the flaw can retrieve
credit card details from the database. Both the users who are impacted and
the owner of the website could suffer considerable financial damages if this
stolen data is utilised for financial theft or sold on the dark web.

Loss of Confidentiality
By evading access rules and obtaining unauthorised data, SQL injection

attacks might jeopardise the confidentiality of sensitive data. Think about
a medical website that maintains patient medical records. A SQL injection
vulnerability allows an attacker to get access to and retrieve private medical
data, including diagnosis, treatments, and personal information. In addition
to breaking privacy laws, this violation of confidentiality may also damage
peoples’ trust in the website and the healthcare provider.

Reputational Harm
The penetration testing of a PHP and SQL-based e-commerce website

revealed that SQL injection vulnerabilities significantly jeopardize organi-
zational reputation by undermining user trust and fostering adverse public
sentiment following a data breach. The testing process exposed exploitable
weaknesses in the website’s product detail page, enabling unauthorized re-
trieval of sensitive information, including customer and admin credentials.
This vulnerability could facilitate the public dissemination of compromised
data, such as names, email addresses, and billing details, through illicit chan-
nels or online platforms, intensifying reputational damage. Such incidents
erode stakeholder confidence, as customers and partners may view the or-
ganization as deficient in protecting critical data, prompting a shift toward
competitors with robust security frameworks. The analysis underscores that
reputational harm manifests as declining customer loyalty, reduced platform
engagement, and lost business prospects. Moreover, negative media cover-
age and amplified social media discourse can prolong the reputational fallout,
complicating efforts to restore brand integrity. The investigation further iden-
tifies indirect financial burdens, encompassing expenses for public relations
campaigns, customer remediation, and enhanced security measures to rebuild
trust. To counter these risks, the research advocates for proactive security
strategies, including routine penetration testing and secure coding practices,
such as parameterized queries and input sanitization, to eliminate vulnera-

15

bilities that precipitate breaches and their reputational repercussions. These
findings resonate with established cybersecurity scholarship, which recognizes
reputational harm as a pivotal consequence of data breaches, reinforcing the
imperative for comprehensive defenses against SQL injection attacks in web
applications.

9 Mitigation Effectiveness

The remediation process, detailed in the patching phase, utilized code saniti-
zation and parameter binding to address vulnerabilities in the product detail
page, where unsanitized GET parameters enabled malicious query injection.
An updated vulnerability scan, conducted post-remediation using OWASP
ZAP and sqlmap, confirmed the absence of SQL injection flaws, validat-
ing the effectiveness of these measures in preventing unauthorized database
access. This outcome fulfills the objective of implementing and assessing
secure coding practices to mitigate SQL injection risks. To sustain and en-
hance website security, several best practices are recommended, informed by
the assessment’s findings and aligned with industry standards:

1. Input Validation: Robust mechanisms should validate user inputs for
type, length, and format before database interaction, employing filter-
ing techniques to detect and block malicious content, thereby reducing
the risk of injection-based attacks.

2. Parameterized Queries: Prepared statements or parameterized queries
(Downey and Fellows, 2012) should be adopted to separate SQL code
from user inputs, automatically escaping inputs as data rather than
executable code, effectively neutralizing SQL injection attempts.

3. Least Privilege Principle: Database access should adhere to the
principle of least privilege (Jero et al., 2021), granting users only the
permissions necessary for their roles, minimizing potential damage from
compromised accounts.

4. Regular Patching and Updates: Software components, including
frameworks and libraries, must be kept current with security patches to
address known vulnerabilities that could be exploited for SQL injection
attacks.

16

5. Web Application Firewall (WAF): Deploying a WAF provides an
additional defensive layer, capable of identifying and blocking mali-
cious SQL queries before they reach the database, enhancing protection
against injection attempts (Prandl et al., 2015).

6. Security Testing and Code Reviews: Routine penetration test-
ing and code reviews should be conducted to identify and remediate
vulnerabilities, ensuring ongoing detection of SQL injection and other
security flaws.

7. Monitoring and Logging: Comprehensive monitoring and logging
systems should track anomalous activities, such as SQL injection at-
tempts, enabling rapid detection and response to security incidents.

8. Security Incident Response Plan: A well-defined incident response
plan should outline procedures for containment, investigation, commu-
nication, and recovery in the event of a SQL injection breach, ensuring
effective crisis management.

