
ar
X

iv
:2

50
6.

17
01

2v
1 

 [
cs

.C
R

] 
 2

0 
Ju

n 
20

25

A NOVEL APPROACH TO DIFFERENTIAL PRIVACY WITH ALPHA
DIVERGENCE

TO APPEAR IN THE 38TH IEEE COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF 2025)

Yifeng Liu
Department of Electrical and Computer Engineering

The University of British Columbia, Vancouver
Vancouver, Canada

lyf666@student.ubc.ca

Zehua Wang*

∗Department of Electrical and Computer Engineering
The University of British Columbia, Vancouver

Vancouver, Canada
zwang@ece.ubc.ca

June 23, 2025

ABSTRACT

As data-driven technologies advance swiftly, maintaining strong privacy measures becomes progres-
sively difficult. Conventional (ϵ, δ)-differential privacy, while prevalent, exhibits limited adaptability
for many applications. To mitigate these constraints, we present alpha differential privacy (ADP),
an innovative privacy framework grounded in alpha divergence, which provides a more flexible
assessment of privacy consumption. This study delineates the theoretical underpinnings of ADP
and contrasts its performance with competing privacy frameworks across many scenarios. Empirical
assessments demonstrate that ADP offers enhanced privacy guarantees in small to moderate itera-
tion contexts, particularly where severe privacy requirements are necessary. The suggested method
markedly improves privacy-preserving methods, providing a flexible solution for contemporary data
analysis issues in a data-centric environment.

1 Introduction

In the modern data-centric age, protecting individual privacy has emerged as a critical issue for researchers, practitioners,
and legislators. Conventional data security techniques frequently fail to maintain an optimal equilibrium between data
utility and personal privacy. Differential privacy, initiated by Dwork et al. [1], has gained importance as a standard for
privacy-preserving data analysis, supported by strong theoretical guarantees.

The fundamental premise of differential privacy is indistinguishability, which guarantees that the results of studies
on datasets differing by one individual are statistically indistinguishable [2]. This essential attribute has enabled the
extensive implementation of differential privacy in multiple fields, such as machine learning, statistical analysis, and
data mining [3], [4], [5]. Despite various follow-up studies [6], [7] focused on enhancing its efficacy, the traditional
(ϵ, δ)-differential privacy framework may still be insufficiently adaptable to meet more nuanced privacy demands or to
effectively reconcile the trade-offs between privacy and utility.

Researchers have been actively seeking privacy frameworks that provide improved privacy estimates to overcome these
limitations. This paper presents alpha differential privacy (ADP), a privacy architecture based on alpha divergence, a
comprehensive set of metrics that assess the dissimilarity across probability distributions [8, 9]. This method provides a
more flexible framework that may be customized for various application scenarios and sensitivity levels. ADP enhances
the traditional differential privacy framework by leveraging the flexibility of alpha divergence, providing a range of
privacy guarantees tailored to particular requirements.

Our research enhances the existing body of knowledge in multiple important aspects: we provide a robust theoretical
framework for ADP, clarify its essential characteristics, and demonstrate its robustness and composability, comparable to
other privacy frameworks. Empirical evaluations indicate that ADP offers significant advantages over several prominent
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privacy frameworks in contexts with a restricted number of iterations or strict privacy requirements, ADP attains a
reduced initial privacy consumption with a decent privacy consumption growth in these contexts, underscoring its
applicability in privacy-preserving data analysis, while also recognizing its limitations in other contexts.

The organization of the subsequent sections of this paper is as follows: Section II outlines differential privacy and
its fundamental principles. Section III examines the relevant literature on differential privacy and divergence metrics.
Section IV provides a formal description of alpha differential privacy and examines its principal properties. Section
V examines the relationship between alpha differential privacy and approximate differential privacy. Section VI
examines diverse mechanisms of alpha differential privacy, including experimental data and analysis that demonstrate its
application and versatility. Section VII provides guidance on how to pick an appropriate α for a given task. Section VIII
presents the simulation settings, results, and an in-depth discussion. Section IX concludes the paper with a summary of
findings and outlines prospective future research directions.

This work aims to advance the theoretical and practical understanding of alpha differential privacy, hence contributing
to the development of more resilient and flexible privacy systems. This guarantees that privacy-preserving data analysis
continues to be a feasible and powerful pursuit in a progressively data-driven world.

2 Differential Privacy and Divergence

Differential privacy (DP) was initially introduced by Dwork et al. [2] and has since established itself as the fundamental
principle of privacy-preserving data analysis. It is a stringent mathematical framework that offers a formal notion of
privacy for data analysis methods. The fundamental concept of differential privacy is to guarantee that the addition or
removal of an individual from a dataset does not substantially influence the results of an algorithm. This inhibits an
assailant from readily deducing any person’s information.

2.1 Pure Differential Privacy

Definition 1 (Pure differential privacy [10]). Let D denote a set of all possible datasets, and let D1, D2 ∈ D be two
datasets that differ by exactly one element, denoted as D1 ∼ D2. A randomized mechanismM that maps datasets to
outputs in some rangeR is said to be pure differential privacy, or ϵ-differential is defined as:

Pr[M(D1) ∈ R] ≤ eϵ Pr[M(D2) ∈ R]. (1)

The parameter ϵ regulates the degree of privacy. The selection of ϵ entails a compromise between privacy preservation
and data utility. Lower values of ϵ enhance privacy guarantees but diminish the usefulness of the mechanismM, while
higher values of ϵ augment the utility of the mechanismM but compromise privacy safeguards. Standard values of ϵ
vary from 0.01 to 1, contingent upon the particular privacy stipulations and objectives of the data analysis.

