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Abstract
Correctness for microprocessors is generally understood to be con-

formance with the associated instruction set architecture (ISA). This

is the basis for one of the most important abstractions in computer

science, allowing hardware designers to develop highly-optimized

processors that are functionally “equivalent” to an ideal processor

that executes instructions atomically. This specification is almost

always informal, e.g., commercial microprocessors generally do not

come with conformance specifications. In this paper, we advocate

for the use of formal specifications, using the theory of refinement.

We introduce notions of correctness that can be used to deal with

transient execution attacks, including Meltdown and Spectre. Such

attacks have shown that ubiquitous microprocessor optimizations,

appearing in numerous processors for decades, are inherently buggy.

Unlike alternative approaches that use non-interference properties,

our notion of correctness is global, meaning it is single specifica-

tion that: formalizes conformance, includes functional correctness

and is parameterized by an microarchitecture. We introduce action

skipping refinement, a new type of refinement and we describe how

our notions of refinement can be decomposed into properties that

are more amenable to automated verification using the the concept

of shared-resource commitment refinement maps. We do this in the

context of formal, fully executable bit- and cycle-accurate models

of an ISA and a microprocessor. Finally, we show how light-weight

formal methods based on property-based testing can be used to

identify transient execution bugs.

CCS Concepts
•Hardware→Theoremproving and SAT solving; Semi-formal
verification; • Security and privacy → Logic and verification;
Side-channel analysis and countermeasures.

Keywords
Transient-execution attack, Meltdown, Spectre, Formal methods,

Refinement, ACL2

1 Introduction
Modern microprocessors are highly optimized systems that employ

a variety of techniques designed to efficiently execute code. As with

any optimized system, correctness is a fundamental concern, but

it is especially important for microprocessors since they form the

base of a stack of systems that provide powerful abstractions used

by all of the software running on the microprocessors.
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The specification of correctness for microprocessors is gener-

ally taken to be conformance to the corresponding instruction set

architecture (ISA). From Computer Organization and Design [31]:

“The instruction set architecture includes anything programmers

need to know to make a binary machine language program work

correctly, including instructions, I/O devices, and so on.” Confor-

mance is a global notion, meaning that it is a single specification

that captures functional correctness. The ISA defines the hardware-

software interface and is widely considered to be one of the most

important abstractions in computer science. Ideally, it allows hard-

ware designers to develop novel, powerful techniques that lead to

optimized processors which are functionally “equivalent” to the

much simpler ISAs which are the programming models used by

software engineers.

Unfortunately, formanymodern processors, the hardware-software

abstraction is leaky. To understand why, consider a user space pro-

cess executing the x86 instructions of Listing 1. Instruction 1 loads

a byte from the memory address stored in register ecx into register
eax. Suppose that ecx points to process memory and ebx points

to an array of bytes. Then instruction 2 moves the eax-th element

of the array into ebx. What if ecx points to kernel memory? Since

user processes do not have access to kernel memory, instruction 1

leads to an exception.

1 movsx eax, byte [ecx] ;; ecx: kernel address.
;; The line below is never executed.

2 mov ebx, [ebx+eax] ;; Load contents of ebx+eax, an address
;; that depends on the contents of [ecx].

Listing 1: Core Meltdown.

One optimization present in any modern x86 microprocessor is

pipelining, where instruction execution is broken down into stages

to allow processors to fetch and dispatch multiple instructions at

the same time. To maximize instruction-level parallelism, the goal is

to keep the pipelines as full as possible. However, data and control

flow dependencies will stall pipelines and result in wasted CPU

cycles, hindering performance. Therefore, modern CPUs execute

instructions “optimistically” (i) by making predictions on control

flow information and data dependencies, resulting in speculative
execution and (ii) by executing instructions out-of-order (OoO). The
results of instructions executed speculatively or OoO are not com-

mitted until the CPU can determine their validity. In speculative

execution, if the predictions are correct, the speculatively executed

instructions are committed and processor execution continues. Oth-

erwise, the instructions are squashed and execution resumes from

the point where the prediction was made, this time adhering to the

ISA semantics. In OoO execution, instructions are executed as soon

as their data dependencies are resolved ensuring no CPU cycles go
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to waste, but are usually committed in-order to ensure correctness

of the output.

So, let us now consider how a microprocessor with speculative

execution might execute Listing 1. Instruction 1 is executed in

stages. First, we fetch a byte from the memory address stored in

register ecx. We do not yet update eax because we need to check

that the process has permission to access the memory, but since

exceptions are the exception, the processor speculatively executes

instruction 2, while in parallel checking permissions. So, the pro-

cessor will compute ebx+eax and will fetch the contents of this

memory location. All of these intermediate results are stored inter-

nally and are not committed until permission checking succeeds.

If eax points to process memory, once these checks complete, the

instructions commit, the registers are updated and the processor

continues executing subsequent instructions. In the case where

ecx points to kernel data, the checks fail, none of the instructions

commit and no secret data is moved into eax or ebx; instead an

exception occurs. Notice that speculation allows the processor to

execute instructions optimistically. In the common case, where no

exceptions occur, this leads to significant performance improve-

ments and in the exceptional case, no instructions commit, so the

processor conforms to the ISA semantics.

A large class of security vulnerabilities [2, 4, 6, 7, 25, 26, 33, 36]

has shown that the side-effects of instructions executed optimisti-

cally can be exploited by means of covert channels. While executing

speculatively, instruction 2 performs a memory load which alters

the microarchitectural state of the processor by bringing the secret-

dependent address ebx+eax in the cache. A different user process

can now launch a cache attack and deduce the secret byte stored

in kernel address [ecx] by determining the amount of time the

load instructions mov ebx, [ebx + 𝑣] take, for all possible values

𝑣 ∈ [0, 255]. If none of these locations were in the cache before the

attack was launched, then only one of the locations will be in the

cache after the attack, so the value 𝑣𝑚𝑖𝑛 whose load required the

least amount of time corresponds to the secret kernel data.

The described attack, named Meltdown [26], was viable, when

it was discovered, on most operating systems running on a CPU

that implements OoO execution. This attack can easily read ker-

nel data at rates of about 500 KB/s. As operating systems at the

time commonly mapped physical memory, kernel processes, and

other running user space processes into the address space of every

process, Meltdown effectively broke any form of process isolation.

Meltdown exploits a delay in handling unprivileged memory

reads and occurs during instructions that execute transiently after

the unprivileged read. Meltdown is an example of a transient exe-
cution attack (TEA) which exploits instructions that are executed

optimistically by the microprocessor, based on some prediction,

and are eventually discarded.

Spectre [25] is another TEA which exploits instructions execut-

ing transiently after a branch prediction. Using Spectre, an attacker

can trick the microprocessor’s branch predictor in a way that forces

a victim process to reveal information it did not intend to.

1 if (x < array1_size)
2 y = array2[array1[x]];

Listing 2: Spectre C code.

Listing 2 shows the core C code of a victim process that is vul-

nerable to the Spectre attack. Assuming that x is a program input,

the victim process checks in Line 1 that the input is appropriate for

indexing array1, i.e., that it is within the array’s bounds. If so, on

Line 2 the victim process uses x to index array1 and then uses the

contents of location array1[x] to index array2. Otherwise, if x is

outside the bounds of array1, Line 2 is not executed.
In Spectre, an attacker exploits a microprocessor’s branch predic-

tor and its speculative execution capabilities, in order to trick the

process into performing out-of-bounds array reads. Initially, the at-

tacker provides multiple inputs x which are less than array1_size
in order to train the branch predictor of the microprocessor to

take the true branch of the conditional statement. After this train-

ing phase, the attacker provides an out of bounds value x' to the

victim process. Due to the training, the microprocessor will take

the branch, reading transiently from the out-of-bounds locations

array1[x'], and using its contents to index array2. The micropro-

cessor will eventually identify the misprediction and discard the

results of instructions executed transiently. However, as in Melt-

down, the transient execution of Line 2 will bring the contents

of the memory location array2[array1[x']] into the cache. An
attacker that knows the memory address of array2 can then utilize

a cache attack to reverse engineer the contents of the victim process

at memory location array1[x'].
The simple variant of Spectre we described above demonstrates

how standard microprocessor optimizations open up possibilities

for victim processes to inadvertently leak information. Implemen-

tations of such attacks that deal with their practicalities are ac-

counted for in detail in the original work on Spectre [25], where,

e.g., a website can read private data of the browser process it exe-

cutes its JavaScript code in. Followup research [27] has also demon-

strated how transient execution attacks can be used to bypass stan-

dard memory protection mechanisms like control flow integrity or

language-based memory safety mechanisms.

In this paper, we advocate for a research program whose goals

are to provide global formal specifications using refinement. A

global notion of correctness is a single specification that includes

functional correctness and is independent of the details of microar-

chitectural implementation, enabling the development of software

independently of those details. We take a step in the direction of

such a program by considering the question of global formal spec-

ifications in the context of TEAs that exploit the cache as a side

channel. As we expand upon in our discussion of related work,

we believe that a global notion of correctness is ideal, in constrast

to non-interference-based approaches that factor out functional

correctness. We cannot imagine a situation where a user desires

TEA security but not functional correctness and as our discussion

will highlight, approaches capable of verifying that hardware sat-

isfies non-interference properties also depend on the functional

correctness of the hardware!

Formal specifications are required if we are to provide a viable

hardware-software interface. There is no way to really do this un-

less we agree on the specification, i.e., we agree on exactly what

it means for a processor to correctly implement an ISA. Our ap-

proach is the first notion, to our knowledge, which can be used

to show conformance between ISAs and microprocessor models

that accounts for optimizations such as pipelining, OoO execution,
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prefetching, superscalar execution and caching. A microprocessor

that allows TEAs that exploit caches as covert channels to exfiltrate

secret information will not satisfy our notion of correctness. To

fully carry out this research program will require significant ef-

fort to establish consensus and acceptance of the observer models,

abstractions and techniques needed to handle the capabilities of

modern processors.

We introduce two notions of correctness in the paper. The first,

described in Section 2, is capable of disallowing Meltdown-type

vulnerabilities that leverage cache side channels. This notion of cor-

rectness is based on witness refinement, a novel variant of skipping
refinement, as well as the in-cache abstraction, a novel approach
that we use to model cache covert channels and simplify reasoning

about performance counters. Like skipping refinement, witness

refinement (and therefore our notion of correctness) covers both

safety and liveness, enabling us to show that running any pro-

gram, terminating or not, leads to a conforming run on the ISA

side. In Section 4 we describe how our notion of correctness for

Meltdown can be soundly decomposed into simpler properties that

are more amenable to automated verification. We also introduce

the novel ideas of entangled states and shared-resource commitment
refinement maps, which we combine to eliminate unreachable coun-

terexamples in an automated-verification-friendly way. Section 5

contains a presentation of our notion of correctness for Spectre,

introducing intent models that use virtual instructions to define

highly non-deterministic ISA semantics that allow multiple micro-

processor implementations with arbitrary prefetching and eviction

policies. This section also covers a novel kind of refinement, ac-
tion witness skipping refinement, that our notion of correctness for

Spectre is based on. We subsequently describe how we decompose

our notion of correctness for Spectre in Section 6, using similar

methods as were used for Meltdown. To demonstrate our notions

of correctness and their effectiveness, we define minimal formal

models of an ISA and a microprocessor that are fully executable

as well as bit- and cycle-accurate using the ACL2s theorem prover.

These are available as artifacts [37] and are discussed in Section 3.

We describe how we evaluated our notions of correctness with

lightweight verification techniques in Section 7, discuss related

work in Section 8 and conclude in Section 9.

2 Meltdown Correctness
Our notion of correctness for Meltdown is based on witness re-
finement, a novel variant of skipping refinement. In this section,

we begin with a description of transition systems, which are used

to formalize ISAs and MAs (Micro Architectures). We then define

skipping refinement, introduce the in-cache abstraction, formal-

ize correctness and present witness refinement, which facilitates

automated verification.

Definition 2.1 (Labeled Transition System). A labeled transition

system (TS) is a structure ⟨𝑆,→, 𝐿⟩, where 𝑆 is a non-empty (possi-

bly infinite) set of states,→⊆ 𝑆 ×𝑆 , is a left-total transition relation

(every state has a successor), and 𝐿 is a labeling function with

domain 𝑆 .

Function application is sometimes denoted by an infix dot “.”

and is left-associative. The composition of relation 𝑅 with itself 𝑖

times (for 0 < 𝑖 ≤ 𝜔) is denoted 𝑅𝑖 (𝜔 = N and is the first infinite

ordinal). Given a relation 𝑅 and 1 < 𝑘 ≤ 𝜔 , 𝑅<𝑘 denotes

⋃
1≤𝑖<𝑘 𝑅

𝑖

and 𝑅≥𝑘
denotes

⋃
𝜔>𝑖≥𝑘 𝑅

𝑖
. Instead of 𝑅<𝜔 we often write the

more common 𝑅+.⊎ denotes the disjoint union operator. Quantified

expressions are written as ⟨Q𝑥 : 𝑟 : 𝑡⟩, where Q is the quantifier (e.g.,
∃,∀,min,

⋃
), 𝑥 is a bound variable, 𝑟 is an expression that denotes

the range of variable 𝑥 (true, if omitted), and 𝑡 is a term.

Let M = ⟨𝑆,−→, 𝐿⟩ be a TS. An M-path is a sequence of states

such that for adjacent states, 𝑠 and 𝑢, 𝑠 → 𝑢. The 𝑗𝑡ℎ state in

an M-path 𝜎 is denoted by 𝜎. 𝑗 . An M-path 𝜎 starting at state

𝑠 is a fullpath, denoted by fp.𝜎 .𝑠 , if it is infinite. An M-segment,

⟨𝑣1, . . . , 𝑣𝑘 ⟩, where 𝑘 ≥ 1 is a finite M-path and is also denoted by

#»𝑣 . The length of anM-segment
#»𝑣 is denoted by | #»𝑣 |. Let INC be the

set of strictly increasing sequences of natural numbers starting at 0.

The 𝑖𝑡ℎ partition of a fullpath 𝜎 with respect to 𝜋 ∈ INC, denoted
by

𝜋𝜎𝑖 , is given by anM-segment ⟨𝜎 (𝜋.𝑖), . . . , 𝜎 (𝜋 (𝑖 + 1) − 1)⟩.

2.1 Skipping Refinement
We now define skipping simulation refinement, the weakest notion

of refinement we use in this paper. This definition was introduced

by Jain et al. [20] and uses the notion of matching. Informally, a

fullpath 𝜎 matches a fullpath 𝛿 under the relation 𝐵 iff the fullpaths

can be partitioned in to non-empty, finite segments such that all

elements in a segment of 𝜎 are related to the first element in the

corresponding segment of 𝛿 .

Definition 2.2 (smatch). Let M = ⟨𝑆,−→, 𝐿⟩ be a TS, 𝜎, 𝛿 be full-

paths in M . For 𝜋, 𝜉 ∈ INC and binary relation 𝐵 ⊆ 𝑆 × 𝑆 , we

define

scorr (B, 𝜎, 𝜋, 𝛿, 𝜉) ≡ ⟨∀𝑖 ∈ 𝜔 :: ⟨∀𝑠 ∈ 𝜋𝜎𝑖 :: 𝑠𝐵𝛿 (𝜉 .𝑖)⟩⟩ and
smatch(B, 𝜎, 𝛿) ≡ ⟨∃𝜋, 𝜉 ∈ INC :: scorr (B, 𝜎, 𝜋, 𝛿, 𝜉)⟩.

Definition 2.3 (Skipping Simulation (SKS)). 𝐵 ⊆ 𝑆×𝑆 is a skipping
simulation on a TSM = ⟨𝑆,−→, 𝐿⟩ iff for all 𝑠,𝑤 such that 𝑠𝐵𝑤 , both

of the following hold.

(1) 𝐿.𝑠 = 𝐿.𝑤

(2) ⟨∀𝜎 : fp.𝜎 .𝑠 : ⟨∃𝛿 : fp.𝛿 .𝑤 : smatch(B, 𝜎, 𝛿)⟩⟩

We use skipping simulation, a notion defined in terms of a single

TS, to define skipping refinement, a notion that relates two TSes: an
abstract transition system (e.g., an ISA) and a concrete TS (e.g., an
MA). Informally, if a concrete system is a skipping refinement of an

abstract system, then its observable behaviors are also behaviors of

the abstract system, modulo skipping. Skipping allows an MA to

stutter, i.e., to take steps that do not change ISA-visible components,

as happens when loading the pipeline. Skipping also allows the MA

to commit multiple ISA instructions at once, which is possible due

to superscaling. The notion is parameterized by a refinement map, a
function that maps concrete states to their corresponding abstract

states. A refinement map along with a labeling function determines

what is observable at a concrete state.

Definition 2.4 (Skipping Refinement). Consider TSsMA = ⟨𝑆A,−→
A

, 𝐿A⟩
andMC = ⟨𝑆C,−→

C

, 𝐿C⟩ and let r : SC → SA be a refinement map.

We say MC is a skipping refinement of MA with respect to 𝑟 , writ-

tenMC ≲𝑟 MA, if there exists a binary relation 𝐵 such that all of

the following hold.
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(1) ⟨∀𝑠 ∈ 𝑆𝐶 :: 𝑠𝐵𝑟 .𝑠⟩ and
(2) 𝐵 is an SKS on ⟨𝑆𝐶 ⊎ 𝑆𝐴,−→

𝐶
⊎ −→

𝐴
,L⟩ where L .𝑠 = 𝐿𝐴 (𝑠)

for 𝑠 ∈ 𝑆𝐴 , and L .𝑠 = 𝐿𝐴 (𝑟 .𝑠) for 𝑠 ∈ 𝑆𝐶 .

2.2 In-Cache Abstract Instruction
Caches are used to improve processor performance by providing

fast access to data that is frequently used. Instruction set architec-

tures leave caches partially unspecified to allow the implementer

of processors to choose cache configurations most suitable to their

requirements. As illustrated in Section 1, the memory caches are in-

strumental in TEAs where they are used to extract secret data from

MA states obtained after incorrect speculation, using performance

counters to determine what addresses are cached.

In order to reason about such attacks we introduce the in-cache
abstraction: we include an in-cache abstract instruction which given
an address, 𝑎, will return true if 𝑎 is in the cache and false other-

wise. We want the ISA to allow all reasonable behaviors so that we

have a single specification that can be used to reason about any MA

machine. Therefore, our in-cache instruction is nondeterministic.

Let 𝐴 be the set of addresses of the ISA and let LM be the set of

addresses to which an ISA program under consideration has read

and write access, i.e., all addresses for which reads and writes do

not generate errors. At the MA, this instruction just checks to see

if some address is in the MA’s cache. But, at the ISA, this instruc-

tion non-deterministically returns a Boolean, subject only to the

following constraint, where 𝑎 is an address and 𝑠 is an ISA state.

𝑎 ∉ LM ⇒ in-cache(𝑎, 𝑠) = false (1)

With the in-cache instruction, the ISA includes behaviors in which

any subset of addresses that the ISA program can access are in

the cache at any program point. Thus, the ISA allows all possible

correct cache implementations and prefetching strategies in the

MA. The abstraction imposes no restrictions on how the memory

cache component will be defined, e.g., it does not constrain the size

of the cache, its replacement policy, etc.

2.3 Statement of Correctness
LetMISA = ⟨𝑆ISA,−−−→

ISA
, 𝐿ISA⟩ andMMA = ⟨𝑆MA,−−−→

MA
, 𝐿MA⟩ be TSes

modeling an ISA and an MA that both support the in-cache instruc-
tion. Let 𝑟 : 𝑆MA → 𝑆ISA be a refinement map. At a high level,

we expect 𝑟 to map an MA state to an ISA state that agrees in the

programmer-visible values of its components—e.g., the register

file of the mapped ISA state should correspond to the committed

register file for the MA. Then, we say that MMA is a correct imple-

mentation ofMISA with respect to Meltdown iffMMA is a skipping

refinement ofMISA with respect to 𝑟 .

2.4 Witness Refinement
The definition of skipping refinement (Definition 2.4) is not amenable

to mechanized verification, as it requires reasoning about infinite

traces. We can drastically simplify the proofs by specializing to

certain kinds of TSes. We do this by computing the number of stut-

tering and skipping steps needed to apply to one of the systems to

match a single step of the other. MAs have bounds for both of these:

any MA has a finite collection of resources that it can use, thereby

bounding the number of instructions that may be committed in a

single step. Similarly, any MA has a pipeline with a finite number

of stages, and each instruction takes a finite number of cycles to

execute. This means that the number of steps that an MA must take

before it commits at least one instruction is also bounded. Func-

tions that compute these values essentially act as Skolem functions,

eliminating the need to solve existential quantifiers when proving

that a relation is a witness skipping relation. In the context of hard-

ware verification, this is important for automating proofs, since the

search needed to resolve an existential will be dramatically harder

for hardware verification techniques.

Definition 2.5 (Witness Skipping). 𝐵 ⊆ 𝑆 ×𝑆 is a witness skipping

relation on TS M = ⟨𝑆,−→, 𝐿⟩ with respect to functions stutter-wit :

𝑆 × 𝑆 → N, skip-wit : 𝑆 × 𝑆 → N \ {0} and run : 𝑆 × 𝑆 × 𝑆 → 𝑆 iff:

(WSK1) ⟨∀𝑤, 𝑠,𝑢 : 𝑠𝐵𝑤 ∧ 𝑠 → 𝑢 : 𝑤 →skip-wit(𝑠,𝑢 ) run(𝑤, 𝑠,𝑢)⟩
(WSK2) ⟨∀𝑠,𝑤 ∈ 𝑆 : 𝑠𝐵𝑤 : 𝐿.𝑠 = 𝐿.𝑤⟩
(WSK3)

∀𝑠,𝑢,𝑤 ∈ 𝑆 : 𝑠𝐵𝑤 ∧ 𝑠 → 𝑢 :

(1) (𝑢𝐵𝑤 ∧ stutter-wit(𝑢,𝑤) < stutter-wit(𝑠,𝑤)) ∨
(2) 𝑢𝐵(run(𝑤, 𝑠,𝑢))

In the above definition, 𝑤 →skip-wit(𝑠,𝑢 ) run(𝑤, 𝑠,𝑢) indicates
that there is a path of length skip-wit(𝑠,𝑢) from𝑤 to run(𝑤, 𝑠,𝑢) in
→, the transition relation of TS. This means that the function run
runs TS for skip-wit(𝑠,𝑢) steps. If TS is deterministic, then the path

is uniquely defined.

Theorem 2.6. (Soundness) If 𝐵 is a witness skipping relation on
TSM = ⟨𝑆,−→, 𝐿⟩, then it is an SKS onM .

Proof Sketch. Let𝐵 be awitness skipping relation on TSM = ⟨𝑆,−→, 𝐿⟩
with respect to the stutter-wit, skip-wit and run functions. We show

that 𝐵 is a skipping simulation onM . Condition 1 of Definition 2.3

holds due to WSK2. To satisfy condition 2 of Definition 2.3, we con-

struct thematching partitions usingWSK1 andWSK3 as follows. Let

𝑠,𝑤 correspond to the initial states of a partition. If smatch(B, 𝜎, 𝛿)
holds, then 𝜋, 𝜉 can be chosen so for every corresponding partition,

at least one of the partitions consists of exactly one state. There

are now three cases to consider. If both partitions include a single

state, then run(𝑤, 𝑠,𝑢) runs 𝑤 for one step and WSK3(2) holds. If

the partition starting at 𝑠 consists of multiple states but the par-

tition from 𝑤 consists of one state, then 𝑢 has to be related to 𝑤

and stutter-wit(𝑢,𝑤) < stutter-wit(𝑠,𝑤), which means we can only

make this move a finite number of times. Finally, if the partition

starting from 𝑠 has one state but the partition from𝑤 has multiple

states, this case is covered by WSK3(2), which requires that 𝑢 is

related to a successor of𝑤 . □
Using the above soundness result, we can prove Skipping Refine-

ment using witness skipping instead of Skipping Simulation. The

advantage is that designers can provide definitions for stutter-wit,
skip-wit and run, which leads to verification obligations that are

over finite steps of the TSes and are therefore amenable to auto-

mated verification.

Notice that our notion of correctness is global: it is a single

specification that formalizes conformance, includes functional cor-

rectness, is essentially independent of the MA, and can be used to

analyze any MA. This means that it can be used by architects to
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show conformance of a MA design while also providing an abstrac-

tion based on the ISA that allows programmers to reason about

code that runs on any conforming MA, without needing to reason

about the MA.

3 Formal Models
To evaluate our notions of correctness, we developed models of an

ISA and MA that are vulnerable to both Meltdown and Spectre. The

models were designed to be complex enough to exhibit TEAs and

express interesting programs. The models are both executable and

formal and are defined using the ACL2s theorem prover. The ISA is

x86-like, except that it features general purpose registers and uses

the Harvard memory model by having disjoint data and instruction

memories. Memory addresses are 32-bits in length, and there is a

basic form of memory protection: a subset of the address space is

taken to be “kernel memory” that is not accessible to the running

program (attempting to access it will result in an exception). TheMA

model follows a textbook definition of a four-stage pipeline, multi-

issue, OoO microprocessor with exception handling [18], branch

prediction, microcode, and memory prefetching. OoO execution

is implemented using Tomasulo’s algorithm [35] with a reorder

buffer (ROB). The MA contains a set of reservation stations (RSes)

that handle execution of most instructions. Equation 2 provides a

listing of the instructions supported by our models, where 𝑟𝑑 , 𝑟1
and 𝑟2 represent register operands and 𝑐 represents an immediate

operand.

IIC ::= halt | noop | loadi 𝑟𝑑 𝑐 | addi 𝑟𝑑 𝑟1 𝑐 | add 𝑟𝑑 𝑟1 𝑟2 |
mul 𝑟𝑑 𝑟1 𝑟2 | and 𝑟𝑑 𝑟1 𝑟2 | cmp 𝑟𝑑 𝑟1 𝑟2 | jg 𝑟1 𝑐 | jge 𝑟1 𝑐 |
ldri 𝑟𝑑 𝑟1 𝑐 | ldr 𝑟𝑑 𝑟1 𝑟2 | tsx-start 𝑐 | tsx-end |
in-cache 𝑟𝑑 𝑟1 𝑐 (2)

A full description of the models accounting for complexities like

ROBs and RSes is quite involved, taking over 15 pages and is pro-

vided in Appendix B. Here, we provide an overview of how the

two models work by presenting a transition rule for each that de-

scribes part of its behavior. We begin with the ISA, which is a TS

MISA-IC = ⟨𝑆ISA-IC,−−−−−−→
ISA-IC

, 𝐿ISA-IC⟩. Members of the set of states

𝑆ISA-IC are structures containing several fields. The fields relevant

to the transition rule we will show are pc the program counter,

rf a mapping from registers to data (the register file), halt a bit

indicating whether or not the ISA is halted, imem a mapping from

addresses to instructions and tsx a TSX structure. A TSX structure

consists of three fields, tsx-act which indicates whether the ISA

is inside a TSX region, tsx-rf which is the register file to restore

upon a TSX error and tsx-fb which is the address to jump to upon

a TSX error. more detail shortly.