9. Continuous Security Assessment: An ongoing commitment to se-
curity requires regular audits, threat monitoring, and adaptation of
practices to address evolving risks, maintaining resilience against SQL
injection threats.

These strategies collectively address the identified vulnerabilities, which risked
data theft, loss of confidentiality, and reputational harm, by establishing a
(Hahn et al., 2015). The successful remediation and proposed recommen-
dations underscore the importance of integrating technical, procedural, and
strategic measures to achieve sustained mitigation effectiveness against SQL
injection vulnerabilities in web applications.

10 Limitations of this Research

This research acknowledges several constraints that shaped its scope and gen-
eralizability, primarily due to the focused nature of the penetration testing.
The assessment targeted a single, locally developed e-commerce website built
with PHP and MySQL, hosted on a XAMPP server (Dvorski, 2007) in a con-
trolled environment, which restricted the applicability of findings to diverse

17

web applications employing other technologies, such as Python, Java, Post-
greSQL, or Oracle. The isolated testing environment, devoid of real-world
network conditions like variable latency or packet loss, limited the evaluation
of vulnerabilities under operational scenarios. Additionally, the reliance on a
limited toolset—OWASP ZAP (Nájera-Gutiérrez, 2016), sqlmap (Gunawan
et al., 2018), and Nmap (Liao et al., 2020)—introduced potential biases, as
alternative tools like Burp Suite (Wear, 2018) or Acunetix (Labiad et al.,
2022) might have identified additional vulnerabilities or provided different
insights into SQL injection risks.

Time and resource constraints curtailed the depth of manual testing, re-
sulting in a heavy dependence on automated scans, which may have over-
looked sophisticated attack vectors requiring advanced manual exploitation
techniques. This research focused exclusively on SQL injection vulnerabil-
ities, neglecting other prevalent web application threats, such as cross-site
scripting (XSS) or cross-site request forgery (CSRF), which could interact
with SQL injection risks in complex attack scenarios (Farah et al., 2016).
The absence of real-world user interaction data hindered the simulation of
dynamic attack patterns, as the website was tested in a static context without
live traffic. Moreover, organizational and human factors, such as developer
training or security policy implementation, critical for sustaining mitigation
efforts, were not explored, underscoring the need for broader and more di-
verse testing frameworks to enhance the robustness of the findings.

11 Future Work

To address the identified limitations and advance web application security,
this research proposes expanding the scope of penetration testing to encom-
pass a wider range of web applications, incorporating diverse programming
languages, frameworks, and database systems to enhance the generalizability
of findings. Testing cloud-based applications and distributed architectures
under real-world network conditions, such as latency and load balancing, is
suggested to better simulate vulnerability exploitation scenarios. Integrating
additional security tools, such as Burp Suite (Wear, 2018), Nessus (Kushe,
2017), or commercial scanners, is recommended to provide a more compre-
hensive vulnerability assessment, mitigating biases.

18

12 Conclusion

The application of automated tools like OWASP ZAP and sqlmap, com-
plemented by manual testing, confirmed the presence of exploitable flaws,
fulfilling the objective of conducting a thorough security assessment. The
remediation process, involving code sanitization and parameter binding with
PHP’s PDO library, effectively eliminated these vulnerabilities, as validated
by subsequent scans, underscoring the efficacy of secure coding practices in
preventing SQL injection attacks.

The findings contribute to the broader field of web application security by
providing practical insights into the detection and mitigation of SQL injection
vulnerabilities, aligning with the research’s aim to enhance website security.
The implementation of best practices, such as input validation, parameter-
ized queries, and the least privilege principle, offers a robust framework for
developers and security practitioners to safeguard web applications. These
strategies address not only technical vulnerabilities but also organizational
risks, such as reputational damage from data breaches, reinforcing the need
for proactive security measures. By comparing the assessment’s outcomes
with existing literature, this research validates the continued relevance of
SQL injection as a prevalent threat and highlights the limitations of relying
solely on automated tools, advocating for a balanced approach integrating
manual expertise.

The research’s practical application of penetration testing tools and se-
cure coding techniques provides a valuable model for real-world security as-
sessments, offering actionable recommendations for developers, security pro-
fessionals, and organizations. By addressing SQL injection vulnerabilities,
this research advances the discourse on web application security, advocating
for continuous assessment and adaptation to evolving cyber threats to ensure
resilient and trustworthy digital systems.