2.2 Approximate Differential Privacy

Definition 2 (Approximate differential privacy [11]). Let D denote a set of all possible datasets, and let D1, D2 ∈ D
be two datasets that differ by exactly one element, denoted as D1 ∼ D2. A randomized mechanismM that maps
datasets to outputs in some rangeR is said to be approximate differential privacy, or (ϵ, δ)-differential privacy if:

Pr (Pr[M(D1) ∈ R] > eϵ Pr[M(D2) ∈ R]) ≤ δ. (2)

Approximate differential privacy permits a minor failure possibility δ of breaching the privacy promise. This flexibility
enables enhanced utility in data analytic jobs while preserving robust privacy safeguards. Approximate differential
privacy is particularly advantageous in situations where the stringent condition of pure differential privacy (δ = 0) is
excessively limiting.

The inclusion of the δ parameter recognizes that in real-world applications, attaining complete privacy is frequently
unfeasible or impracticable. By allowing a minimal risk of failure, (ϵ, δ)-differential privacy strikes a balance between
privacy and usefulness, rendering it a flexible and extensively utilized privacy framework.

2.3 Sensitivity and Noise Addition

A key concept in designing differential private mechanisms is the sensitivity of a function f , defined as the maximum
change in f ’s output when its input dataset changes by one element.
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Definition 3 (Sensitivity). For a function f : D → Rk, the sensitivity ∆f is defined as:

∆f ≜ sup
D1,D2:D1∼D2

∥f(D1)− f(D2)∥p, (3)

where ∥ · ∥p denotes the ℓp norm. The choice of p varies on the mechanism.

To achieve differential privacy, noise proportional to the sensitivity of the function is added to the output. Common
mechanisms include the Laplace mechanism and the Gaussian mechanism.

2.3.1 Laplace Mechanism

For a function f : D → Rk, the Laplace mechanismML ensures ϵ-differential privacy by adding noise drawn from the
Laplace distribution to the output of the function [1]. Formally, the mechanismML is defined as:

ML(D) ≜ f(D) + Lap(0, b), (4)
where Lap(0, b) denotes the Laplace distribution with mean 0 and scale parameter b.

The Laplace mechanism ensures (ϵ, 0)-differential privacy when:

b =
∆f1
ϵ

(5)

Here, the sensitivity ∆f1 applies ℓ1 norm, which is the sum of the absolute differences between the corresponding
elements of the vectors, this is also called ℓ1 sensitivity.

∆f1 ≜ sup
D1,D2:D1∼D2

∥f(D1)− f(D2)∥1, (6)

2.3.2 Gaussian Mechanism

For a function f : D → Rk, the Gaussian mechanismMG ensures (ϵ, δ)-differential privacy by adding noise drawn
from the Gaussian distribution to the output of the function [11]. Formally, the mechanismMG is defined as:

MG(D) ≜ f(D) +N (0, σ2), (7)
where N (0, σ2) denotes the normal distribution with mean 0 and variance σ2.

The parameter σ is chosen based on ϵ, δ, and ∆f to satisfy (ϵ, δ)-differential privacy:

σ2 =
2 log(1.25/δ)∆f2

2

ϵ
. (8)

Here, the sensitivity ∆f2 of the function f applies ℓ2 norm, this is also called ℓ2 sensitivity.

∆f2 ≜ sup
D1,D2:D1∼D2

∥f(D1)− f(D2)∥2. (9)

The Gaussian mechanism is favoured for employing the ℓ2 norm as its measure of sensitivity. The ℓ2 norm consolidates
the squared differences, which tends to mitigate bigger fluctuations, resulting in a diminished overall sensitivity score.
Therefore, the noise introduced by the Gaussian mechanism is generally less intrusive than the noise necessitated by
systems reliant on ℓ1 sensitivity, such as the Laplace mechanism. Furthermore, the Gaussian distribution’s bell-shaped
curve guarantees that the majority of the added noise is focused around the mean (zero), while the likelihood of extreme
noise values decreases swiftly. This characteristic frequently yields outputs that approximate the actual function value
more closely, enhancing the usefulness of the disseminated data.

2.4 Divergence Measures

Divergence measures are mathematical instruments employed to assess the disparity between probability distributions.
Divergence metrics can be utilized within differential privacy to define and assess the privacy consumption resulting
from a randomized method. Frequently utilized divergence metrics encompass Kullback–Leibler divergence, maximum
divergence, and Rényi divergence.
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Definition 4 (Kullback–Leibler Divergence and Max Divergence). Let P and Q be two probability measures over a
measurable space (X ,F) with property P ≪ Q. By definition, P ≪ Q (absolute continuity of P with respect to Q)
means that for any measurable set A ∈ F , if Q(A) = 0, then P (A) = 0 as well. Throughout this paper, the notation
≪ will consistently refer to absolute continuity. The Kullback–Leibler (KL) divergence from Q to P is defined as:

DKL(P ∥ Q) ≜
∫
X
log

(
dP

dQ

)
dP

= EP

[
log

(
dP

dQ

)]
. (10)

The max divergence is defined as:

D∞(P ∥ Q) ≜ log(ess sup
X

dP

dQ
), (11)

where dP
dQ is the Radon-Nikodym derivative of P with respect to Q, and EP [·] denotes the expectation with respect to

the probability measure P .

