
ar
X

iv
:2

50
6.

17
23

6v
1

 [
cs

.C
R

]
 4

 J
un

 2
02

5

DESIGN, IMPLEMENTATION, AND ANALYSIS OF

FAIR FAUCETS FOR BLOCKCHAIN ECOSYSTEMS

by

Serdar Metin

B.A., Psychology, Boğaziçi University, 2007

M.A., Cognitive Science, Boğaziçi University, 2013

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2022

https://arxiv.org/abs/2506.17236v1

i

ABSTRACT

DESIGN, IMPLEMENTATION, AND ANALYSIS OF

FAIR FAUCETS FOR BLOCKCHAIN ECOSYSTEMS

The present dissertation addresses the problem of fairly distributing shared resources

in non-commercial blockchain networks. Blockchains are distributed systems that order and

timestamp records of a given network of users, in a public, cryptographically secure, and

consensual way. The records, which may in kind be events, transaction orders, sets of rules

for structured transactions etc. are placed within well-defined datastructures called blocks,

and they are linked to each other by the virtue of cryptographic pointers, in a total order-

ing which represents their temporal relations of succession. The ability to operate on the

blockchain, and/or to contribute a record to the content of a block are shared resources of

the blockchain systems. In commercial networks, these resources are exchanged in return

for fiat money, and consequently, fairness is not a relevant problem in terms of computer

engineering. In non-commercial networks, however, monetary solutions are not available,

by definition. The present non-commercial blockchain networks (e.g. test networks such

as Ropsten or Rinkeby, or academic networks such as Bloxberg) employ trivial distribution

mechanisms called faucets, which offer fixed amounts of free tokens (called cryptocurren-

cies) specific to the given network. This mechanism, although simple and efficient, is prone

to denial of service (DoS) attacks and cannot address the fairness problem. In the present

dissertation, the faucet mechanism is adapted for fair distribution, in line with Max-min

Fairness scheme. In total, we contributed 6 distinct Max-min Fair algorithms as efficient

blockchain faucets. The algorithms we contribute are resistant to DoS attacks, low-cost in

terms of blockchain computation economics, and they also allow for different user weighting

policies. While 4 of the contributed algorithms provide scalability to unlimited number of

users, 2 of them account for both short term and long term fairness.

ii

ÖZET

BLOKZİNCİRİ EKOSİSTEMLERİ İÇİN ADİL MUSLUK

TASARIM, UYGULAMA VE ANALİZİ

Bu çalışma, ticari olmayan blokzinciri ağlarında, paylaşımlı kaynakların adil dağıtımı

sorununa hitap etmektedir. Blokzincirleri, belirli bir kullanıcı ağının kayıtlarını kamusal,

kriptografik olarak güvenli ve uzlaşımsal yolla sıralamaya ve zaman etiketi vermeye yarayan

dağıtık sistemlerdir. Olay, işlem emri, yapılandırılmış işlem kuralları vb. cinsinden olabilen

bu kayıtlar, blok denilen iyi-tanımlanmış veriyapıları içerisine konur ve bu bloklar krip-

tografik göstergeler aracılığıyla, zamansal öncelik-sonralık ilikşisini temsil eden bir tümel

sıralama içerisinde birbirlerine bağlanır. Blokzincirini işletmek ve/ya bir blokun içeriğine

kayıt eklemek, blokzinciri sistemlerinin paylaşımlı kaynaklarıdır. Ticari ağlarda bu kay-

naklar itibari para birimleri karşılığında alınıp satılabilmektedir, dolayısıyla bu ağlarda dağı-

lımın adaleti bilgisayar mühendisliği alanı içinde tanımlanabilecek bir problem değildir. Öte

yandan, tanımı gereği, ticari olmayan ağlarda parasal çözümler kullanılamaz. Mevcut ticari

olmayan blokzinciri ağları (örn. Ropsten ya da Rinkeby gibi deneme ağları) bu dağıtımı mus-

luk adı verilen basit mekanizmalarla sağlamaktadır. Musluklar, belirli bir sayıda, ağa özgü

(kriptoparabirimi denen) andaçları kullanıcılara bedelsiz dağıtan mekanizmalardır. Basit

ve etkili mekanizmalar olmakla birlikte, musluklar hizmet dışı bırakma (DoS) saldırılarına

açıktırlar ve adalet sorununa hitap etmemektedirler. Mevcut tezde musluk mekanizması,

dağıtımın adaleti sorununa da hitap edecek şekilde Max-min adalet şeması uyarınca adapte

edilmiştir. Toplamda, Max-min adalet şemasına uygun ve birbirinden farklı algoritmalarla

çalışan 6 adet blokzinciri musluğu, literatüre katkı olarak sunulmuştur. Sunulan bu algo-

ritmalar hizmet dışı bırakma saldırılarına karşı dirençli ve blokzinciri hesaplama ekonomisi

uyarınca düşük maliyetli olmakla beraber, farklı kullanıcı ağırlıklandırma politikalarına elve-

rişlidir. Sunulan algoritmalardan dördü sınırsız sayıda kullanıcı için destek sağlarken, ikisi

kısa dönem yanı sıra uzun dönem adaleti gereksinimlerine de cevap verebilmektedir.

iii

TABLE OF CONTENTS

ABSTRACT . i

ÖZET . ii

LIST OF FIGURES . v

LIST OF TABLES . vi

LIST OF SYMBOLS . vii

LIST OF ACRONYMS/ABBREVIATIONS . x

1. INTRODUCTION . 1

1.1. Blockchain Mechanics . 2

1.2. Max-min Fairness Distribution Scheme 5

1.3. Contributions to the Literature . 9

1.4. Dissertation Outline . 12

2. RELATED WORK . 14

3. PROBLEM STATEMENT AND TESTING ENVIRONMENT 20

3.1. Testing Environment . 21

3.2. Timing and Synchronisation . 22

4. MAX-MIN FAIRNESS ON BLOCKCHAIN 25

4.1. Implementation . 25

4.1.1. Conventional Max-min Fairness 26

4.1.2. Autonomous Max-min Fairness 27

4.1.3. Weighted Autonomous Max-min Fairness 33

4.2. Procedure and Parameters . 35

4.2.1. Timing and Synchronisation . 36

4.3. Results . 36

4.3.1. CMF Results . 37

4.3.2. AMF and WAMF Results . 38

5. MAX-MIN FAIRNESS RESTRUCTURED . 41

5.1. Present Models . 41

5.1.1. Quantized Max-min Fairness Model 43

5.1.2. Weighted Quantized Max-min Fairness Model 44

iv

5.1.3. Simulated Max-min Fairness Model 46

5.1.4. Weighted Simulated Max-min Fairness Model 47

5.1.5. Weighting Policy . 48

5.2. Implementation . 48

5.2.1. Quantized Max-min Fairness . 49

5.2.2. Simulated Max-min Fairness . 53

5.3. Procedure and Parameters . 57

5.4. Results . 58

5.4.1. QMF and SMF Results . 58

6. DISCUSSION . 62

7. CONCLUSION . 69

REFERENCES . 71

APPENDIX A: AMF Pseudocode . 77

APPENDIX B: WQMF Pseudocode . 79

APPENDIX C: WSMF Pseudocode . 81

v

LIST OF FIGURES

1.1 Blockchain Diagram . 3

1.2 The operation of Max-min Fairness Algorithm 6

4.1 Epochal Layout of Matching Demands and Claims. 29

5.1 SMF Operation Diagram . 48

vi

LIST OF TABLES

1.1 Comparison of Contributed Algorithms 2

1.2 An exemplary distribution according to Max-min Fairness scheme . . 7

4.1 An exemplary distribution carried out with AMF 28

4.2 Symbols used in Algorithm 2 and their meanings 32

4.3 The values used in the tests for AMF and WAMF. 37

4.4 Average gas costs for Insert and Delete Minimum functions 38

4.5 Average and total gas costs of W/AMF demand and claim functions. . 39

4.6 The cost of the claim function over rounds (n = 500). 39

5.1 QMF Procession Example (c = 50) 44

5.2 The parameters and their values used in the tests for QMF and WQMF. 58

5.3 The parameters and their values used in the tests for SMF and WSMF. 59

5.4 Maximum Gas Cost for Update State 60

5.5 Average Gas Cost for Demand . 60

5.6 Average Gas Cost for Claim . 60

vii

LIST OF SYMBOLS

bu Resource balance of user u, bu ∈ N, u ∈ U

BlockNumber Current block number

c The available capacity, initially 0, incremented by C every epoch

Capacity see c

C Amount of resource that is added to c at every epoch, C ∈ Z+

dtu Total demand volume of user u, including by then present demand

dui Demand of user u stored on heap Di

Di Demand heap i, i ∈ {0, 1}

Epoch Epoch number

EpochCapacity see C

EpochSpan Number of blocks in an epoch

i Index variable

n Number of users, n = |U |

Offset The block number at which the contract was deployed

p Decimal precision, internally kept for float variables

viii

ResetEpoch The epoch at which the total weight was last reset

Round Round number

RoundSpan Number of blocks in a round

s Unit share

su User share of user u

selector Variable for pointing out the active buffer in circular buffers

selector ∈ {0, 1}

TotalWeight[selector] Total weight for even and odd epochs

u User index variable, id, u ∈ [1, n]

U Set of users U = {u1, . . . , un}

User User object, User ∈ U

User.balance Resource balance of user u, User.balance ∈ N+

User.claimEpoch The last epoch user u made a claim

User.claimRound The last round user u made a claim

User.demand[selector]Demand of user u in buffer selector

User.dem..Epoch[sel..]The last epoch user u made a demand, selector ∈ {0, 1}

ix

User.weight Weight of user User

V olume Demand volume

x

LIST OF ACRONYMS/ABBREVIATIONS

AMF Autonomous Max-min Fairness

CMF Conventional Max-min Fairness

MF Max-min Fairness

QMF Quantized Max-min Fairness

p2p Peer-to-Peer

PGP Pretty Good Privacy

PoA Proof of Authority

PoS Proof of Stake

PoW Proof of Work

SMF Simulated Max-min Fairness

WAMF Weighted Autonomous Max-min Fairness

WCMF Weighted Conventional Max-min Fairness

WMF Weighted Max-min Fairness

WQMF Weighted Quantized Max-min Fairness

WSMF Weighted Simulated Max-min Fairness

1

1. INTRODUCTION

In 2008 an anonymous author, or a group of authors, published a whitepaper under the

pseudonym “Satoshi Nakamoto” describing a distributed system of digital money, named by

the author(s) Bitcoin [1]. For the first few years it was of interest only to a limited number

of technology enthusiasts, futurists, science-fiction fans, and probably to a lesser extent to

mathematicians and engineers specialised in the area. After, however, slightly more than a

decade now, it is a major financial instrument employed throughout the world. Not only is

it a successful financial instrument, its design inspired other systems to come forth, leading

to an engineering subfield of its on: blockchains. The present dissertation is situated within

this subfield.

Departing from a well studied problem in the computer science literature (i.e. dis-

tribution of shared resources), we examined the blockchain environments, adapted a con-

ventional solution, Max-min Fairness (MF), to this novel context, and proposed alternatives

conditioned on different premises, and serving different use cases. We report experimental

results showing that the conventional algorithm cannot be deployed per se in the blockchain

context. Our adaptations and alterations, on the other hand, work without problems and scale

for wide use cases.

The solutions we propose bear relative advantages to each other, and each one is op-

timal for a different condition. A comparison of Autonomous Max-min Fairness (AMF),

Quantized Max-min Fairness (QMF), Simulated Max-min Fairness (SMF) and their weighted

counterparts (with leading ‘W’s), as we name them, can be seen in Table 1.1. While AMF is

the one with the working principles most similar to the conventional Max-min Fairness algo-

rithm and works on no restrictions, the remaining two (and their weighted versions, likewise)

bear an advantage of completing the distribution in fewer transactions, in return for certain

restrictions. While QMF operates under the assumption of accepting demand volumes only

2

Table 1.1: Comparison of Contributed Algorithms

Claim Rounds Demand Volume Number of Users

W/AMF Multiple Unrestricted Unrestricted

W/QMF Single Quantized Unrestricted

W/SMF Single Unrestricted Limited

from a predefined numeric interval, the number of users SMF can support is limited.

1.1. Blockchain Mechanics

Although it is possible to review blockchains from various differing standpoints, the

present dissertation takes a rather technical/engineering point of view. According to this, a

blockchain is a distributed datastructure, which may be used in various different contexts to

serve a number of diverse functions. As the name implies, it is a chain of blocks bound to

each other by a specific mathematical method, called proofing. These proofs, which may

be of a number of different kinds (e.g. Proof-of-Work, Proof-of-Stake, Proof-of-Authority),

serve as pointers among the blocks, as well as serving the purpose of establishing consensus

among the users for the content of the next block to be appended to the chain in the course

of its growth.

The blocks referred to here are datastructures which organise records generated by

the users within the network. It consists of a header describing the metadata (e.g. time of

creation, address of the creator), and trailed to that ordered records from the users (see Figure

1.1). Each block refers to another unique block as its predecessor in the chain. It is a total

ordering in which succession-precedence relations represent the temporal order of the events

as they are agreed upon by the user community. Each user keeps a copy of the blockchain

in her local host, and this way the content of the blocks in the chain cannot be altered or

deleted once they become a part of the blockchain1 , which is commonly referred to as the

immutablity property of the blockchains.

1For a given block to become a part of the blockchain is not a straightforward concept. It necessitates a
number of younger blocks to follow a given block, in order for the latter to be certain to reside in the chain with
overwhelming probability. The reader may refer to [1] for a detailed analysis.

3

Figure 1.1: Blockchain Diagram

A blockchain is operated on by means of a blockchain system, which is a piece of soft-

ware, a virtual machine developed and maintained collectively by a community of users. A

blockchain ecosystem, in turn, is a community of users running the same blockchain system

on their local host and synchronising with each other over a p2p network. A host with a

blockchain system as a p2p client on is called a node, and collectively the nodes govern the

procession of the overall system.

Although differing among blockchain systems, nodes share certain basic functionali-

ties such as:

• listening to broadcasts from the network

• obtaining the newly appended blocks and checking their proof

• generating requests from the user and broadcasting them to the network

• obtaining requests from the user pool and organising them into a block

• appending a block to the chain by providing a proof

As mentioned before, proofing is the main method used in blockchain systems in order

to reach consensus. These proofs both secure the identicality of each copy of the blockchain

in the network, and the accumulating proofs provide means for future operations on the

blockchain. This is achieved by utilising a charging system for operating on the blockchain.

4

When we indicate operating on the blockchain, we refer to the transitions on the networkwide

agreed upon state of the blockchain system according to the content of the transactions within

a block, which is invoked by a local node broadcasting the proofed block to be appended

to the chain, and as a result of which each node organises its local blockchain and local

state variables to agree with the most up-to-date global state. Not unexpectedly, transaction

requests from the network are submitted in return for the native accounting unit, which is

called a cryptocurrency, where appending a new block to the chain by producing a proof is

rewarded by the same cryptocurrency. As such, blockchains are incentive driven systems.

Their operation is dependent on perpetual user involvement and contribution.

In addition to the above-described basic functionality that is common to all blockchain

systems, starting with Ethereum [2] and attaining wide acceptance among different commu-

nities, today majority of the blockchains offer Turing Complete functionality over the scripts

that can be included in blocks and interacted with. Ethereum Virtual Machine (EVM) and

the Solidity scripting language have reached wide popularity in the cornucopia of blockchain

system designs of the last decade and became the de facto standard [3]. They are also em-

ployed in the experimental setting of the present dissertation.

Since Turing Machines are subject to the halting problem, and since programming er-

rors may lead to infinite loops, both of which are serious threats for the sustainability of

distributed systems, a safeguard mechanism is built into the operation of EVM. This mech-

anism, called the block gas limit, sets an absolute upper bound to the number of operations

that may take place within the execution of a single block.

As described above, each blockchain operation is charged in return for the blockchain’s

native cryptocurrency. In the context of EVM smart contracts, each assembly level operation

is charged by a predefined amount, the unit of which is referred to as gas and exchanged

in return for cryptocurrency. The total cost of any given function in units of gas, may not

exceed the block gas limit, for it to be executed. If the execution of a given function causes

EVM to reach block gas limit, this is detected in runtime and the system state is rewinded

back to the point where the function started executing. The function exits, returning an error

message to the caller.