References

[Aliero et al.(2020)] M. S. Aliero, I. Ghani, K. N. Qureshi, and M. F. A.
Rohani. 2020. An algorithm for detecting SQL injection vulnerability
using black-box testing. Journal of Ambient Intelligence and Humanized
Computing 11, 1 (2020), 249–266. DOI: 10.1007/s12652-019-01234-6

19

10.1007/s12652-019-01234-6

[Alomari and Jerisat(2021)] R. Alomari and R. Jerisat. 2021. Detecting SQL
Injection Attacks Using Machine Learning Algorithms. International
Journal of Advanced Computer Science and Applications 12, 4 (2021),
230–234. DOI: 10.14569/IJACSA.2021.0120429

[Al-Saleh and Saito(2021)] M. Al-Saleh and T. Saito. 2021. A Framework for
Automated SQL Injection Testing of Web Applications Using Machine
Learning. IEEE Access 9 (2021), 7370–7383. DOI: 10.1109/ACCESS.
2020.3048745

[Appelt et al.(2015)] D. Appelt, C. D. Nguyen, and L. Briand. 2015. Behind
an Application Firewall, Are We Safe from SQL Injection Attacks? In
2015 IEEE 8th International Conference on Software Testing, Verifi-
cation and Validation (ICST). IEEE, 1–10. DOI: 10.1109/ICST.2015.
7102603

[Charania and Vyas(2016)] S. Charania and V. Vyas. 2016. SQL Injection
Attack: Detection and Prevention. International Research Journal of
Engineering and Technology (2016), 2395–0056.

[Chen et al.(2020)] Y. Chen, C. Liu, X. Wang, and Y. Wu. 2020. SQL Injec-
tion Detection Based on Deep Belief Network with Transfer Learning.
IEEE Access 8 (2020), 186771–186778. DOI: 10.1109/ACCESS.2020.
3029745

[Downey and Fellows(2012)] R. G. Downey and M. R. Fellows. 2012. Param-
eterized Complexity. Springer Science & Business Media. ISBN 978-1-
4612-0798-6

[Dvorski(2007)] D. D. Dvorski. 2007. Installing, configuring, and developing
with Xampp. Skills Canada 492 (2007).

[Farah et al.(2016)] T. Farah, M. Shojol, M. Hassan, and D. Alam. 2016.
Assessment of Vulnerabilities of Web Applications of Bangladesh: A
Case Study of XSS and CSRF. In 2016 Sixth International Conference
on Digital Information and Communication Technology and its Applica-
tions (DICTAP). IEEE, 74–78. DOI: 10.1109/DICTAP.2016.7544013

[Grippa and Kuzmichev(2021)] V. M. Grippa and S. Kuzmichev. 2021.
Learning MySQL. O’Reilly Media, Inc. ISBN 978-1-4920-8592-8

20

10.14569/IJACSA.2021.0120429
10.1109/ACCESS.2020.3048745
10.1109/ACCESS.2020.3048745
10.1109/ICST.2015.7102603
10.1109/ICST.2015.7102603
10.1109/ACCESS.2020.3029745
10.1109/ACCESS.2020.3029745
10.1109/DICTAP.2016.7544013

[Gunawan et al.(2018)] T. S. Gunawan, M. K. Lim, M. Kartiwi, N. A. Malik,
and N. Ismail. 2018. Penetration testing using Kali Linux: SQL injec-
tion, XSS, Wordpress, and WPA2 attacks. Indonesian Journal of Elec-
trical Engineering and Computer Science 12, 2 (2018), 729–737. DOI:
10.11591/ijeecs.v12.i2.pp729-737

[Hahn et al.(2015)] A. Hahn, R. K. Thomas, I. Lozano, and A. Cardenas.
2015. A multi-layered and kill-chain based security analysis framework
for cyber-physical systems. International Journal of Critical Infrastruc-
ture Protection 11 (2015), 39–50. DOI: 10.1016/j.ijcip.2015.08.001

[Hasan et al.(2019)] M. Hasan, Z. Balbahaith, and M. Tarique. 2019. Detec-
tion of SQL Injection Attacks: A Machine Learning Approach. In 2019
International Conference on Electrical and Computing Technologies
and Applications (ICECTA). IEEE, 1–6. DOI: 10.1109/ICECTA48151.
2019.8959710