The behavior ofMISA-IC is described using two auxiliary TSes.

This is done since the deterministic part of the behavior ofMISA-IC

is shared with another TS, MISA-IC-A, which is used in the notion

of correctness for Spectre. The TS handling the deterministic behav-

ior is MISA-IC-ISA = ⟨𝑆ISA-IC-ISA,−−−−−−−−−−→
ISA-IC-ISA

, 𝐿ISA-IC-ISA⟩ where
𝑆ISA-IC-ISA = 𝑆ISA-IC. Equation 3 shows one of the transition rules

forMISA-IC-ISA relating to TSX instructions. A transition rule con-

sists of a set of premises (written above a horizontal line) and a

conclusion (written below). If the conjunction of the premises hold,

the conclusion must also hold. That is, Equation 3 indicates that

if fetch(imem, pc) = tsx-start 𝑐 and ¬halt hold with respect to

some 𝑆 ∈ 𝑆ISA-IC-ISA, it must be the case that 𝑆 transitions to the

state indicated by the right-hand side of the conclusion. In transi-

tion rules, we freely use the names of fields to refer to the value of a

field in the state corresponding to the left-hand side of the transition

rule. For example, halt in the second premise refers to the value of

the halt field of 𝑆 . [pc ↦→ pc ⊕ 1, tsx ↦→ ⟨true, rf, 𝑐⟩]𝑆 represents

a structure where the pc field is equal to the pc field of 𝑆 plus one,

the tsx field is equal to ⟨true, rf, 𝑐⟩ where 𝑐 is constrained by the

first premise of the transition rule and all other fields have the same

value as in 𝑆 . Equation 3 uses the function fetch(imem, pc), which
gets the instruction that pc maps to in imem, or noop if pc is not
mapped.

tsx-start

fetch(imem, pc) = tsx-start 𝑐 ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 1, tsx ↦→ ⟨true, rf, 𝑐⟩]𝑆

(3)

Equation 3 describes how the tsx-start instruction modifies the

TSX state. These instructions are intended to model the behavior of

the transactional region instructions provided by the TSX x86 ISA

extension [19]. These instructions are used in the original Meltdown

exploit [26] as an optimization to suppress exceptions caused by

attempted reads of kernel memory. In short, these instructions

allow one to specify a temporary exception handler over a region

of code. A region starts when a tsx-start instruction is executed

and ends when a tsx-end instruction is executed. If an exception is

raised when executing an instruction inside of a TSX region, the ISA

will undo any modifications to memory and the register file that

were made inside the region and jump to the TSX fallback address

provided in the tsx-start instruction that started the region. The

problem that Meltdown exploits is that modifications to the cache

are not undone and therefore one can use the cache as a side channel

to exfiltrate data from speculatively executed instructions inside of

a TSX region.

We nowdiscuss the TS for theMA,MMA-IC = ⟨𝑆MA-IC,−−−−−→
MA-IC

, 𝐿MA-IC⟩.
Like with MISA-IC, members of the set of states 𝑆MA-IC are struc-

tures containing several fields. These structures contain all of the

fields that the members of 𝑆ISA-IC have, plus the following that are

relevant for the transition rule we will discuss: cyc a cycle counter,
rob a sequence of ROB lines and rs-f a sequence of RSes. ROB lines

are structures that track the progress of microinstructions as the are
issued and executed. Each instruction in IIC is turned into one or

two microinstructions when it is issued by MMA-IC, corresponding

to the atomic actions that must be taken to complete execution

of the instruction. ROB lines must keep track of several pieces of

information, the most critical being rdy which indicates whether

the ROB line is ready to be committed, rob-idwhich is an identifier

for each ROB line, val which stores the result of the execution

of the microinstruction in the ROB line and excep which is a bit

indicating whether executing the microinstruction resulted in an

exception. A RS is also a structure, with fields including cpc which
denotes the cycle on which the result of the microinstruction exe-

cution will be ready, busy and exec indicating whether the RS has

an instruction loaded and is currently executing a microinstruction
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respectively and dst storing the identifier for the ROB line that

should hold the result of execution.

The behavior ofMMA-IC is described using a number of auxiliary

TSes. There is a TS for each component of theMMA-IC state, each of

which is made up of between two and four TSes that roughly speak-

ing each handle one stage of the pipeline. This organization helps

reduce the complexity of the transition rules. We show a transition

rule fromMMA-IC-rob-𝑤 = ⟨𝑆MA-IC-rob-𝑤 ,−−−−−−−−−−−→
MA-IC-rob-𝑤

, 𝐿MA-IC-rob-𝑤⟩,
which handles part of the behavior of the reorder buffer, in particu-

lar the part that handles RSes that complete the execution of their

associated microinstruction. 𝑆MA-IC-rob-𝑤 is the product of 𝑆MA-IC
with sequences of RSes. In essence,MMA-IC-rob-w starts off with the

the sequence of RSes in 𝑆 and iterates through them, updating the

ROB as needed. The premise𝑄 = rs•𝑄 ′
indicates that the sequence

of RSes is not empty and that we refer to the first element in the

sequence as rs and the remainder of the sequence as 𝑄 ′
. We refer

to the value of a field of a structure stored in a variable using a

subscript on the field name. For example, cpcrs indicates the value
of the cpc field of the RS structure referred to by rs.

rob-wrb-rdy

𝑄 = rs •𝑄 ′ cyc = cpcrs
busyrs execrs ⟨∃𝑖 : 𝑖 ∈ N : rob-idrob(𝑖 ) = dstrs⟩

Let 𝑖 = min

𝑗∈N∧rob-idrob( 𝑗 )=dstrs
𝑗 ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−−−→
MA-IC-rob-𝑤

⟨[rob ↦→ [𝑖 ↦→ [val ↦→ comp-val(𝑟𝑠, 𝑆),
excep ↦→ comp-exc(rs)]rob(𝑖)]rob]𝑆,𝑄 ′⟩

(4)

Equation 4 describes how the ROB is updated when a RS becomes

ready. Its definition hinges on two functions: comp-val, which uses

the source operand values in the RS to compute the result of the

RS’s microoperation, and comp-exc which determines if the micro-

operation should result in an exception instead. The appropriate

ROB entry is updated with the result of these two functions. We

expect that rob-id values will be unique among all ROB lines and

that whenever an RS is executing, its dst corresponds to a ROB line

present in the ROB. These assumptions are relevant to the idea of

entangled states in Section 4.2.

4 Meltdown Decomposition Proof
To decompose the refinement property corresponding to our notion

of correctness for Meltdown into several simpler properties, we

will introduce several variants of the MMA-IC and MISA-IC TSes

and take advantage of the following important algebraic property

of refinement.

Theorem 4.1. Consider TSsMA = ⟨𝑆A,−→
A
, 𝐿A⟩,MB = ⟨𝑆B,−→

B
, 𝐿B⟩

and MC = ⟨𝑆C,−→
C
, 𝐿C⟩ and refinement maps p : SA → SB and

q : SB → SC such that MA is an 𝛼-refinement of MB with respect
to 𝑝 andMB is a 𝛽-refinement ofMC with respect to 𝑞. We allow 𝛼

and 𝛽 to be one of: bisimulation, simulation or skipping. Skipping is
the weakest notion, followed by simulation, followed by bisimulation,
e.g., a bisimulation refinement is both a simulation refinement and
a skipping refinement. Now 𝛾 is the weakest of 𝛼, 𝛽 . Then MA is a
𝛾-refinement of MC with respect to the composition of 𝑝 and 𝑞.

ISA-IC

MA-IC MA-IC-H MA-IC-G

: A is a skipping refinement of B
: A is a bisimulation refinement of B
: A is a simulation refinement of B

MA-IC-N

A B
A B
A B

Figure 1: The model variants that we use to decompose the
proof of the Meltdown refinement property, and how they
relate to each other.

Proof sketch. Without loss of generality, assume that 𝛽 is weaker

than 𝛼 . Then MA is also a 𝛽-refinement of MB with respect to 𝑝 .

Sincewe already have thatMB is a 𝛽-refinement ofMC with respect

to 𝑞, we can appeal to the compositionality of bisimulation/simula-

tion/skipping refinement to conclude that MA is a 𝛾-refinement of
MC with respect to the composition of 𝑝 and 𝑞. □

The above theorem allows us to decompose refinement proofs

into a sequence of simpler refinement proofs and this turns out to

be quite useful, as it allows us to reason about conceptually distinct

aspects of our models in a way that is amenable to automated

verification. For example, each refinement proof contains only a

finite unwinding of the MA or ISA transition relations. One core

idea that we leverage to decompose the refinement proofs is the

shared-resource commitment refinement map.Wewill first describe

how the model variants relate to each other before discussing what

the shared-resource commitment refinement map is, how we are

able to implement it using our models and conclude with the proof

obligations that our approach gives rise to.

4.1 Model Variants
Figure 1 shows the different model variants that we use when de-

composing the proof of our notion of correctness for Meltdown,

as discussed in Section 2. We start with MISA-IC and MMA-IC,

which are models of the ISA and MA respectively that support

the in-cache instruction as described in Section 2.2. We will use

the in-cache instruction to identify differences in the cache behav-

ior of MISA-IC and MMA-IC that indicate a Meltdown attack is

possible. Next, we have MMA-IC-N, which is a variant of MMA-IC

that is nondeterministic in resource allocation decisions. The be-

havior ofMMA-IC should be a subset of the behavior ofMMA-IC-N.

MMA-IC-N is bisimilar to MMA-IC-H, a variant of MMA-IC that main-

tains history information in its state, in addition to the components

that 𝑆MA-IC contains. The combination of the history generated by

MMA-IC-H and the nondeterminism ofMMA-IC-N provides the core

of the shared-resource commitment refinement map, as together

they can determine whether or not a particular state needs to be

considered when performing a refinement proof againstMISA-IC.

Finally,MMA-G-IC is a variant ofMMA-IC-H that is defined only over

those states that need to be considered.

4.2 Entangled States and the Shared-Resource
Commitment Refinement Map

To understand why the shared-resource commitment refinement

map is useful, we must first discuss reachability and how it is
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relevant to refinement. Given a TSMX = ⟨𝑆X,−−→X
, 𝐿X⟩ and a set

of initial states 𝑆 initX ⊆ 𝑆X , the set of reachable states is:

Definition 4.2 (Reachable States).

𝑆reachX = {𝑠 ∈ 𝑆X : ⟨∃𝑠𝑖 : 𝑠𝑖 ∈ 𝑆 initX : 𝑠𝑖 −−→X
∗ 𝑠⟩}

Say that MX is a model of an MA. When implementing an

MA, one will often define the system’s state as a structure with

fields that vary over bounded domains (e.g., a program counter is a

64-bit unsigned integer). However, the MA will often only behave

correctly if additional constraints between fields are satisfied. These

constraints are called invariants. For example,MMA-IC expects that

the lines in the ROB have unique rob-id fields. Such a system can

still be shown to be correct if the initial states 𝑆 initX satisfy the

invariants and the invariants are shown to be preserved by the

system’s transition relation (they are inductive invariants, e.g., if
they hold for a state, they hold for all successors of the state).

The refinement we show when using our notion of correctness

requires us to provide a refinement map that describes how to

map MMA-IC states to MISA-IC states. We use the commitment
approach described by Manolios [28] to do so: we map a MMA-IC

state to aMISA-IC state by retaining only the programmer visible

components of the state. This can be thought of as invalidating

the pipeline: “throwing out” any in-flight instructions and only

considering the effects of committed instructions on the state.

A problem with allowing unreachable MA states in general is

that, at least for our models, some unreachable states will cause

the MA to behave incorrectly. This behavior includes getting stuck,

retiring instructions that do not exist in the instruction memory and

loading incorrect values from memory or the register file. When

showing that the MA is a refinement of an ISA model, it is unclear

how we would map these unreachable states to ISA states such that

refinement also enforces that the MA behavior on reachable states

is correct. We do not care what the MA does when started from an

invalid state, so this behavior is undesirable.

One approach to resolving this issue is to create a version of

MISA-IC that only operates over reachable states. However, ex-

pressing and evaluating the reachability predicate is challenging,

since it requires resolving multiple existentials, which is likely

to be problematic for the kinds of solvers that are often used in

hardware verification. An alternative to expressing the reachability

predicate is to explicitly encode the relationships between different

components of the MA model’s state that should hold for all reach-

able states. Devising and expressing these relationships formally

requires substantial effort from someone with a deep understand-

ing of the microarchitecture. We instead choose to define a model

over a superset of the reachable states that is easier to express and

reason about. We introduce a recipe that can be used to define

particular kinds of supersets, allowing one to select the superset

with the appropriate trade-offs for their specific MA model and

verification tooling. We call these supersets of the reachable states

sets of entangled states.
Our approach is derived from the following insight about check-

ing if a state is reachable: if a state happened to be generated by

starting from an initial state and running it forward some number of

steps, then it is possible to resolve a similar existential to that seen

in the reachability predicate by maintaining some additional history

information that indicates what the initial state was. A key insight

of our approach is that for our MAs, and we suspect for many MAs,

we can still identify many unreachable states by only maintaining

history information for instructions that have not yet been retired.

To check a state, we can invalidate the MA state and then use the

history information to run it forward the appropriate number of

steps. Invalidation is required in any pipelined MA, and refers to

the process of discarding instructions that are in the pipeline and

restarting execution from the appropriate address that is required

when an instruction’s execution results in an exception, or when it

is determined that a speculatively executed instruction should not

be committed. A complicating factor for this approach is the fact

that the decisions that an MA may make about resource allocation

and how to schedule actions (e.g., how many instructions to fetch

on a particular cycle, whether to start executing a microinstruction

loaded in a RS, which RS to issue a microinstruction to) are based

on the resources that are available during that cycle, which may be

affected by instructions that had committed by the time the MA

state is being inspected. This is where the second key insight of

our approach comes in: if we have a version of the MA that is non-

deterministic in resource allocation and scheduling decisions, we

can use the history information alongside this new MA variant to

determine whether it is possible to reach a particular state 𝑠 when

starting at the state corresponding to an invalidated version of 𝑠 ,

when making the same resource allocation decisions as were made

in the execution of 𝑠 for the microinstructions that are in-flight in

𝑠 .

Given:

• A deterministic MA TSMX = ⟨𝑆X,−−→X
, 𝐿X⟩

• MX-H
= ⟨𝑆X-H

,−−−−→
X-H

, 𝐿X-H
⟩, a version ofMX that gathers

history such that MX-H
is deterministic, 𝑆X-H

= 𝑆X × 𝐻

and satisfying the below conditions

• A version of MX that is nondeterministic in resource al-

location decisions, MX-N
= ⟨𝑆X-N

,−−−−→
X-N

, 𝐿X-N
⟩, such that

𝑆X-N
= 𝑆X and satisfying the below conditions

• A transition function step-using-hX-N
: 𝑆X × 𝐻 → 𝑆X ×

𝐻 that returns a successor with respect to MX-N
of the

given state, using the given history information to resolve

nondeterminism

• An invalidation function invlX : 𝑆X × 𝐻 → 𝑆X
• A function init-hX : 𝑆X → 𝐻 that produces an “empty”

history for the given state

• A set of initial states 𝑆 initX ⊆ 𝑆X

The set of entangled states forMX is

𝑆entX-H
= {⟨𝑠, ℎ⟩ ∈ 𝑆X-H

: ⟨∃𝑛 ∈ N, ℎ′ : ℎ′ ∈ 𝐻 :

step-using-h𝑛X-N
(invl(𝑠, ℎ), ℎ) = ⟨𝑠, ℎ′⟩⟩}

The additional conditions are:

• MX-H
∼hist MX-N

where hist is a function such that

⟨∀𝑠, ℎ : ⟨𝑠, ℎ⟩ ∈ 𝑆X-H
: hist(⟨𝑠, ℎ⟩) = 𝑠⟩

• The behavior of MX is a subset of the behaviors of MX-N
.

e.g., ⟨∀𝑠,𝑢 : 𝑠,𝑢 ∈ 𝑆X ∧ 𝑠 −−→
X

𝑢 : 𝑠 −−−−→
X-N

𝑢⟩.

• ⟨∀𝑠 : 𝑠 ∈ 𝑆 initX : ⟨𝑠, init-hX (𝑠)⟩ ∈ 𝑆entX-H
⟩
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At first glance the definition of 𝑆entX-H
may not seem better than

the definition of reachable states. However, there is one more fact

that helps here: for a reachableMX-H
state, the maximum number

of MX-N
steps from the invalidated version of that state back to

itself is bounded. This means that the unwinding of the transition

function in 𝑆entX-H
is also bounded. Even better, for our models the

number of steps can be computed from the state and its history

information. Assuming that we have a function steps-to-takeX-H
:

𝑆X-H
→ N that determines the number of steps to take to get from

the invalidated version of a state back to itself, we can provide a

simplified definition for 𝑆entX-H
:

𝑆entX-H
= {⟨𝑠, ℎ⟩ ∈ 𝑆X-H

, 𝑖 = steps-to-takeX-H
(⟨𝑠, ℎ⟩) :

⟨∃ℎ : ℎ′ ∈ 𝐻 : step-using-h𝑖X-N
(invlX (𝑠, ℎ), ℎ) = ⟨𝑠, ℎ′⟩⟩}

Finally, we must show that 𝑆entX-H
is closed under −−−−→

X-H

. This,

in conjunction with the fact that ⟨∀𝑠 : 𝑠 ∈ 𝑆 initX : ⟨𝑠, init-hX (𝑠)⟩ ∈
𝑆entX-H

⟩, implies that 𝑆entX-H
is a superset of the reachable states of

MX-H
, if we specify that the initial states ofMX-H

are elements of

𝑆 initX paired with the history produced by running init-hX on that

element.

Now we can define a TS that is MX-H
but limited to 𝑆entX-H

:

MX-G
= ⟨𝑆X-G

,−−−−→
X-G

, 𝐿X-G
⟩where 𝑆X-G

= 𝑆entX-H
,−−−−→
X-G

=−−−−→
X-H

∩𝑆entX-H
×

𝑆entX-H
and ⟨∀𝑠 : 𝑠 ∈ 𝑆entX-H

: 𝐿X-G
= 𝐿X-H

⟩. If we only care about the

behavior ofMX on reachable states, we can instead reason about

that of MX-G
. This is the core addition of the shared-resource

commitment refinement map to the commitment refinement map.

4.3 History Information
One of the key observations regarding the idea of entangled states is

that an MA will make resource allocation and scheduling decisions

based on instructions that have already been committed, and we

maintain history information to allow us to make the same sched-

uling decisions that the MA did in the transitions leading up to a

particular state. The resource allocation and scheduling decisions

thatMMA-IC makes are as follows: (1) the number of instructions

to fetch, (2) which RSes to issue fetched instructions to, (3) whether

a busy RS can begin execution and (4) whether a ready ROB entry

should be retired.

MMA-IC-N = ⟨𝑆MA-IC-N,−−−−−−−→
MA-IC-N

, 𝐿MA-IC-N⟩ is a nondeterministic

TS. 𝑆MA-IC-N = 𝑆MA-IC. For each transition of MMA-IC-N, a nondeter-

ministic selection is made for the number of instructions to fetch

and issue, the set of RSes which are unavailable, the set of ROB lines

which are allowed to commit and the set of RSes which are allowed

to begin execution. Notice that the nondeterministic choices only

allow MMA-IC-N to behave as though fewer resources are available.

MMA-IC can be thought of as a version of MMA-IC-N where the

“maximal” choices are always selected.

MMA-IC-H = ⟨𝑆MA-IC-H,−−−−−−−→
MA-IC-H

, 𝐿MA-IC-H⟩ can be thought of as

MMA-IC augmented with history information: 𝑆MA-IC-H = 𝑆MA-IC ×
𝐻MA-IC. The behavior ofMMA-IC-H on the 𝑆MA-IC part of the state is

identical to MMA-IC: ⟨∀𝑠, ℎ, 𝑠′, ℎ′ : ⟨𝑠, ℎ⟩ −−−−−−−→
MA-IC-H

⟨𝑠′, ℎ′⟩ : 𝑠 −−−−−→
MA-IC

𝑠′⟩. The history information is such that given a reachable state

⟨𝑠, ℎ⟩, if 𝑠 is invalidated and then run forward usingMMA-IC-N such

that any resource allocation or scheduling decisions are made in

the same way they were in 𝑠 for any in-flight instructions, the re-

sulting state should be identical to 𝑠 . In other words, the history

information must be sufficient to allow us to reconstruct the non-

deterministic choices that will reproduce the behavior ofMMA-IC.

We give a brief overview of the gathered history information here,

but Appendix B.5 contains a full description.

𝐻MA-IC is a structure consisting of several components. Here

we focus on hist-lines and start-cy. start-cy is the first cycle for

which this history state has data and hist-lines is a sequence of
status lines, representing information about the progress of all in-

flight microinstructions. For any state 𝑤 such that 𝑠 −−−−−−−→
MA-IC-H

∗ 𝑤

from an initial state 𝑠 ∈ 𝑆 initMA-G-IC, hist-lines𝑤 will contain for each

in-flight microinstruction a sequence of statuses indicating what

operation was performed for each cycle starting at and including

the cycle when the microinstruction was issued. This information

allows us to determine when a microinstruction was issued and

what resources were allocated for it, when the microinstruction

started execution and when it was committed.

4.4 Decomposition
Wewill now describe the proof obligations that arise from using our

notion of correctness for Meltdown onMISA-IC andMMA-IC. First,

we will instantiate the set of entangled states with X = MA-IC. The
definition of entangled states requires that we provideMMA-IC-N,

MMA-IC-H, step-using-hMA-IC-N, invlMA-IC, init-hMA-IC and 𝑆
init
MA-IC.We

briefly discussedMMA-IC-N andMMA-IC-H above and full definitions

can be found in Appendices B.4 and B.5 respectively. Similarly we

provide definitions for all of the required functions in Section C and

touch only on step-using-hMA-IC-N here. That function operates by

using the history to calculate the appropriate values for the nonde-

terministic choices made previously, and then transitionsMMA-IC-N

using those choices. Our notion of entangled states imposes four

proof obligations:

⟨∀𝑠,𝑢 : 𝑠,𝑢 ∈ 𝑆MA-IC ∧ 𝑠 −−−−−→
MA-IC

𝑢 : 𝑠 −−−−−−−→
MA-IC-N

𝑢⟩ (5)

MMA-IC-H ∼hist MMA-IC-N where hist is a function such that

⟨∀𝑠, ℎ : ⟨𝑠, ℎ⟩ ∈ 𝑆MA-IC-H : hist(⟨𝑠, ℎ⟩) = 𝑠⟩ (6)

⟨∀𝑠 : 𝑠 ∈ 𝑆 initMA-IC : ⟨𝑠, init-hMA-IC (𝑠)⟩ ∈ 𝑆entMA-IC-H⟩ (7)

⟨∀𝑠 : 𝑠 ∈ 𝑆entMA-IC-H : ⟨∀𝑤 : 𝑠 −−−−−−−→
MA-IC-H

𝑤 : 𝑤 ∈ 𝑆entMA-IC-H⟩⟩ (8)

In addition, our notion of correctness for Meltdown requires that

MMA-G-IC is a witness skipping refinement ofMISA-IC with respect

to our refinementmap r-ic, defined below. This is proved by showing
the existence of a witness skipping relation on the TS produced

by taking the disjoint union of MMA-G-IC and MISA-IC. Let Mic =

⟨𝑆MA-G-IC ⊎ 𝑆ISA-IC,−−−−−−−→
MA-G-IC

⊎ −−−−−−→
ISA-IC

,L⟩ be this system. Let

𝑆ic = 𝑆MA-G-IC⊎𝑆ISA-IC and −→
ic
=−−−−−−−→

MA-G-IC
⊎ −−−−−−→

ISA-IC
. We instantiate

Definition 2.5, providing skip-wit-ic : 𝑆ic×𝑆ic → N\{0} for skip-wit,
stutter-wit-ic : 𝑆ic×𝑆ic → N for stutter-wit, run-ic : 𝑆ic×𝑆ic×𝑆ic →
𝑆ic for run, and 𝐵ic ⊆ 𝑆ic × 𝑆ic for 𝐵. The obligations generated are
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as follows:

⟨∀𝑠 ∈ 𝑆MA-G-IC :: 𝑠𝐵icr-ic.𝑠⟩ (9)

⟨∀𝑤, 𝑠,𝑢 : 𝑠𝐵ic𝑤 ∧ 𝑠 −→
ic

𝑢 : 𝑤 −→
ic

skip-wit-ic(𝑠,𝑢 ) run-ic(𝑤, 𝑠,𝑢)⟩
(10)

∀𝑠,𝑢,𝑤 ∈ 𝑆ic : 𝑠𝐵ic𝑤 ∧ 𝑠 −→
ic

𝑢 :

(𝑢𝐵ic𝑤 ∧ stutter-wit-ic(𝑢,𝑤) < stutter-wit-ic(𝑠,𝑤)) ∨
𝑢𝐵ic (run-ic(𝑤, 𝑠,𝑢))

(11)

5 Correctness for Spectre
Using witness skipping refinement with the in-cache abstraction
allows one to identify susceptibility to Meltdown attacks that rely

on cache side channels, but such a notion of correctness is not

violated by a system which is vulnerable to Spectre. In short, this

is because Spectre attacks do not access unprivileged memory, as

Meltdown attacks do, but instead access legal memory locations

that are however not accessed by the ISA semantics. We note here

the connection between prefetching and Spectre attacks. Prefetch-

ing is a hardware mechanism that allows MAs to bring data (that

they have access to) into the cache in advance, i.e., before the ISA
explicitly accesses them. Spectre attacks exploit transient execution

to have the MA bring memory locations in the cache that otherwise

wouldn’t have been accessed according the ISA semantics. The

key challenge here is, how can we detect the difference between a

desirable hardware mechanism such as prefetching and a hardware

behavior that can result in TEAs? We propose a solution using

intent models alongside a novel notion of refinement.

5.1 Intent Models
Modern microprocessors include hardware prefetch units which

extend cache units by monitoring memory accesses and fetching

data before it is needed [1]. The goal of prefetching is to reduce

memory latencies by eliminating cache misses and can be viewed

as predicting which data will be required in the future. Consider a

simple form of hardware prefetching, next-line prefetching. After
an access to memory address 𝑎, a next-line prefetcher will request

that the next 𝑁 cache lines 𝑎+1, . . . 𝑎+𝑁 be cached. A slightly more

complicated approach is to perform stride prefetching, wherein an

access to memory location 𝑎 results in the prefetching of addresses

𝑎+𝑁, 𝑎+2𝑁, . . . for a selected stride 𝑁 . For a thorough examination

of cache prefetching, we refer the reader to Mittal’s survey [30].

Similar to caches, prefetch units are intentionally left underspec-

ified at the ISA level to allow implementer flexibility in defining

hardware prefetchers based on the MA’s requirements. To provide

a notion of correctness that is able to catch Spectre attacks while

allowing MAs to freely implement hardware prefetchers, we intro-

duce the idea of intent models. The key idea of intent models is that

during each step, the MA emits information regarding the set of

addresses it intended to cache due to each instruction, which we

call intent virtual instructions. The ISA can be stepped in a way that

conforms to this information, e.g., by prefetching the same set of

addresses the MA did upon committing the same instruction. Intent

virtual instructions do not appear in instruction memory—they are

emitted at runtime by the MA. The expectation is that the designer

of an MA will implement an intent version of the MA by providing

a function that describes the intended cache modifications corre-

sponding to instructions committed in a given step.