5

In commercial networks, the cryptocurrency is either mined by providing a proof and

contributing a block to the system, or purchased in return for fiat currency. This bears a prob-

lem for testing software on the network before deploying it, for it renders the development

process unnecessarily costly. For this purpose test networks have been designed and de-

ployed, and they also are in wide use recently. These networks employ identical mechanisms

to the commercial blockchain networks, with the exception of offering free cryptocurrency

to its users. Consequently, these are non-commercial networks, and they use an alternative

cryptocurrency distribution mechanism called a faucet, which offers a fixed amount of the

network’s native cryptocurrency to any demanding user. The user, in turn, can deploy her

contract on the test network to test it, and the total gas cost of the contract, converted to the

cryptocurrency, is charged by the network over the sum obtained from the faucet. Likewise,

the user may interact with her contract to test the functionality by sending transactions to the

network, the gas cost of which are, again, converted to the cryptocurrency and charged over

the sum obtained from the faucet. In case of depleting the sum obtained from the faucet, the

user may send new requests to the faucet to obtain the fixed amount one more time. The user

may repeat obtaining cryptocurrency from the faucet for an unlimited number of times.

As can be easily perceived, this system is simple and efficient, but it can hardly be

dependable for securing fairness of distribution among its users. Any adversarial party may

exploit the system simply by submitting recurrent requests to the faucet and accumulating

the obtained cryptocurrency, with which she can launch Denial of Service (DOS) attacks.

The present dissertation focuses on this problem and offers solutions.

1.2. Max-min Fairness Distribution Scheme

The main objective of the MF scheme is to maximise the minimum share given to

any user. Although it is possible to define MF also for continuous time (e.g. for queueing

fairness for network flows), blockchains are implicitly discrete time systems, thus we will

suffice describing it in discrete time. The reason for blockchains being discrete time systems

is that all events and state transitions occur as a result of a new block being appended to

the chain, which is mutually exclusive among candidate blocks. In other words, since by

definition only one block may be appended to the chain in unit time and in the time between

6

Demand

Heap 0

Demand

Heap 1

Supplied

Leftover

Demand

Leftover

Demand

User

Demands
Leftover

Capacity

Figure 1.2: The operation of Max-min Fairness Algorithm

no event or state transition can take place, the system time is well dissected and discretised.

The procession of MF is based on a trivial fairness scheme, where resources are uni-

formly distributed among the demanders, each one of the n demanders obtaining 1
n

of the

resource. MF improves the trivial scheme on the premise that not every demander would

demand as much as the share that is reserved for her. Accordingly, the MF allocation algo-

rithm takes recursive iterations over the list of demanders, reallocating unused shares of the

underdemanders among the overdemanders.

In the first iteration, starting with the smallest demand and proceeding in the ascending

order, the algorithm allocates the demanders the minimum of 1
n

of the capacity (c) and their

demands (i.e. min
(
c
n
, du

)
). At the end of the first iteration, some demands are fully supplied

and removed from the list of demands, and some capacity is left over. The algorithm, in turn,

proceeds with updated n′ and c′, until either all demands are fully supplied, or the capacity

is depleted.

The operation of the MF scheme is schematically represented in Figure 1.2, and its

pseudo-code is presented in Algorithm 1. In the pseudo-code the demand heaps are denoted

by D0 and D1, and individual demands in these heaps are represented by lower case letters,

subscripted with u, for user id number (i.e. unique identifier given to each user, denoted du).

7

Table 1.2: An exemplary distribution according to Max-min Fairness scheme

User 1 User 2 User 3 Share Capacity

Demands 4 11 15 30

Iteration 1 4 10 10 10 6

Iteration 2 0 1 3 3 2

Iteration 3 0 0 2 2 0

Total 4 11 15

The balances of users are kept in a vector, and the balance of user u is represented

with bu. At each iteration, the maximum available amount to be allocated to each user is

recalculated by dividing the remaining capacity by the number of remaining demands, and

denoted by s, representing the unit share.

To illustrate the operation of the algorithm we may consider the following example:

Suppose that a resource of 30 units will be shared among three users, with the demands

submitted as <4, 11, 15>. The algorithm distributes the resource in 3 iterations. The rounds

and the shares assigned in each round can be seen in Table 1.2.

How the unsatisfied demand, or the leftover capacity will be treated after a distribution

period is a decision of policy. In our current work, we implement a policy that discards all

the unsatisfied demands, in the case of capacity depletion, and hands the leftover capacity

over to the next distribution period, in the case of satisfying all the demands.

The amount that is reserved for each epoch is denoted by C. We call this amount the

epoch capacity, and in the present dissertation, we took it to be constant. The actual amount

that is distributed in an epoch is denoted by c, and it is at least as much as C, since it is added

to c at the beginning of each epoch (i.e. Algorithm 1 line 2).

In Algorithm 1, the lines 4 − 19 constitute the main, or outer loop of the algorithm,

which is responsible for repeating the inner loop (lines 10 − 18) until either the demands

or the capacity is depleted. It starts with calculating the initial share (lines 5 − 9), and then

starts the inner loop. Once the proceeding of the inner loop is completed, the demand heaps

8

Algorithm 1 MF Pseudocode
1: procedure DISTRIBUTE(DemandHeap, Capacity) ▷ Distribute Centrally

2: Capacity ← EpochCapacity;

3: selector ← 0;

4: while DemandHeap[selector].size > 0 and Capacity > 0 do

5: if Capacity < DemandHeap[selector].size then

6: Share← 1;

7: else

8: Share←
⌊

Capacity
DemandHeap[selector].size

⌋
;

9: end if

10: while DemandHeap[selector].size > 0 and Capacity > 0 do

11: User.balance← User.balance+min (Share, User.demand);

12: Capacity ← Capacity − V olume;

13: if User.demand > Share then

14: DemandHeap[1− selector].insert(User.demand− Share, u);

15: end if

16: end while

17: selector ← 1− selector;

18: end while

19: end procedure

exchange their functions (line 19) and the outer loop takes another iteration.

The inner loop accounts for iterating on and processing the demands in the active heap.

In line 11 the demand volume and the user id at the root of the heap is read into a variable and

deleted from the heap. After that the minimum of the user demand and the unit share (i.e.

min
(
c
n
, du

)
) is assigned to the user in lines 12 − 14. The control structure in lines 15 − 17

checks whether the demand is fully satisfied or not. If not, the leftover demand is inserted to

the passive heap with the user’s id (line 16) to be processed in further iterations.

Another version of MF is weighted MF, in which case the users are weighted over

some predefined policy, and the shares are calculated with the weights assigned to each user,

9

individually. In this version, instead of the number of demands, the total capacity is divided

by the total weight in order to calculate the unit share (s). In turn, the user share (su for

user u) is calculated for each user by multiplying the unit share with the user’s weight (wu

for user u). The users are allocated the minimum of their demands, and their individually

assigned user shares. Accordingly, the formula for calculating the unit share s is:

s =
c∑n

u=1wu

and the user share su is given by:

su = wu · s = wu ·
c∑n

u=1wu

1.3. Contributions to the Literature

Distribution of shared resources is a generic problem that we encounter as the distri-

bution of cryptocurrency, in the blockchain context. As the use cases of blockchains grow,

trading of these resources in return for fiat currency remains a limited solution which cannot

be applied to non-commercial blockchains. For this reason, algorithmic, fair, and secure dis-

tribution of these resources acquire importance in the process. The solutions offered by the

present dissertation make the following contributions:

(i) Max-min Fairness, a well known and well studied fair distribution scheme, is actu-

alised in the blockchain context as smart contracts, to avail a generic solution for di-

verse use cases. The algorithms developed in the present dissertation are open to public

use at [4] to be adapted or modified easily for the needs of the projects that intend to

use them. These include at first hand the test networks such as Ropsten and Rinkeby,

and academic networks such as Bloxberg [5].

10

(ii) Four algorithms AMF, WAMF, QMF and WQMF operate independent of the number

of users enrolled in the system, therefore they can scale up to unlimited numbers of

users.

(iii) Two algorithms, SMF and WSMF, can scale up to 250 users without running into the

block gas limit2 exhaustion problem, which can be used by small-to-mid-size com-

munities. Although not as general a use case as being scalable to unlimited number

of users, SMF and WSMF offer other advantages for communities conforming to the

allowed size.

(iv) All of the functions implemented in the smart contracts are cost-efficient in terms of gas

expenditure. Majority of them are constant or near constant (i.e. negligibly variable)

cost. The only functions that are significantly dependent on the input size are the share

calculating functions of SMF and WSMF, which are conditioned on the number of

users, hence the limitation.

(v) Weighting policies defined for WAMF and WSMF can account for long term fairness,

in addition to the short term fairness intrinsic to the Max-min distribution scheme.

Unfortunately, the same policy is not applicable to WQMF for reasons that will be

discussed in Section 5.1.2.

In addition to the main objectives of the dissertation, some minor contributions may be

counted as follows:

(i) Over the implementation of CMF, it has been shown that a conventional approach for

implementing Max-min Fairness scheme, in which a central executive unit does the

calculation and assignment of the shares, is not efficient in blockchain context. This is

a general result, demonstrating the fact that in the blockchain programming context, the

loops in any algorithm should preferably be distributed over the users to be executed

decentrally.

(ii) An array implementation of minimum heap is contributed, since Solidity does not offer

a heap datastructure. The algorithm can be accessed at the repository [4].

(iii) Although AMF is an adaptation of conventional Max-min fairness algorithm to the

2In the present dissertation the block gas limit is assumed to be 8.000.000, which was the actual number as
of time the tests were being carried out.

11

blockchain context, simply distributing the main loops over the users and the claim

rounds, to the best of our knowledge, the structure of QMF and SMF are novel not

only in blockchain context but also as stand-alone algorithms themselves. Instead of

gradually assigning shares to users in multiple iterations as it is done in the conven-

tional algorithm, QMF and SMF calculate the maximum share that may be offered

to users, such that when the user takes the minimum of the available share and her

demand, the total capacity that is available to be distributed is not exceeded.

12

1.4. Dissertation Outline

The rest of this dissertation is organised as follows:

In Chapter 2, we review the literature on blockchain systems, fairness assumptions of

various proof schemes, and the problem of fair resource distribution. Although it is possible

to handle it from a diverse number of points of view, we keep the discussion of the proof

systems limited to their relation to the resource distribution process, and touch upon the

problems of distributed trust and distributed consensus to the extent which it relates to our

discussion. It should be noted that a comprehensive discussion of proof systems necessitates

a larger context, yet it is beyond the scope of the present dissertation.

Following that, in Chapter 3, we lay down our main constructs and formulate the prob-

lem at hand in terms of them. The main point of this chapter is the justification of the main

metric employed in our tests, since it is rather inconventional for the computer science lit-

erature. In the same chapter we also describe the testing environment and we formulate the

problems related to the temporal setting. Timing and synchronisation is a general problem

intrinsic to all distributed systems, and in blockchain systems these problems remain, taking

a specific form. We describe this form and define our solutions to these problems in this

chapter.

In Chapter 4, we compare the conventional implementation of the algorithm (CMF)

with its autonomous counterpart (AMF) and show that while the former does not scale for

even small number of users (i.e. ∼ 10), the latter does scale for unlimited number of users.

We also lay down the experimental setting in this chapter, which will be used also in the

following chapters for testing the remaining algorithms, although with small modifications.

In Chapter 5, we present the restructured versions of the algorithm. We begin the

chapter by describing the models QMF and SMF in their abstract forms, and give the im-

plementation details in the subsequent sections. After indicating the small alterations in the

experimental setting from the previous chapter on AMF and laying down the new parame-

ters, we present the experimental results of W/QMF and W/SMF in comparison to both each

13

other and also to W/AMF.

In Chapter 6, we present a discussion on the findings of the present study and propose

alternative points of view on the problem.

We conclude the dissertation in Chapter 7 with suggestions for prospective studies.

14

2. RELATED WORK

The first blockchain, Bitcoin [1] has been developped as digital money, thus the fair

distribution of resources in this context means the fair distribution of the total reserve of coins

in the ecosystem. Bitcoin network started with no initial reserve, and it creates new coins as

a reward for each block newly added to the chain. In its first years, no user participated in the

system, therefore Satoshi Nakamoto mined blocks that has single transactions, transferring

the newly mined coins to the miner of the block. In block 170, Nakamoto made the first p2p

transaction by sending 10 Bitcoins to Hal Finney, a renowned cryptographer.

As its precursors [6, 7] Bitcoin utilises Proof-of-Work (PoW) as its proof scheme. In

order to append a newly created block to the chain, the users are expected to find an input to

a one-way function that results in a targeted output. Since the function is one-way, meaning,

it is not possible to calculate the input that results in a given output, the only way to find such

an input is by trial-and-error. The user creates the block according to the predefined block

syntax. After that she iteratively appends nonces, calculates the images of the resulting

strings under the one-way function, and checks the outputs against the properties of the

targeted structure, until she comes upon a desired output. Because of the fact that the user

randomly explores the output space by systematically trying inputs from the input space to

come upon a desired output, the process is referred to as mining a block, and the user is

referred to as a miner.

Although the one-way function, which is sometimes called a puzzle, may be of various

types, the most commonly used ones are cryptographic hash functions3 . A cryptographic

hash function guarantees that the probability of each output string coming up for a given

input string is equal. The targeted output structure provides a restriction on the image set of

the hash function for strings to be accepted. Thus, the probability of finding a proof for a

given string is the ratio of the size of the restricted image set to the size of the total image set.

In Hashcash, for example, the target is defined by the number of leading 0’s in the output, in

Bitcoin the target is defined by the output being smaller than a decided number. Greater the

3In the case of Bitcoin, for example, this is SHA256 [8].

15

number of leading 0’s in the former, or the smaller the decided number in the latter, smaller

the set of accepted strings, thus smaller the propability of coming upon a number in this set.

This is referred to as the difficulty of the puzzle.

The difficulty parameter is a moving average, updated periodically to keep the time to

append a new block, referred to as block latency, constant [1]. In Bitcoin, for example, the

difficulty updates are done every 2016 blocks to keep the block latency at approximately 10

minutes. This update is implemented as a function hardcoded into the blockchain system,

which is called every 2016 blocks. The function checks the time it took to produce last 2016

blocks, from this and the current dificulty, it estimates the total processing power utilised

by the ecosystem, and calculates the new difficulty needed to keep the block latency at 10

minutes with the present total processing power [9]. Therefore, as new miners are involved

in the system and the total processing power increases, the difficulty also increases to match

the new total and keep the targeted block latency in check. Similarly, if miners leave the

system, the difficulty decreases.

The probability of finding a proof before the other users is proportional to the num-

ber of inputs the user can try in unit time with the processing power she utilises. This way,

among its various functions, PoW also accounts for the fairness of the system, because any

willing user can participate in the mining process, and obtain coins proportional to the com-

puting resources she is willing to contribute to the system. The users that are not willing to

participate in the mining process can purchase coins from the coin owners, which is subject

to the market dynamics of demand and supply, which also is widely considered fair.

Although fairness is intrinsic to PoW systems by the means described, these systems

expend enormous physical resources. According to [10], the energy consumption of Bitcoin

network is comparable to the energy consumption of Austria or Ireland. This motivated

researchers to seek for alternative proof systems. One such system that has been developed

through extensive discussions in the Bitcoin forum is Proof-of-Stake (PoS) which relies on

the total volume of coins a user retains in the ecosystem, in other words the user’s stake in

the ecosystem, to decide on the party to append a new block and obtain the block reward.

This process is referred to as leader election.

16

By definition, PoS systems need a method for initial distribution of coins, since the

creation of new blocks depend on users who own coins, referred in this context as the

stakeholders. One way is to resort to extra-digital methods, such as uniform or arbitrary

distribution among previosly known and trusted users, or initial coin offerings (ICOs) and

airdrops [11,12]. An ICO is the process of selling coins (typically in an auction) prior to the

deployment of the blockchain, and an airdrop is the process of giving away coins for free to

the parties that the developers aim to incentiveise joining in the ecosystem. The fairness of

the protocols utilising these methods relies heavily on the fairnesss of the initial distribution

process which cannot be algorithmically accounted for.