[Hlaing and Khaing(2020)] Z. C. S. S. Hlaing and M. Khaing. 2020. A De-
tection and Prevention Technique on SQL Injection Attacks. In 2020
IEEE Conference on Computer Applications (ICCA). IEEE, 1–6. DOI:
10.1109/ICCA49450.2020.9098401

[Hussain and Singh(2015)] T. Hussain and S. Singh. 2015. A Comparative
Study of Software Testing Techniques Viz. White Box Testing Black
Box Testing and Grey Box Testing. IJAPRR (2015), 2350–1294.

[Jero et al.(2021)] S. Jero, J. Furgala, R. Pan, P. K. Gadepalli, A. Clifford, B.
Ye, R. Khazan, B. C. Ward, G. Parmer, and R. Skowyra. 2021. Practical
Principle of Least Privilege for Secure Embedded Systems. In 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 1–13. DOI: 10.1109/RTAS52030.2021.00008

[Katole et al.(2018)] R. A. Katole, S. S. Sherekar, and V. M. Thakare. 2018.
Detection of SQL Injection Attacks by Removing the Parameter Val-
ues of SQL Query. In 2018 2nd International Conference on Inventive
Systems and Control (ICISC). IEEE, 736–741. DOI: 10.1109/ICISC.
2018.8398892

[Kromann(2018)] F. M. Kromann. 2018. Introducing PDO. In Beginning
PHP and MySQL: From Novice to Professional. Apress, Berkeley, CA,
663–688. ISBN 978-1-4302-6043-1

21

10.11591/ijeecs.v12.i2.pp729-737
10.1016/j.ijcip.2015.08.001
10.1109/ICECTA48151.2019.8959710
10.1109/ICECTA48151.2019.8959710
10.1109/ICCA49450.2020.9098401
10.1109/RTAS52030.2021.00008
10.1109/ICISC.2018.8398892
10.1109/ICISC.2018.8398892

[Kumar et al.(2022)] R. Kumar, N. Arora, T. Gera, A. Jain, and D. Thakur.
2022. Empirical Methods, Anomaly Detection and Preventive Measures
of Web Attacks. In 2022 10th International Conference on Reliability,
Infocom Technologies and Optimization (Trends and Future Directions)
(ICRITO). IEEE, 1–5. DOI: 10.1109/ICRITO56286.2022.9965050

[Kushe(2017)] R. Kushe. 2017. Comparative Study of Vulnerability Scanning
Tools: Nessus vs Retina. Security & Future 1, 2 (2017), 69–71.

[Labiad et al.(2022)] B. Labiad, M. Tanana, A. Laaychi, and A. Lyhyaoui.
2022. A Comparative Study of Vulnerabilities Scanners for Web Ap-
plications: Nexpose vs Acunetix. In International Conference on Ad-
vanced Intelligent Systems for Sustainable Development. Springer Na-
ture Switzerland, Cham, 107–117. DOI: 10.1007/978-3-031-26300-2_
10

[Liao et al.(2020)] S. Liao, C. Zhou, Y. Zhao, Z. Zhang, C. Zhang, Y. Gao,
and G. Zhong. 2020. A Comprehensive Detection Approach of Nmap:
Principles, Rules and Experiments. In 2020 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery (Cy-
berC). IEEE, 64–71. DOI: 10.1109/CyberC49757.2020.00019

[MITRE Corporation(2021)] MITRE Corporation. 2021. CWE-89: Im-
proper Neutralization of Special Elements used in an SQL Com-
mand (’SQL Injection’). Available at https://cwe.mitre.org/data/

definitions/89.html

[Nasereddin et al.(2021)] M. Nasereddin, A. ALKhamaiseh, M. Qasaimeh,
and R. Al-Qassas. 2021. A Systematic Review of Detection and Preven-
tion Techniques of SQL Injection Attacks. Information Security Jour-
nal: A Global Perspective (2021), 1–14. DOI: 10.1080/19393555.2021.
1904248

[Nájera-Gutiérrez(2016)] G. Nájera-Gutiérrez. 2016. Kali Linux Web Pene-
tration Testing Cookbook. Packt Publishing Ltd. ISBN 978-1-78539-291-
7

[Neumann and Kemper(2015)] T. Neumann and A. Kemper. 2015. Unnest-
ing Arbitrary Queries. In Datenbanksysteme für Business, Technologie
und Web (BTW 2015). Gesellschaft für Informatik eV, 383–402.