It is easy to see that the max divergence defined above is the worst-case analog of the KL divergence and it implies that
the log-ratio of the probabilities is bounded by ϵ, which directly relates to the max divergence:

D∞(M(D) ∥ M(D′)) ≤ ϵ. (12)

Thus, the max divergence provides a useful and intuitive way to understand the worst-case privacy guarantees offered
by a differential privacy mechanism [10].
Definition 5 (Rényi divergence). Let P and Q be two probability measures over a measurable space (X ,F) with
property P ≪ Q.The Rényi divergence of order α between P and Q is defined as:

Dα(P ∥ Q) =
1

α− 1
log

[∫
X

(
dP

dQ

)α

dQ

]
, (13)

for α > 1.

Lemma 1.
lim
α→1

Dα(P ∥ Q) = DKL(P ∥ Q). (14)

lim
α→∞

Dα(P ∥ Q) = D∞(P ∥ Q). (15)

Proof. To prove
lim
α→1

Dα(P ∥ Q) = DKL(P ∥ Q), (16)

define
S(α) =

∫
X
P (x)αQ(x)1−α dx, (17)

and let f(α) = logS(α). Then,

Dα(P ∥ Q) =
f(α)

α− 1
. (18)

Using differentiation under the integral sign:

S′(α) =

∫
X
P (x)αQ(x)1−α(logP (x)− logQ(x)) dx. (19)

At α = 1, we have:
S(1) = 1, S′(1) = DKL(P ∥ Q). (20)

Thus,

f ′(1) =
S′(1)

S(1)
= DKL(P ∥ Q). (21)

4
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Applying L’Hôpital’s rule:

lim
α→1

Dα(P ∥ Q) = lim
α→1

f(α)

α− 1
= f ′(1) = DKL(P ∥ Q). (22)

Now, to prove
lim

α→∞
Dα(P ∥ Q) = D∞(P ∥ Q), (23)

define

I(α) =

∫
X

(
P (x)

Q(x)

)α

Q(x) dx, (24)

such that
Dα(P ∥ Q) =

1

α− 1
log I(α). (25)

Let M = ess supx∈X
P (x)
Q(x) . For any ϵ > 0, define

Eϵ =

{
x ∈ X

∣∣∣∣ P (x)

Q(x)
> M − ϵ

}
, (26)

where Q(Eϵ) > 0 since M is the essential supremum. We obtain the following bounds for I(α):
Lower bound:

I(α) ≥ (M − ϵ)αQ(Eϵ), (27)
Upper bound:

I(α) ≤Mα. (28)
Taking logarithms and dividing by α:

log(M − ϵ) +
1

α
logQ(Eϵ) ≤

log I(α)

α
≤ logM. (29)

As α→∞, 1
α logQ(Eϵ)→ 0, so:

lim
α→∞

log I(α)

α
= logM. (30)

Note that
lim

α→∞

α

α− 1
= 1. (31)

Therefore,

lim
α→∞

Dα(P ∥ Q) = lim
α→∞

1

α− 1
log I(α)

= logM

= D∞(P ∥ Q). (32)

3 Related Work

Given the properties outlined in Lemma 1, Rényi divergence is a natural choice for analyzing and developing new
frameworks for differential privacy.

3.1 Rényi differential privacy

A direct application of Rényi divergence is Rényi Differential Privacy (RDP) [12]. RDP provides a more flexible and
fine-grained privacy analysis compared to traditional differential privacy. A randomized mechanismM : D → R
satisfies (α, ϵ̄)-Rényi differential privacy if, for all adjacent datasets D and D′,

Dα(M(D) ∥ M(D′)) ≤ ϵ̄. (33)

By adjusting α, RDP allows precise control over the privacy-utility trade-off. Different α values provide varying
sensitivity to outliers, enabling tailored privacy guarantees. RDP’s strong composability properties simplify the analysis
of cumulative privacy consumption.

5
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A common instantiation of the Rényi mechanism involves adding Gaussian noise. The parameter σ2
G is chosen to satisfy

(α, ϵ)-RDP. Specifically, σ2
G is calibrated as:

σ2
G =

α∆f2
2

2ϵ̄
. (34)

Additionally, RDP can be converted to (ϵ, δ)-differential privacy, allowing for flexible privacy budget management.
Specifically, given a mechanism that satisfies (α, ϵ̄)-RDP. The parameter ϵ of (ϵ, δ)-differential privacy can be chosen
as:

ϵ = ϵ̄+
log(1/δ)

α− 1
. (35)

3.2 Zero-Concentrated Differential Privacy

Zero-Concentrated Differential Privacy (zCDP) is another refinement leveraging Rényi divergence [13]. A randomized
mechanismM : D → R satisfies ρ-zCDP if for all adjacent datasets D and D′ and for all α ∈ (1,∞):

Dα(M(D) ∥ M(D′)) ≤ ρα. (36)

zCDP simplifies privacy analysis compared to (ϵ̄, δ)-differential privacy. The Gaussian mechanism is a natural fit for
zCDP, where for a function f with ℓ2 sensitivity ∆f2, adding Gaussian noise with variance σ2

G satisfies ρ-zCDP with:

σ2
G =

∆f2
2

2ρ
. (37)

zCDP also can be converted to (ϵ, δ)-differential privacy. Given a mechanism that satisfies (α, ϵ̄)-zCDP. The parameter
ϵ (ϵ, δ)-differential privacy can be chosen as:

ϵ = ρ+ 2
√

ρ log(1/δ). (38)

4 Alpha differential Privacy

Rényi divergence and Zero-Concentrated Differential Privacy offer robust and flexible frameworks for analyzing privacy
consumption in differential privacy mechanisms. Their ability to balance privacy and utility, combined with strong
composability properties, makes them essential tools in the design of privacy-preserving data analysis algorithms.