Algorithmic accounts for the fairness of the PoS systems are mainly concerned with

the randomisation4 of the leader election process [14,15], assuming that there is an intial set

of stakeholders, and relying on this set for launching the system is fair. According to this, if

the leader election is verifiably randomised in a weighted way, and the weights are assigned

in proportion to the stakes, the block mining rewards are distributed equitably among the

users, proportional to the stake they hold.

As has been indicated, PoW blockchains are able to operate in trustless networks,

meaning, the parties do not need to know and trust each other, in order to trust the security

and fairness of the system. That is because the structure of the proof system itself generates

trust for the ecosystem, the members of which are unknown to each other. PoS systems, on

the other hand, assume some degree of trust, at least in the initial deployment of the system,

to a subset of parties. On the other extreme reside the Proof-of-Authority (PoA) systems,

which need a set of users, referred to as the authority nodes, unconditionally trusted by the

members of the ecosystem, since they hold the exclusive right to create and append blocks

to the chain.

PoA is a natural idea for computer scientists, since its trust structure is identical with

that of the conventional computer environments, where there is a server serving clients. For-

mally, this architecture is known as the client-server architecture, and the underlying mech-

4It should be noted that secure and verifiable randomisation in distributed systems with untrusted parties is
not a trivial task. See, for example [13].

17

anism for the parties to securely identify each other is known as the Pretty-Good-Privacy

(PGP) trust model. In PGP there is a party called a trust anchor which is trusted uncon-

ditionally, and the other parties are authenticated either by the direct reference of this trust

anchor, or by a chain of references rooted at it [16]. In the case of internet, for example, this

trust anchor is user’s Domain Name Server (DNS) resolver, which takes queries from the

user and starts the query chain that reaches the root nameserver, and the answer to the query

returns to the user through same chain. The user trusts the answer because she trusts her

resolver, and in turn each node in the chain trusts the node it queries. Similarly the users in

a PoA ecosystem trust the authority nodes, and the rest of the ecosystem, and the operations

are trusted over their authenticity and authentication. If authority nodes behave unfairly, for

example selectively accept or order transactions to favour a subset of users, authenticate il-

legal transactions, or even stop the working of the blockchain altogether, there is no way for

the users to check on it.

There are also hybrid proof systems that alter and combine the working principles of

these proof systems. In fact, the first PoS chain, Peercoin is one such system, initialised with

PoW to handle the initial distribution process, and then shifted to PoS as the difficulty of

the mining process increased to a certain level in time [17]. The fairness of distribution in

these systems revolve around the same tenets as described for PoW, PoS, and PoA systems,

with different proportions of mixing from one or the other. Some of these are Proof-of-

Prestige [18], Proof-of-Activity [19], Proof-of-Useful-Work [20], among others.

Before proceeding to the systems built on top of blockchains, a disclaimer is in place

at this point. Not all proof systems mentioned here are justified for their accomplishment

of fairness or provision of trust. As such, we do not endorse or vouch for the reliability

or validity of the claims of these systems. The aim of this literature review is to present

the arguments of existing systems, which in reality are subject to the testing of history and

human experience. We are well aware that this is not common in engineering practice, but

blockchain systems are a subfield of economy and social sciences, as much as they are of

engineering, because of their intense entanglement in financial constructs.

18

The second generation blockchains, starting with Ethereum [2], are charactarised by

smart contracts, which are scripts that reside on the blockchain and interpreted by the

blockchain’s virtual machine. Ethereum Virtual Machine (EVM) is Turing Complete, mean-

ing, it can carry out any calculation that can be carrired out with a Turing Machine. Smart

contracts can define, store, and manipulate data, thus with their introduction second layer

coins logically ensued.

A second layer coin is basically a smart contract that operates according to the me-

chanics of a cryptocurrency. As such, they inherit the strengths and the vulnerabilities of

the blockchain they reside on, and build their operation on top of them. Although designing

and developing a coin in a smart contract is easier as compared to doing it within the work-

ing of a proof scheme, since the latter is further burdened with addressing the other needs

of a blockchain system such as providing digital trust, distributed consensus, ordering and

synchronisation etc., fairness of distribution remains a problem to be solved for these coins

too.

Another variety of a second layer coin is a token, which is basically a coin, represent-

ing a specific kind of resource, as opposed to the generic nature of the coins. For example

governance tokens are used as a means of exchange for voting rights in collective decision

making for the governance of blockchains, or other decentralised exchanges [12]. Today,

there are two token standards available and in general use. These standards are defined by

Ethereum Request for Comment (ERC) documents, the function and the structure of which

are inspired by Request for Comment (RFC) documents. The token standards defined in

ERC20 and ERC721 define divisible and non-divisible, or fungible and non-fungible tokens,

respectively [21,22]. Nevertheless, a token may also be issued as a coin, simply by depriving

it a specific context. Majority of the existing second layer coins use ERC20 standard. Sim-

ilarly in common use, ERC721 is generally used to represent digital objects, such as digital

art pieces, in-game items etc. [23].

The disentanglement of coin mechanics with the substructural needs of a blockchain

ecosystem, and the introduction of tokens enable us to handle the problem of fair distribution

in isolation, and adapt the solutions developed for traditional problems. The question of fair

19

distribution first arose in the context of operating systems, where scheduling the resources of

a single computer (e.g. processor time) among processes, typically at the computer centres of

universities, was the main problem [24]. Although it is a fair policy to distribute the resources

among the processes, it is prone to degeneration by adverserial users, simply by dividing a

task into multiple processes. This lead administrators to implement policies distributing the

same resources among users [25], and/or user groups [26].

Similar problems are addressed in the computer networks literature over the allocation

of link bandwidth [27,28]. Fair scheduling algorithms have also been the focus of attention in

grids [29]. With the advancements in distributed systems, and new paradigms in cluster and

high-performance computing, the problem of fairness evolved yet to larger scales, and new

questions arose. In this context, typically, service providers charge users for the common

resource that is demanded by, and allocated to them. The same question is now expressed

in terms of charging fairness: how much should each demand cost, for it to be fair among

clients [30]? Should each type of resource cost the same, and if not how are they traded [31]?

In many areas in computer science where the problem of distributing shared resources

is encountered, Max-min Fairness [32, 33] has been considered as a fair method [28, 34]. It

is also the main method employed in the present dissertation.

Blockchain systems differ from conventional systems for their operation bottleneck,

and consequently the algorithms that run on these systems differ for their design and per-

formance analysis. A number of studies have been offered for the evaluation of perfor-

mance [35], principles on the algorithm design [36] and the robustness [37]. In [35], Alharby

et al. develops a simulation environment to evaluate the design and the deployment choices

in the development of blockchains. All of these studies concentrate on the block gas limit

exhaustion problem, which is a counterpart of and a metric for the computational cost of a

given algorithm in the conventional setting. Conveniently, the present dissertation uses the

same metric for assessing performance.

20

3. PROBLEM STATEMENT AND TESTING ENVIRONMENT

As explained in Chapter 2, among their various functions, proof schemes serve for

fairly distributing native coins of the system, to some definition of fairness varying among

differing proof schemes. In PoW systems, the fairness is derived on the basis of contributing

processing power, in PoS systems over the initial investment and evolving stake of the users,

etc. These are all dependent on extra-digital economic systems, such as the investment on

hardware in PoW, or investment in fiat currency in PoS. The present dissertation, on the other

hand, is focused on handling the same problem in non-commercial ecosystems, such as test

networks such as Ropsten or Rinkeby, or scientific networks such as Bloxberg.

In the absence of economic interests and when it is fair to assume the necessary degree

of digital trust is provided to the ecosystem by other means, blockchain systems has still

much to offer such as transparency, data redundancy, commitment etc. For this reason we

handle the fair distribution problem in isolation. To accomplish this we design and test

our algorithms on PoA blockchains, which, as explained in Chapter 2, do not run into the

overheads caused by the constructs we stated above to leave out. Nevertheless, irrespective

of the proof scheme, our results are generalisable to all blockchain systems that is compatible

with running scripts, since our solutions reside in the second layer (see Chapter 2).

To repeat from the previous chapter, the main problem in the second layer is to keep the

algorithm run under the block gas limit. The charging system for the second layer solutions

assign a gas cost to each assembly level operation. For example, in Ethereum this is defined

in its white paper [2]. Although it is subject to minor changes over time, this cost structure

is assumably more or less constant in between the operations. What we mean to express is

that the cost of operations relative to each other may change in rate over time, but a costlier

operation tends to remain costlier than a comparatively affordable one. For example, in

Ethereum, the cost of reading from a non-volatile memory (referred to as storage) register

has increased over time, yet it remained lower than writing to it. As such, we postulate that

as long as the structure of the virtual machines and programming environments remain the

same, the cost structure of the operations will tend to remain the same.

21

The main reason for this tendency is the fact that, not unreasonably, the gas cost of

an operation is determined over its expenditure of the system’s resources. For this reason,

the costliest operation is writing to storage, since it results in occupying a region in the

memory of EVM for the long term, as compared to a reading or arithmetic operation, which

is executed in runtime and consumes only the processing power at that instance.

With the same logic, in contrast to the traditional approach, the efficiency of an algo-

rithm is determined over its gas expenditure, and not its algorithmic complexity. Of course,

the two concepts are related, and a complex algorithm is likely to expand more gas as com-

pared to a simpler one, but in the traditional algorithm analysis, the complexity is measured

over the operation that occurs most frequently, indifferent to the type of operation. In smart

contract context however, the type of operation makes a difference. For example, tradition-

ally two algorithms running in constant time with the same constant coefficient is considered

equally efficient, but in smart contract context, if one is doing a storage write, and the other

is doing arithmetic operations, the latter is accepted to be more efficient.

Accordingly, the present dissertation takes the gas expenditure as the main metric for

the efficiency of the algorithms developed hereby. We report absolute gas costs of the func-

tions and how they scale with growing values that are critical to each one. As indicated, the

gas cost of each opertion is subject to change over time and these absolute values will most

probably be obsoleted in the future. Nevertheless, the structure of gas costs and how they

scale with the growth of their critical variables will tend to remain accurate as long as the

structure of the development and processing environments remain unaltered.

3.1. Testing Environment

We implemented our algorithms in Solidity programming language and run on an EVM

environment [38], and more specifically, its Parity implementation, as mentioned above.

The main reason for selecting this framework is its wide use among blockchain ecosystems.

Many blockchain ecosystems and blockchain based systems utilise either EVM or virtual

machines similar to EVM, and support Solidity programming language for smart contracts

(e.g. [39–42]), and for this reason there are also studies available on the performance [43],

22

security [44], and inspection [45]. It is a high-level, easy to read, object oriented script

language.

We tested our algorithms in a local blockchain, operated by Parity Ethereum 2.7.2 [46],

and we implemented the smart contracts in Solidity 0.5.13. The block gas limit we assume

is 8.000.000 units5 .

Parity implementation of Ethereum offers customisable consensus protocols. Among

those is the so-called instant seal engine, which places each transaction into an individual

block of its own. The engine is specifically designed for contract development, since the

block latency is rarely a relevant parameter in the development and verification processes of

the algorithms, at least for the time being.

For our case, the instant seal engine also allows us operationalise time in terms of

number of blocks and, in turn, define the epoch span and the round span in terms of it.

As such, our results are generalisable to every blockchain environment, independent of the

consensus algorithms and temporal parameters they employ.

3.2. Timing and Synchronisation

Timing and ordering of events in distributed systems operating asynchronously and in

the absence of a central timestamp server has been a field of study since the emergence of

such systems [47]. As explained in the original article [1], a crucial function of a blockchain

is that it serves as a timestamp server in an environment of parties with conflicting interests.

Although there is a timestamp in the header of each block in the chain, it is created by the

miner, and in a trustless computation environment it may not be exactly reliable. Moreover,

the main communication method in blockchain ecosystems is P2P broadcasting, and conse-

quently the latency of the arrival of a message is not uniform among the nodes. Neither is it

uniform accross time, since, for a given node, the proof producing node may be topologically

5This value is taken from the Ethereum’s actual block gas limit at the time we started our experiments.
The value is dynamically set and updated in each system by the collective decision of its miners, thus it is not
up-to-date. Nevertheless, for the purpose of the present study, it does not constitute a problem, and even an
up-to-date value will be obsoleted in the time of the readers view so we left it as it is.

23

close for one block, but the next one might come from a distant node in the network. The

only information that a node can obtain for sure is that the proofed block has been produced

before it has arrived, as it is called the happened-before relation [47]. In fact, the block

headers are checked also for this relation upon arrival, in order to prevent an adversary party

exploit the system by timestamping their proof for a later point in time.

As indicated in Chapter 2, the difficulty of the proof is updated every 2016 blocks in

Bitcoin network. This interval of regular difficulty update is commonly referred to as an

epoch, and is employed in all PoW blockchains. In the process of update, each node takes

the time difference between the first and the last blocks of an epoch, and divides it to the

number of blocks to obtain an estimate for the average time interval between the blocks,

or as it is commonly called, block generation rate or latency. This is also an estimate for

the total processing power poured into the system, lower latecy meaning higher processing

power. The node then calculates the necessary new difficulty to adjust the network with the

up-to-date processing power estimate to conform to the targeted block latency.

Situated as such, a convenient measure of time between two events in a blockchain

system is the number of blocks between them, as compared to the metric time. It is arguably

more relevant a measure than the metric time also because for most of the calculations the

ordering of events is the relevant factor for the correctness of the calculation. For these

reasons, in our experiments we used this metric for measuring time and synchronising nodes.

Inspired from difficulty update process, we divided distribution periods into epochs, and in

W/AMF, we subdivided the epochs into rounds, defined likewise.

The main concern for the decision on the span of the epochs and the rounds is that

they should last enough for each user to be able to make claims and demands within their

due interval. Since the instant seal engine deployed in the tests place each transaction in an

individual block, the epoch and round spans are so chosen as to allow each user be able to

make enough claims and a demand within an epoch. The spans of these epochs and rounds

will be given and justified in their relevant sections, for the tests differ slightly between

algorithms, to test different constructs they bear.

24

Since blockchains are incentive driven systems, it is not possible to spawn a daemon

process to keep the global state variables up-to-date. The method for maintaining the global

variables in such a system is to build a dedicated function for updating the state and call it at

the beginning of each function call. This way the system state is collectively maintained by

the user community.

In the present algorithms, update state is one such function, which is called at

the beginning of all other functions, except an internal function of its own, which is called

calculate share. The update state function checks the block number, and from

its distance from the block that the contract is deployed, calculates the epoch and round

numbers. If an epoch and/or round update is necessary, the other necessary updates such

as replenishing capacity or recalculating share is done along with it. Majority of the state

update checks return negative and they do not impose a significant additional gas cost on the

calling function. In cases where the check return positive and global variable updates are

undertaken, the additional gas cost of update state is significant, and for this reason it

is calculated within the function and returned to the calling user for reasons of fairness.

25

4. MAX-MIN FAIRNESS ON BLOCKCHAIN

We develop autonomous algorithms AMF and WAMF for actuating the MF scheme.

In WAMF, the weights are defined to be the reciprocals of the total amount of demands users

have made up to the distribution time. This aims at incentivising users to make minimal

demands suitable to their needs, in order not to be disadvantageous in the long run. The

implementation details of WAMF algorithm, as well as its pseudocode is presented in Section

4.1.

4.1. Implementation

The conventional setting to utilise MF typically includes a central unit (either an indi-

vidual process running on a central processor or a dedicated administrative host in a computer

network) calculating the shares and carrying out the iterative assignments. This is applicable

to the blockchain context, but not without potential drawbacks. The main bottleneck in such

an adaptation is the block gas limit, which imposes an absolute upper bound for the number

of operations that may take place within the processing of a single block. For this reason, we

implemented two algorithms and compared them. The implementations are available in [4].

The first algorithm is the Conventional Max-min Fairness (CMF). This algorithm is

implemented as if it operates in the conventional computational setting. The demands are

collected for a given block span, which is referred to as an epoch in this study. At the

beginning of the following epoch these demands are supplied with resources in the MF order

by a single node in one step with the distribute function.