5.2 Action Labeled Transition System
Mathematically, we represent an intent model using an action la-
beled transition system (ALT). An ALTM = ⟨𝑆,𝐴,−→, 𝐿⟩ is a struc-
ture consisting of a set of states 𝑆 , a set of actions 𝐴 where each

action is a sequence over elements A, a transition relation→ ⊆
𝑆 × 𝐴 × 𝑆 such that ⟨∀𝑠 ∈ 𝑆 : ⟨∃𝑢 ∈ 𝑆, 𝑎 ∈ 𝐴 : (𝑠, 𝑎,𝑢) ∈ → ⟩⟩ and
a state label function L with domain 𝑆 . Given 𝑠,𝑢 ∈ 𝑆, 𝑎 ∈ 𝐴, we

write 𝑠
𝑎−→ 𝑢 as a shorthand for ⟨𝑠, 𝑎,𝑢⟩ ∈ → . For our notion of

correctness for Spectre, the set of actions will consist of sequences

of intent virtual instructions.

5.3 Action Skipping Refinement
We generalize the notion of skipping refinement, which is defined

on TSes that do not have labels on transitions (actions), to ALTs.

To do this, we need to update the definition of matching used in

skipping refinement to account for actions. Intuitively, we do this

by specifying that two paths in an ALT match iff they can each be

partitioned in such a way that both the states and actions in two

corresponding partitions match, rather than just the states.

Let M = ⟨𝑆,𝐴,−→, 𝐿⟩ be an ALT. An A-path for M is a tuple

⟨𝜎, 𝛿⟩ where 𝜎 is a sequence of states from 𝑆 and 𝛿 is a sequence

of states from 𝐴 such that for every pair of adjacent states in 𝜎

𝑠 = 𝜎. 𝑗 and 𝑢 = 𝜎.( 𝑗 + 1), it is the case that 𝑠
𝛿.𝑗
−−→ 𝑢. As a con-

vention, given an A-path 𝜏 we use 𝜏𝑆 to refer to the first element

of the tuple (the sequence of states) and 𝜏𝐴 to refer to the second

element of the tuple (the sequence of actions). An A-path 𝜎 start-

ing at state 𝑠 is an A-fullpath, denoted by fp-a.𝜎 .𝑠 , if both 𝜎𝑆 and

𝜎𝐴 are infinite. An A-segment, ⟨⟨𝑣1, . . . , 𝑣𝑘 ⟩, ⟨𝑎1, . . . , 𝑎𝑘−1⟩⟩, where
𝑘 ≥ 1 is a finite A-path and is denoted by

#»𝑣 . The length of an A-

segment
#»𝑣 is denoted by | #»𝑣 |. The 𝑖𝑡ℎ partition of an A-fullpath 𝜎

with respect to 𝜋 ∈ INC, denoted by
𝜋𝜎𝑖 , is given by an A-segment

⟨⟨𝜎𝑆 (𝜋.𝑖), . . . , 𝜎𝑆 (𝜋 (𝑖 + 1) − 1)⟩, ⟨𝜎𝐴 (𝜋.𝑖), . . . , 𝜎𝐴 (𝜋 (𝑖 + 1) − 1)⟩⟩.
Given a sequence of sequences 𝜎 , ◦(𝜎) denotes the concatenation
of all of the sequences in 𝜎 , in order. Note that concatenation is suf-

ficient for our case, but in general, given an set of actions where an

action can “undo” another action, it might be necessary to introduce

a more complicated notion of combining actions.

Definition 5.1 (amatch). LetM = ⟨𝑆,𝐴,−→, 𝐿⟩ be an ALT and 𝜎, 𝛿

be A-fullpaths inM . For 𝜋, 𝜉 ∈ INC and binary relation 𝐵 ⊆ 𝑆 × 𝑆

we define two functions:

acorr (B, 𝜎, 𝜋, 𝛿, 𝜉) ≡

⟨∀𝑖 ∈ 𝜔 :: ⟨∀𝑠 ∈ 𝜋𝜎𝑖𝑆 :: 𝑠𝐵𝛿𝑆 (𝜉 .𝑖)⟩ ∧ ◦(𝜋𝜎𝑖𝐴) = ◦(𝜉𝛿𝑖𝐴)⟩ and
amatch(B, 𝜎, 𝛿) ≡ ⟨∃𝜋, 𝜉 ∈ INC :: acorr (B, 𝜎, 𝜋, 𝛿, 𝜉)⟩.

We can now define the notion of an action skipping simulation

using amatch.

Definition 5.2 (Action Skipping Simulation (ASKS)). 𝐵 ⊆ 𝑆 × 𝑆 is

an action skipping simulation on an action TSM = ⟨𝑆,𝐴,−→, 𝐿⟩ iff
for all 𝑠,𝑤 such that 𝑠𝐵𝑤 , both of the following hold:

(1) 𝐿.𝑠 = 𝐿.𝑤
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(2) ⟨∀𝜎 : fp-a.𝜎 .𝑠 : ⟨∃𝛿 : fp-a.𝛿 .𝑤 : amatch(B, 𝜎, 𝛿)⟩⟩

5.4 Statement of Correctness
LetMISA = ⟨𝑆ISA, 𝐴ISA,−−−→

ISA
, 𝐿ISA⟩ andMMA = ⟨𝑆MA, 𝐴MA,−−−→

MA
, 𝐿MA⟩

be ALTs modeling an ISA and an MA such that the two systems

both support the in-cache instruction. The actions𝐴ISA = 𝐴MA used

by these systems are used to indicate what changes to the cache

are authorized, a notion decided by the designer of the system. Let

𝑟 : 𝑆MA → 𝑆ISA be a refinement map. At a high level, we expect 𝑟

to map an MA state to an ISA state that agrees in the programmer-

visible values of its components—e.g., the register file of the mapped

ISA state should correspond to the committed register file for the

MA. We require that 𝑟 projects the cache component of the MMA
state. Then, we say thatMMA is a correct implementation ofMISA
with respect to Spectre iffMMA is an action skipping refinement

ofMISA with respect to 𝑟 .

6 Spectre Decomposition Proof
At a high level, our strategy involves breaking down correctness

into our notion of correctness for Meltdown on an MA and an ISA,

plus a property that expresses that the MA only performs updates

to its cache that are “authorized” according to the system designer.

We start with two ALTs,MMA-IC-A andMISA-IC-A, denoting the

MA and the ISA respectively. MMA-IC-A and MISA-IC-A have the

same set of actions 𝐴, e.g., 𝐴MA-IC-A = 𝐴ISA-IC-A = 𝐴, where A

consists of sequences of authorized cache actions:

𝐴 = ({prefetch 𝑎 | 𝑎 ∈ N32} ∪ {cache 𝑎 | 𝑎 ∈ N32})∗

Let r-a : 𝑆MA-IC-A → 𝑆ISA-IC-A be a refinement map that maps

all of the corresponding components of an MMA-IC-A state to an

MISA-IC-A state, including the cache.

MMA-IC-A = ⟨𝑆MA-IC-A, 𝐴MA-IC-A,−−−−−−−→
MA-IC-A

, 𝐿MA-IC-A⟩ is anALT that

can be thought of asMMA-IC but restricted so that for any transition

from state 𝑠 to state 𝑢 inMMA-IC,MMA-IC-A allows that transition

only under the action consisting of the sequence of authorized

cache actions that were performed during the transition.

From an operational perspective, we have a function auth-actions :
𝑆MA-IC ×𝑆MA-IC → 𝐴 that, when given states 𝑠,𝑢 ∈ 𝑆MA-IC such that

𝑠 −−−−−→
MA-IC

𝑢, produces a sequence of authorized cache actions cor-

responding to the behavior of MMA-IC during that transition. This

can be thought of as a specification that needs to be provided by a

system designer, describing what changes to the cache should be

visible due to aMMA-IC transition. We define −−−−−−−→
MA-IC-A

as follows:

𝑠
𝑎−−−−−−−→

MA-IC-A
𝑢 ⇐⇒ 𝑠 −−−−−→

MA-IC
𝑢 ∧ 𝑎 = auth-actions(𝑠,𝑢)

MISA-IC-A = ⟨𝑆ISA-IC-A, 𝐴ISA-IC-A,−−−−−−−−→
ISA-IC-A

, 𝐿ISA-IC-A⟩ is anALT
that can be thought of asMISA-IC but with restricted nondetermin-

ism. 𝑆ISA-IC-A = 𝑆ISA-IC. In particular, the top-level transition rule

ofMISA-IC-A composes theMISA-IC-ISA auxiliary TS with a new

MISA-IC-A-C ALT that applies the authorized cache actions for this

transition.

Action Skipping. The notion of correctness with respect to Spec-

tre and r-a for MISA-IC-A andMMA-IC-A is:

MMA-IC-A ⊑r-a MISA-IC-A (12)

We decompose this into the conjunction of the following two

statements, where cache𝑠 refers to the cache memory component

of the state 𝑠 .

MMA-IC ≲r-a MISA-IC (13)

⟨∀𝑠,𝑢 ∈ 𝑆MA-IC-A, 𝑎 ∈ 𝐴,𝑤 ∈ 𝑆ISA-IC-A : 𝑠
𝑎−−−−−−−→

MA-IC-A
𝑢∧

cache𝑠 = cache𝑤 ∧ 𝐿ISA-IC-A (r-a(𝑠)) = 𝐿ISA-IC-A (𝑤) :

⟨∃𝑣 ∈ 𝑆ISA-IC-A, 𝜎 ∈ 𝐴∗
: ◦(𝜎) = 𝑎 ∧𝑤

𝜎−−−−−−−−→
ISA-IC-A

∗
𝑣 :

cache𝑢 = cache𝑣 ∧ 𝐿ISA-IC-A (r-a(𝑢)) = 𝐿ISA-IC-A (𝑣)⟩⟩
(14)

We now argue that proofs of Equations 13 and 14 imply a proof

of Equation 12, given our machines. Say that we have proofs of

Equations 13 and 14. This means that there exists a 𝐵 over 𝑆IC ×
𝑆IC such that ⟨∀𝑠 ∈ 𝑆MA-IC :: 𝑠𝐵𝑟 .𝑠⟩ and 𝐵 is an SKS on MIC =

⟨𝑆MA-IC ⊎ 𝑆ISA-IC,−−−−−→
MA-IC

⊎ −−−−−−→
ISA-IC

,LIC⟩ where LIC .𝑠 = 𝐿𝐴 (𝑠) for
𝑠 ∈ 𝑆ISA-IC, and LIC .𝑠 = 𝐿𝐴 (𝑟 .𝑠) for 𝑠 ∈ 𝑆MA-IC. This means that

for all 𝑠,𝑤 ∈ 𝑆IC such that 𝑠𝐵𝑤 , the following two statements hold:

𝐿IC .𝑠 = 𝐿IC .𝑤 ,

⟨∀𝜎 : fp.𝜎 .𝑠 : ⟨∃𝛿 : fp.𝛿 .𝑤 : smatch(B, 𝜎, 𝛿)⟩⟩
To prove Equation 12, we must show the existence of a 𝐵′ over

𝑆ACT × 𝑆ACT such that ⟨∀𝑠 ∈ 𝑆MA-IC-A :: 𝑠𝐵r-a.𝑠⟩ and 𝐵′ is an

ASKS onMACT = ⟨𝑆MA-IC⊎𝑆ISA-IC, 𝐴ACT,−−−−−→
MA-IC

⊎ −−−−−−→
ISA-IC

,LACT⟩
where LACT .𝑠 = 𝐿ISA-IC-A (𝑠) for 𝑠 ∈ 𝑆ISA-IC-A, and LACT .𝑠 =

𝐿ISA-IC-A (r-a.𝑠) for 𝑠 ∈ 𝑆MA-IC-A. We will argue that 𝐵′ = 𝐵 satisfies

these conditions.

Since 𝐵 is an SKS onMIC, we can assume that condition (2) from

the definition for SKS holds. Expanding gives:

⟨∀𝑠,𝑤 : 𝑠𝐵𝑤 : ⟨∀𝜎 : fp.𝜎 .𝑠 : ⟨∃𝛿 : fp.𝛿 .𝑤 : ⟨∃𝜋, 𝜉 ∈ INC : :

⟨∀𝑖 ∈ 𝜔 : : ⟨∀𝑠 ∈ 𝜋𝜎𝑖 : : 𝑠𝐵𝛿 (𝜉 .𝑖)⟩⟩⟩⟩⟩⟩
(15)

We will now show that 𝐵 is also an action skipping simulation on

the corresponding MACT = ⟨𝑆MA-IC-A ⊎ 𝑆ISA-IC-A, 𝐴ACT,−−−−−−−→
MA-IC-A

⊎ −−−−−−−−→
ISA-IC-A

,LACT⟩. Since 𝑆ACT = 𝑆IC and 𝐿ISA-IC-A = 𝐿ISA-IC, we

can discharge the obligation that the labels of states related by 𝐵

are equal, as this must hold for 𝐵 to be a SKS onMIC. We need to

show that condition (2) of the definition for ASKS holds. Expansion

gives:

⟨∀𝑠,𝑤 : 𝑠𝐵′𝑤 : ⟨∀𝜌 : fp-a.𝜌 .𝑠 : ⟨∃𝜏 : fp-a.𝜏 .𝑤 : ⟨∃𝜋, 𝜉 ∈ INC : :

⟨∀𝑖 ∈ 𝜔 :

(a)⟨∀𝑠 ∈ 𝜋𝜎𝑖𝑆 : : 𝑠𝐵
′𝛿𝑆 (𝜉 .𝑖)⟩∧

(b)◦(𝜋𝜌𝑖𝐴) = ◦(𝜉𝜏𝑖𝐴)⟩⟩⟩
(16)

Pick an arbitrary 𝑠 ,𝑤 and 𝜎 , and then pick the 𝛿 , 𝜋 , and 𝜉 that

Equation 15 asserts exist. Let 𝜌 be an A-fullpath such that 𝜌𝑆 = 𝜎

and 𝜏 be an A-fullpath such that 𝜏𝑆 = 𝛿 . Since 𝐵′ = 𝐵, 𝜌𝑆 = 𝜎 and

𝜏𝑆 = 𝛿 , condition (a) of Equation 16 follows from Equation 15. For

condition (b), we will consider several cases. Let 𝑥 be the first state

in a
𝜋𝜌𝑖

𝑆
and 𝑦 be the first state in

𝜉𝜏𝑖
𝑆
. First, if 𝑥 is halted, then 𝑦
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must also be halted, and no actions will be emitted in this partition

or a future partition, so (b) trivially holds. We now consider the

case where 𝑠 ∈ 𝑆MA-IC-A and 𝑤 ∈ 𝑆ISA-IC-A. Notice that 𝑥 must

have the same cache as 𝑦. All of the states in 𝜋𝜌𝑖
𝑆
must be related

via 𝐵′ to 𝑦, so if
𝜋𝜌𝑖

𝐴
( 𝑗) ≠ ∅ for any 𝑗 < | 𝜋𝜌𝑖

𝐴
|, that action did not

have an effect on the cache. The last action in
𝜋𝜌𝑖

𝐴
corresponds to

the transition from the last state in
𝜋𝜌𝑖

𝑆
to the first state in

𝜋𝜌𝑖+1
𝑆

.

The actions in
𝜉𝜏𝑖
𝐴
correspond to the transitions comprising the

A-segment starting at𝑦 and ending at the first state of
𝜉𝜏𝑖+1
𝑆

. We can

instantiate Equation 14 here, which gives us that for the transition

from the last state in
𝜋𝜌𝑖

𝑆
to the first state in

𝜋𝜌𝑖+1
𝑆

, given that 𝑦

matches with 𝑥 , there exists some 𝑣 ∈ 𝑆ISA-IC-A and some 𝜒 ∈ 𝐴∗

such that ◦(𝜒) is equal to the last action in
𝜋𝜌𝑖

𝐴
, 𝑦

𝜒
−−−−−−−−→
ISA-IC-A

∗
𝑣 ,

and 𝑣 has the same cache and label as the first state in
𝜋𝜌𝑖+1

𝑆
. We

now argue that 𝑣 must be the first state of
𝜉𝜏𝑖+1
𝑆

, and 𝜒 must be
𝜉𝜏𝑖
𝐴
.

Note that the definitions of 𝐿ISA-IC-A and r-a are such that any

MMA-IC-A state has a unique related MISA-IC-A state. Therefore, 𝑣

must be the first state of
𝜉𝜏𝑖+1
𝑆

, since both must be related to
𝜋𝜌𝑖+1

𝑆
via 𝐵′. We can assume that 𝑣 only appears once in the path from

𝑦 to 𝑣 , since MMA-IC-A is not capable of committing an instruction

twice in a single skipping step. Therefore, the actions in 𝜒 and
𝜉𝜏𝑖
𝐴

start at the same cache and produce the same cache, meaning they

must be equivalent up to “noop” actions.

Notice that the purpose of MISA-IC-A in Equation 14 is in some

sense to give us a specification for how actions should affectMMA-IC-A

state. We can simplify that equation by directly defining the ef-

fects that actions should have on the cache and checking that

MMA-IC-A is behaving appropriately. That is, we would like to check

that MMA-IC-A is not modifying the cache through some unautho-

rized actions that it is not emitting. This gives Equation 17, where

apply-action is a function that takes in a MMA-IC-A state 𝑠 , a cache

𝑐 and an action 𝑎, and produces 𝑐 after applying 𝑎 to it.

⟨∀𝑠,𝑢 ∈ 𝑆MA-IC-A, 𝑎 ∈ 𝐴 : 𝑠
𝑎−−−−−−−→

MA-IC-A
𝑢 : cache𝑢 = apply-action(𝑠, 𝑎)⟩

(17)

6.1 Proof Obligations for Spectre
We now describe the proof obligations that arise from using our

notion of correctness for Spectre onMISA-IC-A andMMA-IC-A. First,

we will decomposeMMA-IC ≲r-a MISA-IC using the same approach

that we used forMMA-IC ≲r-ic MISA-IC in Section 4. The only new

obligation is Equation 17.

Several of the proof obligations for MMA-IC ≲r-a MISA-IC are

identical to those that are needed here. The main differences appear

in the context of witness skipping refinement, as our refinement

map and run witness function both differ.

𝐵ic-a ⊆ 𝑆IC×𝑆IC is thewitness skipping relation overMIC that we

must show exists and satisfies the below properties, Equations 18-

20.

run-ic-c(𝑤, 𝑠,𝑢) is a function that steps𝑤 skip-wit-ic(𝑠,𝑢) times,

using 𝑠 and 𝑢 to resolve nondeterminism when there are multiple

successors to theMISA-IC state. Unlike run-ic, it does not update
the MISA-IC’s cache prior to execution, only afterwards. This is

because the refinement map includes the cache, meaning that the

caches of𝑤 and 𝑠 are already known to be identical.

Table 1: The number of discovered functional correctness
bugs and TEA bugs across three configurations of machine
and notion of correctness.

Config. Func. bugs TEA bugs

Safe (MMA & MISA) + Melt. 18 0

Buggy (MMA-IC & MISA-IC) + Melt. 5 1

Buggy (MMA-IC & MISA-IC) + Spect. 0 2

Notice that we apply r-a to states in 𝑆MA-G-IC, despite the fact

that r-a is defined over members of 𝑆MA-IC. This is shorthand for

applying r-a to the 𝑆MA-IC component of theMMA-G-IC state.

⟨∀𝑠 ∈ 𝑆MA-G-IC :: 𝑠𝐵ic-ar-a.𝑠⟩ (18)

⟨∀𝑤, 𝑠,𝑢 : 𝑠𝐵ic-a𝑤 ∧ 𝑠 −→
ic

𝑢 : 𝑤 −→
ic

skip-wit-ic(𝑠,𝑢 ) run-ic-c(𝑤, 𝑠,𝑢)⟩
(19)

∀𝑠,𝑢,𝑤 ∈ 𝑆ic : 𝑠𝐵ic𝑤 ∧ 𝑠 −→
ic

𝑢 :

(𝑢𝐵ic-a𝑤 ∧ stutter-wit-ic(𝑢,𝑤) < stutter-wit-ic(𝑠,𝑤)) ∨
𝑢𝐵ic-a (run-ic-c(𝑤, 𝑠,𝑢))

(20)

7 Evaluation and Lightweight Verification
We evaluated our notions of correctness onMMA-IC andMISA-IC.

MMA-IC is vulnerable to bothMeltdown and Spectre attacks, so both

of our notions of correctness should be falsified when applied to

MMA-IC andMISA-IC. We also developedMMA andMISA, versions

of MMA-IC and MISA-IC that do not have in-cache. Our notion of

correctness for Meltdown is not violated by MMA, since it does not

allow one to query cache membership in an architecturally-visible

way.

We developed our models inside of the ACL2 Sedan (ACL2s) [8,

13], an extension of the ACL2 theorem prover[22–24]. On top of

the capabilities of ACL2, ACL2s provides a powerful type system

via the defdata data definition framework [11] and the definec and
property forms, which support typed definitions and properties,

and counterexample generation capability via the cgen framework,

which is based on the synergistic integration of theorem proving,

type reasoning and testing [9, 10, 12]. We used cgen to perform

property-based testing of refinement proof obligations. This en-

abled us to find and repair several functional correctness bugs,

including:

(1) RSes becoming deadlocked due to a race condition when an

instruction’s dependencies are forwarded from other RSes,

(2) failures to invalidate the ROB and register status file in

certain situations where they should have been,

(3) branch instructions using the wrong PC value to compute

the relative jump target,

(4) differences in how ISA-IC and MA-IC handled halt and

jge instructions.

Table 1 shows for each configuration the number of functional

correctness bugs and TEAs that were found. We exhibited TEA

bugs in both buggy configurations. The discovery of TEA bugs in

the buggy systems but not in the safe one suggests that our notions

of correctness are useful in distinguishing TEA-vulnerable MAs.
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To perform property-based testing in ACL2s, one must describe

what kinds of values each free variable may take (a “type” for each

free variable). We encoded both the ISA-IC and MA-IC states as

types in ACL2s’ defdata data definition framework. Defining a type

in defdata’s DSL results in the generation of an enumerator—a
function that takes in a natural number and produces an element of

that data type. Enumerators are then used by cgen to generate data

for testing. Something as complicated as the set of entangled states

is not possible to encode in defdata’s DSL, so we used defdata’s

custom type facilities instead. We defined a predicate that holds

only on MA states that are entangled, as well as an enumerator

that generates such states. Generating entangled states is fairly

straightforward: we generate an arbitrary MA state, invalidate it,

and then run it forward for a randomly selected (but bounded)

number of steps. We also modified the way in which MA states are

generated—instead of the default approach that generated sparse

instructionmemories where instructions were scattered throughout

the address space and choosing an arbitrary program counter, we

generate contiguous sequences of instructions and choose program

counter values that are “close” to those sequences.

We benchmarked the execution speed of MISA-IC and MMA-IC

on an assembly program that performs naïve primality testing. On

an M4 Apple Silicon processor, MMA-IC executed an average of

46,000 steps per second, whereas MISA-IC executed an average of

2.3 million steps per second. Running all of the proofs and tests for

the three configurations shown in Table 1 takes around 30 minutes.

8 Related Work
A number of high-quality survey papers have been published re-

garding transient execution attacks. For an overview of Meltdown

and Spectre attacks, we recommend the surveys of Canella et al. [7]

and Fiolhais and Sousa [16].

Our work uses an approach based on refinement, which has a

long history of being used to specify and reason about implementa-

tions of complex systems. See Abadi and Lamport [3] for an early

and influential paper in this area. In 2000, Manolios introduced

the use of refinement for specifying the correctness of pipelined

processors in a way that implies equivalidity of both safety and

liveness properties between the ISA and the MA [28]. In that work,

Manolios argues that previous notions of correctness were insuf-

ficient since they were satisfied by machines that were clearly

incorrect, like an MA implementation that never commits an in-

struction. The notion of correctness that Manolios proposes, using

Well-founded Equivalence Bisimulation (WEB) and commitment

refinement maps, has many strengths: it is capable of reasoning

about pipelined in-order MAs running arbitrary programs and that

feature interrupts and exceptions is amenable to mechanical verifi-

cation as it only involves local reasoning (reasoning about states

and their immediate successors) and is compositional, enabling

large and complicated refinement proofs to be soundly decomposed

into an independent sequence of smaller and simpler ones. Further

work by Jain and Manolios extended the theory of refinement to

support skipping while retaining local and compositional reason-

ing [20, 21]. Note that support for skipping is necessary to reason

about any of the commercial MA designs that were vulnerable to

the original Meltdown attack, as they are multi-issue and allow

multiple instructions to commit in a cycle. These strengths indicate

to us that a refinement-based approach has promise in enabling

both the specification of a global notion of correctness capable of

identifying TEAs and its verification.

Another approach that has been proposed for validating that

hardware is not vulnerable to TEAs is the use of confidentiality

properties. These properties state that if a program behaves equiva-

lently with respect to ISA semantics when run starting from two ISA

states that differ only in places that are specified to be confidential,

the program should also behave equivalently when run using MA

semantics from corresponding MA states. Notice that a confiden-

tiality property is not a global notion of correctness, as it does not

require that the observable behavior of an ISA and MA are equiva-

lent in any way, and it does not apply to all possible programs. The

framework of hardware-software contracts [17] (referred to simply

as contracts here) provides one way to express these confidentiality

properties as conditional non-interference properties.

We discuss three works that describe methods for verifying

that MA designs modeled at the RTL level satisfy confidentiality

contracts: Unique Program Execution Checking (UPEC) [14, 15],

LEAVE [38] and shadow contracts [34]. These works were all eval-

uated on several open-source RISC-V MA implementations, and

UPEC was able to identify novel bugs. All three ultimately formu-

late proof obligations that do not refer to the ISA, using a mapping

technique similar to the commitment refinement map to calculate

the ISA observation from an MA state. This is sound if the MA is

functionally correct with respect to the ISA, which is an assump-

tion made in each case. Nonetheless, this highlights that the fact

that compliance of hardware to a confidentiality contract is not

a global notion of correctness, as it can be proven independently

of the ISA’s semantics. LEAVE and shadow contracts both prove

properties that hold only on programs satisfying particular con-

ditions, unlike UPEC and our work. UPEC requires that the user

provide a substantial number of invariants to eliminate unreach-

able counterexamples and while LEAVE automatically generates

certain invariants, it is necessary to provide additional invariants

to support even simple OoO designs. Generating invariants is a

challenging task on its own, and both approaches assume the induc-

tivity of invariants that are considered “functional” which is critical

to ensuring that no reachable states are omitted from consideration

during reasoning. This is precisely why we introduced the notion

of entangled states, which enable us to eliminate many unreachable

counterexamples without the need to develop and verify design-

specific invariants. Like the shadow logic approach, the entangled

state approach requires microarchitects to implement additional

machinery (history information), but unlike the shadow logic paper

(which assumes that the shadow logic is correct) our work explains

how one can test and verify that this additional machinery is cor-

rect. Finally, as Tan et al. showed, LEAVE would require manually

provided invariants to verify an OoO design and the shadow logic

approach was only shown to scale to small OoO designs for proofs

with extremely limited structure sizes: up to an 8-entry ROB and

16-entry register file and data memory [34]. Compare this to our

approach, which has a 19-entry ROB, 12 registers and a memory of

size up to 2
32

bytes.