Inspired by Rényi divergence, this paper aims to explore the connection and practical significance of alpha divergence,
a notable subset of f-divergence closely related to Rényi divergence, within the context of differential privacy [15].

Definition 6 (f -divergence [16]). Given a convex function f : (0,∞)→ R with f(1) = 0, if P ≪ Q, the f -divergence
between two probability measures P and Q over a measure space (X ,F) is defined as:

Df (P ∥ Q) ≜
∫
X
f

(
dP

dQ

)
dQ. (39)

In the context of probability density functions, let λ be the Lebesgue measure, if Q≪ λ, the f -divergence Df (P ∥ Q)
is just defined as:

Df (P ∥ Q) ≜
∫
X
f

 (dPdλ )(
dQ
dλ

)
 dQ

dλ
dλ =

∫
X
f

(
p

q

)
q dλ. (40)

Where p and q are corresponding density functions of P and Q with respect to the Lebesgue measure (A more general
version can be found in [15]).
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Definition 7 (Alpha divergence). Let P and Q be two probability measures over a measure space (X ,F) and λ be the
Lebesgue measure with the property of P ≪ Q≪ λ. Let p and q be the density functions of P and Q with respect to
the Lebesgue measure. The alpha divergence is a special case of f -divergence, generated by the f -function defined on
R \ {0, 1} [14]:

f(u) =
uα − αu− (1− α)

α(α− 1)
, (41)

where u = dP
dQ = p

q , reader can easily check the convexity of f(u).
The alpha divergence can be expressed as:

D̃α(P ∥ Q) ≜
1

α(α− 1)

[∫
X
pαq1−α − αp− (1− α)q dλ

]
=

1

α(α− 1)

[∫
X
pαq1−α dλ− (1− α)− α

]
=

1

α(α− 1)

[∫
X
pαq1−α dλ− 1

]
. (42)

Lemma 2. An f -divergence is always non-negative.

Proof. Let P and Q be two probability measures over a measurable space (X ,F). The f -divergence between P and Q
is given by:

Df (P ∥ Q) =

∫
X
f

(
dP

dQ

)
dQ

= EQ

[
f

(
dP

dQ

)]
. (43)

Since f is a convex function, by Jensen’s inequality, for any random variable X ,

f(E[X]) ≤ E[f(X)]. (44)

Applying this to X = dP
dQ , we get:

f

(
EQ

[
dP

dQ

])
≤ EQ

[
f

(
dP

dQ

)]
. (45)

Given that EQ

[
dP
dQ

]
= 1, it follows:

f(1) = 0 ≤ EQ

[
f

(
dP

dQ

)]
. (46)

Based on the non-negativity property of f -divergence (Lemma 2), we can define alpha differential privacy in a
well-defined manner.

Definition 8 ((α, ϵ)-ADP). A randomized mechanismM : D → R satisfies (α, ϵ)-alpha differential privacy with
α > 1 if, for all adjacent datasets D and D′,

D̃α(M(D) ∥ M(D′)) ≤ ϵ. (47)

Remark 1. Although α in alpha divergence can take any value except 0 and 1, ADP typically considers the case where
α > 1. This restriction is adopted because, in this range, ADP exhibits properties that are particularly advantageous
for practical applications. These beneficial properties will be shown in detail below.
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4.1 Preservation of alpha differential privacy under Post-Processing

Differential privacy methods possess a crucial characteristic which is their capacity to tolerate post-processing, as stated
in the works of [2]. This indicates that if a mechanismM satisfies the criteria for α-differential privacy, then any
additional operations performed on the output ofM will not compromise the privacy safeguards that it provides. Due
to the fact that it ensures that any further analysis or modification of data that has been anonymized by a differential
privacy mechanism will not jeopardize the data’s privacy, this trait is particularly significant in applications that are
used in the real world.

Differential privacy is strong and highly relevant in a wide variety of data analytic workflows as a result of this resilience.
One example of this would be in the field of machine learning, where a model could be trained on differential privacy
data in order to prevent it from memorizing sensitive information. Following the completion of the training process, the
model may undergo a number of evaluations and transformations, including parameter tuning and model compression,
among others. The post-processing property ensures that the privacy protection that was initially provided to the training
data will not be diminished as a result of these actions.

In the following, we present a substantial verification of this property, which demonstrates that ADP maintains its
guarantees even after post-processing has been performed.
Proposition 1 (Data Processing Inequality). ADP is preserved under post-processing.

Proof. The proof follows the approach outlined in Erven’s work [17]. Let P and Q be two probability measures over a
measurable space (X ,F), with P ≪ Q. Let G be the sub-σ-algebra of F generated by a measurable map f . We need
to show that PG and QG , the restrictions of P and Q to G, satisfy

D̃α(PG ∥ QG) ≤ D̃α(P ∥ Q). (48)

To prove this, we need to show that: ∫
X

(
dPG

dQG

)α

dQG ≤
∫
X

(
dP

dQ

)α

dQ. (49)

Recall that the conditional expectation EQ

[
dP
dQ

∣∣∣∣G] is the Radon-Nikodym derivative dPG
dQG

.

dPG

dQG
= EQ

[
dP

dQ

∣∣∣∣G] . (50)

By Jensen’s inequality for the convex function x 7→ xα (since by the definition of ADP, α > 1), we have:∫
X

(
dPG

dQG

)α

dQG =

∫
X

(
dPG

dQG

)α

dQ

=

∫
X

(
E
[
dP

dQ

∣∣∣∣G])α

dQ

≤
∫
X
E
[(

dP

dQ

)α ∣∣∣∣G] dQ
=

∫
X

(
dP

dQ

)α

dQ. (51)

The first line holds since dQG is the restriction of dQ to the sub-σ-algebra G. Hence, we have shown that:

D̃α(PG ∥ QG) ≤ D̃α(P ∥ Q). (52)

This proves that ADP is preserved under post-processing.