In the second algorithm, the demands are collected in a given epoch, and the demanders

claim their reserved share by calling a claim function in the claim rounds of the following

epoch. We call this approach Autonomous Max-min Fairness (AMF), since there is no need

for a central node to carry out the execution, and the system is operated autonomously by its

users. The operation of AMF emulates the original algorithm identically, except for the last

iteration where the distribution is in the first come first served order among overdemanders.

26

Originally, the last iteration is in the ascending order of demand volumes, as are all the

preceding iterations.

We implemented both the unweighted and the weighted versions of MF for the au-

tonomous case. The reason for not implementing a weighted version of CMF is due to its

gas cost structure (demonstrated in Section 4.3.1). In the following subsections, we give the

implementation details of the algorithms explained in this subsection.

4.1.1. Conventional Max-min Fairness

As it is in the conventional setting, CMF utilizes two min-heaps, exchanging the de-

mands among each other in each iteration. The operation scheme and the pseudo-code is the

same as described in Section 1.2 (i.e. Figure 1.2 and Algorithm 1).

Since Solidity does not offer a built-in data structure for min-heaps, we implemented it

during the development of CMF. We kept the implementation of the min-heap minimalistic

in order to keep the gas cost at minimal. Only the amount of demand, and the id of the

demanding user is stored and operated on. The remainder of the user attributes are fetched

from other data structures when needed (e.g. while writing to the user balance), by using the

user id as the key.

We used an array implementation of heap, a complete binary tree, where the values are

kept in a node array and the insert and delete minimum functions are implemented so that

they index and move the nodes according to the min-heap organisation. This is also immune

to degeneration attacks, in which case an attacker feeds the tree with selective input to make

one branch grow disproportionately, forcing heap functions run in O(n) instead of O(log n)

time.

We present the performance of CMF, as well as the min-heap, in Section 4.3.1.

27

4.1.2. Autonomous Max-min Fairness

In AMF, the epochs are divided into claim rounds, which are, like the epochs, defined

to be a number of successive blocks. At the end of each round, the remaining number of

demands, the remaining capacity, and the resulting share is recalculated. The rounds proceed

in this manner until either the capacity is depleted, or all demands are supplied. The rounds

are used to emulate the iterations of the outer loop (lines 4 − 20 of Algorithm 1) of the

distribute function.

In order to avoid repetition, we give the pseudo-code only for the weighted version

(WAMF), since it is more general as compared to the unweighted version (AMF), the latter

can be seen in Appendix A. The pseudo-code of WAMF is presented in Algorithm 2. The

symbols for the additional variables, and their meanings are given in Table 4.2. The calcula-

tion of weights is obscured from the pseudo-code for the ease of review, and the weights are

simply shown as constant variables. The calculation of weights is explained in detail in the

next subsection.

In AMF, instead of a single-handedly operating distribute function, there is a claim

function, which after necessary checks, allows the user assign her allocated share to herself.

Each user is expected to execute the function individually, to have carried out the iterations

of the inner loop of the distribute function (lines 10− 18 of Algorithm 1), in a decentralised

manner.

Any share unclaimed in its due round/epoch is lost to the user and handed over to the

following round/epoch as part of the leftover capacity. In a given epoch, users may make

new demands for the next epoch, while claiming their share for the previous. The time frame

can be traced in Table 4.1 over the demands and vertically corresponding claims, and can be

seen schematically in Figure 4.1.

In AMF the demands are kept in a map, rather than a min-heap, since it is necessary

for each user to be able to access their own demand entry while claiming it. In the present

implementation, the demands are kept for one epoch, and claimed in the following. For this

28

Table 4.1: An exemplary distribution carried out with AMF
User 1 User 2 User 3 Share Capacity

Demand 1 4 11 15

Round 1

Epoch 1 Claim 0 Round 2

Round 3

Demand 2 11 3 8 30

Round 1 4 10 10 10 6

Epoch 2 Claim 1 Round 2 1 3 3 2

Round 3 2 2 0

Demand 3 7 8 12 10 30

Round 1 10 3 8 10 9

Epoch 3 Claim 2 Round 2 1 9 8

Round 3

Demand 4 17 13 5 38

Round 1 7 8 12 12 11

Epoch 4 Claim 3 Round 2

Round 3

Demand 5 41

Round 1 13 13 5 13 10

Epoch 5 Claim 4 Round 2 4 10 6

Round 3

reason, a circular buffer of size two is kept for each user, in order to prevent an incoming

demand in a given epoch to overwrite the previous epoch’s demand, before it is claimed.

This leads to a two dimensional (n x 2) demand vector, where the demands for even and odd

epochs are kept separately. Additionally, the variable for keeping the epoch in which the

demand was made (for preventing an obsolete demand to interfere with later demands) is

implemented; likewise as a circular buffer of size two, in order to separate between the even

and the odd epochs.

In addition to the restructured demand, and the newly introduced claim functions,

AMF includes a state6 update function, which is called at the beginning of both. The state

update function checks the block number, and calculates the epoch and the round in which the

called function will be executed (lines 3 and 10, respectively). The number of blocks for the

6It should be disambiguated that state here refers to the state (i.e. values of the global variables at a given
time) of the contract and not the blockchain it runs on.

29

Figure 4.1: Epochal Layout of Matching Demands and Claims.

duration of an epoch and a round, is also a parameter of the system, which we experimented

on in the present dissertation, and commented on in the results subsection.

The pseudo-code in Algorithm 2 is organised in three functions, namely, update state

(lines 1−16), demand (lines 18−32), and claim (lines 34−55). At the beginning of each

function (in lines 2, 20, and 36) a local selector variable for the circular buffers is declared

and calculated. When called in a given epoch, the state update and the claim functions

agree on their selector value, and the demand function assumes its binary complement (e.g.

< 0, 1, 0, 1, ... > for the state update and claim functions, and < 1, 0, 1, 0, ... > for the

demand function).

In line 3, the epoch number is checked for. If the value of Epoch is found to be

obsolete, it is updated. Once the epoch number is updated, the round number, the capacity,

and the unit share are also updated (lines 5− 7), and the function returns. If epoch number is

found to be up-to-date, a similar check is done for the round number in line 10. This check,

when it returns positive, leads to the update of the round number and the unit share (lines

11 − 12), and the function returns. If no update is required, the function returns without

making any changes in the state.

After updating the state and setting the selector variable, in line 20 the demand function

checks whether the user has made a demand in the then present epoch. If the user has made

a demand, the function returns without registering the newly arrived demand. If not, the

30

Algorithm 2 WAMF Pseudocode
1: procedure UPDATE STATE(Offset, BlockNumber, Epoch,EpochSpan,RoundSpan)

2: selector ← Epoch mod (2);

3: if Epoch <
⌊
BlockNumber−Offset

EpochSpan

⌋
then

4: Epoch←
⌊
BlockNumber−Offset

EpochSpan

⌋
;

5: Round←
⌊
(BlockNumber−Offset) mod (EpochSpan)

RoundSpan

⌋
;

6: Capacity ← Capacity + EpochCapacity

7: Share← ⌊Capacity/TotalWeight[selector]⌋;

8: return;

9: end if

10: if Round <
⌊
(BlockNumber−Offset)%ES

RS

⌋
then

11: Round←
⌊
(BlockNumber−Offset) mod (EpochSpan)

RoundSpan

⌋
;

12: Share← Capacity/TotalWeight[selector];

13: return;

14: end if

15: return;

16: end procedure

17: procedure DEMAND(User, V olume)

18: UPDATESTATE(Offset, BlockNumber, Epoch,EpochSpan,RoundSpan)

19: selector ← (E + 1) mod (2);

20: if User.demandEpoch[selector] ̸= Epoch then

21: User.demand[selector]← V olume;

22: User.demandEpoch[selector]← Epoch;

23: if ResetEpoch < Epoch then

24: TotalWeight[selector]← User.weight;

25: ResetEpoch← Epoch;

26: else

27: TotalWeight[selector]← TotalWeight[selector] + User.weight;

28: end if

29: end if

30: return;

31: end procedure

31

Algorithm 2 WAMF Pseudocode Cont.
32: procedure CLAIM(User)

33: UPDATESTATE(Offset, BlockNumber, Epoch,EpochSpan,RoundSpan)

34: selector ← Epoch mod (2);

35: if User.demandEpoch[selector] ̸= Epoch − 1 or Capacity = 0 or

User.demand[selector] = 0 then

36: return;

37: end if

38: if User.claimEpoch = Epoch then

39: if User.claimRound = Round then

40: return;

41: end if

42: else

43: User.claimEpoch← Epoch;

44: end if

45: User.claimRound← Round;

46: User.balance← User.balance+min (User.demand[selector], Share ∗ User.weight);

47: User.demand[selector] ← User.demand[selector] −

min (User.demand[selector], Share ∗ User.weight);

48: Capacity ← Capacity −min (User.demand[selector], Share ∗ User.weight);

49: if User.demand[selector] = 0 then

50: TotalWeight[selector]← TotalWeight[selector]− User.weight;

51: end if

52: return;

53: end procedure

32

Table 4.2: Symbols used in Algorithm 2 and their meanings

Symbol Meaning

EpochCapacity Amount of replenishment at every epoch, EpochCapacity ∈ Z+

BlockNumber Current block number

Offset The block number at which the contract was deployed, offset

Epoch Epoch number

Round Round number

ResetEpoch Reset epoch, the epoch at which the total weight was last reset

EpochSpan Number of blocks in an epoch

RoundSpan Number of blocks in a round

U Set of users U = {u1, . . . , un}

TotalWeight[selector] Total weight for even and odd epochs, selector ∈ {0, 1}

V olume Demand volume

User User object, User ∈ U

User.demand[selector] Demand of user u in list selector, selector ∈ {0, 1}

User.demandEpoch[selector] The last epoch user u made a demand, selector ∈ {0, 1}

User.claimEpoch The last epoch user u made a claim

User.claimRound The last round user u made a claim

User.balance Resource balance of user u, User.balance ∈ Z+

User.weight Weight of user u

Capacity The existing capacity

demand volume (V olume) is written to the corresponding slot in the circular demand buffer

of the user, and the demand epoch of the user is updated to be the then current epoch (lines

22−23). In the following line, the function checks whether any demands have been made by

other users in the then current epoch. If not, the total weight is set to the user’s weight (line

25), which resets the total weight variable for the next epoch. The variable for keeping the

last epoch in which the total weight is reset (ResetEpoch) is updated in line 26. If demands

have been made by other users prior to the then current call (i.e. ResetEpoch = Epoch) the

weight of the user is added to the total weight, to be accounted for in the next epoch (line

28).

The claim function, similar to the demand function, starts with updating the state and

initiating the selector variable. It continues with a number of checks. Unless the demand

33

has been done in the previous epoch and is greater than 0, or if the capacity is depleted, the

function returns without taking any further action. Following that in line 40 the function

checks whether the user has made any claims in the then current epoch. If so, the last

round the user made a claim is checked (line 41). If that also turns positive, which means

the user has claimed her fair share for the round, the function returns without making any

assignments.

If the check in line 40 turns out negative, meaning this is the user’s first claim in the

then present epoch, the variable for the last epoch the user made a claim is updated (line

45). After that, a similar variable for the round is updated in line 47. Next, the assignment

operations similar to the ones in Algorithm 1 is done in lines 48− 50.

Note that this algorithm differs from the CMF algorithm in that the leftover demands

are not inserted into another heap; they remain in the map. Instead, the fully satisfied de-

mands are removed from the cumulative weight variable in lines 51 − 53, having the same

effect as deleting the minimum in CMF algorithm. This way, as long as there is an unsatis-

fied demand, the user’s weight is included in the total weight, and the unit share is calculated

accordingly. At the end of the epoch, all demands are obsoleted.

4.1.3. Weighted Autonomous Max-min Fairness

As the operation of the algorithm is described in Section 4.1.2, the only part that is left

to be explained in this subsubsection is the calculation of weights.

We defined weights to be the multiplicative inverses of the total demand volume, up to

and including the then present demand. The reason for our choice of this weighting policy

is to incentivise the users to make the minimum demands that can satisfy their needs. It is

achieved due to the fact that in this setting the most rational behavior of the user is to keep

her demand minimal, in order not to be disadvantageous in the long run.

For comparison, an alternative policy would be to weight the users inversely propor-

tional to the total volume of previously allocated resources, which would lead the distribution

34

of the total allocated volume of the resources among the users to tend to a uniform distribu-

tion in the long run. This is a matter of the needs of the system that the algorithm will be

adopted to serve to.

In order to weight the users inversely proportional to the total demand volume up to

and including their by then present demand (dtu), the multiplicative reciprocal of dtu is

calculated. This poses a problem in the smart contract context, since Solidity does not offer

floating point data types. In other words, since the demand volumes are defined to be positive

integers, it is not possible to keep weights as they are, since the value needs floating point

data type to be stored. Instead, we keep the total demand volume for each user (dtu for user

u), introduce an intermediary variable p (standing for precision) and take the weight equal

to:

wu =

⌊
p

dtu

⌋

We get rid of this intermediary variable while calculating the unit share. Therefore,

instead of

s =

⌊
c∑n

u=1wu · I(du)

⌋

we use:

s =

⌊
c · p∑n

u=1wu · I(du)

⌋

since

35

s =

⌊
c · p∑n

u=1
p

dtu
· I(du)

⌋
=

⌊
c∑n

u=1
1

dtu
· I(du)

⌋

where I(x) is the indicator function, which returns 1 if x is a positive number, and 0 if x

equals 0. In this context it allows us to indicate that only the weights of users who made a

demand are included in the total sum. Similarly, while calculating the user share we use the

intermediary variable p:

su =

s ·
⌊

p
dtu

⌋
p


As long as the value of p is larger than the total demand volume of the user, we obtain non-

zero weights from
⌊

p
dtu

⌋
. For p = 10k, k ∈ Z+ is the number of decimal places stored for

weights.

4.2. Procedure and Parameters

We implemented our algorithms in Solidity programming language and run on an EVM

environment [38], and more specifically, its Parity implementation, as mentioned above.

The main reason for selecting this framework is its wide use among blockchain ecosystems.

Many blockchain ecosystems and blockchain based systems utilise either EVM or virtual

machines similar to EVM, and support Solidity programming language for smart contracts

(e.g. [39–42]), and for this reason there are also studies available on the performance [43],

security [44], and inspection [45]. It is a high-level, easy to read, object oriented script

language.

We tested our algorithms in a local blockchain, operated by Parity Ethereum 2.7.2 [46],

and we implemented the smart contracts in Solidity 0.5.13. The block gas limit we assume

36

is 8.000.000 units7 .

Parity implementation of Ethereum offers customisable consensus protocols. Among

those is the so-called instant seal engine, which places each transaction into an individual

block of its own. The engine is specifically designed for contract development, since the

block latency is rarely a relevant parameter in the development and verification processes of

the algorithms, at least for the time being.

For our case, the instant seal engine also allows us operationalise time in terms of

number of blocks and, in turn, define the epoch span and the round span in terms of it.

As such, our results are generalisable to every blockchain environment, independent of the

consensus algorithms and parameters they employ.

4.2.1. Timing and Synchronisation

In a setting with n users, in the first epoch, n blocks are used for user registration

function calls and 2n blocks are filled with empty transactions in order to synchronise the

process. The following demand function calls occupied n more blocks, concluding the first

epoch. From the second epoch on, the sequence is 3 rounds of claim in 3n blocks, followed

by n blocks of demand for the next epoch. Therefore the span of a round is chosen to be

equal to n blocks, and an epoch equal to 4n blocks. The tests are run for 3 sets, each extended

over 4 epochs as described above. Averages of each set are collected, and averaged out for

the final result to be reported. The parameters may also be reviewed in Table 4.3.

4.3. Results

The results of the tests carried out for CMF and W/AMF are presented in the following

subsections. The data are available in [4].
7This value is taken from the Ethereum’s actual block gas limit at the time we started our experiments.

The value is dynamically set and updated in each system by the collective decision of its miners, thus it is not
up-to-date. Nevertheless, for the purpose of the present study, it does not constitute a problem, and even an
up-to-date value will be obsoleted in the tme of the readers view so we left it as it is.