Mathure et al. use an approach based on stuttering refinement to

state a Spectre invulnerability property and verify that MA models
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with and without certain mitigations are vulnerable or invulnerable

to Spectre attacks [29]. The property described in their work does

not imply functional correctness, as they use abstraction to factor

out parts of the MA and ISA model under consideration that should

behave identically. Additionally, their approach requires that the de-

signer provide inductive invariants to eliminate some unreachable

states in a way that is dependent on the property being proven, as

opposed to our notion of entangled states. Other interesting works

include that of Cabodi et al. [5] and the Pensieve framework [39],

both of which reason about abstract models of MAs, enabling the

identification of abstract information leakage pathways and design-

phase evaluation of TEA defenses respectively.

9 Conclusions and Future Work
We proposed formal notions of microprocessor conformance based

on refinement that can be used to show the absence of transient

execution attacks such as Meltdown and Spectre. We described

how we decomposed each notion of correctness into properties

that are more amenable to automated verification, making use of

the novel shared-resource commitment refinement map and en-

tangled states. We demonstrated the effectiveness of our approach

by using the ACL2s theorem prover to define executable MA and

ISA models and to construct counterexamples to the refinement

conjecture of correctness, showing how our work can identify Melt-

down and Spectre vulnerabilities in a simple pipelined, out-of-order

MA that supports speculative execution. As far as we know, these

are the first global notions of correctness that address transient

execution attacks. For future work we plan to extend our work

to handle other side channels [16, 32] and richer observer models

that prevent unwanted leakage of information, while providing a

simple hardware/software interface that gives architects the flexi-

bility to design performant processors and maintaining a simple

programming model for programmers.
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A Notation
Given a nonempty and finite set of integers 𝑆 , max(𝑆) is the maxi-

mum element in 𝑆 and min(𝑆) is the minimum element in 𝑆 . Given

a set 𝑆 , P(𝑆) denotes the power set of 𝑆 (the set of all subsets of 𝑆 ,

including ∅ and 𝑆). ⊎ denotes disjoint union.

𝑓 : 𝐴 ⇀ 𝐵 indicates that 𝑓 is a partial function from 𝐴 to 𝐵

(e.g., dom(𝑓 ) ⊆ 𝐴), whereas 𝑓 : 𝐴 → 𝐵 indicates that 𝑓 is a total

function from 𝐴 to 𝐵. Given a partial function 𝑓 , 𝑓 (𝑥) ↑ indicates
that 𝑎 ∉ dom(𝑓 ) (𝑎 is not mapped by 𝑓 ) and 𝑓 (𝑥) ↓ indicates that
𝑎 ∈ dom(𝑓 ). Given any partial function 𝑓 : 𝐴 ⇀ 𝐵, we define

get𝑓 : 𝐴 × 𝐵 → 𝐵 such that:

get𝑓 (𝑎, 𝑏) =
{
𝑓 (𝑎) if 𝑓 (𝑎) ↓
𝑏 otherwise

A partial function 𝑓 : 𝐴 ⇀ 𝐵 can be treated as a subset of 𝐴 × 𝐵.

This set representation is defined as follows:

⟨∀𝑎 : 𝑎 ∈ 𝐴 : 𝑓 (𝑎) ↓ =⇒ (𝑎, 𝑓 (𝑎)) ∈ 𝑓 ⟩

⟨∀𝑎 : 𝑎 ∈ 𝐴 : 𝑓 (𝑎) ↑ =⇒ 𝑎 ∉ 𝑓 ⟩

A set 𝑠 ⊆ P(𝐴×𝐵) can be treated as a partial function 𝑓 : 𝐴 ⇀ 𝐵

if 𝑠 satisfies the following condition:

⟨∀𝑎 : 𝑎 ∈ 𝐴 : |{(𝑥,𝑦) ∈ 𝑠 : 𝑥 = 𝑎}| ≤ 1⟩

If so, the semantics of 𝑓 are defined as follows:

⟨∀𝑎, 𝑏 : (𝑎, 𝑏) ∈ 𝑠 : 𝑓 (𝑎) ↓ ∧𝑓 (𝑎) = 𝑏⟩

⟨∀𝑎 : 𝑎 ∈ 𝐴 ∧ ¬⟨∃𝑏 : 𝑏 ∈ 𝐵 : (𝑎, 𝑏) ∈ 𝑠⟩ : 𝑓 (𝑎) ↑⟩

Given a partial function 𝑓 : 𝐴 ⇀ 𝐵 and 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, [𝑎 ↦→ 𝑏] 𝑓
denotes a partial function 𝑓 ′ such that

𝑓 ′ (𝑥) =
{
𝑏 if 𝑥 = 𝑎

𝑓 (𝑥) otherwise

Given a partial function 𝑓 : 𝐴 ⇀ 𝐵 and 𝑎 ∈ 𝐴, [𝑎 ↦→↑] 𝑓 denotes

a partial function 𝑓 ′ such that

𝑓 ′ (𝑥) =
{
𝑓 if 𝑓 (𝑎) ↑
𝑓 \ (𝑎, 𝑓 (𝑎)) otherwise

Given a function 𝑓 : 𝐴 → 𝐵, or a partial function 𝑓 : 𝐴 ⇀ 𝐵,

Im 𝑓 is the set {𝑦 |𝑦 ∈ 𝐵 ∧ ⟨∃𝑥 : 𝑥 ∈ 𝐴 : 𝑓 (𝑥) = 𝑦⟩}.
A sequence of elements of a set 𝐴 is a function from an interval

of the natural numbers to 𝐴. In this work, any finite sequence we

consider has a domain of the form {𝑖 : 𝑖 ∈ N : 0 < 𝑖 ≤ 𝑗} for some

𝑗 ∈ N. Given a finite sequence 𝜎 , the length of 𝜎 (denoted by |𝜎 |) is
the cardinality of the domain of 𝜎 .

⟨𝑥,𝑦⟩ denotes the finite sequence 𝜎 such that dom(𝜎) = {1, 2},
𝜎 (1) = 𝑥 and 𝜎 (2) = 𝑦. Given a set 𝐴, 𝐴∗

denotes the set of all

finite sequences over elements of𝐴. Given a value 𝑒 and a sequence

𝑎, 𝑒 • 𝑎 denotes the sequence obtained by prepending 𝑒 onto the

sequence. That is, if 𝑠 = 𝑒 • 𝑎 then:

𝑠 (𝑖) =
{
𝑒 if 𝑖 = 1

𝑎(𝑖 − 1) otherwise

Given two finite sequences 𝑎 and 𝑏, 𝑎 ++ 𝑏 denotes the sequence

obtained by appending the two sequences.

Given a sequence 𝜎 , ⟨𝑓 (𝑥) : 𝑥 ∈ 𝜎 : 𝑝 (𝑥)⟩ denotes the sequence
consisting of 𝑓 applied to the elements of Im𝜎 that satisfy 𝑝 , in the

order in which they appeared in 𝜎 . That is, if 𝐶 = {(𝑖, 𝑥) ∈ 𝜎 |𝑝 (𝑥)}
and 𝜋 = ⟨𝑓 (𝑥) : 𝑥 ∈ 𝜎 : 𝑝 (𝑥)⟩, then ⟨∀𝑖, 𝑥 : (𝑖, 𝑥) ∈ 𝐶 : 𝜋 ( |{( 𝑗, 𝑦) ∈
𝐶 | 𝑗 ≤ 𝑖}|) = 𝑓 (𝑥)⟩.
B = {true, false} is the set of Boolean values. N32 = {𝑥 ∈

N : 𝑥 < 2
32}. That is, N32 is the set of all unsigned 32-bit integers.

⊕ indicates unsigned 32-bit addition, ⊖ indicates unsigned 32-bit

subtraction and ⊗ indicates unsigned 32-bit multiplication. & in-

dicates the bitwise AND operator applied to two unsigned 32-bit

numbers. Let R be the set of register specifiers. A register file is a

function R → N32. The initial register file R∅ maps all registers to

0.

We define transition relations for TSes by providing inference
rules. Each inference rule consists of two parts: a set of premises
and a conclusion. An inference rule indicates that when all of its

premises hold, the conclusion must also hold. An inference rule

is represented as a whitespace-separated sequence of premises

written above a horizontal line, with the conclusion written below

the horizontal line. An example is given in Equation 21. In that

example, the premises are 𝐴, ¬𝐵 and 𝐶 and the conclusion is 𝐷 .

𝐴 ¬𝐵 𝐶

𝐷
(21)

We refer to an inference rule that is used to define a transition

relation as a transition rule. The conclusion of a transition rule

will always be an application of a transition relation. Equation 22

provides an example of a transition rule for a transition system

https://doi.org/10.48550/ARXIV.2309.03376
https://arxiv.org/abs/2309.03376
https://doi.org/10.1145/3669940.3707243
https://doi.org/10.5281/zenodo.15706553
https://doi.org/10.1145/3576915.3623192
https://doi.org/10.1145/3579371.3589094
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Mfoo = ⟨𝑆foo,−−→
foo

, 𝐿foo⟩ and a function 𝑓 : 𝑆foo → 𝑆foo. Equation 22

indicates that ⟨∀𝑠 ∈ 𝑆foo : 𝑃 (𝑠) ∧¬𝑄 (𝑠) : (𝑠, 𝑓 (𝑠)) ∈ −−→
foo

⟩. Note that

Equation 22 elides an explicit definition of the domain of the variable

𝑠; any variables on the left-hand side of the transition relation in

the conclusion of a transition rule are inferred to have domains

that are appropriate given the domain of the transition relation.

For example, given a transition systemMqux = ⟨𝑆qux ,−−−→qux , 𝐿qux⟩
where 𝑆qux = N × B and 𝑔 : N → N, Equation 23 indicates that

⟨∀𝑥 ∈ N, 𝑦 ∈ B : 𝑈 (𝑥) ∧ ¬𝑉 (𝑦) : (⟨𝑥,𝑦⟩, ⟨𝑔(𝑥), 𝑦⟩) ∈ −−−→
qux

⟩.

𝑃 (𝑠) ¬𝑄 (𝑠)
𝑠 −−→

foo
𝑓 (𝑠)

(22)

𝑈 (𝑥) ¬𝑉 (𝑦)
⟨𝑥,𝑦⟩ −−−→

qux
⟨𝑔(𝑥), 𝑦⟩

(23)

In transition rules, 𝑟 refers to a register specifier and 𝑐 refers to

an unsigned 32-bit number. Subscript indices are used when it is

necessary to introduce multiple register specifiers or constants. We

will define the state space of a transition system as consisting of

tuples, each element of which will have a name associated with it.

We will freely use the names of the tuple elements in transition

rules to refer to the value of that tuple element in the starting

state of the rule. For example, say we have a transition system

Mfoo = ⟨𝑆foo,−−→
foo

, 𝐿foo⟩ where 𝑆foo : ⟨bar, baz⟩ where bar : B and

baz : N. Say we have the following transition rule forMfoo:

¬bar baz > 10

𝑆 −−→
foo

[bar ↦→ false, baz ↦→ baz + 1]𝑆

This rule should be read the same as:

¬𝑥 𝑦 > 10

⟨𝑥,𝑦⟩ −−→
foo

⟨false, y + 1⟩

Given a variable 𝑥 over a named tuple, if bar is the name of a

field in that tuple then bar𝑥 refers to the value of field bar in 𝑥 .

Given a transition systemMfoo = ⟨𝑆foo,−−→
foo

, 𝐿foo⟩ and two states

𝑠,𝑢 ∈ 𝑆foo, 𝑠 −−−→
foo∗

𝑢 indicates that there exists a path from 𝑠 to 𝑢.

That is:

𝑠 −−→
foo

∗ 𝑢 ⇐⇒ ⟨∃𝑠1, ..., 𝑠𝑛 : 𝑠1, ..., 𝑠𝑛 ∈ 𝑆foo : 𝑠1 = 𝑠 ∧ 𝑠𝑛 = 𝑢∧

⟨∀𝑖 : 𝑖 ∈ [1, ..., 𝑛 − 1] : 𝑠𝑖 −−→
foo

𝑠𝑖+1⟩⟩

B Formal Semantics
This section contains the formal definitions of several ISA and MA

machine variants.

B.1 Formal Semantics of ISA-IC
MISA-IC = ⟨𝑆ISA-IC,−−−−−−→

ISA-IC
, 𝐿ISA-IC⟩ is a transition system. Let

IIC be the set of instructions that the ISA is defined over.

IIC ::= halt | noop | loadi 𝑟𝑑 𝑐 | addi 𝑟𝑑 𝑟1 𝑐 | add 𝑟𝑑 𝑟1 𝑟2 |
mul 𝑟𝑑 𝑟1 𝑟2 | and 𝑟𝑑 𝑟1 𝑟2 | cmp 𝑟𝑑 𝑟1 𝑟2 | jg 𝑟1 𝑐 | jge 𝑟1 𝑐 |
ldri 𝑟𝑑 𝑟1 𝑐 | ldr 𝑟𝑑 𝑟1 𝑟2 | tsx-start 𝑐 | tsx-end |
in-cache 𝑟𝑑 𝑟1 𝑐

We define the set ofMISA-IC states to be a tuple:

𝑆ISA-IC : ⟨pc, rf, tsx,halt, imem, dmem, ga, cache⟩

where each component is as follows:

• pc : N32 is the program counter

• rf : R → N32 is the register file
• tsx : ⟨tsx-act, tsx-rf, tsx-fb⟩ is the TSX state, described

below

• halt : B is true if the ISA is halted

• imem : N32 ⇀ IIC is a partial map from addresses to

instructions (the instruction memory)

• dmem : N32 ⇀ N32 is a partial map from addresses to data

(the data memory)

• ga : N32 → B is a predicate that is true on any data memory

address that the running program has permission to access.

• cache : N32 ⇀ N32 is a partial map from addresses to data

(the cache)

• tsx-act : B is true if the ISA is in an active TSX region

• tsx-rf : R → N32 is the register file at the start of the TSX
region

• tsx-fb : N32 is the address to resume execution from if an

error occurs in an active TSX region

MISA-IC is defined as a composition of two auxiliary transition

systems, the deterministicMISA-IC-ISA and the nondeterministic

MISA-IC-C. It has a single transition rule.

isa-ic

𝑆 −−−−−−−−→
ISA-IC-C

𝑆 ′ 𝑆 ′ −−−−−−−−−−→
ISA-IC-ISA

𝑆 ′′ 𝑆 ′′ −−−−−−−−→
ISA-IC-C

𝑆 ′′′

𝑆 −−−−−−→
ISA-IC

𝑆 ′′′

Let fetch : (N32 ⇀ IIC) × N32 → IIC be a function such that:

fetch(imem, 𝑎) =
{
imem(𝑎) if imem(𝑎) ↓
noop otherwise

The deterministic behavior ofMISA-IC is represented using

MISA-IC-ISA = ⟨𝑆ISA-IC-ISA,−−−−−−−−−−→
ISA-IC-ISA

, 𝐿ISA-IC-ISA⟩, where
𝑆ISA-IC-ISA = 𝑆ISA-IC. The behavior of this system is straightfor-

ward, and can be summarized as follows: if not halted, it executes the

instruction at address pc in imem (treating it as a noop otherwise),
updates the register file appropriately, and then either increments

the pc or sets it to a different value in a few special cases (jg/jge
when taken, a ldr/ldri that raises an exception while in a TSX

region). A selection of the transition rules are shown below. ldr-

ok-c describes how a memory load instruction operates in the case

where the computed address is accessible and ic-ga-p, ic-ga-a and

isa-not-ga describe the behavior of the in-cache instruction.



Andrew T. Walter, Konstantinos Athanasiou, and Panagiotis Manolios

halted

halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

𝑆

halt

fetch(imem, pc) = halt ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 1,halt ↦→ true]𝑆

noop

fetch(imem, pc) = noop ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 1]𝑆

ALU Operations. loadi loads a constant value into a register.

The rest of the ALU operations are straightforward: the destination

register is set to the result of some operation performed on the

two source operands, the first of which is always a register and the

second of which is either a register or a constant.

loadi

fetch(imem, pc) = loadi 𝑟𝑑 𝑐 ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ 𝑐]rf]𝑆

addi

fetch(imem, pc) = addi 𝑟𝑑 𝑟1 𝑐 ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ rf(𝑟1) ⊕ 𝑐]rf]𝑆

add

fetch(imem, pc) = add 𝑟𝑑 𝑟1 𝑟2 ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ rf(𝑟1) ⊕ rf(𝑟2)]rf]𝑆

mul

fetch(imem, pc) = mul 𝑟𝑑 𝑟1 𝑟2 ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ rf(𝑟1) ⊗ rf(𝑟2)]rf]𝑆

and

fetch(imem, pc) = and 𝑟𝑑 𝑟1 𝑟2 ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ rf(𝑟1) & rf(𝑟2)]rf]𝑆

Comparison and Branch Instructions. The cmp instruction com-

pares the values referred to by the two source operands and sets the

destination register to a value based on the result of the comparison.

This is used to support the two conditional jump instructions, jg
(“jump if greater than”) and jge (“jump if greater than or equal

to”). The conditional jump instructions will check the given source

operand to determine if the jump condition holds, and then will

jump to a relative offset (provided as a constant operand) from the

current pc if so, or will behave as a noop otherwise.

Let compare(𝑎, 𝑏) =


1 if 𝑎 = 𝑏

2 if 𝑎 > 𝑏

0 otherwise

cmp

fetch(imem, pc) = cmp 𝑟𝑑 𝑟1 𝑟2 ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ compare(rf(𝑟1), rf(𝑟2))]rf]𝑆

jg-taken

fetch(imem, pc) = jg 𝑟1 𝑐 rf(𝑟1) = 2 ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 𝑐]𝑆

jg-not-taken

fetch(imem, pc) = jg 𝑟1 𝑐 rf(𝑟1) ≠ 2 ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 1]𝑆

jge-taken

fetch(imem, pc) = jge 𝑟1 𝑐

rf(𝑟1) = 1 ∨ rf(𝑟1) = 2 ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 𝑐]𝑆

jge-not-taken

fetch(imem, pc) = jge 𝑟1 𝑐

¬(rf(𝑟1) = 1 ∨ rf(𝑟1) = 2) ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 1]𝑆

TSX Instructions. The TSX instructions either begin or end a

TSX region. tsx-start begins a TSX region, setting the TSX active

flag to true, setting the fallback register file to the current rf and
setting the fallback PC to the instruction’s source operand. tsx-end
sets the TSX active flag to false and leaves the other TSX state

unchanged. The values of the fallback register file and fallback PC

do not matter when the TSX active flag is false.
Note that unlike the similar TSX instructions from Intel’s x86

TSX extension (XBEGIN and XEND), our ISA does not support nested

TSX regions. If a tsx-start instruction executes when a TSX re-

gion is already active, the existing TSX status information is over-

written. Unlike XEND, tsx-end does not cause an exception if exe-

cuted outside of a TSX region (e.g., when ¬tsx-act). In this case,

tsx-end behaves like noop.

tsx-start

fetch(imem, pc) = tsx-start 𝑐 ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 1, tsx ↦→ ⟨true, rf, 𝑐⟩]𝑆

tsx-end

fetch(imem, pc) = tsx-end ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 1, tsx-act ↦→ false]𝑆

Load Instructions. The memory load instructions have the most

complicated semantics of any of the instructions in I. The effective
address for the load is computed by adding together the two source

operands. If the effective address is valid in the ISA’s address space

(as determined by ga), the load proceeds and the value stored at the
effective address in dmem is loaded into the destination register.

If the effective address is not valid and the ISA is inside of a TSX

region, rf is reset to tsx-rf, pc is set to tsx-fb, and the TSX region

is marked as inactive. This effectively restarts execution from the

fallback PC specified in the tsx-start instruction associated with

this region. If the effective address is not valid and the ISA is not

inside of a TSX region, the ISA is halted. This is because our ISA does

not support exception handling (which is normally what would
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occur in an x86 process when accessing unmapped memory or

memory that requires a higher privilege level than the current one).

Note that the signature of ga and the way that it is is manipulated

byMISA-IC has implications for the kinds of abstract behavior that

MISA-IC will allow for later on. In particular, notice that ga is never
modified by any of the MISA-IC transition rules, implying that the

set of addresses that the ISAmay access is known ahead-of-time and

is constant across an ISA execution. This is intentional, and reflects

the goal of presenting an MISA-IC that is as simple as possible

while still having enough complexity to highlight Meltdown and

Spectre.

ldri-ok-c

fetchIC (imem, pc) = ldri 𝑟𝑑 𝑟1 𝑐 Let 𝑎 = rf(𝑟1) ⊕ 𝑐

ga(𝑎) Let 𝑣 = getdmem (𝑎, 0) ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ 𝑣]rf,

cache ↦→ [𝑎 ↦→ 𝑣]cache]𝑆

ldri-err-tsx

fetch(imem, pc) = ldri 𝑟𝑑 𝑟1 𝑐

¬ga(rf(𝑟1) ⊕ 𝑐) tsx-act ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ tsx-fb, rf ↦→ tsx-rf, tsx-act ↦→ false]𝑆

ldri-err-notsx

fetch(imem, pc) = ldri 𝑟𝑑 𝑟1 𝑐

¬ga(rf(𝑟1) ⊕ 𝑐) ¬tsx-act ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[halt ↦→ true]𝑆

ldr-ok-c

fetchIC (imem, pc) = ldr 𝑟𝑑 𝑟1 𝑟2 Let 𝑎 = rf(𝑟1) ⊕ rf(𝑟2)
ga(𝑎) Let 𝑣 = getdmem (𝑎, 0) ¬halt

𝑆 −−−−−−−−−−→
ISA-IC-ISA

[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ 𝑣]rf,
cache ↦→ [𝑎 ↦→ 𝑣]cache]𝑆

ldr-err-tsx

fetch(imem, pc) = ldr 𝑟𝑑 𝑟1 𝑟2

¬ga(rf(𝑟1) ⊕ rf(𝑟2)) tsx-act ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ tsx-fb, rf ↦→ tsx-rf, tsx-act ↦→ false]𝑆

ldr-err-notsx

fetch(imem, pc) = ldr 𝑟𝑑 𝑟1 𝑟2

¬ga(rf(𝑟1) ⊕ rf(𝑟2)) ¬tsx-act ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[halt ↦→ true]𝑆

in-cache.
ic-ga-p

fetchIC (imem, pc) = in-cache 𝑟𝑑 𝑟1 𝑟2

ga(rf(𝑟1) ⊕ rf(𝑟2)) cache(rf(𝑟1) ⊕ rf(𝑟2)) ↓ ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ 1]rf]𝑆

ic-ga-a

fetchIC (imem, pc) = in-cache 𝑟𝑑 𝑟1 𝑟2

ga(rf(𝑟1) ⊕ rf(𝑟2)) cache(rf(𝑟1) ⊕ rf(𝑟2)) ↑ ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ 0]rf]𝑆

ic-not-ga

fetchIC (imem, pc) = in-cache 𝑟𝑑 𝑟1 𝑟2

¬ga(rf(𝑟1) ⊕ rf(𝑟2)) ¬halt
𝑆 −−−−−−−−−−→

ISA-IC-ISA
[pc ↦→ pc ⊕ 1, rf ↦→ [𝑟𝑑 ↦→ 0]rf]𝑆

The nondeterministic behavior of MISA-IC is represented using

MISA-IC-C = ⟨𝑆ISA-IC-C,−−−−−−−−→
ISA-IC-C

, 𝐿ISA-IC-C⟩, where 𝑆ISA-IC-C =

𝑆ISA-IC. This transition system has a single transition rule.

isa-ic-c

add ⊆ P(N32 × N32) rem ⊆ P(N32 × N32)
⟨∀𝑎, 𝑑 : (𝑎, 𝑑) ∈ add : ga(𝑎) ∧ 𝑑 = getdmem (𝑎, 0)⟩
⟨∀𝑎, 𝑑 : (𝑎, 𝑑) ∈ rem : ga(𝑎) ∧ 𝑑 = getdmem (𝑎, 0)⟩
𝑆 −−−−−−−−→

ISA-IC-C
[cache ↦→ (cache ∪ add) \ rem]𝑆 ′

B.2 Formal Semantics of ISA-IC-A
MISA-IC-A = ⟨𝑆ISA-IC-A, 𝐴ISA-IC-A,−−−−−−−−→

ISA-IC-A
, 𝐿ISA-IC-A⟩ is an ALT.

Let I = IIC \ {in-cache 𝑟𝑑 𝑟1 𝑐} be the set of instructions that
the ISA is defined over.

We define the set ofMISA-IC-A states to be a tuple:

𝑆ISA-IC-A : ⟨pc, rf, tsx,halt, imem, dmem, ga, cache⟩
where all of the components except for imem are identical to the

same components in MISA-IC. imem : N32 ⇀ I is a partial map

from addresses to instructions.

The set ofMISA-IC-A actions consists of sequences of authorized

cache actions:

𝐴ISA-IC-A = ({prefetch 𝑎 | 𝑎 ∈ N32} ∪ {cache 𝑎 | 𝑎 ∈ N32})∗

Like MISA-IC, MISA-IC-A has one transition rule that uses an

auxiliary transition system.

Let apply-prefetches : 𝐴ISA-IC-A × (N32 ⇀ N32) × (N32 ⇀

N32) → (N32 ⇀ N32) be a function that takes in a sequence of

prefetch virtual instructions, a data memory and a cache memory

and returns the cache after applying the given virtual instructions

in order to the starting cache.

isa-p

𝑆 −−−−−−−−−−−−→
ISA-IC-A-ISA

𝑆 ′

𝑆
𝑎−−−−−−−−→

ISA-IC-A
[cache ↦→ apply-prefetches(𝑎, dmem𝑆 ′ , cache𝑆 ′ )]𝑆 ′

MISA-IC-A-ISA = ⟨𝑆ISA-IC-A-ISA,−−−−−−−−−−−→
ISA-IC-A-ISA

, 𝐿ISA-IC-A-ISA⟩ is a
transition system representing the deterministic behavior of ISA-IC-A.
𝑆ISA-IC-A−ISA = 𝑆ISA-IC-A. The behavior of MISA-IC-A−ISA can be

described using the transition rules for MISA-IC−ISA, except for
ic-ga-p, ic-ga-a and ic-not-ga. Notice that none of the transition

rules for MISA-IC−ISA modify the imem component of the state,

so MISA-IC-A−ISA defined in this way is indeed closed under its

transition relation.

B.3 Formal Semantics of MA-IC
B.3.1 Parameters. RSI is the set of all reservation station identi-

fiers. RB is the set of all ROB tags (ROB line identifiers). Both RSI
and RB have finite cardinality, and both must be isomorphic to

the standard cyclic group with order equal to their cardinality. The
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implication of this isomorphism that is used here is the existence of

functions nextRB : RB → RB and nextRSI : RSI → RSI that

get the successor for a ROB tag or reservation station identifier

respectively and functions prevRB : RB → RB and prevRSI :

RSI → RSI that get the predecessor for a ROB tag or reservation

station identifier respectively. It is the case that next∗ and prev∗ are
inverses of each other.