4.2 Adaptive composability of alpha differential privacy

The ability of differential privacy methods to be composed is yet another important characteristic of these techniques.
This composability guarantees that the cumulative privacy consumption that arises from numerous applications of
differential privacy techniques may be controlled and regulated in a systematic manner, as stated in the works of [1, 11].
In order to demonstrate the efficacy and adaptability of ADP in comparison to general differential privacy methods, we
will demonstrate that ADP possesses composability qualities that are comparable to those with general mechanisms.

8
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Furthermore, this promise extends to situations in which the next mechanism is picked in an adaptive manner based on
the output of the mechanism that came before it.

In machine learning pipelines, where models are frequently trained in an iterative manner, composability and adaptability
are especially useful. It is possible that differential privacy safeguards will be implemented throughout each iteration.
This will ensure that the model does not overfit the training data and so accidentally disclose sensitive information.
ADP ensures that privacy guarantees are valid during the training process by retaining composability. This provides
strong protection against data leakage and ensures that the training session is successful.
Proposition 2 (Adaptive Sequential Composition). Let mechanisms M1 : D → A and M2 : A × D → B be
(α, ϵ1)-ADP and (α, ϵ2)-ADP mechanisms, respectively. Then the mechanism defined as (X,Y ), where X ∼M1(D)
and Y ∼M2(X,D), satisfies (α, ϵ1 + ϵ2 + α(α− 1)ϵ1ϵ2)-ADP.

Proof. LetM3 : D → A×B be the mechanism obtained by sequentially applyingM1 andM2. Denote the probability
measures induced byM1 on A,M2 given X on B, and the joint probability measure on A × B as PX , PY |X , and
PX,Y , respectively. Similarly, let PX′ , PY ′|X′ , and PX′,Y ′ represent the corresponding probability measures when the
input dataset is D′.
Before proceeding with the calculations, note that PX,Y ≪ PX′,Y ′ holds because PX ≪ PX′ holds (from the ADP
property ofM1) and PY |X ≪ PY ′|X′ holds (from the ADP property ofM2). The product measure PX,Y = PX×PY |X
is therefore absolutely continuous with respect to PX′,Y ′ = PX′ ×PY ′|X′ given that all of the measures here is σ-finite.
Then:

α(α− 1)D̃α(M3(D) ∥ M3(D
′)) + 1

=

∫
A×B

(
dPX,Y

dPX′,Y ′

)α

dPX′,Y ′

=

∫
A×B

(
d(PX × PY |X)

d(PX′ × PY ′|X′)

)α

d(PX′ × PY ′|X′)

=

∫
A

(
dPX

dPX′

)α

dPX′

∫
B

(
dPY |X

dPY ′|X′

)α

dPY ′|X′

≤ (α(α− 1)ϵ1 + 1) (α(α− 1)ϵ2 + 1)

=α(α− 1) (ϵ1 + ϵ2 + α(α− 1)ϵ1ϵ2) + 1, (53)
which proves the claim.

It should be noted that ϵ in alpha-differential privacy is not entirely consistent with the intuitive understanding of the
privacy parameter. Higher values do not necessarily correspond to weaker privacy guarantees. Since the mapping of
parameters in alpha-differential privacy to those in traditional privacy frameworks is not linearly positively correlated.
We will show this in section V.

4.3 Group privacy of alpha differential privacy

An extension of the individual privacy guarantees that are included in differential privacy frameworks is the concept of
group privacy. Group privacy ensures that the privacy of any group of persons is also kept, in contrast to the standard
differential privacy approach, which focuses on safeguarding the privacy of individual entries within a dataset [18]. In
the context of ADP, the concept of group privacy addresses situations in which the adversary may possess auxiliary
information about many persons contained within the dataset. This is of utmost significance in applications that deal
with sensitive data, since it is necessary to safeguard the privacy of subgroups within the data against the possibility of
inference attacks.

Suppose that there is a database in the healthcare industry that contains confidential patient information. In the case of
traditional differential privacy, it is possible to guarantee that the inclusion or exclusion of the data of a single patient
does not significantly impact the outcomes of an analysis. On the other hand, if an adversary is aware that a group of
patients are members of the same family or community, then they could be able to piece together sensitive information
about the group by accessing data that is relevant to that group. Group privacy helps limit this danger by extending
privacy guarantees to groups. This ensures that even if someone has access to additional information, they are unable to
readily jeopardize the privacy of the individuals who are a part of the group.

The ADP that we have described can be extended to safeguard the privacy of groups of varying sizes. This will ensure
that the appropriate level of privacy is provided for a variety of practical contexts, including healthcare, finance, social
sciences, and other areas.

9



A Novel Approach to Differential Privacy with Alpha Divergence ACCEPTED TO CSF 2025

Lemma 3 (Triangle inequality of alpha divergence). Let P , Q, and R be three probability measures defined in a
measurable space (X ,F), where λ is the Lebesgue measure such that λ≪ P ≪ Q≪ R≪ λ. Define Iα(A ∥ B) =

α(α− 1)D̃α(A ∥ B) + 1, where D̃α(A ∥ B) denotes the alpha divergence between the probability measures A and B
for α > 1. Then, the following inequality holds:

Iα(P ∥ Q) ≤ (I2α(P ∥ R))
1
2 (I2α−1(R ∥ Q))

1
2 .