37

Table 4.3: The values used in the tests for AMF and WAMF.

Parameter Value Definition

Number of Users n The number of users

in the system

Epoch Capacity 20n The amount to be

distributed for each

epoch

Epoch Span 4n The duration of an

epoch in number of

blocks

Round Span n The duration of a

round in number of

blocks

Demand Interval [10, 30) The interval from

which the demands

are drawn

4.3.1. CMF Results

As indicated in Section 4.1.1, in the CMF, the demand vector is implemented as an

array of two min-heaps, exchanging the demands among each other at each iteration. The

demands arriving from the users are collected in D0 for the span of an epoch. At the end

of the epoch, the distribute function is called by the authority node, and the distribution is

done. The first iteration is done over D0, taking all demands from the smallest to the largest,

granting the available share to the user, and finally either deleting the minimum demand,

if it is completely supplied, or deleting it from D0 and inserting it to D1, otherwise, to be

supplied in the next iterations if possible. The heaps exchange functions, and the process is

repeated until either all the demands are supplied, or the capacity for the epoch is exhausted

(see Algorithm 1).

Gas usage averages for n = 100 entry sets are shown in Table 4.4. For comparison, the

gas performance of a general case heap implementation [48], called Eth-heap, is provided

38

next to our results:

Table 4.4: Average gas costs for Insert and Delete Minimum functions

Function Eth-heap Present Study

Insert 101.261 95.459

Delete Minimum 170.448 133.272

Considering the 8.000.000 block gas limit, the heap operations impose an upper bound

of 60 entries to be processed per block, on average, as seen with the cost of operations

in Table 4.4. This number is to be further lowered with the additional cost of assignment

operations, needed to record the fair share of each user to her balance.

The finding immediately implies that an algorithm implemented as a smart contract

and relying on a central node to carry out the distribute function, cannot support more than

∼ 10 users, assuming that 3 iterations are necessary on average for a distribution process to

complete. The exact number is a function of how disperse the demands are, since the number

of delete/insert operations is dependent on the number of iterations necessary to answer all

the demands, which in turn is dependent on how disperse the demands are.

This is also the reason why a weighted version of CMF has not been implemented in

the present dissertation. The extra cost of calculating and storing weights would make the

weighted version perform even worse than the unweighted version.

4.3.2. AMF and WAMF Results

The first advantage to be pointed out for AMF is that it virtually has no limit for the

number of users that the system can support. The average gas costs of demand and claim

functions for a system with 10, 50, 100 and 500 users can be seen in Table 4.5. The tests have

been carried over in a setting where users have made demands, and claimed their demands in

the succeeding epoch. The results indicate that several demand and claim function calls

can be included within a block, without running into the block gas limit exhaustion problem.

39

Table 4.5: Average and total gas costs of W/AMF demand and claim functions.

Function No. of Users AMF WAMF

Demand

10 70.245 79.732

50 67.351 77.135

100 66.989 76.835

500 66.700 71.365

10 46.800/140.401 46.643/145.931

Claim 50 42.240/126.720 44.852/134.558

(Avg./Total) 100 42.114/126.344 44.763/134.289

500 42.047/126.143 45.319/135.959

The results also indicate that the cost of demand and claim functions do not grow

with the growing number of users. On the contrary, there is a slight decrease in the average

costs, with the growing number of users. The reason for this is the fact that in each epoch

the first call to both functions are costlier, since state variables are updated in these calls.

With large sample sizes, this difference tends to even out better as compared to the relatively

smaller sample sizes.

One thing that should be accounted for is that the average cost of demand function

declines throughout the rounds. The reason for this is, some demands have been fully sup-

plied in the previous epoch, thus, fewer calls to claim function lead to the full execution of

the function (i.e. calls from users whose demands have already been satisfied return without

making any assignments). The average claim costs of rounds for Max-min and Weighted

MF schemes can be seen in Table 4.6.

Table 4.6: The cost of the claim function over rounds (n = 500).

Round AMF WAMF

1 64.677 67.211

2 32.717 36.158

3 28.749 32.589

Average 42.047 45.319

Total 126.143 135.959

40

The number of rounds, as indicated in Section 4.3.1 for the number of iterations of

CMF, is a function of the initial distribution of the demands. In our tests, we drew random

demands from an approximately uniform distribution offered by Javascript Math.random()

function, in the range [10, 30), and the epoch capacity is set to 20n, so that on average the

overdemands and underdemands could balance each other out.

In all the simulations the distribution is completed in 3 iterations. Therefore, in the

tests presented here, we run the system for 3 rounds of claims. The results are cross-checked

with the Python simulations and proved identical. We suspect that with the parameters used

in this study, 3 iterations might be an upper bound, but we do not have a proof. Further

investigation needs to be carried out to in order to come up with a theoretical bound.

Another variable that can be parameterised according to the policy and that would

effect gas costs is the size of the variables used to represent amounts. The size of the variables

can be chosen smaller to save from the extra cost of unused space. The necessary sizes for

the variables is dependent on the total amount that is planned to be distributed in the long

run, maximum available allocation in an epoch, the maximum number of epochs to distribute

all the resource. In the present dissertation, all the variables are implemented as their 256 bit

defaults, in order not to lose generality.

41

5. MAX-MIN FAIRNESS RESTRUCTURED

In this Chapter we will present four algorithms that we obtain by restructuring the MF

algorithm. The operation of these algorithms are different from the original MF algorithm,

but for any given input, the output they produce is identical to the output MF produces.

5.1. Present Models

In this subsection, we will describe the working and the domain of QMF and SMF

models, and also their weighted counterparts, in comparison with the conventional MF

model. In contrast to the conventional distribution algorithm, both algorithms presented

in the present dissertation calculate and declare the maximum share that the system has to

offer, so that when the users are allowed to take the minimum of this declared share and

their demands (i.e. min{s, du}), the capacity at hand shall not be exceeded. In turn the share

is declared, the users are allowed (and expected) to assign this minimum to their balances,

individually.

In the weighted versions, the same procedure is carried out for calculating a unit share,

with which each user can obtain their individually proposed user share by multiplying it

with their individually assigned user weights (i.e. su = s ∗ wu); and then they can take the

minimum of their user share and their demand (i.e. min{su, du}).

What differentiates QMF and SMF is the procedure each one utilizes to calculate the

share, which we discuss in detail in the subsequent subsections. Before moving on to de-

scribe the particular details of the two models, we will continue with their common con-

structs.

Both models operate in the same temporal setting. As in the MF models presented

before, in these settings also, the time is fractured into epochs, which is defined to be a

collection of a fixed number of successive blocks. For the duration of an epoch, users are

allowed to make demands. At the end of an epoch, the available share is calculated according

42

to the accumulated demands, and in the following epoch, the users can claim their fair share

during the span of the epoch. The users are also allowed to make new demands to be collected

in the following epoch, while claiming their demands submitted in the preceding epoch. The

time overlay of demands and claims may be seen clearer in Figure 4.1. The right to any share

unclaimed in its due epoch is lost, and the unclaimed share is added to the capacity of the

next epoch, along with the leftover capacity, if there are any.

The state of the system is accounted for, again, by a dedicated function, update state,

which is called at the beginning of both the demand and the claim functions. update

state checks the validity of the epoch number with respect to the block number. If the epoch

number needs to be updated, the capacity is replenished according to a predefined policy, and

the share is recalculated. For simplicity we kept this policy in its simplest and replenished

the capacity by a constant amount, which we refer here to as the Epoch Capacity. The

function update state does not explicitly invalidate the obsoleted demands; they are rather

invalidated by the update of the epoch variable, by the virtue of the organisation of the

remaining functions and the data structures that represent the demands.

In order to recalculate the share, update state accesses a view function, calculate share.

The main difference between QMF and SMF, and their weighted counterparts also, is the

structure of their respective calculate share functions, which will be explained in detail in

the relevant subsections following.

As indicated above, in both implementations calculate share is declared to be a view

function, which means that the function does not store any data on the permanent storage

variables of the contract. It should be noted that storing data on the permanent storage

variables, which is colloquially called a storage write, is the costliest operation8 in terms of

gas expenditure. Considering the fact that the cost of the calculate share function is the main

bottleneck for remaining within the boundaries of block gas limit, avoiding storage write

operations is crucial.

8For comparison, the second costliest operation is storage read, and there is more than an order of magni-
tude between the cost of the two: 20.000 vs. 800 gas per operation.

43

Both implementations rely on iterating over the user demands, and both get their nu-

meric limitations over the efficiency of the loops for these iterations. The abstractions for and

the layout of the demand data, in turn, determine the efficiency of these loops. In W/QMF,

the loop iterates over the number of demands for the predefined demand volume interval (i.e.

[1, Quanta]), and in W/SMF over the user demands (i.e. {d1, ..., dn}), hence the limitations

on demand volume and the number of users, respectively.

5.1.1. Quantized Max-min Fairness Model

The operation of QMF is analogous to that of Counting Sort algorithm, in which case

to sort a collection of elements in a predefined interval, the algorithm traces the number

of occurrences of each element, and enumerates the sorted list according to those counts.

Likewise, QMF traces the number of demands for each demand volume, in a predefined

demand volume interval, and calculates the share over these counts.

When the calculate share function is called, the number of demands for each demand

volume is ready, since this part is handled by the demand function. When a demand arrives,

the number of demands for the relevant demand volume is incremented by 1, in addition to

the other operations for recording the demand (e.g. updating the demand variable in the user

list). Conveniently, demands are represented with an array, instead of a heap, since random

access to demand volume counts are needed to record the increments.

The main loop of the calculate share iterates over the demand array, starts by proposing

1 as the share and calculates the total capacity needed to declare the share as such. If the

capacity is sufficient, the next iteration is taken, until reaching a proposal which would lead to

a shortage of capacity. The loop breaks when it reaches such a proposal, and the penultimate

proposal is returned to the calling function (i.e. update state) to be declared as the share.

44

The formula for calculating the total necessary capacity for a proposal p (1 ≤ p ≤

q, p, q ∈ Z) is:

p−1∑
i=1

i · di +
q∑

j=p

p · dj

=

p−1∑
i=1

i · di + p ·
q∑

j=p

dj

=

p−1∑
i=1

i · di + p · (D −
p−1∑
i=1

di)

(5.1)

where di stands for the i-th entry in the demand array, and D for the total number of demands,

which is collected during the demand epoch by the demand function. The remaining terms

are calculated within the loop, each new iteration using the previous iteration’s cumulative

values. The first term of the equation stands for the capacity reserved for the underdeman-

ders, and the second term for the capacity available for the overdemanders. A numerical

example can be seen in Table 5.1.

Table 5.1: QMF Procession Example (c = 50)

Demand Volume 1 2 3 4 5 6 7

Number of Demands (NoD) 3 2 1 0 3 0 4

NoD Cumulative 3 5 6 6 9 9 13

Total Demand Volume (TDV) 3 4 3 0 15 0 28

TDV Cumulative 3 7 10 10 25 25 53

Necessary Capacity 13 23 31 38 45 49 53

5.1.2. Weighted Quantized Max-min Fairness Model

The main difference in WQMF is that instead of a globally defined share for all users,

we calculate unit share and each user’s individual share is calculated by multiplying the unit

share with the user’s individual weight. Unit share is defined as the share reserved for unit

45

weight (i.e. w = 1). According to this:

su = wu ·
c∑n

u=1 wu · I(du)

where su denotes the share and wu denotes the weight of the user u, and n is the total number

of users in the system. I(x) is the indicator function, which returns 1 if x is a positive number,

and 0 if x equals 0. In this context it allows us to indicate that only the weights of users who

made a demand are included in the total sum.

In order to calculate maximum available unit share, in the demand function we calcu-

late and keep the minimum unit share that suffices to satisfy the user’s demand. This is given

by:

i =

⌈
du
wu

⌉

where, i stands for the index to be updated in the demand array. In addition to the demand

array, we also utilize a weight array, and i-th entry in both arrays are incremented by their

corresponding values (i.e. by du and by wu, respectively), instead of by 1, since total demand

volume and total weight values are needed in the calculation, instead of the total number of

demands. Similar to QMF, the necessary capacity for declaring the unit share as p (1 ≤ p ≤

q, p, q ∈ Z) is then given by:

p−1∑
i=1

di + p ·
q∑

i=p

wi

46

As it is in QMF, the first term gives the total supply volume satisfying the underde-

manders, and the second term gives the capacity available for the overdemanders, if the unit

share is to be declared as p.

In order to iteratively calculate the necessary capacity for all i and select the maximum

available value, we manipulate the second term and calculate:

p−1∑
i=1

di + p · (W −
p−1∑
i=1

wi)

where W , analogous to TD in QMF, is the total weight of the users that made a demand

in the previous epoch, which we collect and calculate during the demand epoch within the

demand function.

It should be noted that the size of the demand and weight arrays should be equal to

the range of possible index values. Since the range of the available demand volumes are

restricted in the [1, q] interval, the algorithm needs the range of the available weight values

also be a finite set to be able to operate. This brings about the further restriction that the

image of the weighting function be a finite interval.

5.1.3. Simulated Max-min Fairness Model

The operation of the calculate share function of SMF is almost identical to that of

the conventional MF algorithm. The mere difference is that the iterative assignments are

replaced with a single update to a memory variable, which is significantly more affordable

in terms of gas expenditure as compared to its storage counterpart, in order to calculate the

maximum available share that the system has to offer to each user without exceeding the

capacity. The users, then, assign the minimum of their demands and the share, individually.

47

The reason for the decoupling of calculating the share and assigning it to the user

balances is the cost of storage write operation, as explained in Section 5.1. Although the

share of each user is calculated during the operation, it is a better strategy in terms of gas

cost, to not keep this information, and handle the individual assignments in a separate claim

function. In fact, as it is shown in Section 4.1.1, the alternative leads to rapid block gas limit

exhaustion, and the system cannot support more than a few users.

SMF iterates over the user demand vector and checks the demand of each user individ-

ually, collecting all the valid demands in a memory heap. This heap is a binary complete tree,

implemented as an integer array on which two functions operate, one for inserting new val-

ues and the other for removing the minimum element, which always reside in the tree root.

These are what is called pure functions in the Solidity Programming Language, which do

not perform neither storage write nor storage read operations, and as such, they are expected

to be the least costly family of operations. The array is removed from the memory upon the

return of the calculate share function.

The calculate share function of SMF inserts only the demand volume to the minimum

heap D0. This is because the owner of the demand is not needed, since the assignment

operation will not be handled here. Once D0 is populated, the remainder of the functioning

is identical to MF, as indicated before, with the exception of the assignment operations. The

procedure is represented in Figure 5.1 visually. In the figure, partial shares refer to the share

at each iteration, which is added to the final share9 , the variable to be updated and returned

to the calling function of calculate share.

5.1.4. Weighted Simulated Max-min Fairness Model

In contrast with SMF, WSMF utilizes a minimum heap of a node struct, rather than

a simple heap of integers, to represent the demand volumes. This node struct keeps the

weight of the user, in addition to the demand volumes, since the total weight is needed in

the calculation of unit share, as explained in Section 1.2. In agreement with SMF, WSMF

does not keep user id variable in the calculation loop. An additional difference with SMF is

9In Algorithm 4, this is represented with the result variable

48

Demand

Heap 0

Demand

Heap 1

Final Share

Leftover

Demand

+ PartialShares +

User

Demands
Leftover

Capacity

Figure 5.1: SMF Operation Diagram

that, the unit share is multiplied with the user weight within the claim function. Other than

these differences, the operation of the two algorithms are identical.

5.1.5. Weighting Policy

In the present dissertation, we implemented and experimented W/SMF with two differ-

ent weighting policies as it will be seen in Section 5.4. In the first case, we chose the weights

constant, randomly drawn for each user in a predefined weight interval. In the second case,

we dynamically weighted each user, inversely proportional to their cumulative demand vol-

umes, up to and including the then present demand. The first is the trivial case and it is

implemented as a basis for the comparison of the added cost of calculating the dynamic

weights of the second case.