FETCH-NUM. is the maximum number of instructions that can

be fetched in a single cycle. The value of this parameter must be a

non-zero natural number.

MAX-DECODE. is the maximum number of microinstructions

that an instruction can decode into.

MAX-ROB. is the maximum number of reorder buffer (ROB)

lines supported. The value of this parameter must be a natural

number greater than or equal to MAX-DECODE. Without this

restriction, it is possible to generate a non-halted machine that is

unable to commit any instructions, since it doesn’t have enough re-

sources to issue all of the microinstructions that the first instruction

decodes to.

B.3.2 Transition System. MMA-IC = ⟨𝑆MA-IC,−−−−−→
MA-IC

, 𝐿MA-IC⟩ is a de-
terministic transition system. We define the set of MMA-IC states

to be a tuple

𝑆MA-IC : ⟨pc, rf, tsx,halt, imem, dmem, ga, cache, rob, rs-f, reg-st,
cyc, fetch-pc, prefetch⟩

where pc, rf, tsx, halt, imem, dmem, ga, and cache are as in

MISA-IC. The other components of 𝑆MA-IC are described as follows:

IIC is the set of instructions thatMMA-IC is defined over, and is the

same as in Appendix B.1.

VIC denotes the set of microoperations corresponding to the in-

structions in IIC, and UIC denotes the set of microinstructions

corresponding to the instructions in IIC.
• rob : RBL∗

IC is a sequence of reorder buffer (ROB) lines.

ROB line IDs must be unique in this sequence.

• rs-f : RS∗
IC is a sequence of reservation stations

• reg-st : R ⇀ N32 is the register status file
• cyc : N32 is a counter that increments on eachMMA-IC step

• fetch-pc : N32 is the PC of the next instruction to fetch

• prefetch : N32 → P(N32) computes the set of addresses

that should be prefetched when the given address is loaded

RBLIC : ⟨rob-id, rob-mop, rdst, rdy, val, excep⟩
• rob-id : RB is the identifier for this ROB line

• rob-mop : VIC is the microoperation for this ROB line

• rdst : R ∪ {nil} is the register that the result of this mi-

croinstruction should be written to, or nil if not needed
• rdy : B is true iff this ROB line is ready to be committed

• val : N32 is the result of the microinstruction

• excep : B is true iff executing this microinstruction re-

sulted in an exception

The reorder buffer (ROB) behaves like a FIFO queue of ROB lines,

each of which tracks the execution of a single microinstruction. The

ROB keeps these lines in program order, and this ordering is what

ensures that microinstructions are committed in program order

even if they were executed out-of-order.

RSIC : ⟨rs-id, rs-mop, qj, qk, vk, vj, cpc, busy, exec, dst, rb-pc⟩

• rs-id : RSI is the identifier for this RS

• rs-mop : VIC is the microoperation loaded into this RS

• qj : RB ∪ {nil} is the ID of the ROB line to wait on for the

J argument, or nil if not needed.

• qk : RB ∪ {nil} is the ID of the ROB line to wait on for

the K argument, or nil if not needed.
• vj : N32 is the value of the J argument

• vk : N32 is the value of the K argument

• cpc : N32 is the cycle at which this RS will finish execution

• busy : B is true iff the RS is in use

• exec : B is true iff the RS is currently executing a microin-

struction

• dst : RB is the ID of the ROB line that the result of this RS

should be stored in

• rb-pc : N32 is the PC value corresponding to this RS’ loaded

instruction

Reservation stations (RSes) are the part of the microarchitecture

that execute ALU operations, memory reads, and memory checks.

When a microinstruction is loaded into a RS and its operands be-

come ready, it begins to execute the microinstruction. After a num-

ber of cycles (depending on the microinstruction), the RS completes

execution, and the result of the execution is written back to the

appropriate ROB line. Any subsequent microinstructions that may

have been waiting on the value of that ROB line are updated ap-

propriately.

RGS : ⟨busy, reorder⟩

• busy : B is true iff the register mapped to this entry will be

written to by an issued and uncompleted microinstruction

• reorder : RB is the ID of the ROB line that contains the

instruction that will write to this entry’s register

The register status file keeps track of the registers that will be

written to by any in-flight microinstructions. This information is

used to handle read-after-write (RAW) hazards: in this context, situ-

ations where an instruction reads a register after a prior instruction

writes to it. If the register-writing instruction is not committed

by the time the register-reading instruction needs to access the

read register’s value, the MA must stall on the execution of the

register-reading instruction until the register’s value is available.

When a microinstruction is issued, it will be assigned to a ROB

line. Given the sequence of microinstructions to be issued on a

particular cycle and the ROB at the start of the cycle, it is possible

to compute the ID for the ROB line that each microinstruction will

be assigned to. rob-ids-ic : U∗
IC ×RBL∗

IC → RB∗
is a function that

will do exactly this.

B.3.3 Additional Definitions.

IIC. is the set of instructions that the machine supports. Each

instruction consists of an operation plus zero, one, or two source

operands and zero or one destination operands. The destination

operand (if provided) is always a register specifier, and the source

operands may either be register specifiers or constant values. The

set of operations supported by the machine is OIC, and inst-op :

IIC → OIC is a function that gets an instruction’s operation.
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UIC. is the set of microinstructions that the machine supports.

Each instruction in IIC decodes to a sequence of one or two mi-

croinstructions in UIC. Each microinstruction consists of a micro-

operation plus zero, one, or two source operands and zero or one

destination operands, just like an instruction. The set of microoper-

ations supported by the machine isVIC, andminst-op : UIC → VIC
is a function that gets an microinstruction’s microoperation.

rs-needed? Not all microoperations require a reservation station.

The predicate rs-needed? : UIC → B holds only for those microin-

structions that require a reservation station.

rs-needed?(op) ⇐⇒
op ∈ {mnoop, mloadi, maddi, madd, mmul, mand, mcmp, mjg, mjge,
mldri, memi-check, mldr, mem-check, min-cache}

reg-write? Not all microoperations will write to a register. The

predicate reg-write? : UIC → B holds only for those microopera-

tions that will write to a register.

reg-write?(op) ⇐⇒
op ∈ {mloadi, maddi, madd, mmul, mand, mcmp, mldri, mldr, min-cache}

reg-dst. For microinstructions with microoperations satisfying

reg-write?, the function reg-dst : UIC ⇀ R determines which regis-

ter will be written to.

reg-op
1
. : UIC ⇀ R denotes the register specifier for the first

operand of a microinstruction (if it has at least one operand and

the first operand is a register specifier).

reg-op
2
. : UIC ⇀ R denotes the register specifier for the second

operand of a microinstruction (if it has two operands and the second

operand is a register specifier).

const-op
1
. : UIC ⇀ N32 and const-op

2
: UIC ⇀ N32 are similar

functions for constant operands instead of register operands.

barrier-op? Some microoperations should behave as though they

arememory barriers. These microoperations are special in that they

should not begin executing while there are uncommitted in-flight

memory access microoperations (those satisfying memory-op? as
described below). The predicate barrier-op? : VIC → B holds only

for those microoperations that behave as memory barriers.

barrier-op?(op) ⇐⇒ op ∈ {min-cache}

memory-op? Some microoperations access memory, and should

be affected by the memory barriers described above. In particular,

these microoperations should not begin executing while there are

uncommitted in-flight memory barrier microoperations (those sat-

isfying barrier-op? as described above). The predicatememory-op? :
VIC → B holds only for those microoperations that access memory.

Note that we assume that barrier-op? and memory-op? are mu-

tually exclusive, e.g., that no microoperation exists that satisfies

both predicates.

memory-op?(op) ⇐⇒ op ∈ {mldri, mldr}

decode-one-ic. : IIC → U∗
IC is a function that decodes an instruc-

tion into the appropriate sequence of microinstructions.

decode-one-ic(inst) =
⟨memi-check 𝑟1 𝑐, mldri 𝑟𝑑 𝑟1 𝑐⟩ if inst = ldri 𝑟𝑑 𝑟1 𝑐

⟨mem-check 𝑟1 𝑟2, mldr 𝑟𝑑 𝑟1 𝑟2⟩ if inst = ldr 𝑟𝑑 𝑟1 𝑟2

⟨mop operands...⟩ if inst = op operands...

comp-val-ic. : RSIC × 𝑆MA-IC → N32 is a function that computes

the result of the microoperation inside the given RS, assuming the

RS is ready.

comp-val-ic(rs, 𝑠) =

dmem𝑠 (vj ⊕ vk) if rs-moprs ∈ {mldri, mldr}
vj & vk if rs-moprs = mand

vj ⊕ vk if rs-moprs ∈ {maddi, madd}
vj ⊗ vk if rs-moprs = mmul

vk if rs-moprs = mloadi

1 if rs-moprs = min-cache ∧ cache(vj ⊕ vk) ↓
0 if rs-moprs = min-cache ∧ cache(vj ⊕ vk) ↑
compare(vk, vj) if rs-moprs = mcmp

rb-pc ⊕ vk if rs-moprs ∈ {mjge, mjg} ∧ vj = 2

rb-pc ⊕ vk if rs-moprs = mjge ∧ vj = 1

rb-pc ⊕ 1 if rs-moprs = mjg ∧ vj = 1

rb-pc ⊕ 1 if rs-moprs ∈ {mjge, mjg} ∧ vj ∉ {1, 2}
0 otherwise

to-fetch. : 𝑆MA-IC × N32 is a relation that pairs states with a

number of instructions to fetch. The number of instructions to

fetch must always be less than or equal than FETCH-NUM, and

it also must be the case that the sequence of 𝑛 instructions to be

fetched in the associated state is issuable (described in Section B.3.3).

to-fetch = {(𝑠,max-fetch-n(𝑠)) |𝑠 ∈ 𝑆MA-IC}

comp-exc. : RSIC × 𝑆MA-IC → B is a function that determines

whether executing the microoperation inside the given RS resulted

in an exception, assuming the RS is ready.

comp-exc(rs, 𝑠) ={
true if rs-moprs ∈ {memi-check, mem-check} ∧ ¬ga(vj ⊕ vk)
false otherwise

Issuable. free-rob : RBL∗
IC → N32, where free-rob(𝜎) = MAX-ROB−

|dom(𝜎) | is the number of free ROB entries.

idle-rses : RS∗
IC → RS∗

IC collects the reservation stations that

are not busy.

A sequence of microinstructions 𝜎 is issuable in a state 𝑠 if 𝜎 is

empty or if all of the following hold:

• |⟨𝑢 : 𝑢 ∈ 𝜎 : rs-needed?(𝑢)⟩| ≤ |idle-rses(rs-f𝑠 ) |
• |𝜎 | ≤ free-rob(rob𝑠 )

A sequence of instructions𝜎 is issuable in a state 𝑠 if the sequence

of microinstructions produced by decoding each instruction and

concatenating the resulting sequences of microinstructions together

is issuable in 𝑠 .
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fetch. : (N32 ⇀ IIC) × N32 → IIC is a function such that:

fetch(imem, 𝑎) =
{
imem(𝑎) if imem(𝑎) ↓
noop otherwise

fetch-n. : (N32 ⇀ IIC) × N32 × N32 → I∗
IC is a function that

returns the first 𝑛 instructions in the given instruction memory

starting from a particular address. fetch-n(imem, pc, 𝑛) = 𝜎 such

that ⟨∀𝑖 : 𝑖 ∈ {0, ..., 𝑛 − 1} : 𝜎 (𝑖 + 1) = fetch(imem, pc ⊕ 𝑛)⟩

max-fetch-n. MA-IC is multi-issue, but it may not be able to fetch

and issue all FETCH-NUM instructions on a particular cycle if

there are not sufficient resources available. For example, the ROB

may not have enough capacity to store the ROB entries that issu-

ing all of the instructions would give rise to, or it could be that

all of the RSes are busy and one of the instructions that would

be fetched requires a RS. max-fetch-n : 𝑆MA-IC → N32 is a func-

tion that returns the maximum number of instructions 𝑛 such that

⟨fetch(pc, imem), ..., fetch(pc ⊕ (𝑛 − 1), imem)⟩ is issuable in the

given state.

decode-ic. : I∗
ic × RBL∗

IC → (UIC × RB)∗ is a function that

applies decode-one-ic to all of the given instructions and appends the
resulting sequences of microinstructions together in the same order,

then runs rob-ids-ic on the resulting sequence of microinstructions

and pairs each microinstruction with the ROB line it will be issued

to.

rob-get. : RB × RBL∗
IC ⇀ RBLIC is a function that finds the

first ROB line that has a particular ID in a sequence of ROB lines.

That is,

rob-get(𝑥, 𝜎) =
𝜎 (𝑖)

if ⟨∃ 𝑗 : 𝑗 ∈ N : rob-id𝜎 ( 𝑗 ) = 𝑥⟩ ∧ 𝑖 =

min𝑗∈N∧rob-id𝜎 ( 𝑗 )=𝑥 𝑗

↑ otherwise

rob-before. : RB × RBL∗
IC → RBL∗

IC is a function that returns

all of the ROB lines prior to the ROB line with the given ID, retaining

order. If no such ROB line exists, the given ROB lines are returned,

retaining order.

B.3.4 Semantics. Most of the components of the MA-IC state are
updated in parallel. Where one component depends on the value of

another component, it depends on the value of that component in

the “current” state, before any updates are applied to it. The only

exception is that instruction fetching and decoding occurs before

any components are updated, so that component updates have

access to the sequence of microinstructions to issue. We describe

how each component is updated with its own auxiliary transition

relation, and the stepall transition rule below combines all of those

steps of individual components together.

Note that none of the components of 𝑆MA-IC change when 𝑆MA-IC
is stepped and halt is set. For brevity, none of the auxiliary transi-

tion systems have rules describing their behavior when halt holds.
The behavior of the auxiliary transition systems in such a situation

is to transition to an identical state. At the top level, the transition

rule halted describes the behavior of all of the components when

the system is halted.

halted

halt

𝑆 −−−−−→
MA-IC

𝑆

stepall

¬halt Let 𝑛 = max-fetch-n(𝑆)
⟨𝑆, 𝑛⟩ −−−−−−−−−−−→

MA-IC−reg-st
⟨⟨..., reg-st′, ...⟩, 𝑛⟩

𝑆 −−−−−−−−→
MA-IC−pc

⟨..., pc′, ...⟩ 𝑆 −−−−−−−−−→
MA-IC−tsx

⟨..., tsx′, ...⟩

𝑆 −−−−−−−−→
MA-IC−rf

⟨..., rf′, ...⟩ 𝑆 −−−−−−−−−→
MA-IC−rob

⟨..., rob′, ...⟩
⟨𝑆, 𝑛⟩ −−−−−−−−−→

MA-IC−rs-f
⟨⟨..., rs-f′, ...⟩, 𝑛⟩

𝑆 −−−−−−−−−−−→
MA-IC−cache

⟨..., cache′, ...⟩

𝑆 −−−−−→
MA-IC

[reg-st ↦→ reg-st′, fetch-pc ↦→ fetch-pc ⊕ 𝑛, pc ↦→ pc′,

tsx ↦→ tsx′, rf ↦→ rf′, rob ↦→ rob′, rs-f ↦→ rs-f′, cache ↦→ cache′]𝑆
reg-st.

MMA-IC-rgs-𝑖 = ⟨𝑆MA-IC-rgs-𝑖 ,−−−−−−−−−→
MA-IC-rgs-𝑖

, 𝐿MA-IC-rgs-𝑖 ⟩

is a transition system, where 𝑆MA-IC-rgs-𝑖 : 𝑆MA-IC × (UIC × RB)∗.

regstat-issue-wr

𝑄 = ⟨𝑢, 𝑟𝑏⟩ •𝑄 ′

reg-write?(minst-op(𝑢)) 𝑟 = reg-dst(𝑢) ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-rgs-𝑖
⟨[reg-st ↦→ [𝑟 ↦→ ⟨true, 𝑟𝑏⟩]reg-st]𝑆,𝑄 ′⟩

regstat-issue-nowr

𝑄 = ⟨𝑢, 𝑟𝑏⟩ •𝑄 ′ ¬reg-write?(minst-op(𝑢)) ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-rgs-𝑖
⟨𝑆,𝑄 ′⟩

MMA-IC-rgs-𝑐 = ⟨𝑆MA-IC-rgs-𝑐 ,−−−−−−−−−→
MA-IC-rgs-𝑐

, 𝐿MA-IC-rgs-𝑐 ⟩

is a transition system, where

𝑆MA-IC-rgs-𝑐 : 𝑆MA-IC × RBL∗
IC

regstat-commit-ready-rm

𝑄 = rl •𝑄 ′ rdyrl reg-st(rdstrl) ↓
⟨bsy, reord⟩ = reg-st(rdstrl) rob-idrl = reord ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-rgs-𝑐
⟨[reg-st ↦→ [rdstrl ↦→↑]reg-st]𝑆,𝑄 ′⟩

regstat-commit-ready-in-nomatch

𝑄 = rl •𝑄 ′ rdyrl reg-st(rdstrl) ↓
⟨bsy, reord⟩ = reg-st(rdstrl) rob-idrl ≠ reord ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−→
MA-IC-rgs-𝑐

⟨𝑆,𝑄 ′⟩

regstat-commit-ready-notin

𝑄 = rl •𝑄 ′ rdyrl reg-st(rdstrl) ↑ ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-rgs-𝑐
⟨𝑆,𝑄 ′⟩

regstat-commit-notready

𝑄 = rl •𝑄 ′ ¬rdyrl ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-rgs-𝑐
⟨𝑆, ∅⟩
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LetMMA-IC-reg-st = ⟨𝑆MA-IC-reg-st,−−−−−−−−−−→
MA-IC-reg-st

, 𝐿MA-IC-reg-st⟩ be

a transition system, where 𝑆MA-IC−reg-st = 𝑆MA-IC × N32.

regstat

⟨𝑆, decode-ic(fetch-n(imem, pc, 𝑛), rob)⟩ −−−−−−−−−→
MA-IC-rgs-𝑖

∗ ⟨𝑆 ′, ∅⟩

⟨𝑆 ′, rob⟩ −−−−−−−−−→
MA-IC-rgs-𝑐

∗ ⟨𝑆 ′′, ∅⟩ ¬halt

⟨𝑆, 𝑛⟩ −−−−−−−−−−−→
MA-IC−reg-st

⟨[reg-st ↦→ reg-st𝑆 ′′ ]𝑆, 𝑛⟩

pc. Let MMA-IC-pc-𝑐 = ⟨𝑆MA-IC-pc-𝑐 ,−−−−−−−−−→
MA-IC-pc-𝑐

, 𝐿MA-IC-pc-𝑐 ⟩ be a

transition system, where 𝑆MA-IC-pc-𝑐 : 𝑆MA-IC × RBL∗
IC.

pc-commit-excp-tsx

𝑄 = rl •𝑄 ′ rdyrl exceprl tsx-act ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-pc-𝑐
⟨[pc ↦→ tsx-fb]𝑆, ∅⟩

pc-commit-excp-notsx

𝑄 = rl •𝑄 ′ rdyrl exceprl ¬tsx-act ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-pc-𝑐
⟨𝑆, ∅⟩

pc-commit-mem

𝑄 = rl •𝑄 ′ rdyrl ¬exceprl
rob-moprl = mem-check ∨ rob-moprl = memi-check ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−→
MA-IC-pc-𝑐

⟨𝑆,𝑄 ′⟩

pc-commit-jmp

𝑄 = rl •𝑄 ′ rdyrl
¬exceprl rob-moprl = mjg ∨ rob-moprl = mjge ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−→
MA-IC-pc-𝑐

⟨[pc ↦→ valrl]𝑆, ∅⟩

pc-commit-halt

𝑄 = rl •𝑄 ′

rdyrl ¬exceprl rob-moprl = mhalt ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-pc-𝑐
⟨[pc ↦→ pc ⊕ 1]𝑆, ∅⟩

pc-commit-other

𝑄 = rl •𝑄 ′ rdyrl ¬exceprl
rob-moprl ∉ {mem-check, memi-check, mjge, mjg, mhalt}

¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-pc-𝑐
⟨[pc ↦→ pc ⊕ 1]𝑆,𝑄 ′⟩

pc-commit-notrdy

𝑄 = rl •𝑄 ′ ¬rdyrl ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-pc-𝑐
⟨𝑆, ∅⟩

LetMMA-IC-pc = ⟨𝑆MA-IC-pc,−−−−−−−−→
MA-IC-pc

, 𝐿MA-IC-pc⟩ be a transition
system, where 𝑆MA-IC−pc = 𝑆MA-IC.

pc

⟨𝑆, rob⟩ −−−−−−−−−→
MA-IC-pc-𝑐

∗ ⟨𝑆 ′, ∅⟩ ¬halt

𝑆 −−−−−−−−→
MA-IC−pc

[pc ↦→ pc𝑆 ′ ]𝑆

tsx. LetMMA-IC-tsx-𝑐 = ⟨𝑆MA-IC-tsx-𝑐 ,−−−−−−−−−−→
MA-IC-tsx-𝑐

, 𝐿MA-IC-tsx-𝑐 ⟩ be
a transition system, where 𝑆MA-IC-tsx-𝑐 : 𝑆MA-IC × RBL∗

IC.

tsx-commit-excp

𝑄 = rl •𝑄 ′ rdyrl exceprl ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-tsx-𝑐
⟨[tsx-act ↦→ false]𝑆, ∅⟩

tsx-commit-start

𝑄 = rl •𝑄 ′

rdyrl ¬exceprl rob-moprl = mtsx-start ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-tsx-𝑐
⟨[tsx-act ↦→ true, tsx-rf ↦→ rf, tsx-fb ↦→ valrl]𝑆,𝑄 ′⟩

tsx-commit-end

𝑄 = rl •𝑄 ′

rdyrl ¬exceprl rob-moprl = mtsx-end ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-tsx-𝑐
⟨[tsx-act ↦→ false]𝑆,𝑄 ′⟩

tsx-commit-halt

𝑄 = rl •𝑄 ′

rdyrl ¬exceprl rob-moprl = mhalt ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-tsx-𝑐
⟨𝑆, ∅⟩

tsx-commit-other

𝑄 = rl •𝑄 ′ rdyrl ¬exceprl
rob-moprl ∉ {mtsx-start, mtsx-end, mhalt} ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−−→
MA-IC-tsx-𝑐

⟨𝑆,𝑄 ′⟩

tsx-commit-notrdy

𝑄 = rl •𝑄 ′ ¬rdyrl ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-tsx-𝑐
⟨𝑆, ∅⟩

Let MMA-IC-tsx = ⟨𝑆MA-IC-tsx,−−−−−−−−→
MA-IC-tsx

, 𝐿MA-IC-tsx⟩ be a transi-

tion system, where 𝑆MA-IC−tsx = 𝑆MA-IC.

tsx

⟨𝑆, rob⟩ −−−−−−−−−−→
MA-IC-tsx-𝑐

∗ ⟨𝑆 ′, ∅⟩ ¬halt

𝑆 −−−−−−−−−→
MA-IC−tsx

[tsx ↦→ tsx𝑆 ′ ]𝑆

rf. LetMMA-IC-rf-𝑐 = ⟨𝑆MA-IC-rf-𝑐 ,−−−−−−−−−→
MA-IC-rf-𝑐

, 𝐿MA-IC-rf-𝑐 ⟩ be a tran-
sition system, where 𝑆MA-IC-rf-𝑐 : 𝑆MA-IC × RBL∗

IC.

rf-commit-excp-tsx

𝑄 = rl •𝑄 ′ rdyrl exceprl tsx-act ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-rf-𝑐
⟨[rf ↦→ tsx-rf]𝑆, ∅⟩

rf-commit-excp-notsx

𝑄 = rl •𝑄 ′ rdyrl exceprl ¬tsx-act ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-rf-𝑐
⟨𝑆, ∅⟩

rf-commit-halt-jmp

𝑄 = rl •𝑄 ′ rdyrl
¬exceprl rob-moprl ∈ {mjge, mjg, mhalt} ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−→
MA-IC-rf-𝑐

⟨𝑆, ∅⟩
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rf-commit-nowrite

𝑄 = rl •𝑄 ′ rdyrl ¬exceprl ¬reg-write?(rob-moprl)
rob-moprl ∉ {mjge, mjg, mhalt} ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−→
MA-IC-rf-𝑐

⟨𝑆,𝑄 ′⟩

rf-commit-other

𝑄 = rl •𝑄 ′

rdyrl ¬exceprl reg-write?(rob-moprl) ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-rf-𝑐
⟨[rf ↦→ [rdstrl ↦→ valrl]rf]𝑆,𝑄 ′⟩

rf-commit-notrdy

𝑄 = rl •𝑄 ′ ¬rdyrl ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−→

MA-IC-rf-𝑐
⟨𝑆, ∅⟩

Let MMA-IC-rf = ⟨𝑆MA-IC-rf ,−−−−−−−→
MA-IC-rf

, 𝐿MA-IC-rf⟩ be a transition

system, where 𝑆MA-IC−rf = 𝑆MA-IC.

rf

⟨𝑆, rob⟩ −−−−−−−−−→
MA-IC-rf-𝑐

∗ ⟨𝑆 ′, ∅⟩ ¬halt

𝑆 −−−−−−−−→
MA-IC−rf

[rf ↦→ rf𝑆 ′ ]𝑆

rob. Since MA-IC is pipelined, it needs to deal with situations

where the contents of the pipeline must be invalidated as they

correspond to microinstructions that should not be brought to

retirement. An invalidation is necessary on a cycle if there exists a

microinstruction that will be committed on that cycle that satisfies

one of the following conditions: the microinstruction resulted in an

exception, the microinstruction is a jump, or the microinstruction

is a halt. Let invalidate? : RBL∗
IC be a predicate over ROBs that

holds iff the ROB indicates that an invalidation will be required.