Proof. The proof follows directly from an application of Hölder’s inequality. We begin by expressing Iα(P ∥ Q) in
terms of the Radon-Nikodym derivatives:

Iα(P ∥ Q)

=

∫
X

(
dP

dQ

)α

dQ

=

∫
X

(
dP

dλ

)α(
dR

dλ

) 1
2−α(

dR

dλ

)α− 1
2
(
dQ

dλ

)1−α

dλ. (54)

Applying Hölder’s inequality with exponents p = 2 and q = 2, we obtain:

Iα(P ∥ Q) ≤

(∫
X

(
dP

dλ

)2α(
dR

dλ

)1−2α

dλ

) 1
2

×

(∫
X

(
dR

dλ

)2α−1(
dQ

dλ

)2−2α

dλ

) 1
2

=

(∫
X

(
dP

dR

)2α

dR

) 1
2
(∫

X

(
dR

dQ

)2α−1

dQ

) 1
2

= (I2α(P ∥ R))
1
2 (I2α−1(R ∥ Q))

1
2 . (55)

This completes the proof.

Proposition 3 (Group privacy in ADP). Let M be a mechanism that satisfies (α, ϵ)-ADP with α > 2k. For any
group of 2k + 1 sizes, let D and D′ be two datasets that differ in at most 2k entries. The mechanismM provides(

α
2k
, α(α−1)

α

2k
( α

2k
−1)

ϵ

)
-group privacy for any such pair of datasets D and D′.

Proof. Let D1, D2, and D3 be three datasets such that D1 is adjacent to D2 and D2 is adjacent to D3. Let P , R, and Q
be the probability measures induced byM(D1),M(D2), andM(D3) over the measurable space (X ,F), respectively.
Assume λ is the Lebesgue measure, and suppose the condition λ ≪ P ≪ Q ≪ R ≪ λ is satisfied, as required by
Lemma 3. Let Iα(A ∥ B) = α(α− 1)D̃α(A ∥ B) + 1, as defined in Lemma 3. Under these conditions, we can apply
Lemma 3 to obtain:

Iα(P ∥ Q) ≤ (I2α(P ∥ R))
1
2 (I2α−1(R ∥ Q))

1
2 . (56)

Let’s consider the relationship between I2α−1(R ∥ Q) and I2α(R ∥ Q). We start with the following expression:

I2α−1(R ∥ Q) = EQ

[(
dR

dQ

)2α−1
]

= EQ

[(
dR

dQ

)2α· 2α−1
2α

]
. (57)

By Jensen’s inequality for the concave function f(x) = x
2α−1
2α , we have:

EQ

[(
dR

dQ

)2α· 2α−1
2α

]
≤ I2α(R ∥ Q)

2α−1
2α . (58)
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Then,

Iα(P ∥ Q) ≤ I2α(P ∥ R)
1
2 I2α(R ∥ Q)

2α−1
4α

≤ I2α(P ∥ R), (59)

which implies:

D̃α
2
(P ∥ Q) ≤ α(α− 1)

α
2

(
α
2 − 1

)D̃α(P ∥ R)

=
α(α− 1)
α
2

(
α
2 − 1

)ϵ. (60)

Now, let D1 and D3 be two datasets differing in at most 2k entries, where P and Q are the probability measures induced
byM(D1) andM(D3), respectively. We maintain similar settings as before. By induction, we have:

D̃ α

2k
(P ∥ Q)

≤
α

2k−1

(
α

2k−1 − 1
)

α
2k

(
α
2k
− 1
) ·

α
2k−2

(
α

2k−2 − 1
)

α
2k−1

(
α

2k−1 − 1
) · · · α(α− 1)

α
2

(
α
2 − 1

)ϵ
=

k−1∏
i=0

α
2i

(
α
2i − 1

)
α

2i+1

(
α

2i+1 − 1
)ϵ

=
α(α− 1)
α
2k

(
α
2k
− 1
)ϵ, (61)

which proves the claim.

Remark 2. It is worth noting that maintaining a fixed α while extending ADP to group privacy appears to be infeasible
under the constraints of not assuming any specific distribution. Therefore, we must adjust α by dividing it by 2k to get
the bound of group privacy.

Remark 3. Regarding the absolute continuity chain λ≪ P ≪ Q≪ R≪ λ, it is good to know that many commonly
used differential privacy mechanisms, such as the Laplace and Gaussian mechanisms, satisfy this requirement. These
mechanisms induce probability measures with well-defined Radon-Nikodym derivatives with respect to the Lebesgue
measure λ (e.g., the Laplace and Gaussian densities), thereby ensuring absolute continuity. Additionally, these
measures are mutually absolutely continuous because the mechanisms generate overlapping supports and assign
nonzero probability density to the same regions of the space.

5 ADP and (ϵ, δ)-DP

The relationship between alpha differential privacy (ADP) and approximate differential privacy ((ϵ, δ)-DP) is an
important aspect of privacy analysis. By adjusting the parameters α and ϵ, ADP offers a flexible approach to privacy
guarantees. This flexibility allows us to map the guarantees of ADP to the (ϵ, δ) framework, thereby connecting these
two important privacy models.

Proposition 4 (Relationship between ADP and (ϵ, δ)-DP). IfM is an (α, ϵ)-ADP mechanism, then it also satisfies

(ϵ̄, δ)-DP with δ ∈ (0, 1), where ϵ̄ ≥
log

(
eϵα(α−1)+1

δ

)
α−1 .