5.2. Implementation

In the following subsections, we will explain the implementations of QMF and SMF

in detail, over the pseudocodes created for each. The reason for choosing the unweighted

versions to be explained in detail is brevity. The reader might access weighted pseudocodes

in Appendices B and C, which we believe will be readily intelligible once the unweighted

code is examined.

49

We also note that the actual smart contracts, which can be accessed in the repository

at [4], includes additional functions to the ones explained in the following subsections, for

registering users, withdrawing currency etc., which the distribution process operates inde-

pendent of. They have been implemented for convenience, and to demonstrate how the

system can operate with a simple interface, and as such their performance is not a relevant

metric for the overall operation of the system. Therefore, they are not included in the pseu-

docode, and not explained in the text.

5.2.1. Quantized Max-min Fairness

QMF (Algorithm 3) consists of four functions, two of which the user has access to,

and the other two are accessed within the former.

The demand function takes the user id and demand volume as arguments, and starts

by updating the state by a call to update state function. In order to select the right portion of

the circular buffers, a selector variable is initiated once the state is updated. In the circular

buffers, the demand function writes to D0 in odd epochs, and to D1, in even epochs (line 3).

The function then proceeds to check whether the user has already made a demand in

the then present epoch. If so, it returns without taking any further action, and if not, proceeds

to record the demand. The variable for keeping the epoch at which the user made the last

demand is updated to be the then current epoch (line 7).

In lines 8 − 13, the function checks whether or not the relevant entry in the demand

vector has been updated in the then current epoch. If it is the first time the entry will be

updated in the then present epoch, it is set to 1, and the relevant entry in the demand reset

array (the array for keeping at which epoch the relevant entry in the demand array has been

reset) is updated to be the then present epoch. If the entry is found out to be updated before,

it is incremented by 1. Following that the demand volume is recorded in the user demand

vector and the number of total demands is incremented by 1 (lines 14−15); then the function

returns.

50

Algorithm 3 QMF Pseudocode
1: procedure DEMAND(User, Volume) ▷ Make a Demand

2: UPDATE STATE();

3: selector ← (Epoch+ 1) (mod 2);

4: if User.demandEpoch[selector] = Epoch then

5: return;

6: end if

7: User.demandEpoch[selector]← Epoch;

8: if ResetEpoch[selector][V olume] ̸= Epoch then

9: ResetEpoch[selector][V olume]← Epoch;

10: Demands[selector][V olume]← 1;

11: else

12: Demands[selector][V olume] + +;

13: end if

14: User.demand[selector]← V olume;

15: TotalDemands++;

16: end procedure

17: procedure CLAIM(User) ▷ Claim User Share

18: UPDATE STATE();

19: selector ← Epoch (mod 2);

20: if User.demandEpoch[selector] ̸= Epoch− 1 then

21: return;

22: end if

23: if User.claimEpoch = Epoch then

24: return;

25: end if

26: User.claimEpoch← Epoch;

27: User.balance← min(Share, User.demand[selector]);

28: Capacity ← Capacity −min(Share, User.demand[selector]);

29: end procedure

51

Algorithm 3 QMF Pseudocode Cont.
30: procedure UPDATE STATE()

31: if Epoch ̸= BlockNumber−Offset
EpochSpan

then

32: Epoch← BlockNumber−Offset
EpochSpan

;

33: Capacity ← Capacity + EpochCapacity;

34: Share← CALCULATE SHARE();

35: TotalDemands[(Epoch+ 1) (mod 2)]← 0;

36: end if

37: end procedure

38: procedure CALCULATE SHARE()

39: selector ← Epoch (mod 2);

40: cumulativeDemands← 0;

41: cumulativeDemandV olume← 0;

42: for i← 1, Quanta do

43: if ResetEpoch[selector][i] = Epoch− 1 then

44: cumulativeDemands← cumulativeDemands+Demands[selector][i];

45: cumulativeDemandV olume← cumulativeDemandV olume+

i ∗Demands[selector][i];

46: end if

47: if Capacity < cumulativeDemandV olume+ i∗ (TotalDemands[selector]−

cumulativeDemands) then

48: return i− 1;

49: end if

50: end for

51: return Quanta;

52: end procedure

52

The claim function starts with checks and updates on the epoch variable (lines 19−

25), similar to the ones in the demand function. In claim function, however, D0 is used in

the even epochs, and D1 in odd ones. This alternating pattern enables demand and claim

functions run in the same epochs, without interfering in each others operation. The update

state and the calculate share functions agree with the claim function in the parity of their

selector variables. The function continues with updating the user claim epoch. Finally, it

returns after assigning the minimum of the share and the user demand to the user account

(line 27), and discounting that amount from the capacity (line 28).

The update state is an internal function, as seen before, called by demand and claim

functions. It is mainly responsible for updating the epoch (lines 31 − 32), and if the epoch

needs to be updated, capacity (line 33), share (line 34), and totalDemands (line 35) variables

along with it. The due epoch number is calculated by subtracting the number of the block

that the contract was deployed (offset) from the then current block number, dividing it by the

epoch span, and finally taking the floor of the resulting number (line 31).

The function calculate share is accessed only within the update state function, thus it

assumes the state to be up-to-date, and immediately starts with initiating the selector variable,

which, as mentioned before, agrees with the selector variable of the claim function.

Having initiated the selector variable, the function initiates two more local variables.

These variables are used to keep the cumulative number of demands and the cumulative

demand volume, as the share is calculated iteratively, thus the names of the variables: cumu-

lativeDemands and cumulativeDemandVolume.

Lines 42 − 50 show the main loop of the calculate share function, which at each

iteration, calculates the cost of declaring the share as equal to the number of the iteration.

That is to say, in first iteration the cost of declaring the share as 1 is calculated, in second

iteration 2, and so on, up to the maximum allowed demand volume, Quanta. If at any step

the cost exceeds the available capacity, the loop breaks, returning the penultimate proposal

as the share. If the loop finishes without breaking, the value Quanta is returned.

53

Since the function keeps the cumulative values in the local variables, the write function

is not costly. The main cost is due to the storage reads in lines 44 and 50, which is still

affordable, as shown in Section 5.4.

5.2.2. Simulated Max-min Fairness

Like QMF, SMF (Algorithm 4) also consists of four functions, two of which the user

has access to, and the remaining two is accessed within the former.

The demand function takes the user id and demand volume as arguments, and starts

with updating the state by a call to update state function. In order to select the right portion

of the circular buffers, a selector variable is initiated after the state is updated. The demand

function writes to D0 in odd epochs, and to D1, in even epochs (line 3).

Next is to check whether the user has already made a demand in the then present epoch.

If so, the function returns, and if not, moves on to record the demand. Lastly, the variable for

keeping the epoch at which the user made the last demand is updated to be the then current

epoch, and the function returns.

The claim function starts with a call to the update state function, and initiates the

selector variable. In this claim function also, D0 is used in the even epochs, and D1 in odd

ones, like it is in the claim function of QMF.

The function continues with updating the user claim epoch. Finally, it returns after

assigning the minimum of the share and the user demand to the user account (line 20), and

discounting that amount from the capacity (line 21).

The update state is an internal function, as seen above, called by demand and claim

functions. It is mainly responsible for updating the epoch (lines 24 − 25); and if the epoch

needs to be updated, capacity (line 26), and share (line 27) variables along with it.

54

Algorithm 4 SMF Pseudocode
1: procedure DEMAND(User, Volume) ▷ Make a Demand

2: UPDATE STATE();

3: selector ← (epoch+ 1) (mod 2);

4: if User.demandEpoch[selector] = Epoch then

5: return;

6: end if

7: User.demand[selector]← V olume;

8: User.demandEpoch[selector]← Epoch;

9: end procedure

10: procedure CLAIM(User) ▷ Claim User Share

11: UPDATE STATE();

12: selector ← epoch (mod 2);

13: if User.demandEpoch[selector] ̸= Epoch− 1 then

14: return;

15: end if

16: if User.claimEpoch = Epoch then

17: return;

18: end if

19: User.claimEpoch← Epoch;

20: User.balance← min(Share, User.demand[selector]);

21: Capacity ← Capacity −min(Share, User.demand[selector]);

22: end procedure

23: procedure UPDATE STATE()

24: if Epoch ̸= BlockNumber−Offset
EpochSpan

then

25: Epoch← BlockNumber−Offset
EpochSpan

;

26: Capacity ← Capacity + EpochCapacity;

27: Share← CALCULATE SHARE();

28: end if

29: end procedure

55

Algorithm 4 SMF Pseudocode Cont.
30: procedure CALCULATE SHARE()

31: selector ← Epoch (mod 2);

32: heap← ∅;

33: simulatedCapacity = Capacity;

34: simulatedShare← 0;

35: result← 0;

36: for i← 1, NumberOfUsers do

37: if User.DemandEpoch[selector] = Epoch− 1 then

38: INSERT(heap, User.demand[selector]);

39: end if

40: end for

41: simulatedShare←
⌊
simulatedCapacity

heapSize

⌋
;

42: while heap.length > 0 & simulatedCapacity ≥ heap.length do

43: while heap[0] < simulatedShare do

44: simulatedCapacity ← simulatedCapacity − heap[0];

45: DELETEMIN(heap);

46: end while

47: simulatedCapacity ← simulatedCapacity−simulatedShare∗heap.length;

48: for i = 0, heap.length do

49: heap[i]← heap[i]− simulatedShare;

50: end for

51: result← result+ simulatedShare;

52: simulatedShare←
⌊
simulatedCapacity

heap.length

⌋
;

53: end while

54: return result;

55: end procedure

56

The calculate share function uses 5 local variables, thus starts with initiating them.

First is the selector variable. Next is the heap, which is used to simulate the demand heaps in

the conventional algorithm. In order to keep the global capacity variable unaltered, a local

variable with the name simulatedCapacity is used instead. In order to keep the temporary

share in between the iterations, another local variable simulatedShare is used, and cumulating

shares are collected in the local variable result, in order to be returned in the final.

There are two main loops in the algorithm. The first loop (lines 36− 40) is responsible

for reading the user demands from the demand vector (storage variable), and if the demand

is valid (i.e. recorded in the immediately previous epoch, line 37) writing to the local heap.

This means two storage reads (one for demand epoch and one for demand volume) and a

single memory write, the former of which is relatively costly.

Having prepared the local heap, in line 41, the simulated share of the first iteration is

calculated. Lines 42 − 53 show the second main loop of the function. The loop runs until

either the heap has been emptied (which means that all the demands are satisfiable with the

capacity at hand) or the capacity is less than the number of demands.

Two additional heaps are nested within this loop. In lines 43 − 46 the demands that

are fully satisfiable, in other words, the demands that are less than or equal to the simulated

capacity of the then present iteration, are deducted from the capacity, and the demand, being

fully satisfied, is removed from the heap. The loop breaks if and when it encounters the first

demand that is greater than the simulated share, since they can only be offered as much as

the simulated share.

Instead of taking each demand and deducing one simulated share from the capacity for

each, the remaining number of demands is multiplied with the simulated share, and that total

is deducted from the capacity in a single step (lines 54− 55). The second nested loop (lines

548 − 50), in turn, iterates over the local demand heap, and deducts simulated share from

the remaining demands. The simulated share is cumulated in the result variable (line 51),

and then recalculated for the next loop (line 52). When the outer loop termiates, the result

variable is returned (line 54) to the update state function.

57

The functions to insert to and remove from the local heap are what is called pure

functions in Solidity. They do not read from storage variables, in addition to not writing on

them, which renders this category of functions the least costly. The main cost stems from

the first outer loop, leading to the limitation on the number of demands, and consequently,

on the number of users.

5.3. Procedure and Parameters

In the tests we run to measure the performance of our implementations, we chose

the bottleneck parameter values to test and keep them identical for all of the restructured

algorithms’ tests, and set the remaining parameters in relation to them. The parameters in

question here are the ones that decides the number of iterations of the calculate share

functions’ loop. In the cases of QMF and WQMF this is the Quanta value (q), and in SMF

and WSMF it is the number of users (n). We have run our tests with 10, 50, 100, 250, 500, and

1000 quanta values for W/QMF, and with 10, 50, 100, 250, 500, and 1000 users for W/SMF,

and observed in each case how the cost scales with these growing values. The chosen values

for each parameter can be seen more explicitly in Tables 5.2 and 5.3 for W/QMF and W/SMF,

respectively.

In W/QMF, the demands are drawn from a discrete uniform distribution in [1, Q] in-

terval, and the capacity is set to 500 · Q, which is slightly less than the expected average

(E[du] = 1+Q
2

, u ∈ U) of the uniform distribution in the interval [1, Q]. We deliberately

introduced this shortage in order for the tests to allow the cases where the total volume of

the demands exceed the capacity at hand. No further shortage or abundance of resources is

forced into the tests by other parameters. Similarly, in W/SMF, the demands are drawn from

the [15, 35) discrete interval uniformly, and the capacity is set to 20 · n, offering each user

slightly less than the expected average (E[du] = 24.5, u ∈ U), in order to allow the tests to

include capacity exceeding total demand volume cases.

In the cases of constant weights, the weights are drawn from a uniform distribution in

the [1, 10] discrete interval (w ∈ N).

58

Table 5.2: The parameters and their values used in the tests for QMF and WQMF.

Parameter Value Definition

Quanta Q Maximum demand

volume

Number of Users 1000 The number of users

in the system

Epoch Capacity 500 ·Q The amount to be

distributed for each

epoch

Epoch Span 2000 The duration of an

epoch in number of

blocks

Demand Interval [1, Q] The interval which

the demands are uni-

formly drawn from

Weight Interval [1, 10] The interval which

the weights are uni-

formly drawn from

5.4. Results

The results for CMF and W/QMF and W/SMF are presented in the following subsec-

tions. The data are available at [4].

5.4.1. QMF and SMF Results

We summarize the results in three tables, in which we the present the average costs

for the demand (Table 5.5), the average costs for the claim (Table 5.6), and the maximum

costs for the update state (Table 5.4) functions. The reason for preferring maximum

values instead of average in the latter case is that it is more convenient to consider the worst

case scenarios rather than the average case, since this is the main bottleneck in all the al-

59

Table 5.3: The parameters and their values used in the tests for SMF and WSMF.

Parameter Value Definition

Number of Users n The number of users

in the system

Epoch Capacity 20n The amount to be

distributed for each

epoch

Epoch Span 2n The duration of an

epoch in number of

blocks

Demand Interval [15, 35) The interval which

the demands are uni-

formly drawn from

Weight Interval [1, 10] The interval which

the weights are uni-

formly drawn from

gorithms. Moreover, the distribution of the cost of this function is widely skewed, the first

invocation at each epoch being several orders of magnitude larger than the remaining invoca-

tions of the function, rendering the arithmetic average misrepresentative. Finally, for reasons

of fairness, this cost is refunded to the user, since being the first to invoke a claim or a

demand in a given epoch is hardly a burden that may be fairly loaded on a single random

user. Thus, it is not really a cost for the users to shoulder, but rather for the system itself, and

the only important concern for this cost is to keep it within the boundaries of the block gas

limit.

As seen in Tables 5.5 and 5.6, the cost of demand and claim functions are contained

well within the block gas limit, being 2 orders of magnitude below it, and showing low

variability. In fact, the cost of the demand function for W/SMF is constant (i.e. σ = 0) for

both within and between the trials, and between the tests with different numbers of users.