Let MMA-IC-rob-𝑖 = ⟨𝑆MA-IC-rob-𝑖 ,−−−−−−−−−−→
MA-IC-rob-𝑖

, 𝐿MA-IC-rob-𝑖 ⟩ be a

transition system, where 𝑆MA-IC-rob-𝑖 : 𝑆MA-IC × (UIC × RB)∗.

rob-issue-jmp

𝑄 = ⟨𝑢, rb⟩ •𝑄 ′ minst-op(𝑢) ∈ {mjg, mjge} ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-rob-𝑖
⟨[rob ↦→ rob ++ ⟨⟨rb,minst-op(𝑢), nil, false, 0, false⟩⟩]𝑆,𝑄 ′⟩

mtsx-start, mtsx-end, and mhalt also don’t write to a register,

but they are marked as ready immediately upon issue.

rob-issue-halt-tsx-end

𝑄 = ⟨𝑢, rb⟩ •𝑄 ′

minst-op(𝑢) ∈ {mtsx-end, mhalt} ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-rob-𝑖
⟨[rob ↦→ rob ++ ⟨⟨rb,minst-op(𝑢), nil, true, 0, false⟩⟩]𝑆,𝑄 ′⟩

rob-issue-tsx-start

𝑄 = ⟨𝑢, rb⟩ •𝑄 ′ 𝑢 = mtsx-start 𝑐 ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-rob-𝑖
⟨[rob ↦→ rob ++ ⟨⟨rb,minst-op(𝑢), nil, true, 𝑐, false⟩⟩]𝑆,𝑄 ′⟩

rob-issue-other

𝑄 = ⟨𝑢, rb⟩ •𝑄 ′

minst-op(𝑢) ∉ {mjg, mjge, mtsx-start, mtsx-end, mhalt}
¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−−→
MA-IC-rob-𝑖

⟨[rob ↦→ rob ++ ⟨⟨rb,minst-op(𝑢), reg-dst(𝑢), false, 0, false⟩⟩]𝑆,𝑄 ′⟩

LetMMA-IC-rob-𝑤 = ⟨𝑆MA-IC-rob-𝑤 ,−−−−−−−−−−−→
MA-IC-rob-𝑤

, 𝐿MA-IC-rob-𝑤⟩ be
a transition system, where 𝑆MA-IC-rob-𝑤 : 𝑆MA-IC × RS∗

IC.

rob-wrb-rdy describes how the ROB is updated when a RS

becomes ready. Its definition hinges on two functions: comp-val,
which uses the source operand values in the RS to compute the

result of the RS’s microoperation, and comp-exc which determines

if the microoperation should result in an exception instead. The

appropriate ROB entry is updated with the result of these two

functions. In a MA state reachable from a clean start state, it should

always be the case that if a RS becomes ready, there exists exactly

one ROB line with that RS’s destination ID in the ROB.

rob-wrb-rdy

𝑄 = rs •𝑄 ′ cyc = cpcrs
busyrs execrs ⟨∃𝑖 : 𝑖 ∈ N : rob-idrob(𝑖 ) = dstrs⟩

Let 𝑖 = min

𝑗∈N∧rob-idrob( 𝑗 )=dstrs
𝑗 ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−−−→
MA-IC-rob-𝑤

⟨[rob ↦→ [𝑖 ↦→
[val ↦→ comp-val(𝑟𝑠, 𝑆), excep ↦→ comp-exc(rs)]rob(𝑖)]rob]𝑆

,𝑄′⟩

rob-wrb-notrdy

𝑄 = rs •𝑄 ′

cyc ≠ cpcrs ∨ ¬busyrs ∨ ¬execrs ∨ ¬⟨∃𝑖 : 𝑖 ∈ N : rob-idrob(𝑖 ) = dstrs⟩
¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−−−→
MA-IC-rob-𝑤

⟨𝑆,𝑄 ′⟩

Let MMA-IC-rob-𝑐 = ⟨𝑆MA-IC-rob-𝑐 ,−−−−−−−−−−→
MA-IC-rob-𝑐

, 𝐿MA-IC-rob-𝑐 ⟩ be a
transition system, where 𝑆MA-IC-rob-𝑐 : 𝑆MA-IC × RBL∗

IC.

rob-commit-invl

𝑄 = rl •𝑄 ′

rdyrl exceprl ∨ rob-moprl ∈ {mhalt, mjg, mjge} ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-rob-𝑐
⟨[rob ↦→ ∅]𝑆, ∅⟩

rob-commit-ok

𝑄 = rl •𝑄 ′ rdyrl
¬exceprl rob-moprl ∉ {mhalt, mjg, mjge} ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−−→
MA-IC-rob-𝑐

⟨[rob ↦→ 𝑄 ′]𝑆,𝑄 ′⟩

rob-commit-notrdy

𝑄 = rl •𝑄 ′ ¬rdyrl ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-rob-𝑐
⟨𝑆, ∅⟩

LetMMA-IC-rob = ⟨𝑆MA-IC-rob,−−−−−−−−→
MA-IC-rob

, 𝐿MA-IC-rob⟩ be a transi-
tion system, where 𝑆MA-IC−rob = 𝑆MA-IC × N32.
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rob

⟨𝑆, decode-ic(fetch-n(imem, pc, 𝑛), rob)⟩ −−−−−−−−−−→
MA-IC-rob-𝑖

∗ ⟨𝑆 ′, ∅⟩
⟨𝑆 ′, rs-f⟩ −−−−−−−−−−−→

MA-IC-rob-𝑤
∗ ⟨𝑆 ′′, ∅⟩

⟨𝑆 ′′, rob𝑆 ′′ ⟩ −−−−−−−−−−→
MA-IC-rob-𝑐

∗ ⟨𝑆 ′′′, ∅⟩ ¬halt

⟨𝑆, 𝑛⟩ −−−−−−−−−→
MA-IC−rob

⟨[rob ↦→ rob𝑆 ′′′ ]𝑆, 𝑛⟩

rs-f. Let RB? = RB ∪ {nil}.
Let detect-raw-ic : (UIC ×RB)∗ → (RB?×RB?)∗ be a function

that given a sequence of microinstructions each paired with the

ROB entry they will be assigned to, will determine for each mi-

croinstruction in the list that uses a register whether that register

is being written by a prior microinstruction in the list. That is, if

detect-raw-ic(𝜎) = 𝜋 and 𝜋 (𝑖) = ⟨𝑎, 𝑏⟩ then:

𝑎 =


𝜎 ( 𝑗) (2)

if reg-op
1
(𝜎 (𝑖) (1)) ↓ ∧ for 𝑆 = {𝑘 ∈ N : 𝑘 <

𝑖 ∧ reg-dst(𝜎 (𝑘) (1)) = reg-op
1
(𝜎 (𝑖) (1))}, |𝑆 | >

0 ∧ 𝑗 = max(𝑆)
nil otherwise

𝑏 =


𝜎 ( 𝑗) (2)

if reg-op
2
(𝜎 (𝑖) (1)) ↓ ∧ for 𝑆 = {𝑘 ∈ N : 𝑘 <

𝑖 ∧ reg-dst(𝜎 (𝑘) (1)) = reg-op
2
(𝜎 (𝑖) (1))}, |𝑆 | >

0 ∧ 𝑗 = max(𝑆)
nil otherwise

Let next-idle-ic : RS∗
IC ⇀ N be a function that finds the index of

an idle RS in the given sequence of reservation stations.

next-idle-ic(𝜎) =
{
min(𝑆) if 𝑆 = {𝑖 ∈ dom(𝜎) : ¬busy𝜎 (𝑖 ) } ∧ |𝑆 | > 0

↑ otherwise

Let rs-get-ic : RSI × RS∗
IC ⇀ RSIC be a function that finds the

first RS that has a particular ID in a sequence of RSes. That is,

rs-get-ic(𝑥, 𝜎) =
{
𝜎 (min(𝑆)) if let 𝑆 = { 𝑗 ∈ N : rs-id𝜎 ( 𝑗 ) = 𝑥}, |𝑆 | > 0

↑ otherwise

Let MMA-IC-rs-f-𝑖 = ⟨𝑆MA-IC-rs-f-𝑖 ,−−−−−−−−−−→
MA-IC-rs-f-𝑖

, 𝐿MA-IC-rs-f-𝑖 ⟩ be a
transition system, where 𝑆MA-IC-rs-f-𝑖 : 𝑆MA-IC× (UIC×RB×RB?×
RB? × N32)∗.

When issuing a microinstruction to a reservation station, MA-IC
needs to determine for each source operand of the microinstruction

whether that operand is going to come from another microinstruc-

tion, the register file or a constant. setup-op-ic
1
: UIC × RB? ×

RSIC × 𝑆MA-IC → RSIC is a function that will perform this setup

for the first source operand, and setup-op-ic
2
does the same for the

second source operand.

setup-op-ic
1
(𝑢, dep, rs, 𝑆) =

[qj ↦→ nil, vj ↦→ 0]rs if minst-op(𝑢) = mnoop

[qj ↦→ dep]rs if dep ≠ nil

[qj ↦→ nil, vj ↦→ val𝑑 ]rs if let 𝑟1 = reg-op
1
(𝑢),

𝑑 = rob-get(reorderreg-st(𝑟1 ) , rob𝑆 );
reg-st(𝑟1) ↓ ∧busyreg-st(𝑟1 ) ∧ 𝑑 ↓ ∧rdy𝑑

[qj ↦→ reorderreg-st(𝑟1 ) ]rs if let 𝑟1 = reg-op
1
(𝑢),

𝑑 = rob-get(reorderreg-st(𝑟1 ) , rob𝑆 );
reg-st(𝑟1) ↓ ∧busyreg-st(𝑟1 ) ∧ (𝑑 ↑ ∨¬rdy𝑑 )

[qj ↦→ nil, vj ↦→
rf(reg-op

1
(𝑢))]rs otherwise

setup-op-ic
2
(𝑢, dep, rs, 𝑆) =

[qk ↦→ nil, vk ↦→ 0]rs if minst-op(𝑢) = mnoop

[qk ↦→ dep]rs if dep ≠ nil

[qk ↦→ nil, vk ↦→ val𝑑 ]rs if let 𝑟2 = reg-op
2
(𝑢),

𝑑 = rob-get(reorderreg-st(𝑟2 ) , rob𝑆 );
reg-st(𝑟2) ↓ ∧busyreg-st(𝑟2 ) ∧ 𝑑 ↓ ∧rdy𝑑

[qk ↦→ reorderreg-st(𝑟2 ) ]rs if let 𝑟2 = reg-op
2
(𝑢),

𝑑 = rob-get(reorderreg-st(𝑟2 ) , rob𝑆 );
reg-st(𝑟2) ↓ ∧busyreg-st(𝑟2 ) ∧ (𝑑 ↑ ∨¬rdy𝑑 )

[qk ↦→ nil, vk ↦→
rf(reg-op

2
(𝑢))]rs otherwise

rsf-issue

𝑄 = ⟨𝑢, rb, dep1, dep2, ipc⟩ •𝑄 ′ next-idle-ic(rs-f) ↓
rs-needed?(minst-op(𝑢)) let 𝑖 = next-idle-ic(rs-f)

let rs = setup-op-ic
2
(𝑢, dep2, setup-op-ic

1
(𝑢, dep1, rs-f(𝑖), 𝑆), 𝑆)

¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-rs-f-𝑖
⟨[rs-f ↦→ [𝑖 ↦→ [rs-mop ↦→ minst-op(𝑢),

dst ↦→ rb, busy ↦→ true, rb-pc ↦→ ipc]rs]rs-f]𝑆,𝑄 ′⟩
rsf-issue-nors

𝑄 = ⟨𝑢, rb, dep1, dep2, ipc⟩ •𝑄 ′

¬rs-needed?(minst-op(𝑢)) ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-rs-f-𝑖
⟨𝑆,𝑄 ′⟩

Let MMA-IC-rs-f-𝑒 = ⟨𝑆MA-IC-rs-f-𝑒 ,−−−−−−−−−−→
MA-IC-rs-f-𝑒

, 𝐿MA-IC-rs-f-𝑒 ⟩ be

a transition system, where 𝑆MA-IC-rs-f-𝑒 : 𝑆MA-IC × RS∗
IC.

Let mop-time : VIC → N32 be a function that determines how

many cycles it takes to execute the given microoperation.

Note that this transition system does not handle setting the exec
field to false. MMA-IC−rs-f−wr-b takes care of this with the rule

rsf-wb-ready.

Let check-barrier-start : RB × RBL∗
IC → B be a predicate that

determines whether it’s OK for the barrier microinstruction associ-

ated with the given ROB entry to begin execution. This is true iff

there are no uncommitted in-flight memory access microinstruc-

tions prior to the barrier microinstruction in question in program

order. check-barrier-start(id, lines) can be computed by determin-

ing if any of the ROB lines returned by rob-before(id, lines) have
microoperations satisfying memory-op?.
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Let check-memory-start : RB ×RBL∗
IC → B be a predicate that

determines whether it’s OK for the memory access microinstruc-

tion associated with the given ROB entry to begin execution. This

is true iff there are no uncommitted in-flight memory barrier mi-

croinstructions prior to the barrier microinstruction in question in

program order. check-memory-start(id, lines) can be computed by

determining if any of the ROB lines returned by rob-before(id, lines)
have microoperations satisfying barrier-op?.

Note that here for simplicity we assume that barrier-op? and

memory-op? are mutually exclusive, e.g., that no microoperation

exists that satisfies both predicates.

rsf-exec-wait-ready

𝑄 = rs •𝑄 ′ busyrs qjrs = nil
qkrs = nil execrs cyc ≤ cpcrs ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−−→
MA-IC-rs-f-𝑒

⟨𝑆,𝑄 ′⟩

rsf-exec-start-bar

𝑄 = rs •𝑄 ′

busyrs qjrs = nil qkrs = nil ¬execrs ¬halt
barrier-op?(rs-moprs) check-barrier-start(rs-idrs, rob)

⟨𝑆,𝑄⟩ −−−−−−−−−−→
MA-IC-rs-f-𝑒

⟨[rs-f ↦→ [rs-idrs ↦→
[exec ↦→ true, cpc ↦→ cyc ⊕ mop-time(rs-moprs)]rs]rs-f]𝑆,

𝑄 ′⟩

rsf-exec-start-mem

𝑄 = rs •𝑄 ′

busyrs qjrs = nil qkrs = nil ¬execrs ¬halt
memory-op?(rs-moprs) check-memory-start(rs-idrs, rob)

⟨𝑆,𝑄⟩ −−−−−−−−−−→
MA-IC-rs-f-𝑒

⟨[rs-f ↦→ [rs-idrs ↦→
[exec ↦→ true, cpc ↦→ cyc ⊕ mop-time(rs-moprs)]rs]rs-f]𝑆,

𝑄 ′⟩

rsf-exec-start

𝑄 = rs •𝑄 ′

busyrs qjrs = nil qkrs = nil ¬execrs ¬halt
¬barrier-op?(rs-moprs) ¬memory-op?(rs-moprs)

⟨𝑆,𝑄⟩ −−−−−−−−−−→
MA-IC-rs-f-𝑒

⟨[rs-f ↦→ [rs-idrs ↦→
[exec ↦→ true, cpc ↦→ cyc ⊕ mop-time(rs-moprs)]rs]rs-f]𝑆,

𝑄 ′⟩

rsf-exec-notready

𝑄 = rs •𝑄 ′ ¬busyrs ∨ qjrs ≠ nil ∨ qkrs ≠ nil ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−→

MA-IC-rs-f-𝑒
⟨𝑆,𝑄 ′⟩

LetMMA-IC-rs-f-𝑤 = ⟨𝑆MA-IC-rs-f-𝑤 ,−−−−−−−−−−−→
MA-IC-rs-f-𝑤

, 𝐿MA-IC-rs-f-𝑤⟩ be
a transition system, where 𝑆MA-IC-rs-f-𝑤 : 𝑆MA-IC × RS∗

IC.

prop-single-ic : RB × N32 × RSIC → RSIC is a function that

propagates a completed RS execution (with the result being written

to the ROB entry with the given ID) to another RS.

prop-single-ic(dst, val, rs) =
[qj ↦→ nil, vj ↦→ val, qk ↦→ nil, vk ↦→ val]rs if qj = dst ∧ qk = dst
[qj ↦→ nil, vj ↦→ val]rs if qj = dst ∧ qk ≠ dst
[qk ↦→ nil, vk ↦→ val]rs if qj ≠ dst ∧ qk = dst
rs otherwise

prop-val-ic : RB × N32 × RS∗
IC → RS∗

IC applies prop-single-ic
with the given arguments to each element of the given sequence of

RSes to produce a new sequence of RSes.

rsf-wb-ready

𝑄 = rs •𝑄 ′ busyrs
execrs cyc = cpcrs let rsi = rs-get-ic(rs-idrs, rs-f)
let val = comp-val(rs, 𝑆) let excp = comp-exc(rs, 𝑆)

rs-f′ = prop-val-ic(dstrs, val, rs-f) ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−−→

MA-IC-rs-f-𝑤
⟨[rs-f ↦→ [rsi ↦→

[busy ↦→ false, exec ↦→ false]rs]rs-f′]𝑆,𝑄 ′⟩

rsf-wb-notready

𝑄 = rs •𝑄 ′ ¬busyrs ∨ ¬execrs ∨ cyc ≠ cpcrs ¬halt
⟨𝑆,𝑄⟩ −−−−−−−−−−−→

MA-IC-rs-f-𝑤
⟨𝑆,𝑄 ′⟩

Let MMA-IC-rs-f = ⟨𝑆MA-IC-rs-f ,−−−−−−−−−→
MA-IC-rs-f

, 𝐿MA-IC-rs-f⟩ be a tran-
sition system, where 𝑆MA-IC−rs-f = 𝑆MA-IC × N32.

Let decode-detect-raw-ic : I∗
IC → (UIC × RB × RB? × RB?))∗

be a function that decodes the given sequence of instructions into

a sequence of microinstructions (using decode-ic), then identifies

any read-after-write hazards for the (up to) two source operands

for each microinstruction (using detect-raw-ic).

Let 𝜋 = decode-detect-raw-ic(𝜎) .
Let 𝜌 = decode-ic(𝜎), Let 𝜏 = detect-raw-ic(𝜌).
Note that dom(𝜌) = dom(𝜏) .
⟨∀𝑖 : 𝑖 ∈ dom(𝜌) : 𝜋 (𝑖) = ⟨𝜌 (𝑖) (1), 𝜌 (𝑖) (2), 𝜏 (𝑖) (1), 𝜏 (𝑖) (2)⟩⟩.

rsf

⟨𝑆, decode-detect-raw-ic(fetch-n(imem, pc, 𝑛))⟩ −−−−−−−−−−→
MA-IC-rs-f-𝑖

∗ ⟨𝑆 ′, ∅⟩
⟨𝑆 ′, rs-f𝑆 ′ ⟩ −−−−−−−−−−→

MA-IC-rs-f-𝑒
∗ ⟨𝑆 ′′, ∅⟩

⟨𝑆 ′′, rs-f𝑆 ′′ ⟩ −−−−−−−−−−−→
MA-IC-rs-f-𝑤

∗ ⟨𝑆 ′′′, ∅⟩ ¬halt

⟨𝑆, 𝑛⟩ −−−−−−−−−→
MA-IC−rs-f

⟨[rs-f ↦→ rs-f𝑆 ′′′ ]𝑆, 𝑛⟩

cache. do-cache : P(N32) × (N32 ⇀ N32) × (N32 ⇀ N32) →
(N32 ⇀ N32) is a function that takes in a set of addresses to prefetch,
a data memory and a cache and returns the cache after caching all

of the given addresses into it.

MMA-IC-cmem-𝑐 = ⟨𝑆MA-IC-cmem-𝑐 ,−−−−−−−−−−−−→
MA-IC-cmem-𝑐

, 𝐿MA-IC-cmem-𝑐 ⟩

is a transition system, where 𝑆MA-IC-cmem-𝑐 = 𝑆MA-IC × RS∗
IC.
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ma-cmem-commit-ldr

𝑄 = rs •𝑄 ′ cyc = cpcrs
busyrs execrs rs-moprs ∈ {mldri, mldr}

𝑎 = vjrs ⊕ vkrs ¬comp-exc(rs)
¬halt cache′ = [𝑎 ↦→ getdmem (𝑎, 0)]cache

⟨𝑆,𝑄⟩ −−−−−−−−−−−−→
MA-IC-cmem-𝑐

⟨[cache ↦→ do-cache(prefetch(𝑎), dmem, cache′)]𝑆,𝑄 ′⟩

ma-cmem-commit-other

𝑄 = rs •𝑄 ′

cyc ≠ cpcrs ∨ ¬busyrs ∨ ¬execrs ∨ rs-moprs ∉ {mldri, mldr}
∨comp-exc(rs) ¬halt

⟨𝑆,𝑄⟩ −−−−−−−−−−−−→
MA-IC-cmem-𝑐

⟨[cache ↦→ 𝑆,𝑄 ′⟩

Let MMA-IC-cache = ⟨𝑆MA-IC-cache,−−−−−−−−−−→
MA-IC-cache

, 𝐿MA-IC-cache⟩ be
a transition system, where 𝑆MA-IC−cache = 𝑆MA-IC.

ma-cmem

⟨𝑆, rs-f⟩ −−−−−−−−−−−−→
MA-IC-cmem-𝑐

∗ ⟨𝑆 ′, ∅⟩ ¬halt

𝑆 −−−−−−−−−−−→
MA-IC−cache

[cache ↦→ cache𝑆 ′ ]𝑆

B.4 Formal Semantics of MA-IC-N
B.4.1 Transition System. MMA-IC-N = ⟨𝑆MA-IC-N,−−−−−−−→

MA-IC-N
, 𝐿MA-IC-N⟩

is a nondeterministic transition system. 𝑆MA-IC-N = 𝑆MA-IC.

B.4.2 Semantics. The semantics ofMMA-IC-N are broadly similar

to that ofMMA-IC, except where nondeterministic choices are made.

We define the top-level transition rules for MMA-IC-N below, and

then discuss the specific transition rules that differ. In general, the

nondeterminism is dealt with in the following way: the stepall

transition rule involves the nondeterministic selection of a number

of instructions to fetch and issue, the unavailable reservation station

IDs rs-busy?, the set of ROB lines which are allowed to commit

during this cycle (if they were eligible to be committed otherwise)

comm? and the set of reservation station IDs that are allowed to

begin execution this cycle (if they were eligible to begin execution

otherwise) strt?. These selections are referred to by the subsidiary

transition systems that make upMMA-IC-N. Notice that some of the

subsidiary transition systems used to defineMMA-IC will be reused

here, as their behavior need not be modified.

halted

halt

𝑆 −−−−−−−→
MA-IC-N

𝑆

stepall

¬halt Let 𝑛 ∈ N, 𝑛 ≤ max-fetch-n(𝑆)
comm? ⊆ RB strt? ⊆ RSI rs-busy? ⊆ RSI

⟨𝑆, 𝑛, comm?⟩ −−−−−−−−−−−−−→
MA-IC-N−reg-st

⟨⟨..., reg-st′, ...⟩, 𝑛, comm?⟩

⟨𝑆, comm?⟩ −−−−−−−−−−→
MA-IC-N−pc

⟨⟨..., pc′, ...⟩, comm?⟩

⟨𝑆, comm?⟩ −−−−−−−−−−−→
MA-IC-N−tsx

⟨⟨..., tsx′, ...⟩, comm?⟩
⟨𝑆, comm?⟩ −−−−−−−−−−→

MA-IC-N−rf
⟨⟨..., rf′, ...⟩, comm?⟩

⟨𝑆, comm?⟩ −−−−−−−−−−−→
MA-IC-N−rob

⟨⟨..., rob′, ...⟩, comm?⟩
⟨𝑆, 𝑛, strt?, rs-busy?⟩ −−−−−−−−−−−→

MA-IC-N−rs-f
⟨⟨..., rs-f′, ...⟩, 𝑛, strt?, rs-busy?⟩

𝑆 −−−−−−−−−−−→
MA-IC−cache

⟨..., cache′, ...⟩

𝑆 −−−−−−−→
MA-IC-N

[reg-st ↦→ reg-st′, fetch-pc ↦→ fetch-pc ⊕ 𝑛, pc ↦→ pc′,

tsx ↦→ tsx′, rf ↦→ rf′, rob ↦→ rob′, rs-f ↦→ rs-f′, cache ↦→ cache′]𝑆
reg-st.

MMA-IC-N-rgs-𝑐 = ⟨𝑆MA-IC-N-rgs-𝑐 ,−−−−−−−−−−−→
MA-IC-N-rgs-𝑐

, 𝐿MA-IC-N-rgs-𝑐 ⟩

is a transition system, where

𝑆MA-IC-N-rgs-𝑐 : 𝑆MA-IC-N × RBL∗
IC × P(RB)

regstat-commit-ready-rm

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm? reg-st(rdstrl) ↓
⟨bsy, reord⟩ = reg-st(rdstrl) rob-idrl = reord ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→
MA-IC-N-rgs-𝑐

⟨[reg-st ↦→ [rdstrl ↦→↑]reg-st]𝑆,𝑄 ′, comm?⟩

regstat-commit-ready-in-nomatch

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm? reg-st(rdstrl) ↓
⟨bsy, reord⟩ = reg-st(rdstrl) rob-idrl ≠ reord ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→
MA-IC-N-rgs-𝑐

⟨𝑆,𝑄 ′, comm?⟩

regstat-commit-ready-notin

𝑄 = rl •𝑄 ′

rdyrl rob-idrl ∈ comm? reg-st(rdstrl) ↑ ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→

MA-IC-N-rgs-𝑐
⟨𝑆,𝑄 ′, comm?⟩

regstat-commit-notready

𝑄 = rl •𝑄 ′ ¬rdyrl ∨ rob-idrl ∉ comm? ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→

MA-IC-N-rgs-𝑐
⟨𝑆, ∅, comm?⟩

MMA-IC-N-reg-st = ⟨𝑆MA-IC-N-reg-st,−−−−−−−−−−−−→
MA-IC-N-reg-st

, 𝐿MA-IC-N-reg-st⟩

is a transition system, where

𝑆MA-IC-N−reg-st = 𝑆MA-IC-N × N32 × P(RB)

regstat

⟨𝑆, decode-ic(fetch-n(imem, pc, 𝑛), rob)⟩ −−−−−−−−−→
MA-IC-rgs-𝑖

∗ ⟨𝑆 ′, ∅⟩

⟨𝑆 ′, rob⟩ −−−−−−−−−−−→
MA-IC-N-rgs-𝑐

∗ ⟨𝑆 ′′, ∅⟩ ¬halt

⟨𝑆, 𝑛⟩ −−−−−−−−−−−−−→
MA-IC-N−reg-st

⟨[reg-st ↦→ reg-st𝑆 ′′ ]𝑆, 𝑛⟩
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pc.

MMA-IC-N-pc-𝑐 = ⟨𝑆MA-IC-N-pc-𝑐 ,−−−−−−−−−−−→
MA-IC-N-pc-𝑐

, 𝐿MA-IC-N-pc-𝑐 ⟩

is a transition system, where

𝑆MA-IC-N-pc-𝑐 : 𝑆MA-IC-N × RBL∗
IC × P(RB)

pc-commit-excp-tsx

𝑄 = rl •𝑄 ′

rdyrl rob-idrl ∈ comm? exceprl tsx-act ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→

MA-IC-N-pc-𝑐
⟨[pc ↦→ tsx-fb]𝑆, ∅, comm?⟩

pc-commit-excp-notsx

𝑄 = rl •𝑄 ′ rdyrl
rob-idrl ∈ comm? exceprl ¬tsx-act ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→
MA-IC-N-pc-𝑐

⟨𝑆, ∅, comm?⟩

pc-commit-mem

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm? ¬exceprl
rob-moprl = mem-check ∨ rob-moprl = memi-check ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→
MA-IC-N-pc-𝑐

⟨𝑆,𝑄 ′, comm?⟩

pc-commit-jmp

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm?
¬exceprl rob-moprl = mjg ∨ rob-moprl = mjge ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→
MA-IC-N-pc-𝑐

⟨[pc ↦→ valrl]𝑆, ∅, comm?⟩

pc-commit-halt

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm?
¬exceprl rob-moprl = mhalt ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→
MA-IC-N-pc-𝑐

⟨[pc ↦→ pc ⊕ 1]𝑆, ∅, comm?⟩

pc-commit-other

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm? ¬exceprl
rob-moprl ∉ {mem-check, memi-check, mjge, mjg, mhalt}

¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→

MA-IC-N-pc-𝑐
⟨[pc ↦→ pc ⊕ 1]𝑆,𝑄 ′, comm?⟩

pc-commit-notrdy

𝑄 = rl •𝑄 ′ ¬rdyrl ∨ rob-idrl ∉ comm? ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→

MA-IC-N-pc-𝑐
⟨𝑆, ∅, comm?⟩

MMA-IC-N-pc = ⟨𝑆MA-IC-N-pc,−−−−−−−−−→
MA-IC-N-pc

, 𝐿MA-IC-N-pc⟩

is a transition system, where

𝑆MA-IC-N−pc = 𝑆MA-IC-N × P(RB)

pc

⟨𝑆, rob, comm?⟩ −−−−−−−−−−−→
MA-IC-N-pc-𝑐

∗ ⟨𝑆 ′, ∅, comm?⟩ ¬halt

⟨𝑆, comm?⟩ −−−−−−−−−−→
MA-IC-N−pc

⟨[pc ↦→ pc𝑆 ′ ]𝑆, comm?⟩

tsx.