Proof. Let P and Q be the probability measures induced byM(D) andM(D′), respectively, over a measurable space
(X ,F). We have: ∫

X

(
dP

dQ

)α

dQ =EQ

[(
dP

dQ

)α]
=EP

[(
dP

dQ

)α−1
]

≤α(α− 1)ϵ+ 1. (62)
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By Markov’s inequality, we restrain:

Pr

[
dP

dQ
> eϵ̄

]
= Pr

[(
dP

dQ

)α−1

≥ eϵ̄(α−1)

]

≤
E
[(

dP
dQ

)α−1
]

eϵ̄(α−1)

≤ α(α− 1)ϵ+ 1

eϵ̄(α−1)

≤ δ, (63)
which implies

ϵ̄ ≥
log
(

eϵα(α−1)+1
δ

)
α− 1

. (64)

This completes the proof.

From the equation above, it is evident that in comparison to the parameter ϵ, the approximate privacy guarantee
corresponding to ADP is more constrained by the value of α. Specifically, a larger α value tends to result in a more
stringent approximate differential privacy guarantee.

In Section VII, we will conduct a detailed comparison of the privacy accumulation for various differential privacy.

6 Various Mechanisms of ADP

In this section, we explore three widely used mechanisms—Randomized response, Laplace, and Gaussian—and
demonstrate how they can be adapted to the framework of alpha differential privacy (ADP). Each mechanism offers
unique advantages and can be leveraged effectively depending on the specific requirements of a given privacy-preserving
application.

6.1 Randomized response mechanism

The randomized response mechanism is frequently employed in privacy-preserving surveys and questionnaires. It
incorporates randomization into responses to guarantee plausible deniability, complicating the identification of an
individual’s authentic response.

The mechanismMR(f) for a predicate f : D → {0, 1} is defined as follows:

MR(f(D)) =

{
f(D) with probability p

1− f(D) with probability 1− p
(65)

Here, probability p controls the amount of noise introduced into the mechanism.
Proposition 5 (Randomized response mechanism and ADP). IfMR is a randomized response mechanism, it satisfies(
α, 1

α(α−1)

(
pα(1− p)1−α + (1− p)αp1−α − 1

))
-ADP.

Proof. Without loss of generality, we assume that f(D) = 1 and the worst-case response generated by D′ is f(D′) = 0.
Using the definition of the randomized response mechanism, the probability distributions for D and D′ are:

Pr(MR(f(D)) = 1) = p, Pr(MR(f(D)) = 0) = 1− p,

Pr(MR(f(D
′)) = 1) = 1− p, Pr(MR(f(D

′)) = 0) = p. (66)
Therefore,

D̃α(MR(f(D))∥MR(f(D
′)))

=
1

α(α− 1)

∑
{0,1}

pαq1−α − 1


=

1

α(α− 1)

(
pα(1− p)1−α + (1− p)αp1−α − 1

)
. (67)
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Figure 1: privacy consumption of the randomized response mechanism under different probabilities p, with the
horizontal axis representing the value of α and the vertical axis indicating the privacy consumption (ϵ). The solid line
represents the privacy consumption evaluated by ADP for a failure probability of δ = 1e-5 across varying values of α,
while the dashed line shows the privacy consumption as assessed by the traditional ϵ-differential privacy framework.

The randomized response mechanism stands out for its simplicity and applicability to categorical data, particularly in
scenarios where the data consists of binary or discrete attributes. By flipping the result of a predicate with a certain
probability, Randomized Response offers a straightforward yet effective way to ensure privacy while maintaining the
utility of individual query results. As illustrated in Figure 1, when ADP is used to evaluate privacy consumption of
the randomized response mechanism, increasing the value of α causes the evaluation results to converge with those of
the traditional privacy framework, which means this mechanism can be tightly integrated into the ADP framework,
achieving a privacy-utility trade-off that through the choice of α.

6.2 Laplace mechanism

Recall that the definition of Laplace mechanism defined in II is:

ML(D) ≜ f(D) + Lap(0, b), (68)

with ℓ1 sensitivity.

Proposition 6 (Laplace mechanism and ADP). IfML is a Laplace mechanism, with sensitivity ∆f1 and scale b, it

satisfies
(
α,

exp( (α−1)µ
b )

(α−1)(2α−1) +
exp(−αµ

b )
α(2α−1) −

1
α(α−1)

)
-ADP.

Proof. Without loss of generality, assume the distribution ofML(D) is Lap(0, b), the distributionML(D
′) generated

by D’s adjacent dataset D′ is Lap(µ, b). Notice that the Laplace distribution is symmetrical. Thus, we can assume
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µ > 0, we have:

D̃α(ML(D)∥ML(D
′))

=
1

α(α− 1)

1

2b

(∫ 0

−∞
exp

(
x− µ

b

)
dx

+

∫ µ

0

exp

(
αx− µ

b

)
dx

+

∫ +∞

µ

exp

(
−αx+ µ

b

)
dx

)
− 1

=
1

α(α− 1)

1

2b

(
b exp

(
(α− 1)µ

b

)
+

b

2α− 1

(
exp

(
(α− 1)µ

b

)
− exp

(
−αµ

b

))
+ b exp

(
−αµ

b

))
− 1

=
exp

(
(α−1)µ

b

)
(α− 1)(2α− 1)

+
exp

(
−αµ

b

)
α(2α− 1)

− 1

α(α− 1)
. (69)

For the multivariate Laplace mechanism, assume µ ∈ Rd, it is immediate that:

D̃α(ML(D)∥ML(D
′))

=
exp

(
(α−1)∥µ∥1

b

)
(α− 1)(2α− 1)

+
exp

(
−α∥µ∥1

b

)
α(2α− 1)

− 1

α(α− 1)
. (70)

We know that ∆f1 is an ℓ1 sensitivity. Therefore, we have:

∆f1 = ∥µ− 0∥1 = ∥µ∥1. (71)

This proves the claim.