60

Table 5.4: Maximum Gas Cost for Update State

q QMF WQMF n SMF WSMF-C WSMF-R

10 61,083 56,528 10 79,859 141,159 114,289

50 100,353 109,094 50 237,336 693,835 724,976

100 163,878 128,952 100 450,576 1,480,234 1,438,054

250 317,493 404,156 250 1,277,618 5,247,693 4,831,477

500 602,169 714,624 500 2,611,722 † †

1000 1,087,829 1,285,120 1000 5,257,236 † †

Table 5.5: Average Gas Cost for Demand

q QMF WQMF n SMF WSMF-C WSMF-R AMF WAMF

10 66,751 74,544 10 65,101 60,161 75,837 70,245 79,732

50 67,754 75,878 50 65,101 60,161 75,837 67,351 77,135

100 69,008 77,150 100 65,101 60,161 75,837 66,989 76,835

250 72,701 79,902 250 65,101 60,161 75,837 * *

500 77,743 83,066 500 65,101 †† †† 66,700 71,365

1000 84,817 88,440 1000 65,101 †† †† * *

Table 5.6: Average Gas Cost for Claim

q QMF WQMF n SMF WSMF-C WSMF-R AMF WAMF

10 56,122 56,721 10 56,142 56,641 57,031 46,800 46,643

50 56,121 56,719 50 56,142 56,639 57,533 42,240 44,852

100 56,120 56,720 100 56,142 56,640 57,532 42,114 44,763

250 56,120 56,719 250 56,142 56,641 57,531 * *

500 56,119 56,719 500 56,142 †† †† 42,047 45,319

1000 56,119 56,719 1000 56,142 †† †† * *

∗∗Tests that are not carried out
†† Gas cost exceeds 8, 000, 000 block gas limit
†† Tests that are not completed because update state function exceeded the block gas limit

61

As for the update state maximums, Table 5.4 reveals, the growth of the cost tends to

linear, and the reported values are well contained within the block gas limit. The missing

values in Table 5.4 are due to the fact that, WSMF exceeds the block gas limit for these

number of user values, and the presented tests in the previous study [49] were considered

sufficient in W/AMF.

62

6. DISCUSSION

The present dissertation investigates Max-min Fairness distribution scheme in the block-

chain ecosystems context over its implementations as blockchain faucets. To point at the

generality of the investigation, we should first denote that the algorithms developed hereby

are not specific to faucet systems, and they can easily be adopted to any system within the

blockchain context that needs to utilise some kind of a distribution scheme, without running

into problems specific to blockchain systems. In this sense, the faucet mechanism should be

taken as an example and not as the main subject of investigation. The present implemen-

tations of Max-min Fairness, for example, can be built within a scheduler operating on a

blockchain system.

Nevertheless, the utilities of blockchain faucets are rich. Although they have been con-

ceived as free cryptocurrency services for test networks, the function of blockchain faucets

should not be taken limited to this use case. For instance, faucets may also serve as distri-

bution mechanisms for systems that run on donations (e.g. election rallies), where public

transparency, responsibility, incentivisation, and participation are indispensible properties.

This kind of a distribution mechanism lends these projects the opportunity to be publicly

transparent, and make commitments (e.g. declaring the weights for the expenditure items)

prior to raising funds, since the system assures the enforcement of declared commitments,

by the virtue of its immutability. Another example may be utilising fair faucets for the

distribution of governance tokens in collectively governing communities. The fairness of

distribution, in this case, would account for the fairness of decision making processes.

For reasons of simplicity, in the present study the resource to be distributed is repre-

sented only over its quantity, with an integer. However, in the contracts we developed, we

implemented a simple function to allow users to withdraw from their balances, which can

easily be modified to convert the data type to another desired one. For example, a standard

token template can be included in the contract and the balance, which is represented as a

simple integer, might be converted to the desired token type in the withdraw function. In this

sense the contracts presented hereby are compatible with all token standards.

63

The main bottleneck, and thusly the main performance metric of the present disserta-

tion is the gas consumption, and this is arguably a natural approach for studies on blockchain

systems. However, the results presented in this study are not to be taken for their absolute

values. Over time, changes in the charges, or low level efficiency improvements in coding or

compilation may be introduced, leading to lower transaction costs. The aim of our approach

is to demonstrate the availability, and the cost structure of the Max-min Fairness algorithm,

and its different implementations.

Accordingly, the present dissertation demonstrates, over the failure of CMF to support

more than 10 users, that it is not feasible for Max-min Fairness scheme to be implemented

in the blockchain context as it is implemented in the conventional computational settings.

In principle, because of the block gas limit, blockchain systems are not well suited for al-

gorithms, which cannot be efficiently distributed to be processed by multiple computing

parties, with partial data, and asynchronously. A single transaction to carry out a function

with heavy computational burden is not a working strategy while developing software for

blockchain systems.

This is in accordance with the distributed nature and the philosophy of the blockchain

systems. In contrast with the centralised systems, blockchains aim to distribute both the

work and the control among its users. For this reason, they are incentive driven, as opposed

to centralised systems, which are authority driven. That is to say, centralised systems rely

on an authorised component (operating system kernels, load balancers, web servers etc.)

to carry out the computation; whereas blockchain systems rely on incentivising its users to

operate the system in a way that the outcome will turn out to be the desired computation.

It should be noted that the total cost of the claim function in W/AMF is obtained by

multiplying the values presented in Table 5.6 by the number of calls to the function with the

necessary number of calls, which is a function of the distribution of the demands, and may

vary among the users with different demands, since in W/AMF total claim process may take

more than a single call in each epoch. For example, in the extreme cases where all demands

are below or all demands are above the available average (i.e. ∀u du ≤ c
n

, or ∀u du ≥ c
n

)

the algorithm takes a single iteration, assigning each user their demands in the former case,

64

and c
n

in the latter. In the simulations we run where the demands were uniformly distributed,

we observed that the algorithm most usually takes 3 iterations, and assumed this number as

the number of rounds in the W/AMF tests for this reason. A finer analysis on the distribution

of the number of iterations Max-min Fairness takes, over the distribution of demands is well

beyond the scope of the present study, and to our best efforts, we also were not able to find a

study on possible upper-bounds related to this number.

The maximum number of users we reached that WSMF can support under 8.000.000

gas limit is 250. Nevertheless the algorithm can be optimised further in the low level in order

to decrease the cost (e.g. reduce the size of the variables) and allow for higher numbers of

users. We did not undertake such an endeavour for two reasons: First, the main aim and

the scope of the present dissertation is to demonstrate the cost structure, rather than to pro-

vide tight bounds for the cost. Second, the exact cost of the operation of the calculate

share (and consequently the update state) function is again a function of the dis-

tribution of the demands. Prospective studies may improve on the absolute values of gas

consumption in each algorithm, taking the cost growth structure analyzed and presented here

as a basis for their design.

Another lane for future studies would be changing the capacity replenishment policy.

In the present dissertation, the capacity is replenished by a constant quantity C at the begin-

ning of each epoch. Instead, the tests can be run with varying quantities of replenishment

over time, possibly according to some function of epoch number (i.e. C = f(E)). In the

same vein, the distribution of the user demands may be manipulated in order to observe the

outcomes of replenishment and weighting policies.

In the present dissertation we employed two basic weighting policies. In the first case,

which may said to be the trivial case, we randomly assigned constant weights to users. In

the second case, we assigned each user the multiplicative reciprocals of the total sums that

they demanded up to and including the then present epoch. The first policy is important

for the study because it serves as a base case for comparison for the added complexity of

calculating weights with different policies. For example, as explained in Section 4.1.3, for

the implementation of the second weighting policy, since floating point numbers are not

65

suported in Solidity, and are required to represent multiplicative reciprocals, we developed a

custom method for these calculations, and the costs of the first weighting policy served as a

reference for comparison for the added cost of this computation in the second policy.

Weighting the users inversely with the total sum of their previous demands implies

a policy for incentivising the users to make minimal demands that can satisfy their needs,

in order not to be disadvantageous in the long run. Moreover, it can also serve for the

long term fairness of the distribution. We were not able to implement the same policy for

WQMF, because the weight of the user is needed for the calculations in the demand function.

Since the demand interval is limited and the total demand is a monotonous non-decreasing

function, and we need the ratio of demand and weight in the registering of the demand, it

would lead to the demands piling up to the lower ends of the demand array, rendering the

system inoperable.

An alternative policy for WQMF similar to reciprocating the total sum of previous

demands could be reciprocating the total sum of a finite number of most recent demands.

The added cost of such a policy is affordable, first of all because this cost will be reflected in

the demand function, rather than the calculate share function, which is the original bottleneck

in WQMF. Depending on the decision of the recency measure, for n recent demands, each

user would be allocated a circular buffer of size n, and have n additional storage reads and

1 additional storage write in each call of the demand function. Other than that the algorithm

operates identically with the present implementations. Although similar to the second policy

we implemented, such a policy would emphasise recent rather than the total history of the

demands of the user, and its implications on the user incetivisation, and ramifications on the

user behaviour would be different. Unfortunately, further investigation of the topic is out of

the scope of the present dissertation.

The faucet algorithms presented in this study are designed for single resource distri-

bution. For the prospective studies we might further propose focusing on multi-resource

distribution problems. One way would be keeping each resource type separate and distribute

them independently, with the algorithms developed in the present dissertation. For such a

policy, no alteration in the present algorithms would be required. The user might deploy

66

multiple contracts and distribute each resource with one. In fact, this would be the right

way to proceed if the user intends to use W/QMF or W/SMF, since multiple resource kinds

would be sharing the available computational budget, leading for reduced quanta interval

support for W/QMF, and reduced number of user support for W/SMF. This is because of the

limitation on the available iterations of the loops of these algorithms, since the number of

available iterations will be divided among the resource types. For example, under the same

block gas limit, doubling the type of resources leads to halving the available quanta interval

in W/QMF, or halving the maximum number of supportable users in W/SMF; tripling leads

to reducing the sizes to one-thirds.

On the other hand, if the resource types will be considered and distributed in relation

to each other, this is a question of policy. In [31], Ghodsi et al. develop Dominant Re-

source Fairness, and show that it satisfies fairness demands of multiple resource distribution

systems, and it has gained wide acceptance in the literature. The author of the present disser-

tation is convinced that DRF would be the right method for distributing multiple resources

while establishing fairness among them. DRF can be adapted to blockchain systems most

efficiently over W/AMF, since the only additional computational burden of calculating share

for an additional resource will be two storage reads, a division, and a storage write. This

is due to the fact that, in W/AMF, the share for each round is calculated simply by divid-

ing the capacity for a given resource by the total number or total weight of its demanders,

respectively. One storage read is for reading the capacity for the resource, one for reading

the total number or the total weight of its demanders, the division for dividing the former

by the latter, and storage write to write the result to the share or unit share variable, again,

respectively. This calculation process will be carried out for each individual variable, adding

up to the total cost of the update state function.

DRF can also be adapted with W/QMF and W/SMF, but being subject to the limita-

tions described, they would not scale as well as W/AMF could. The total available gas budget

would be divided among the resouces, each one being capable of iterating a loop downscaled

linearly by the number of resources. In W/QMF this would lead to a trade-off between the

available quanta value and the number of resources. Since in DRF, the distribution is done

over the percantage quantity of the demand volume to the resource capacity, and Solidity

67

does not support floating point variables implicitly, this translates to the floating point preci-

sion the system can support. In W/SMF, on the other hand, the same trade-off is encountered

between the number of resources, and the number of users the system can support.

For all of the algorithms, the extra gas cost of ordering the demands for their relative

dominance should be handled in the demand function, rather than in update state.

This way, the cost will be distributed over the users, preventing a possible bottleneck that

would arise for the necessity of iterating over all the demanders in a single loop in the update

state function. The gas cost analysis of this process is out of the boundaries of the present

dissertation. Nevertheless, relative to the block gas limit, the gas cost of demand function

is low, at least by two orders of magnitude, and a possible implementation, although another

possible bottleneck, should allow for a reasonable number of resources; probably more than

the already existing bottlenecks would allow. At this point, we contend with this rough

estimation, and leave the numerical analysis to the future study.

An additional caveat for utilising DRF in the blockchain context is the accumulating

nature of the distribution process. In the original setting where DRF is developped to address

(e.g. resource scheduling in cluster computation), the resources to be distributed are utilised

immediately once they are allocated (e.g. CPU or memory). In our distribution process, the

resources have not been constrained to this precondition, and they accumulate as long as the

user prefers to keep them. This might pose a problem in the DRF context.

More specifically, it may leave the algorithm vulnarable for certain strategies to be

developped to short circuit the relative fairness constructs of the algorithm. For example,

the users may prefer to maximise their share in only a limited number of resources for a

given epoch. In order to achieve this, they may submit inflated demands for the remaining

resources, forcing the real targeted resources to sink in the lower priority distribution loops,

where their chances of getting larger shares will be higher. Then in the following epochs,

other variables will be prefered. This way, by targetting to maximise each variable in differ-

ent epochs, and accumulating them, the user may get better-off in the middle run.

On the other hand, utilisation of such strategies by all users forces the maxmin algo-

68

rithm to collapse to the trivial distribution scheme in the higher priority distribution loops,

where each of the n users obtain 1
n

of the resources, since the inflated demands end up de-

generating the process. A method for overcoming such problems is to introduce time-to-live

(ttl) variables for the distribution tokens, but the discussion of this, also, is not in the scope

of the present dissertation, and left for the future studies.

69

7. CONCLUSION

In the present dissertation, we addressed the problem of fair distribution of shared

resources within the blockchain systems context. We worked on the intrinsic resources of

blockchains, and developed faucets as smart contracts, running different implementations of

Max-min Fairness Algorithm, which is traditionally accepted in the literature for realising

fairness.

It has been demonstrated that the Max-min Fairness algorithm, as it is implemented

in the conventional programming contexts, cannot support a public system because of the

scaling of its gas cost structure. Autonomous and restructured implementations of the al-

gorithm are offered as solutions, and the tests have shown that these implementations can

support wide public use of the system without running into block gas limit exhaustion prob-

lem. As the results reveal, the demand and claim functions exhibit low variability among

the algorithms, and all are efficient with respect to the block gas limit, being several orders

of magnitude below it.

The algorithms presented hereby bear relative advantages to each other and each one is

optimal for a different use case. In the cases where multiple time-critical calls on the client

side is acceptable, W/AMF works with the lightest computational burden. On the other

hand, if the restrictions on demand volume and weights do not conflict with the operational

requirements, W/QMF stands out to be costwise the most efficient as compared to their

counterparts. Finally, in cases where the necessary support for the number of users are within

the limits presented here, W/SMF present the richest functionality in the most efficient way.

We presented expirical results to support our hypotheses and compared our algorithms

numerically in their related sections and subsections. After demonstrating our claims empir-

ically, we introduced a comprehensive conceptual discussion in the penultimate chapter, and

we presented our ideas and projections on follow-up studies, pointing out to the challenges

they bear, and possible outcomes they may lead.

70

To conclude, blockchain systems are gaining ever increasing emphasis in the modern

day technology. It is reasonable to expect their wide use in daily life in a not much distant

future. The present dissertation is intended to be a first step to constructing a means to

develop and analyse blockchain server utilities, in isolation from the proofing mechanism. It

focuses on the strcuture of the scaling cost and the incentive involved in the system over an

examplary utility. It is, therefore, presented both for its experimental contributions and as a

working model for studying blockchain system utilities in general.

71

REFERENCES

1. Nakamoto, S. et al., “Bitcoin: A peer-to-peer electronic cash system”, , 2008.

2. Wood, G. et al., “Ethereum: A secure decentralised generalised transaction ledger”,

Ethereum project yellow paper, Vol. 151, No. 2014, pp. 1–32, 2014.

3. Hildenbrandt, E., M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore,

D. Park, Y. Zhang, A. Stefanescu et al., “Kevm: A complete formal semantics of the

ethereum virtual machine”, 2018 IEEE 31st Computer Security Foundations Symposium

(CSF), pp. 204–217, IEEE, 2018.

4. Metin, S., “blockchainFaucet”, , Oct. 2020, https://github.com/serdarmetin/blockchainFaucet.

5. Friederike Kleinfercher, J. L., Sandra Vengadasalam, “Bloxberg

Whitepaper, The Trusted Research Infrastructure, v1.1”,

https://bloxberg.org/wp-content/uploads/2020/02/bloxberg whitepaper 1.1.pdf,

2020, [Online; accessed 1-March-2020].

6. Dai, W., “b-money, 1998”, URL http://www. weidai. com/bmoney. txt.(Last access:

08.04. 2019), 1998.

7. Back, A. et al., “Hashcash-a denial of service counter-measure”, , 2002.

8. NIST, F. P., “180-4 secure hash standard (shs), no”, August. Gaithersburg: National

Institute of Standards and Technology, 2015.

9. Garay, J., A. Kiayias and N. Leonardos, “The bitcoin backbone protocol: Analysis and

applications”, Annual international conference on the theory and applications of cryp-

tographic techniques, pp. 281–310, Springer, 2015.

10. De Vries, A., “Bitcoin’s growing energy problem”, Joule, Vol. 2, No. 5, pp. 801–805,

2018.