MMA-IC-N-tsx-𝑐 = ⟨𝑆MA-IC-N-tsx-𝑐 ,−−−−−−−−−−−−→
MA-IC-N-tsx-𝑐

, 𝐿MA-IC-N-tsx-𝑐 ⟩

is a transition system, where

𝑆MA-IC-N-tsx-𝑐 : 𝑆MA-IC-N × RBL∗
IC × P(RB)

tsx-commit-excp

𝑄 = rl •𝑄 ′

rdyrl rob-idrl ∈ comm? exceprl ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−−→

MA-IC-N-tsx-𝑐
⟨[tsx-act ↦→ false]𝑆, ∅, comm?⟩

tsx-commit-start

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm?
¬exceprl rob-moprl = mtsx-start ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−−→
MA-IC-N-tsx-𝑐

⟨[tsx-act ↦→ true, tsx-rf ↦→ rf, tsx-fb ↦→ valrl]𝑆,𝑄 ′, comm?⟩

tsx-commit-end

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm?
¬exceprl rob-moprl = mtsx-end ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−−→
MA-IC-N-tsx-𝑐

⟨[tsx-act ↦→ false]𝑆,𝑄 ′, comm?⟩
tsx-commit-halt

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm?
¬exceprl rob-moprl = mhalt ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−−→

MA-IC-N-tsx-𝑐
⟨𝑆, ∅, comm?⟩

tsx-commit-other

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm? ¬exceprl
rob-moprl ∉ {mtsx-start, mtsx-end, mhalt} ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−−→
MA-IC-N-tsx-𝑐

⟨𝑆,𝑄 ′, comm?⟩

tsx-commit-notrdy

𝑄 = rl •𝑄 ′ ¬rdyrl ∨ rob-idrl ∉ comm? ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−−→

MA-IC-N-tsx-𝑐
⟨𝑆, ∅, comm?⟩

LetMMA-IC-N-tsx = ⟨𝑆MA-IC-N-tsx,−−−−−−−−−−→
MA-IC-N-tsx

, 𝐿MA-IC-N-tsx⟩ be a
transition system, where 𝑆MA-IC-N−tsx = 𝑆MA-IC-N × P(RB).

tsx

⟨𝑆, rob⟩ −−−−−−−−−−−−→
MA-IC-N-tsx-𝑐

∗ ⟨𝑆 ′, ∅⟩ ¬halt

⟨𝑆, comm?⟩ −−−−−−−−−−−→
MA-IC-N−tsx

⟨[tsx ↦→ tsx𝑆 ′ ]𝑆, comm?⟩

rf. LetMMA-IC-N-rf-𝑐 = ⟨𝑆MA-IC-N-rf-𝑐 ,−−−−−−−−−−−→
MA-IC-N-rf-𝑐

, 𝐿MA-IC-N-rf-𝑐 ⟩
be a transition system, where 𝑆MA-IC-N-rf-𝑐 : 𝑆MA-IC-N × RBL∗

IC ×
P(RB).

rf-commit-excp-tsx

𝑄 = rl •𝑄 ′

rdyrl rob-idrl ∈ comm? exceprl tsx-act ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→

MA-IC-N-rf-𝑐
⟨[rf ↦→ tsx-rf]𝑆, ∅, comm?⟩



Global Microprocessor Correctness in the Presence of Transient Execution

rf-commit-excp-notsx

𝑄 = rl •𝑄 ′ rdyrl
rob-idrl ∈ comm? exceprl ¬tsx-act ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→
MA-IC-N-rf-𝑐

⟨𝑆, ∅, comm?⟩

rf-commit-halt-jmp

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm?
¬exceprl rob-moprl ∈ {mjge, mjg, mhalt} ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→
MA-IC-N-rf-𝑐

⟨𝑆, ∅, comm?⟩

rf-commit-nowrite

𝑄 = rl •𝑄 ′ rdyrl
rob-idrl ∈ comm? ¬exceprl ¬reg-write?(rob-moprl)

rob-moprl ∉ {mjge, mjg, mhalt} ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→

MA-IC-N-rf-𝑐
⟨𝑆,𝑄 ′, comm?⟩

rf-commit-other

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm?
¬exceprl reg-write?(rob-moprl) ¬halt

⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→
MA-IC-N-rf-𝑐

⟨[rf ↦→ [rdstrl ↦→ valrl]rf]𝑆,𝑄 ′, comm?⟩

rf-commit-notrdy

𝑄 = rl •𝑄 ′ ¬rdyrl ∨ rob-idrl ∉ comm? ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−→

MA-IC-N-rf-𝑐
⟨𝑆, ∅, comm?⟩

MMA-IC-N-rf = ⟨𝑆MA-IC-N-rf ,−−−−−−−−−→
MA-IC-N-rf

, 𝐿MA-IC-N-rf⟩

is a transition system, where 𝑆MA-IC-N−rf = 𝑆MA-IC-N × P(RB).

rf

⟨𝑆, rob⟩ −−−−−−−−−−−→
MA-IC-N-rf-𝑐

∗ ⟨𝑆 ′, ∅⟩ ¬halt

⟨𝑆, comm?⟩ −−−−−−−−−−→
MA-IC-N−rf

⟨[rf ↦→ rf𝑆 ′ ]𝑆, comm?⟩

rob.

MMA-IC-N-rob-𝑐 = ⟨𝑆MA-IC-N-rob-𝑐 ,−−−−−−−−−−−−→
MA-IC-N-rob-𝑐

, 𝐿MA-IC-N-rob-𝑐 ⟩

is a transition system, where

𝑆MA-IC-N-rob-𝑐 : 𝑆MA-IC-N × RBL∗
IC × P(RB)

rob-commit-invl

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm?
exceprl ∨ rob-moprl ∈ {mhalt, mjg, mjge} ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−−→

MA-IC-N-rob-𝑐
⟨[rob ↦→ ∅]𝑆, ∅, comm?⟩

rob-commit-ok

𝑄 = rl •𝑄 ′ rdyrl rob-idrl ∈ comm?
¬exceprl rob-moprl ∉ {mhalt, mjg, mjge} ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−−→

MA-IC-N-rob-𝑐
⟨[rob ↦→ 𝑄 ′]𝑆,𝑄 ′, comm?⟩

rob-commit-notrdy

𝑄 = rl •𝑄 ′ ¬rdyrl ∨ rob-idrl ∉ comm? ¬halt
⟨𝑆,𝑄, comm?⟩ −−−−−−−−−−−−→

MA-IC-N-rob-𝑐
⟨𝑆, ∅, comm?⟩

MMA-IC-N-rob = ⟨𝑆MA-IC-N-rob,−−−−−−−−−−→
MA-IC-N-rob

, 𝐿MA-IC-N-rob⟩

is a transition system, where

𝑆MA-IC-N−rob = 𝑆MA-IC-N × N32 × P(RB)

rob

⟨𝑆, decode-ic(fetch-n(imem, pc, 𝑛), rob)⟩ −−−−−−−−−−→
MA-IC-rob-𝑖

∗ ⟨𝑆 ′, ∅⟩
⟨𝑆 ′, rs-f⟩ −−−−−−−−−−−→

MA-IC-rob-𝑤
∗ ⟨𝑆 ′′, ∅⟩

⟨𝑆 ′′, rob𝑆 ′′ , comm?⟩ −−−−−−−−−−−−→
MA-IC-N-rob-𝑐

∗ ⟨𝑆 ′′′, ∅, comm?⟩ ¬halt

⟨𝑆, 𝑛, comm?⟩ −−−−−−−−−−−→
MA-IC-N−rob

⟨[rob ↦→ rob𝑆 ′′′ ]𝑆, 𝑛, comm?⟩

rs-f.

MMA-IC-N-rs-f-𝑖 = ⟨𝑆MA-IC-N-rs-f-𝑖 ,−−−−−−−−−−−−→
MA-IC-N-rs-f-𝑖

, 𝐿MA-IC-N-rs-f-𝑖 ⟩

is a transition system, where

𝑆MA-IC-N-rs-f-𝑖 : 𝑆MA-IC-N×(UIC×RB×RB?×RB?×N32)∗×P(RSI)

MMA-IC-N-rs-f-i uses setup-op-ic1 and setup-op-ic
2
as defined in

Appendix B.3.4. These functions are used to determine the reference

to use for each source operand of a microinstruction.

Let rm-rs-ic : RS∗
IC × P(RSI) → RS∗

IC be a function that

returns a modified version of the given sequence, where all RSes

with rs-ids in the given set are removed.

rsf-issue

𝑄 = ⟨𝑢, rb, dep1, dep2, ipc⟩ •𝑄 ′

next-idle-ic(rm-rs-ic(rs-f, rs-busy?)) ↓
rs-needed?(minst-op(𝑢))

let 𝑖 = next-idle-ic(rm-rs-ic(rs-f, rs-busy?))
let rs = setup-op-ic

2
(𝑢, dep2, setup-op-ic

1
(𝑢, dep1, rs-f(𝑖), 𝑆), 𝑆)

¬halt
⟨𝑆,𝑄, rs-busy?⟩ −−−−−−−−−−−−→

MA-IC-N-rs-f-𝑖
⟨[rs-f ↦→ [𝑖 ↦→ [rs-mop ↦→ minst-op(𝑢),

dst ↦→ rb, busy ↦→ true, rb-pc ↦→ ipc]rs]rs-f]𝑆,𝑄 ′, rs-busy?⟩

rsf-issue-nors

𝑄 = ⟨𝑢, rb, dep1, dep2, ipc⟩ •𝑄 ′

¬rs-needed?(minst-op(𝑢)) ¬halt
⟨𝑆,𝑄, rs-busy?⟩ −−−−−−−−−−−−→

MA-IC-N-rs-f-𝑖
⟨𝑆,𝑄 ′, rs-busy?⟩

MMA-IC-N-rs-f-𝑒 = ⟨𝑆MA-IC-N-rs-f-𝑒 ,−−−−−−−−−−−−→
MA-IC-N-rs-f-𝑒

, 𝐿MA-IC-N-rs-f-𝑒 ⟩

is a transition system, where

𝑆MA-IC-N-rs-f-𝑒 : 𝑆MA-IC-N × RS∗
IC × P(RSI)

mop-time, check-barrier-start and check-memory-start as defined
in Appendix B.3.4 are used here.

rsf-exec-wait-ready

𝑄 = rs •𝑄 ′ busyrs qjrs = nil
qkrs = nil execrs cyc ≤ cpcrs ¬halt

⟨𝑆,𝑄, strt?⟩ −−−−−−−−−−−−→
MA-IC-N-rs-f-𝑒

⟨𝑆,𝑄 ′, strt?⟩
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rsf-exec-start-bar

𝑄 = rs •𝑄 ′ busyrs qjrs = nil
qkrs = nil ¬execrs ¬halt barrier-op?(rs-moprs)

check-barrier-start(rs-idrs, rob) rs-idrs ∈ strt?

⟨𝑆,𝑄, strt?⟩ −−−−−−−−−−−−→
MA-IC-N-rs-f-𝑒

⟨[rs-f ↦→ [rs-idrs ↦→
[exec ↦→ true, cpc ↦→ cyc ⊕ mop-time(rs-moprs)]rs]rs-f]𝑆,

𝑄 ′, strt?⟩

rsf-exec-start-mem

𝑄 = rs •𝑄 ′ busyrs qjrs = nil
qkrs = nil ¬execrs ¬halt memory-op?(rs-moprs)

check-memory-start(rs-idrs, rob) rs-idrs ∈ strt?

⟨𝑆,𝑄, strt?⟩ −−−−−−−−−−−−→
MA-IC-N-rs-f-𝑒

⟨[rs-f ↦→ [rs-idrs ↦→
[exec ↦→ true, cpc ↦→ cyc ⊕ mop-time(rs-moprs)]rs]rs-f]𝑆,

𝑄 ′, strt?⟩

rsf-exec-start

𝑄 = rs •𝑄 ′ busyrs qjrs = nil
qkrs = nil ¬execrs ¬halt ¬barrier-op?(rs-moprs)

¬memory-op?(rs-moprs) rs-idrs ∈ strt?

⟨𝑆,𝑄, strt?⟩ −−−−−−−−−−−−→
MA-IC-N-rs-f-𝑒

⟨[rs-f ↦→ [rs-idrs ↦→
[exec ↦→ true, cpc ↦→ cyc ⊕ mop-time(rs-moprs)]rs]rs-f]𝑆,

𝑄 ′, strt?⟩

rsf-exec-notready

𝑄 = rs •𝑄 ′

¬busyrs ∨ qjrs ≠ nil ∨ qkrs ≠ nil ∨ rs-idrs ∉ strt? ¬halt
⟨𝑆,𝑄, strt?⟩ −−−−−−−−−−−−→

MA-IC-N-rs-f-𝑒
⟨𝑆,𝑄 ′, strt?⟩

MMA-IC-N-rs-f = ⟨𝑆MA-IC-N-rs-f ,−−−−−−−−−−−→
MA-IC-N-rs-f

, 𝐿MA-IC-N-rs-f⟩

is a transition system, where

𝑆MA-IC-N−rs-f = 𝑆MA-IC-N × N32 × P(RSI) × P(RSI)

decode-detect-raw-ic is defined as in Appendix B.3.4.

rsf

Let decoded = decode-detect-raw-ic(fetch-n(imem, pc, 𝑛))
⟨𝑆, decoded, rs-busy?⟩ −−−−−−−−−−−−→

MA-IC-N-rs-f-𝑖
∗ ⟨𝑆 ′, ∅, rs-busy?⟩

⟨𝑆 ′, rs-f𝑆 ′ , strt?⟩ −−−−−−−−−−−−→
MA-IC-N-rs-f-𝑒

∗ ⟨𝑆 ′′, ∅, strt?⟩
⟨𝑆 ′′, rs-f𝑆 ′′ ⟩ −−−−−−−−−−−→

MA-IC-rs-f-𝑤
∗ ⟨𝑆 ′′′, ∅⟩ ¬halt

⟨𝑆, 𝑛, strt?, rs-busy?⟩ −−−−−−−−−−−→
MA-IC-N−rs-f

⟨[rs-f ↦→ rs-f𝑆 ′′′ ]𝑆, 𝑛, strt?, rs-busy?⟩

B.5 Formal Semantics of MA-IC-H
B.5.1 Transition System.

MMA-IC-H = ⟨𝑆MA-IC-H,−−−−−−−→
MA-IC-H

, 𝐿MA-IC-H⟩

is a deterministic transition system. States ofMMA-IC-H areMMA-IC

states augmented with history information: 𝑆MA-IC-H = 𝑆MA-IC ×
𝐻MA-IC.

𝐻MA-IC : ⟨comm-cy, start-cy, comm-cache, ch-eff,hist-lines⟩

• comm-cy : N32 is the cycle during which the most recent

commit occurred

• start-cy : N32 is the first cycle for which this history state

has data

• comm-cache : N32 ⇀ N32 is the cache state, without any
updates that may have occurred since the last instruction

commit

• ch-eff : RB ⇀ (N32 ⇀ N32) maps a ROB identifier to

the cache entries that should be added to the cache after

committing that ROB line’s microinstruction

• hist-lines : SL∗
contains information about the progress

of all in-flight microinstructions

SL : ⟨sl-rob-id, sl-pc, statuses⟩
• sl-rob-id : RB is the ID of the ROB line that this status

information is for

• sl-pc : N32 is the PC corresponding to the instruction

loaded into the ROB line with an ID equal to sl-rob-id
• statuses : S∗

is the sequence of statuses corresponding to

this ROB’s progress

S ::= fetch pc rsi | exec | wr-b cache | delay| post-comm
• fetch pc rsi where pc ∈ N32 and rsi ∈ RSI ∪ {nil} in-

dicates that the microinstruction was fetched and issued.

If rsi ≠ nil then it indicates the RS to which this instruc-

tion was issued. If rsi = nil, the microinstruction does

not require a RS. pc indicates the PC of the instruction cor-

responding to the microinstruction that was fetched and

issued.

• exec indicates that the microinstruction was executing in

an RS.

• wr-b cache where cache ∈ N32 ⇀ N32 indicates that the
instruction wrote back, and cache indicates the value of the
cache at the time of the write back.

• delay indicates that the microinstruction either had not

started execution because it was waiting on a dependency,

or it had completed execution and written back to the ROB,

but the ROB line had not yet been committed as another

in-flight instruction that comes earlier in program order

had not yet been committed.

• post-comm indicates that themicroinstruction is a mem-check
or memi-check microinstruction that has been committed

before its corresponding mldr or mldri instruction. This

is the only case where a microinstruction’s status line is

retained after it is retired.

The history information gathered by MA-IC-H will be used to

determine whether an arbitrary MA-IC-H state is “entangled”, where
“entangled”means essentially that when the state is invalidated back

to the point at which the earliest in-flight instruction was issued

and run forward, it is possible to reach that state. All invalidated

states are considered entangled, so the only states that we need

to worry about here are those that have in-flight instructions (a

nonempty pipeline).

−−−−−−−→
MA-IC-H

treats the first component of the state in the same way

that MA-IC does. That is:

⟨𝑠, ℎ⟩ −−−−−−−→
MA-IC-H

⟨𝑠′, ℎ′⟩ =⇒ 𝑠 −−−−−→
MA-IC

𝑠′
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Letwill-commit?-ic : 𝑆MA-IC → B be a function that returns true
iff rob is nonempty and given 𝑞 is the first ROB line, rdy𝑞 . This
indicates that at least one microinstruction will be committed on

the next cycle.

Let to-commit-ic : RBL∗
IC → RBL∗

IC be a function that returns

the sequence of ROB lines that will be committed in the next step.

to-commit-ic(𝜎) = ⟨𝜎𝑘 ⟩𝑘<max(𝑆 ) , where:

𝑆 = {𝑖 ∈ dom(𝜎) :
⟨∀𝑥 : 𝑥 ∈ dom(𝜎) ∧ 𝑥 < 𝑖 − 1 : rdy𝜎 (𝑥 ) ∧ ¬excep𝜎 (𝑥 )∧
rob-mop𝜎 (𝑥 ) ∉ {mhalt, mjge, mjg}⟩∧

(¬rdy𝜎 (𝑖 ) ∨ excep𝜎 (𝑖 ) ∨ rob-mop𝜎 (𝑖 ) ∈ {mhalt, mjge, mjg}∨
𝑖 = max(dom(𝜎)))}

Let will-invld?-ic : RBL∗
IC → B be a function that returns

true iff a microinstruction will be committed that will result in an

invalidation. Note that it is defined to only check the last element

of to-commit-ic(𝜎), as the definition of to-commit-ic is such that if

the returned sequence contains an invalidation, it will always be

the final element of the sequence.

will-invld?-ic(𝜎) ⇐⇒
𝜋 ≠ ∅ ∧ (excep𝜋 (𝑖 ) ∨ rob-mop𝜋 (𝑖 ) ∈ {mhalt, mjge, mjg})
where 𝜋 = to-commit-ic(𝜎), 𝑖 = max(dom(𝜋))

ic-h-halted

halt

⟨𝑆, 𝐻 ⟩ −−−−−−−→
MA-IC-H

⟨𝑆, 𝐻 ⟩

ic-h-stepall

¬halt
𝑆 −−−−−→

MA-IC
𝑆 ′ ⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−−−−−→

MA-IC-H−comm-cy
⟨𝑆, ⟨..., comm-cy′, ...⟩⟩

⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−−−→
MA-IC-H-ccmem-𝑐

⟨𝑆, ⟨..., comm-cache′, ...⟩⟩
⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−−→

MA-IC-H−ch-eff
⟨𝑆, ⟨..., ch-eff′, ...⟩⟩

⟨𝑆, 𝐻 ⟩ −−−−−−−−−→
MA-IC-H-hl

⟨𝑆, ⟨...,hist-lines′, ...⟩⟩
⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−−−−→

MA-IC-H−start-cy
⟨𝑆, ⟨..., start-cy′, ...⟩⟩

𝑆 −−−−−−−→
MA-IC-H

⟨𝑆 ′, [comm-cy ↦→ comm-cy′,

comm-cache ↦→ comm-cache′, ch-eff ↦→ ch-eff′,
hist-lines ↦→ hist-lines′, start-cy ↦→ start-cy′]𝐻 ⟩

Note that in the below transition systems, it’s not necessary to

handle ROB entries corresponding to ready jumps, ready halts, or

ready entries where the exception flag is set since the history is

going to be invalidated in those cases anyways. So, the below rules

are not going to handle those cases.

comm-cy.

MMA-IC-H-comm-cy = ⟨𝑆MA-IC-H-comm-cy,−−−−−−−−−−−−−−−−→
MA-IC-H-comm-cy

, 𝐿MA-IC-H-comm-cy⟩

is a transition system. 𝑆MA-IC-H−comm-cy = 𝑆MA-IC-H.

ccyc-will-commit

¬halt will-commit?-ic(𝑆)
⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−−−−−→

MA-IC-H−comm-cy
⟨𝑆, [comm-cy ↦→ cyc]𝐻 ⟩

ccyc-will-not-commit

halt ∨ ¬will-commit?-ic(𝑆)
⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−−−−−→

MA-IC-H−comm-cy
⟨𝑆, 𝐻 ⟩

comm-cache.

MMA-IC-H-ccmem-𝑐 = ⟨𝑆MA-IC-H-ccmem-𝑐 ,−−−−−−−−−−−−−−→
MA-IC-H-ccmem-𝑐

, 𝐿MA-IC-H-ccmem-𝑐 ⟩

is a transition system. 𝑆MA-IC-H-ccmem-𝑐 = 𝑆MA-IC-H × RBL∗
IC.

commit-cache-commit

𝑄 = rl •𝑄 ′

rdyrl rob-moprl ∈ {mldri, mldr} ¬will-invld?-ic(rob)
¬halt let eff = getch-eff (rob-idrl, ∅)

⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−−−→
MA-IC-H-ccmem-𝑐

⟨⟨𝑆, [comm-cache ↦→ comm-cache ∪ eff]𝐻 ⟩, 𝑄′⟩

commit-cache-rdy

𝑄 = rl •𝑄 ′ rdyrl
rob-moprl ∉ {mldri, mldr} ¬will-invld?-ic(rob) ¬halt

⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−−−→
MA-IC-H-ccmem-𝑐

⟨⟨𝑆, 𝐻 ⟩, 𝑄′⟩

commit-cache-notrdy

𝑄 = rl •𝑄 ′ ¬rdyrl ¬will-invld?-ic(rob) ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−−−→

MA-IC-H-ccmem-𝑐
⟨⟨𝑆, 𝐻 ⟩, ∅⟩

ch-eff.

MMA-IC-H-ceff-𝑐 = ⟨𝑆MA-IC-H-ceff-𝑐 ,−−−−−−−−−−−−→
MA-IC-H-ceff-𝑐

, 𝐿MA-IC-H-ceff-𝑐 ⟩

is a transition system. 𝑆MA-IC-H-ceff-𝑐 = 𝑆MA-IC-H × RBL∗
IC.

cache-effects-committed-rm

𝑄 = rl •𝑄 ′ rdyrl
rob-moprl ≠ mhalt ¬will-invld?-ic(rob) ¬halt

⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−→
MA-IC-H-ceff-𝑐

⟨⟨𝑆, [ch-eff ↦→ [rob-idrl ↦→↑]ch-eff]𝐻 ⟩, 𝑄′⟩

cache-effects-committed-other

𝑄 = rl •𝑄 ′ ¬rdyrl ∨ rob-moprl = mhalt
¬will-invld?-ic(rob) ¬halt

⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−→
MA-IC-H-ceff-𝑐

⟨⟨𝑆, 𝐻 ⟩, 𝑄′⟩

MMA-IC-H-ceff-𝑤 = ⟨𝑆MA-IC-H-ceff-𝑤 ,−−−−−−−−−−−−→
MA-IC-H-ceff-𝑤

, 𝐿MA-IC-H-ceff-𝑤⟩

is a transition system. 𝑆MA-IC-H-ceff-𝑤 = 𝑆MA-IC-H × RS∗
IC.

cache-effects-wr-b-ldr

𝑄 = rs •𝑄 ′

busyrs cpcrs = cyc rs-moprs ∈ {mldri, mldr}
¬will-invld?-ic(rob) ¬halt let ea = vjrs ⊕ vkrs

⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−→
MA-IC-H-ceff-𝑤

⟨⟨𝑆, [ch-eff ↦→ [dstrs ↦→ [ea ↦→ dmem(ea)]]ch-eff]𝐻 ⟩, 𝑄′⟩
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cache-effects-wr-b-no-ldr

𝑄 = rs •𝑄 ′

¬busyrs ∨ cpcrs ≠ cyc ∨ rs-moprs ∉ {mldri, mldr}
¬will-invld?-ic(rob) ¬halt

⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−→
MA-IC-H-ceff-𝑤

⟨⟨𝑆, 𝐻 ⟩, 𝑄′⟩

MMA-IC-H-ch-eff = ⟨𝑆MA-IC-H-ch-eff ,−−−−−−−−−−−−−→
MA-IC-H-ch-eff

, 𝐿MA-IC-H-ch-eff⟩

is a transition system. 𝑆MA-IC-H−ch-eff = 𝑆MA-IC-H.

cache-effects

⟨⟨𝑆, 𝐻 ⟩, rob⟩ −−−−−−−−−−−−→
MA-IC-H-ceff-𝑐

∗ ⟨⟨𝑥, 𝐻 ′⟩, ∅⟩

⟨⟨𝑆, 𝐻 ′⟩, rs-f⟩ −−−−−−−−−−−−→
MA-IC-H-ceff-𝑤

∗ ⟨⟨𝑧, 𝐻 ′′⟩, ∅⟩

¬will-invld?-ic(rob) ¬halt
⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−−→

MA-IC-H−ch-eff
⟨𝑆, [ch-eff ↦→ ch-eff𝐻 ′′ ]𝐻 ⟩

hist-lines.