22

10.1109/ICRITO56286.2022.9965050
10.1007/978-3-031-26300-2_10
10.1007/978-3-031-26300-2_10
10.1109/CyberC49757.2020.00019
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
10.1080/19393555.2021.1904248
10.1080/19393555.2021.1904248

[Prandl et al.(2015)] S. Prandl, M. Lazarescu, and D. S. Pham. 2015. A
Study of Web Application Firewall Solutions. In Information Systems
Security: 11th International Conference, ICISS 2015, Kolkata, India,
December 16-20, 2015. Proceedings 11. Springer International Publish-
ing, 501–510. DOI: 10.1007/978-3-319-26961-0_29

[Rahman et al.(2015)] A. Rahman, M. M. Islam, and A. Chakraborty. 2015.
Security Assessment of PHP Web Applications from SQL Injection At-
tacks. Journal of Next Generation Information Technology 6, 2 (2015),
56.

[Sarjitus and El-Yakub(2019)] O. Sarjitus and M. B. El-Yakub. 2019. Neu-
tralizing SQL Injection Attack on Web Application Using Server Side
Code Modification. International Journal of Scientific Research in Com-
puter Science, Engineering and Information Technology 5, 3 (2019).

[Tang et al.(2020)] P. Tang, W. Qiu, Z. Huang, H. Lian, and G. Liu.
2020. Detection of SQL Injection Based on Artificial Neural Net-
work. Knowledge-Based Systems 190 (2020), 105528. DOI: 10.1016/
j.knosys.2020.105528

[Tripathy et al.(2020)] D. Tripathy, R. Gohil, and T. Halabi. 2020. Detect-
ing SQL Injection Attacks in Cloud SaaS Using Machine Learning.
In 2020 IEEE 6th International Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE International Conference on High Per-
formance and Smart Computing, (HPSC) and IEEE International Con-
ference on Intelligent Data and Security (IDS). IEEE, 145–150. DOI:
10.1109/BigDataSecurity-HPSC-IDS49724.2020.00035

[Velu and Beggs(2019)] V. K. Velu and R. Beggs. 2019.Mastering Kali Linux
for Advanced Penetration Testing: Secure Your Network with Kali Linux
2019.1 – The Ultimate White Hat Hackers’ Toolkit. Packt Publishing
Ltd. ISBN 978-1-78934-056-3

[Wear(2018)] S. Wear. 2018. Burp Suite Cookbook: Practical Recipes to Help
You Master Web Penetration Testing with Burp Suite. Packt Publishing
Ltd. ISBN 978-1-78847-623-2

[Yip et al.(2021)] K. Y. Yip, K. H. Looi, and K. L. A. Yau. 2021. An
Adaptive Learning-Based SQL Injection Detection System with En-

23

10.1007/978-3-319-26961-0_29
10.1016/j.knosys.2020.105528
10.1016/j.knosys.2020.105528
10.1109/BigDataSecurity-HPSC-IDS49724.2020.00035

semble Feature Selection. IEEE Access 9 (2021), 105134–105145. DOI:
10.1109/ACCESS.2021.3097741

[Zhang(2019)] K. Zhang. 2019. A Machine Learning Based Approach to Iden-
tify SQL Injection Vulnerabilities. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
1286–1288. DOI: 10.1109/ASE.2019.00136

[Zhang et al.(2021)] Q. Zhang, Y. Huang, J. Li, M. Li, and Q. Jiang. 2021.
An Intelligent SQL Injection Detection Method Based on Machine
Learning.Mathematical Problems in Engineering 2021 (2021), 1–9. DOI:
10.1155/2021/6682970

24

10.1109/ACCESS.2021.3097741
10.1109/ASE.2019.00136
10.1155/2021/6682970

	Introduction
	Problem Statement
	Aims
	Objectives
	Research Questions
	Literature Review & Gap Analysis
	Methodology
	Preparation
	Execution
	Vulnerabilities Identified

	Patching

	Results and Discussion
	Mitigation Effectiveness
	Limitations of this Research
	Future Work
	Conclusion