72

11. Li, J., X. S. Wan, H. K. Cheng and X. Zhao, “Operation Dumbo Drop: To Airdrop or Not

to Airdrop for Initial Coin Offering Success?”, Hsing Kenneth and Zhao, Xi, Operation

Dumbo Drop: To Airdrop or Not to Airdrop for Initial Coin Offering Success, 2021.

12. Froewis, M., K. Sridhar, C. Makridis and R. Böhme, “The Rise of Decentralized Cryp-

tocurrency Exchanges: Evaluating the Role of Airdrops and Governance Tokens”, Avail-

able at SSRN, 2021.

13. de Souza, L. F., S. Tucci-Piergiovanni, R. Sirdey, O. Stan, N. Quero and P. Kuznetsov,

“RandSolomon: optimally resilient multi-party random number generation protocol”,

arXiv preprint arXiv:2109.04911, 2021.

14. Bentov, I., R. Pass and E. Shi, “Snow White: Provably Secure Proofs of Stake”, IACR

Cryptol. ePrint Arch., p. 919, 2016, http://eprint.iacr.org/2016/919.

15. Kiayias, A., A. Russell, B. David and R. Oliynykov, “Ouroboros: A provably secure

proof-of-stake blockchain protocol”, Annual International Cryptology Conference, pp.

357–388, Springer, 2017.

16. Abdul-Rahman, A., “The pgp trust model”, EDI-Forum: the Journal of Electronic Com-

merce, Vol. 10, pp. 27–31, 1997.

17. Ge, L., J. Wang and G. Zhang, “Survey of Consensus Algorithms for Proof of Stake in

Blockchain”, Security and Communication Networks, Vol. 2022, 05 2022.

18. Król, M., A. Sonnino, M. Al-Bassam, A. Tasiopoulos and I. Psaras, “Proof-of-Prestige:

A Useful Work Reward System for Unverifiable Tasks”, 2019 IEEE International Con-

ference on Blockchain and Cryptocurrency (ICBC), pp. 293–301, IEEE, 2019.

19. Bentov, I., C. Lee, A. Mizrahi and M. Rosenfeld, “Proof of activity: Extending bitcoin’s

proof of work via proof of stake [extended abstract] y”, ACM SIGMETRICS Perfor-

mance Evaluation Review, Vol. 42, No. 3, pp. 34–37, 2014.

20. Ball, M., A. Rosen, M. Sabin and P. N. Vasudevan, “Proofs of Useful Work.”, IACR

73

Cryptol. ePrint Arch., Vol. 2017, p. 203, 2017.

21. Shirole, M., M. Darisi and S. Bhirud, “Cryptocurrency Token: An Overview”, IC-BCT

2019: Proceedings of the International Conference on Blockchain Technology, p. 133,

Springer Nature, 2020.

22. Di Angelo, M. and G. Salzer, “Tokens, types, and standards: identification and utiliza-

tion in Ethereum”, 2020 IEEE International Conference on Decentralized Applications

and Infrastructures (DAPPS), pp. 1–10, IEEE, 2020.

23. Casale-Brunet, S., P. Ribeca, P. Doyle and M. Mattavelli, “Networks of Ethereum non-

fungible Tokens: a graph-based analysis of the ERC-721 ecosystem”, 2021 IEEE Inter-

national Conference on Blockchain (Blockchain), pp. 188–195, IEEE, 2021.

24. Waldspurger, C. A., Lottery and stride scheduling: Flexible proportional-share resource

management, Ph.D. Thesis, Massachusetts Institute of Technology, 1995.

25. Kay, J. and P. Lauder, “A fair share scheduler”, Communications of the ACM, Vol. 31,

No. 1, pp. 44–55, 1988.

26. Mohanty, S., S. C. Moharana, H. Das and S. C. Satpathy, “QoS aware group-based work-

load scheduling in cloud environment”, Data Engineering and Communication Technol-

ogy, pp. 953–960, Springer, 2020.

27. Nace, D. and M. Pióro, “Max-min fairness and its applications to routing and load-

balancing in communication networks: a tutorial”, IEEE Communications Surveys &

Tutorials, Vol. 10, No. 4, pp. 5–17, 2008.

28. Hahne, E. L., “Round-robin scheduling for max-min fairness in data networks”, IEEE

Journal on Selected Areas in communications, Vol. 9, No. 7, pp. 1024–1039, 1991.

29. Doulamis, N. D., A. D. Doulamis, E. A. Varvarigos and T. A. Varvarigou, “Fair

scheduling algorithms in grids”, IEEE Transactions on Parallel and Distributed Sys-

tems, Vol. 18, No. 11, pp. 1630–1648, 2007.

74

30. Marbach, P., “Priority service and max-min fairness”, Proceedings. Twenty-First Annual

Joint Conference of the IEEE Computer and Communications Societies, Vol. 1, pp. 266–

275, IEEE, 2002.

31. Ghodsi, A., M. Zaharia, B. Hindman, A. Konwinski, S. Shenker and I. Stoica, “Dom-

inant Resource Fairness: Fair Allocation of Multiple Resource Types.”, Nsdi, Vol. 11,

pp. 24–24, 2011.

32. Bertsekas, D. P., R. G. Gallager and P. Humblet, Data networks, Vol. 2, Prentice-Hall

International New Jersey, 1992.

33. Keshav, S. and S. Kesahv, An engineering approach to computer networking: ATM

networks, the Internet, and the telephone network, Vol. 116, Addison-Wesley Reading,

1997.

34. Gogulan, R., A. Kavitha and U. K. Kumar, “Max min fair scheduling algorithm using

in grid scheduling with load balancing”, International Journal of Research in Computer

Science, Vol. 2, No. 3, p. 41, 2012.

35. Alharby, M. and A. van Moorsel, “Blocksim: a simulation framework for blockchain

systems”, ACM SIGMETRICS Performance Evaluation Review, Vol. 46, No. 3, pp. 135–

138, 2019.

36. Marchesi, L., M. Marchesi, G. Destefanis, G. Barabino and D. Tigano, “Design patterns

for gas optimization in ethereum”, 2020 IEEE International Workshop on Blockchain

Oriented Software Engineering (IWBOSE), pp. 9–15, IEEE, 2020.

37. Canfora, G., A. Di Sorbo, S. Laudanna, A. Vacca and C. A. Visaggio, “Gasmet: Profiling

gas leaks in the deployment of solidity smart contracts”, arXiv e-prints, pp. arXiv–2008,

2020.

38. Dannen, C., Introducing Ethereum and Solidity, Springer, 2017.

39. Baird, L., M. Harmon and P. Madsen, “Hedera: A governing council & public hashgraph

75

network”, The trust layer of the internet, whitepaper, Vol. 1, pp. 1–97, 2018.

40. Foundation, T., “TRON: Advanced Decentralized Blockchain Platform”, , 2018.

41. Cheng, R., F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels, A. Miller and

D. Song, “Ekiden: A platform for confidentiality-preserving, trustworthy, and perfor-

mant smart contracts”, 2019 IEEE European Symposium on Security and Privacy (Eu-

roS&P), pp. 185–200, IEEE, 2019.

42. Niloy, F. A., M. A. Nayeem, M. M. Rahman and M. N. U. Dowla, “Blockchain-Based

Peer-to-Peer Sustainable Energy Trading in Microgrid using Smart Contracts”, 2021

2nd International Conference on Robotics, Electrical and Signal Processing Techniques

(ICREST), pp. 61–66, IEEE, 2021.

43. Wöhrer, M. and U. Zdun, “Design patterns for smart contracts in the ethereum ecosys-

tem”, 2018 IEEE International Conference on Internet of Things (iThings) and IEEE

Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and So-

cial Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1513–1520, IEEE,

2018.

44. Wohrer, M. and U. Zdun, “Smart contracts: security patterns in the ethereum ecosystem

and solidity”, 2018 International Workshop on Blockchain Oriented Software Engineer-

ing (IWBOSE), pp. 2–8, IEEE, 2018.

45. Bragagnolo, S., H. Rocha, M. Denker and S. Ducasse, “SmartInspect: solidity smart

contract inspector”, 2018 International Workshop on Blockchain Oriented Software En-

gineering (IWBOSE), pp. 9–18, IEEE, 2018.

46. Paritytech, “parity ethereum”, https://github.com/paritytech/parity-ethereum,

2019, [Online; accessed 19-November-2019].

47. Lamport, L., “Time, clocks, and the ordering of events in a distributed system”, Com-

munications of the ACM, Vol. 21, No. 7, pp. 558–565, 1978.

76

48. Mitton, Z., “Priority Queue on Ethereum: eth-heap”, , Oct. 2018,

https://github.com/zmitton/eth-heap.

49. Metin, S. and C. Özturan, “Max–min fairness based faucet design for blockchains”,

Future Generation Computer Systems, Vol. 131, pp. 18–27, 2022.

77

APPENDIX A: AMF Pseudocode

1: procedure UPDATE STATE(Offset, BlockNumber, Epoch,EpochSpan,RoundSpan)

2: selector ← Epoch mod (2);

3: if Epoch <
⌊
BlockNumber−Offset

EpochSpan

⌋
then

4: Epoch←
⌊
BlockNumber−Offset

EpochSpan

⌋
;

5: Round←
⌊
(BlockNumber−Offset) mod (EpochSpan)

RoundSpan

⌋
;

6: Capacity ← Capacity + EpochCapacity

7: Share← ⌊Capacity/TotalWeight[selector]⌋;

8: return;

9: end if

10: if Round <
⌊
(BlockNumber−Offset)%ES

RS

⌋
then

11: Round←
⌊
(BlockNumber−Offset) mod (EpochSpan)

RoundSpan

⌋
;

12: Share← Capacity/TotalWeight[selector];

13: return;

14: end if

15: return;

16: end procedure

17: procedure DEMAND(User, V olume)

18: UPDATESTATE(Offset, BlockNumber, Epoch,EpochSpan,RoundSpan)

19: selector ← (E + 1) mod (2);

20: if User.demandEpoch[selector] ̸= Epoch then

21: User.demand[selector]← V olume;

22: User.demandEpoch[selector]← Epoch;

23: if ResetEpoch < Epoch then

24: TotalWeight[selector]← User.weight;

25: ResetEpoch← Epoch;

26: else

27: TotalWeight[selector]← TotalWeight[selector] + User.weight;

28: end if

29: end if

30: return;

78

31: end procedure

32: procedure CLAIM(User)

33: UPDATESTATE(Offset, BlockNumber, Epoch,EpochSpan,RoundSpan)

34: selector ← Epoch mod (2);

35: if User.demandEpoch[selector] ̸= Epoch− 1 or Capacity = 0

or User.demand[selector] = 0 then

36: return;

37: end if

38: if User.claimEpoch = Epoch then

39: if User.claimRound = Round then

40: return;

41: end if

42: else

43: User.claimEpoch← Epoch;

44: end if

45: User.claimRound← Round;

46: User.balance← User.balance+min (User.demand[selector], Share ∗ User.weight);

47: User.demand[selector]← User.demand[selector]−min (User.demand[selector], Share ∗ User.weight);

48: Capacity ← Capacity −min (User.demand[selector], Share ∗ User.weight);

49: if User.demand[selector] = 0 then

50: TotalWeight[selector]← TotalWeight[selector]− User.weight;

51: end if

52: return;

53: end procedure

79

APPENDIX B: WQMF Pseudocode

1: procedure DEMAND(User, Volume) ▷ Make a Demand

2: UPDATE STATE();

3: selector ← (epoch+ 1) (mod 2);

4: if User.demandEpoch[selector] = Epoch then

5: return;

6: end if

7: User.demandEpoch[selector]← Epoch;

8: index←
⌈

V olume
User.weight

⌉
;

9: if ResetEpoch[selector][index] ̸= Epoch then

10: ResetEpoch[selector][index]← Epoch;

11: Demands[selector][index]← V olume;

12: Weights[selector][index]← User.Weight;

13: else

14: Demands[selector][index]← Demands[selector][index] + V olume;

15: Weights[selector][index]← Weights[selector][index] + User.weight;

16: end if

17: User.demand[selector]← V olume;

18: TotalDemands← TotalDemands+ V olume;

19: TotalWeights← TotalWeights+ User.weight;

20: end procedure

21: procedure CLAIM(User) ▷ Claim User Share

22: UPDATE STATE();

23: selector ← Epoch (mod 2);

24: if User.demandEpoch[selector] = Epoch then

25: return;

26: end if

27: if User.claimEpoch = Epoch then

28: return;

29: end if

30: User.claimEpoch← Epoch;

80

31: share← User.weight ∗ UnitShare;

32: User.balance← min(share, User.demand[selector]);

33: Capacity ← Capacity −min(share, User.demand[selector]);

34: end procedure

35: procedure CALCULATE UNIT SHARE()

36: selector ← Epoch (mod 2);

37: cumulativeDemands← 0;

38: cumulativeWeights← 0;

39: for i← 1, Quanta do

40: if ResetEpoch[selector][i] = Epoch− 1 then

41: cumulativeDemands← cumulativeDemands+Demands[selector][i];

42: cumulativeWeights← cumulativeWeights+Weights[selector][i];

43: end if

44: if Capacity < cumulativeDemands+i∗(totalWeights−cumulativeWeights)

then

45: return i− 1;

46: end if

47: end for

48: return Quanta;

49: end procedure

81

APPENDIX C: WSMF Pseudocode

1: procedure DEMAND(User, Volume) ▷ Make a Demand

2: UPDATE STATE();

3: selector ← (epoch+ 1) (mod 2);

4: if User.demandEpoch[selector] = Epoch then

5: return;

6: end if

7: User.demand[selector]← V olume;

8: User.demandEpoch[selector]← Epoch;

9: User.totalDemand← User.totalDemand+ V olume;

10: end procedure

11: procedure CLAIM(User) ▷ Claim User Share

12: UPDATE STATE();

13: selector ← Epoch (mod 2);

14: if User.demandEpoch[selector] = Epoch then

15: return;

16: end if

17: if User.claimEpoch = Epoch then

18: return;

19: end if

20: User.claimEpoch← Epoch;

21: if User.demandEpoch[1− selector] = Epoch then

22: Share← UnitShare ∗
⌊

Precision
User.totalDemand−User.demand[selector]

⌋
;

23: else

24: share← UnitShare ∗
⌊

Precision
User.totalDemand

⌋
;

25: end if

26: User.balance← min(share, User.demand[selector]);

27: Capacity ← Capacity −min(share, User.demand[selector]);

28: end procedure

29: procedure CALCULATE UNIT SHARE()

82

30: selector ← Epoch (mod 2);

31: heap[0]← ∅; ▷ Initiate Empty Heaps

32: heap[1]← ∅;

33: simulatedCapacity = Capacity ∗ Precision;

34: simulatedShare← 0;

35: simulatedUnitShare← 0;

36: totalWeight← 0;

37: result← 0;

38: for i← 1, NumberOfUsers do

39: if User[i].demandEpoch[selector] = Epoch− 1 then

40: userWeight←
⌊

Precision
User.totalDemand

⌋
41: node← {User.demand[selector], userWeight}

42: INSERT(heap[0], node);

43: totalWeight← totalWeight+ userWeight;

44: end if

45: end for

46: while heap[selector].length > 0 & simulatedCapacity ≥ totalWeight do

47: simulatedUnitShare←
⌊
simulatedCapacity

totalWeight

⌋
;

48: result← result+ simulatedShare;

49: while heap[selector].length > 0 do

50: simulatedShare← heap[selector][0].weight ∗ simulatedUnitShare;

51: if simulatedShare = 0 then

52: totalWeight← totalWeight− heap[selector][0].weight;

53: DELETEMIN(heap[selector])

54: else if heap[selector][0].volume ≤ simulatedShare then

55: simulatedCapacity ← simulatedCapacity−heap[selector][0].volume;

56: DELETEMIN(heap[selector]);

57: else

58: node← {heap[selector][0].volume− simulatedShare,

heap[selector][0].weight};

59: DELETEMIN(heap[selector]);

60: INSERT(heap[1− selector], node);

83

61: end if

62: selector ← 1− selector;

63: end while

64: end while

65: return result;

66: end procedure