MMA-IC-H-hl-𝑟𝑚 = ⟨𝑆MA-IC-H-hl-𝑟𝑚,−−−−−−−−−−−−→
MA-IC-H-hl-𝑟𝑚

, 𝐿MA-IC-H-hl-𝑟𝑚⟩

is a transition system. 𝑆MA-IC-H-hl-𝑟𝑚 = 𝑆MA-IC-H × RBL∗
IC.

rm-hist-line : RB ×SL∗ → SL∗
is a function that removes any

status line in the given sequence that has the given ROB ID.

rm-hist-line(id, 𝜎) = 𝜋

where for 𝐴 = {𝑖 ∈ dom(𝜎) : sl-rob-id𝜎 (𝑖 ) ≠ id} and 𝜏 such that

𝜏 is a sequence consisting of the elements of 𝐴 in monotonically

increasing order,

⟨∀𝑖 : 𝑖 ∈ dom(𝜏) : 𝜋 (𝑖) = 𝜎 (𝜏 (𝑖))⟩

lines-rm-commit-partial-ldr

𝑄 = rb • rb′ •𝑄 ′

rdyrb ¬rdyrb′ rob-moprb ∈ {mem-check, memi-check}
¬will-invld?-ic(rob) ¬halt

⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−→
MA-IC-H-sc-𝑟𝑚

⟨⟨𝑆, 𝐻 ⟩, ∅⟩

lines-rm-commit-complete-ldr

𝑄 = rb •𝑄 ′ rdyrb
rob-moprb ∈ {ldr, ldri} ¬will-invld?-ic(rob) ¬halt

Let 𝐻 ′ = [hist-lines ↦→ rm-hist-line(prevRB (rob-idrb),
rm-hist-line(rob-idrb,hist-lines))]𝐻
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−→

MA-IC-H-sc-𝑟𝑚
⟨⟨𝑆, 𝐻 ′⟩, 𝑄′⟩

lines-rm-commit-both-ldr

𝑄 = rb • rb′ •𝑄 ′

rdyrb rdyrb′ rob-moprb ∈ {mem-check, memi-check}
¬will-invld?-ic(rob)

¬halt Let 𝐻 ′ = [hist-lines ↦→ rm-hist-line(rob-idrb′ ,
rm-hist-line(rob-idrb,hist-lines))]𝐻
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−→

MA-IC-H-sc-𝑟𝑚
⟨⟨𝑆, 𝐻 ′⟩, 𝑄′⟩

lines-rm-commit-no-invld

𝑄 = rb •𝑄 ′

rdyrb rob-moprb ∉ {mem-check, memi-check, ldr, ldri}
¬will-invld?-ic(rob) ¬halt

Let 𝐻 ′ = [hist-lines ↦→ rm-hist-line(rob-idrb,hist-lines)]𝐻
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−→

MA-IC-H-sc-𝑟𝑚
⟨⟨𝑆, 𝐻 ′⟩, 𝑄′⟩

lines-rm-commit-notrdy

𝑄 = rb •𝑄 ′ ¬rdyrb ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−−→

MA-IC-H-sc-𝑟𝑚
⟨⟨𝑆, 𝐻 ⟩, ∅⟩

MMA-IC-H-hl-𝑤 = ⟨𝑆MA-IC-H-hl-𝑤 ,−−−−−−−−−−−→
MA-IC-H-hl-𝑤

, 𝐿MA-IC-H-hl-𝑤⟩ is a
transition system.

𝑆MA-IC-H-hl-𝑤 = 𝑆MA-IC-H × RBL∗
IC × B.

add-status : S × RB × SL∗ → SL∗
is a function that will add

the given status to the statuses of the status line associated with

the given ROB ID. If no such status line exists, it will be created

and associated with the given ROB ID.

lines-skip-rdy

𝑄 = rb •𝑄 ′

rdyrb skip? ¬will-invld?-ic(rob) ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄, skip?⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑤
⟨⟨𝑆, 𝐻 ⟩, 𝑄′, skip?⟩

lines-wait-first-notrdy

𝑄 = rb •𝑄 ′

¬rdyrb skip? ¬will-invld?-ic(rob) ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄, skip?⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑤
⟨⟨𝑆, 𝐻 ⟩, 𝑄′, false⟩

lines-waiting-rdy

𝑄 = rb •𝑄 ′

rdyrb ¬skip? ¬will-invld?-ic(rob) ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄, skip?⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑤
⟨⟨𝑆, [hist-lines ↦→ add-status(delay, rob-idrb,hist-lines)]𝐻 ⟩, 𝑄′, skip?⟩

lines-waiting-nordy

𝑄 = rb •𝑄 ′

¬rdyrb ¬skip? ¬will-invld?-ic(rob) ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄, skip?⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑤
⟨⟨𝑆, 𝐻 ⟩, 𝑄′, skip?⟩

MMA-IC-H-hl-𝑖 = ⟨𝑆MA-IC-H-hl-𝑖 ,−−−−−−−−−−→
MA-IC-H-hl-𝑖

, 𝐿MA-IC-H-hl-𝑖 ⟩

is a transition system. 𝑆MA-IC-H-hl-𝑖 = 𝑆MA-IC-H×(UIC×RB×(RSI∪
{nil}) × N32)∗.

lines-issue

𝑄 = ⟨𝑢, rb, rsi?, pc⟩ •𝑄 ′ ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−→

MA-IC-H-hl-𝑖
⟨⟨𝑆, [hist-lines ↦→ add-status(fetch pc rsi?, rb,hist-lines)]𝐻 ⟩, 𝑄′⟩

MMA-IC-H-hl-𝑟𝑠 = ⟨𝑆MA-IC-H-hl-𝑟𝑠 ,−−−−−−−−−−−→
MA-IC-H-hl-𝑟𝑠

, 𝐿MA-IC-H-hl-𝑟𝑠 ⟩

is a transition system. 𝑆MA-IC-H-hl-𝑟𝑠 = 𝑆MA-IC-H × RSIC.
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lines-rs-ready-wrb

𝑄 = rs •𝑄 ′ busyrs cpcrs = cyc ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑟𝑠
⟨⟨𝑆, [hist-lines ↦→ add-status(wr-b cache, dstrs,hist-lines)]𝐻 ⟩, 𝑄′⟩

lines-rs-exec-start

𝑄 = rs •𝑄 ′

busyrs qjrs = nil qkrs = nil ¬execrs ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑟𝑠
⟨⟨𝑆, [hist-lines ↦→ add-status(exec, dstrs,hist-lines)]𝐻 ⟩, 𝑄′⟩

lines-rs-exec-continue

𝑄 = rs •𝑄 ′ busyrs execrs cpcrs ≠ cyc ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑟𝑠
⟨⟨𝑆, [hist-lines ↦→ add-status(exec, dstrs,hist-lines)]𝐻 ⟩, 𝑄′⟩

lines-rs-delay

𝑄 = rs •𝑄 ′

busyrs ¬execrs qjrs ≠ nil ∨ qkrs ≠ nil ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑟𝑠
⟨⟨𝑆, [hist-lines ↦→ add-status(delay, dstrs,hist-lines)]𝐻 ⟩, 𝑄′⟩

lines-rs-idle

𝑄 = rs •𝑄 ′ ¬busyrs ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑟𝑠
⟨⟨𝑆, 𝐻 ⟩, 𝑄′⟩

MMA-IC-H-hl-𝑚𝑐 = ⟨𝑆MA-IC-H-hl-𝑚𝑐 ,−−−−−−−−−−−−→
MA-IC-H-hl-𝑚𝑐

, 𝐿MA-IC-H-hl-𝑚𝑐 ⟩
is a transition system.

𝑆MA-IC-H-hl-𝑚𝑐 = 𝑆MA-IC-H.

lines-mem-check-dly

rob = rb • rob′ rdyrb rob-moprb ∈ {mldr, mldri}
¬will-invld?-ic(rob) ¬halt Let 𝐻 ′ = [hist-lines ↦→
add-status(post-comm, prevRB (rob-idrb),hist-lines)]𝐻

⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−→
MA-IC-H-hl-𝑚𝑐

⟨𝑆, 𝐻 ′⟩

lines-mem-check-empty

rob = ∅ ¬halt
⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−→

MA-IC-H-hl-𝑚𝑐
⟨𝑆, 𝐻 ⟩

lines-mem-check-not-rdy-or-ldr

rob = rb • rob′
¬rdyrb ∨ rob-moprb ∉ {mldr, mldri} ∨ will-invld?-ic(rob)

¬halt
⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−→

MA-IC-H-hl-𝑚𝑐
⟨𝑆, 𝐻 ⟩

MMA-IC-H-hl = ⟨𝑆MA-IC-H-hl,−−−−−−−−−→
MA-IC-H-hl

, 𝐿MA-IC-H-hl⟩ is a transition
system. 𝑆MA-IC-H-hl = 𝑆MA-IC-H.

idle-rs-ids : RS∗
IC ⇀ N∗ is a function that finds the indices of idle

RSes in the given sequence of reservation stations. The indices are

in order with respect to the given sequence of reservation stations.

fetch-with-pc : 𝑆MA-IC → (IIC,N32)∗ is a function that fetches

the appropriate number of instructions (based onmax-fetch-n) from

imem, and produces a sequence pairing each instruction with its

PC.

Let 𝜎 = fetch-with-pc(⟨𝑠, ℎ⟩)
⟨∀𝑖 : 𝑖 ∈ {1, ...,max-fetch-n(𝑠)} :

𝜎 (𝑖) = fetchIC (imem, fetch-pc ⊕ (𝑖 − 1))⟩

decode-rs-and-pc : (IIC,N32)∗×RBL∗
IC → (UIC×RB×(RSI∪

{nil}) ×N32))∗ is a function that given a sequence of instructions to

be issued and their PCs, returns the sequence of microinstructions

that will be issued, the ROB ID they will be assigned to, the ID of

the RS (if any) that the microinstruction will be assigned to, and

the associated PC.

lines-no-invld

⟨⟨𝑆, 𝐻 ⟩, rob⟩ −−−−−−−−−−−−→
MA-IC-H-hl-𝑟𝑚

∗ ⟨⟨𝑆 ′, 𝐻 ′⟩, ∅⟩
⟨⟨𝑆 ′, 𝐻 ′⟩, rob⟩ −−−−−−−−−−−→

MA-IC-H-hl-𝑤
∗ ⟨⟨𝑆 ′′, 𝐻 ′′⟩, ∅⟩

Let dec = decode-rs-and-pc(fetch-nIC (imem, pc,max-fetch-n(𝑆)))
⟨⟨𝑆 ′′, 𝐻 ′′⟩, dec⟩ −−−−−−−−−−→

MA-IC-H-hl-𝑖
∗ ⟨⟨𝑆 ′′′, 𝐻 ′′′⟩, ∅⟩

⟨⟨𝑆 ′′′, 𝐻 ′′′⟩, rs-f⟩ −−−−−−−−−−−→
MA-IC-H-hl-𝑟𝑠

∗ ⟨⟨𝑆 ′′′′, 𝐻 ′′′′⟩, ∅⟩
⟨𝑆 ′′′′, 𝐻 ′′′′⟩ −−−−−−−−−−−−→

MA-IC-H-hl-𝑚𝑐
⟨𝑆 ′′′′′, 𝐻 ′′′′′⟩

¬will-invld?-ic(rob) ¬halt
⟨𝑆, 𝐻 ⟩ −−−−−−−−−→

MA-IC-H-hl
⟨𝑆, [hist-lines ↦→ hist-lines𝐻 ′′′′′ ]𝐻 ⟩

start-cy. As can be seen in Section B.5.1, there are three situa-

tions in which the cycle at which the earliest microinstruction in

hist-lines was issued may change: (1) if the sequence of lines is

empty and a microinstruction is issued, (2) if a microinstruction is

committed, and (3) if the MA is invalidated.

sc-rem-rb : RB ×N32 × S∗ → N32 is a function that determines

what the start cycle should be after removing the history line corre-

sponding to the given ROB ID. If the history line to be removed is

the oldest in the history (the first entry) and there are at least two

history lines, the start cycle must be adjusted by the difference in

cycles between the cycle during which the microinstruction corre-

sponding to the first entry was issued and the cycle during which

the microinstruction corresponding to the second entry was issued.

sc-rem-rb(id, cy, 𝜎) =
cy if 𝜎 = ∅
cy if sl-rob-id𝜎 (1) ≠ id
0 if sl-rob-id𝜎 (1) = id ∧ |𝜎 | = 1

cy ⊕ (|statuses𝜎 (1) | ⊖ |statuses𝜎 (2) |) if sl-rob-id𝜎 (1) = id ∧ |𝜎 | > 1

MMA-IC-H-sc-𝑐 = ⟨𝑆MA-IC-H-sc-𝑐 ,−−−−−−−−−−→
MA-IC-H-sc-𝑐

, 𝐿MA-IC-H-sc-𝑐 ⟩

is a transition system. 𝑆MA-IC-H-sc-𝑐 = 𝑆MA-IC-H × RBL∗
IC.

startcyc-commit-invld

𝑄 = rb •𝑄 ′

rdyrb rob-moprb ∈ {mhalt, mjge, mjg} ¬halt
new-start-cyc = sc-rem-rb(rob-idrb, start-cy𝐻 ,hist-lines𝐻 )
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−→

MA-IC-H-sc-𝑐
⟨⟨𝑆, [start-cy ↦→ new-start-cyc]𝐻 ⟩, ∅⟩
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startcyc-commit-no-invld

𝑄 = rb •𝑄 ′

rdyrb rob-moprb ∉ {mhalt, mjge, mjg} ¬halt
new-start-cyc = sc-rem-rb(rob-idrb, start-cy𝐻 ,hist-lines𝐻 )

⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−→
MA-IC-H-sc-𝑐

⟨⟨𝑆, [start-cy ↦→ new-start-cyc]𝐻 ⟩, 𝑄′⟩

startcyc-commit-not-rdy

𝑄 = rb •𝑄 ′ ¬rdyrb ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−→

MA-IC-H-sc-𝑐
⟨⟨𝑆, 𝐻 ⟩, ∅⟩

MMA-IC-H-sc-𝑖 = ⟨𝑆MA-IC-H-sc-𝑖 ,−−−−−−−−−−→
MA-IC-H-sc-𝑖

, 𝐿MA-IC-H-sc-𝑖 ⟩

is a transition system. 𝑆MA-IC-H-sc-𝑖 = 𝑆MA-IC-H × (UIC × RB)∗.

startcyc-issue-empty

𝑄 = ⟨𝑢, rb⟩ •𝑄 ′ hist-lines = ∅ ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−→

MA-IC-H-sc-𝑖
⟨⟨𝑆, [start-cy ↦→ cyc]𝐻 ⟩, 𝑄′⟩

startcyc-issue-nonempty

𝑄 = ⟨𝑢, rb⟩ •𝑄 ′ hist-lines ≠ ∅ ¬halt
⟨⟨𝑆, 𝐻 ⟩, 𝑄⟩ −−−−−−−−−−→

MA-IC-H-sc-𝑖
⟨⟨𝑆, 𝐻 ⟩, 𝑄′⟩

MMA-IC-H-start-cy = ⟨𝑆MA-IC-H-start-cy,−−−−−−−−−−−−−−→
MA-IC-H-start-cy

, 𝐿MA-IC-H-start-cy⟩

is a transition system. 𝑆MA-IC-H−start-cy = 𝑆MA-IC-H.

startcyc-invld

will-invld?-ic(rob) ¬halt
⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−−−−→

MA-IC-H−start-cy
⟨𝑆, [start-cy ↦→ cyc ⊕ 1]𝐻 ⟩

startcyc-no-invld

⟨⟨𝑆, 𝐻 ⟩, rob⟩ −−−−−−−−−−→
MA-IC-H-sc-𝑐

∗ ⟨⟨𝑆 ′, 𝐻 ′⟩, ∅⟩
Let decoded = decode-ic(fetch-nIC (imem, pc,max-fetch-n(𝑆)))

⟨⟨𝑆 ′, 𝐻 ′⟩, decoded, rob)⟩ −−−−−−−−−−→
MA-IC-H-sc-𝑖

∗ ⟨⟨𝑆 ′′, 𝐻 ′′⟩, ∅⟩
¬will-invld?-ic(rob) ¬halt

⟨𝑆, 𝐻 ⟩ −−−−−−−−−−−−−−−→
MA-IC-H−start-cy

⟨𝑆, [start-cy ↦→ start-cy𝐻 ′′ ]𝐻 ⟩

B.6 Formal Semantics of MA-IC-A
B.6.1 Transition System.
MMA-IC-A = ⟨𝑆MA-IC-A, 𝐴MA-IC-A,−−−−−−−→

MA-IC-A
, 𝐿MA-IC-A⟩ is an action la-

beled transition system. 𝑆MA-IC-A = 𝑆MA-IC.

B.6.2 Semantics.
halted

halt

𝑆
∅−−−−−−−→

MA-IC-A
𝑆

stepall

¬halt 𝑆 −−−−−→
MA-IC

𝑆 ′ 𝑎 = auth-actions(𝑆, 𝑆 ′)

𝑆
𝑎−−−−−−−→

MA-IC-A
𝑆 ′

C Meltdown Proof Obligations
We will now describe the proof obligations that arise from using

our notion of correctness for Meltdown onMISA-IC andMMA-IC.

First, we will instantiate the set of entangled states with X =

MA-IC. We use the formal definition from Section 4.2, which re-

quires that we provide MMA-IC-N, MMA-IC-H, step-using-hMA-IC-N,
invlMA-IC, init-hMA-IC and 𝑆 initMA-IC. We briefly discussed MMA-IC-N

and MMA-IC-H above and full definitions can be found in Appen-

dices B.4 and B.5 respectively. The rest of the functions are defined

below.

reset-rs(rs) = [busy ↦→ false, exec ↦→ false]rs

reset-rs-f(𝜎) = 𝜋 such that ⟨∀𝑖 : 𝑖 ∈ dom(𝜎) : 𝜋 (𝑖) = reset-rs(𝜎 (𝑖))⟩

comp-start-cycMA-IC (𝑠, ℎ) =
{
cyc if |hist-lines| = 0

start-cy otherwise

invlMA-IC (𝑠, ℎ) = [
fetch-pc ↦→ pc,
rob ↦→ ∅,
reg-st ↦→ ∅,
rs-f ↦→ reset-rs-f(rs-f)
cache ↦→ comm-cache
cyc ↦→ comp-start-cycMA-IC (𝑠, ℎ)

]𝑠

init-hMA-IC (𝑠) = ⟨cyc𝑠 , cyc𝑠 , ∅, ∅, ∅⟩

𝑆 initMA-IC = {𝑠 ∈𝑆MA-IC : fetch-pc𝑠 = pc𝑠 ∧ rob𝑠 = ∅ ∧ reg-st𝑠 = ∅∧
⟨∀𝑖 : 𝑖 ∈ dom(rs-f) : ¬busyrs-f(𝑖 ) ∧ ¬execrs-f(𝑖 ) ⟩}

steps-to-takeMA-IC-H (⟨𝑠, ℎ⟩) =
{
0 if hist-linesℎ = ∅
cyc𝑠 ⊖ start-cyℎ otherwise

step-using-hMA-IC-N operates by calculating the appropriate val-

ues for 𝑛, comm?, strt? and rs-busy?, and then using the stepall

transition rule forMMA-IC-N with those values.

Let get-h : 𝐻MA-IC ×N32 → (RB ×N32 × S)∗ be a function that

given history information and a cycle, gets a sequence of tuples,

where each tuple describes the status of one of the ROB lines during

the given cycle.

𝑛 can be calculated for a state ⟨𝑠, ℎ⟩ by counting the number of

ROB lines with a fetch status in get-h(ℎ, cyc𝑠 ).
rs-busy? can be calculated for a state ⟨𝑠, ℎ⟩ by computing RSI \

used where used is a set computed by taking all of the fetch sta-
tus in get-h(ℎ, cyc𝑠 ), selecting only those statuses that indicate an

assignment to an RS, and collecting the RS IDs from such statuses.

comm? can be calculated for a state ⟨𝑠, ℎ⟩ by computingRB\used
where used is a set containing all of the ROB IDs in get-h(ℎ, cyc𝑠 ).

strt? can be calculated for a state ⟨𝑠, ℎ⟩ by finding all of the

reservation stations rs in rs-f𝑠 such that busyrs and dstrs is one
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of the ROB IDs that has a exec status in get-h(ℎ, cyc𝑠 ), and then

collecting the rs-id for all such RSes.

Then, we get that:

𝑆entMA-IC-H = {⟨𝑠, ℎ⟩ ∈ 𝑆MA-IC-H, 𝑖 = steps-to-takeMA-IC-H (⟨𝑠, ℎ⟩) :
⟨∃ℎ : ℎ′ ∈ 𝐻 : step-using-h𝑖MA-IC-N (invlX (𝑠, ℎ), ℎ) = ⟨𝑠, ℎ′⟩⟩}

We are claiming thatMISA-IC,MMA-IC,MMA-IC-N andMMA-IC-H

are all TRSes. This means that they must all be well-typed and left-

total, as is required by the definition of a TRS.

From the use of the definition of the set of entangled states, we

now must discharge the following obligations:

⟨∀𝑠,𝑢 : 𝑠,𝑢 ∈ 𝑆MA-IC ∧ 𝑠 −−−−−→
MA-IC

𝑢 : 𝑠 −−−−−−−→
MA-IC-N

𝑢⟩ (24)

MMA-IC-H ∼hist MMA-IC-N where hist is a function such that

⟨∀𝑠, ℎ : ⟨𝑠, ℎ⟩ ∈ 𝑆MA-IC-H : hist(⟨𝑠, ℎ⟩) = 𝑠⟩
(25)

⟨∀𝑠 : 𝑠 ∈ 𝑆 initMA-IC : ⟨𝑠, init-hMA-IC (𝑠)⟩ ∈ 𝑆entMA-IC-H⟩ (26)

⟨∀𝑠 : 𝑠 ∈ 𝑆entMA-IC-H : ⟨∀𝑤 : 𝑠 −−−−−−−→
MA-IC-H

𝑤 : 𝑤 ∈ 𝑆entMA-IC-H⟩⟩ (27)

In addition, our notion of correctness for Meltdown requires that

MMA-G-IC is a witness skipping refinement ofMISA-IC with respect

to our refinementmap r-ic, defined below. This is proved by showing
the existence of a witness skipping relation on the transition system

produced by taking the “disjoint union” of MMA-G-IC and MISA-IC.

Let Mic = ⟨𝑆MA-G-IC ⊎ 𝑆ISA-IC,−−−−−−−→
MA-G-IC

⊎ −−−−−−→
ISA-IC

,L⟩ be this sys-
tem. Let 𝑆ic = 𝑆MA-G-IC ⊎ 𝑆ISA-IC and −→

ic
=−−−−−−−→

MA-G-IC
⊎ −−−−−−→

ISA-IC
. We

instantiate Definition 2.5, providing skip-wit-ic : 𝑆ic×𝑆ic → N\ {0}
for skip-wit, stutter-wit-ic : 𝑆ic × 𝑆ic → N for stutter-wit, run-ic :

𝑆ic×𝑆ic×𝑆ic → 𝑆ic for run, and 𝐵ic ⊆ 𝑆ic×𝑆ic for 𝐵. The obligations
generated are as follows:

⟨∀𝑠 ∈ 𝑆MA-G-IC :: 𝑠𝐵icr-ic.𝑠⟩ (28)

⟨∀𝑤, 𝑠,𝑢 : 𝑠𝐵ic𝑤 ∧ 𝑠 −→
ic

𝑢 : 𝑤 −→
ic

skip-wit-ic(𝑠,𝑢 ) run-ic(𝑤, 𝑠,𝑢)⟩ (29)

∀𝑠,𝑢,𝑤 ∈ 𝑆ic : 𝑠𝐵ic𝑤 ∧ 𝑠 −→
ic

𝑢 :

(𝑢𝐵ic𝑤 ∧ stutter-wit-ic(𝑢,𝑤) < stutter-wit-ic(𝑠,𝑤)) ∨
𝑢𝐵ic (run-ic(𝑤, 𝑠,𝑢))

(30)

Recall that

𝑆ISA-IC : ⟨pc, rf, tsx,halt, imem, dmem, ga, cache⟩
The refinementmap forMMA-G-IC and label function forMISA-IC

are as follows:

r-ic(⟨𝑠, ℎ⟩) = ⟨pc𝑠 , rf𝑠 , tsx𝑠 ,halt𝑠 , imem𝑠 , dmem𝑠 , ga𝑠 , ∅⟩
𝐿ISA-IC (𝑠) = [cache ↦→ ∅]𝑠

We then define 𝐵ic in the following way:

𝐵ic (𝑠,𝑤) ⇐⇒
𝑠 = 𝑤 if 𝑠,𝑤 ∈ 𝑆ISA-IC ∨ 𝑠,𝑤 ∈ 𝑆MA-G-IC

𝐿ISA-IC (𝑠) = 𝐿ISA-IC (r-ic(𝑤)) if 𝑠 ∈ 𝑆ISA-IC ∧𝑤 ∈ 𝑆MA-G-IC

𝐿ISA-IC (r-ic(𝑠)) = 𝐿ISA-IC (𝑤) otherwise

Note that 𝐵ic and the above obligations are stated in a way that

is agnostic of whether the two related states 𝑠 and𝑤 are both from

𝑆MA-G-IC or 𝑆ISA-IC, or whether they are from different systems. For

the sake of brevity, we will only give a short discussion regarding

handling the case where the two states are in the same system:

for all 𝑠,𝑤 ∈ 𝑆ic such that 𝑠 ∈ 𝑆MA-G-IC ∧ 𝑤 ∈ 𝑆MA-G-IC or 𝑠 ∈
𝑆ISA-IC ∧𝑤 ∈ 𝑆ISA-IC, the following hold: skip-wit-ic(𝑠,𝑤) = 1 and

stutter-wit-ic(𝑠,𝑤) = 0.

We now discuss the behavior when the two states are in different

systems. We focus primarily on the case where 𝑠 ∈ 𝑆MA-G-IC and

𝑤 ∈ 𝑆ISA-IC.

We define stutter-wit-ic(𝑠,𝑤) to be a function that returns the

number of steps it will take starting at the state 𝑠 before at least one

instruction is retired. By inspecting the transitions ofMMA-G-IC it

is straightforward to produce a method for computing this value.

skip-wit-ic(𝑠,𝑢) is a function that returns the number of instruc-

tions that are committed in the transition from 𝑠 to𝑢. This is exactly

the number of MISA-IC steps that should be required to match the

behavior of theMMA-G-IC step.

run-ic(𝑤, 𝑠,𝑢) is a function that steps 𝑤 skip-wit-ic(𝑠,𝑢) times,

using 𝑠 and 𝑢 to resolve nondeterminism when there are multiple

successors to theMISA-IC state. The goal is, for each instruction,

ensure that the MISA-IC’s cache prior to executing that instruc-

tion is equivalent to the cache that the MMA-G-IC had when that

instruction was executed. This can be gleaned from the history

information gathered by MMA-G-IC. Once the desired cache state

prior to instruction execution is known, it is possible to choose the

first isa-ic-c transition that is part of an isa-ic transition in such

a way that the desired cache state is achieved prior to instruction

execution. A similar technique can be used to determine what the

state of the cache should be after each instruction is executed, so

the second isa-ic-c transition can be chosen to achieve it.
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