Figure 2: privacy consumption of the Laplace mechanism under different scales b and a fixed sensitivity ∆f1 = 1, with
the horizontal axis representing the value of α and the vertical axis indicating the privacy consumption (ϵ). The solid
line represents the privacy consumption evaluated by ADP for a failure probability of δ = 1e-5 across varying values of
α, while the dashed line shows the privacy consumption as assessed by the traditional ϵ-differential privacy framework.

For the Laplace mechanism, the trend in privacy consumption (Figure 2) closely mirrors that of the randomized response
mechanism. As the value of alpha increases, the privacy consumption gradually converges to the results predicted by
the traditional differential privacy framework.
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6.3 Gaussian Mechanism

Recall that the definition of Gaussian mechanism defined in II is:

MG(D) ≜ f(D) +N (0, σ2
G), (72)

with ℓ2 sensitivity.
Proposition 7 (Gaussian mechanism and ADP). IfMG is a Gaussian mechanism, with sensitivity ∆f2 and variance
σ2
G, it satisfies

(
α, 1

α(α−1)

(
exp

(
(α2−α)∆f2

2

2σ2
G

)
− 1
))

-ADP.

Proof. Similar to the proof of the Laplace mechanism. Without loss of generality, assume the distribution ofMG(D)
is N (0, σ2

G), the distribution ofMG(D
′) generated by D’s adjacent dataset D′ is N (µ, σ2

G). Hence, we have:

D̃α(MG(D)∥MG(D
′))

=
1

α(α− 1)

∫ +∞

−∞

exp
(

−αx2−(1−α)(x−µ)2

2σ2
G

)
σG

√
2π

− 1

=
1

α(α− 1)

(
exp

(
(α2 − α)µ2

2σ2
G

)
− 1

)
. (73)

For the multivariate Gaussian mechanism, assume µ ∈ Rd, then, the distribution of MG(D) is N (0, σ2
GId), the

distribution ofMG(D
′) is N (µ, σ2

GId), it is immediate that:

D̃α(MG(D)∥MG(D
′))

=
1

α(α− 1)

(
exp

(
(α2 − α)∥µ∥22

2σ2
G

)
− 1

)
. (74)

We know that ∆f2 is an ℓ2 sensitivity. Therefore, we have:

∆f2
2 = ∥µ− 0∥22 = ∥µ∥22. (75)

This proves the claim.

Corollary 1. A Gaussian mechanism with variance α(α−1)∆f2
2

2 log (α(α−1)ϵ+1) satisfies (α, ϵ)-ADP

Proof. The proof is immediate from Proposition 7.

Under the ADP framework, the privacy consumption trend of the Gaussian mechanism displays a unique pattern in
contrast to the preceding two mechanisms. Figure 3 demonstrates that the privacy consumption initially exhibits a
convergence pattern as the amount of α increases, closely aligning with the privacy bounds anticipated by conventional
differential privacy. This convergence is transient; once reaching a specific threshold, the privacy consumption diverges
from the standard of traditional differential privacy. This trend is especially pronounced when the variance parameter
σG is minimal (e.g., σG = 1), as the privacy consumption under ADP markedly surpasses that of the conventional
framework with increasing α. This non-monotonic behaviour underscores the intricate relationship between α and
privacy assurances in ADP, indicating that the selection of an optimal α necessitates meticulous evaluation, as an
inappropriate choice may lead to greater cumulative privacy consumption than conventional privacy methods.

The strength of the ADP framework does not lie in evaluating privacy consumption for a single query. Instead, its real
advantage lies in providing an effective upper bound estimation for the cumulative privacy consumption across multiple
iterations, which will be analyzed in detail in Section VIII.

7 Guidance on Choosing α

In actual applications that require multiple iterations. A carefully chosen α ensures the privacy budget is utilized
efficiently, minimizing the cumulative privacy loss. This section takes the Gaussian mechanism as an example to show
how to select the optimal α.

Figure 4 illustrates the relationship between the cumulative privacy consumption of a Gaussian mechanism over 1000
iterations and α. The privacy consumption function exhibits a convex-like behaviour: for small values of α, privacy
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Figure 3: privacy consumption of the Gaussian mechanism under different standard deviation σG and a fixed sensitivity
∆f2 = 1, with the horizontal axis representing the value of α and the vertical axis indicating the privacy consumption (ϵ).
The solid line represents the privacy consumption evaluated by ADP for a failure probability of δ = 1e-5 across varying
values of α, while the dashed line shows the privacy consumption as assessed by the traditional (ϵ, δ)−differential
privacy framework.

Figure 4: Cumulative privacy consumption (ϵ) of the Gaussian mechanism over 1000 iterations under varying required
standard deviations, with a required failure rate of δ =1e-5 and a required sensitivity of ∆f2 = 1. The horizontal axis
represents the value of α, while the vertical axis indicates the cumulative privacy consumption (ϵ).

consumption decreases rapidly as α increases, reaching a minimum within an optimal range. Beyond this range, further
increases in α result in a gradual rise in privacy consumption. Notably, this trend closely resembles that of a single
query using the Gaussian mechanism, as depicted in Figure 3.

Similar to α in Rényi Differential Privacy, α in ADP is dynamically determined based on user-defined constraints.
Algorithm 1 demonstrates a scenario on how to determine the optimal α to minimize cumulative privacy consumption
based on user-defined constraints, including the failure probability, total number of iterations, standard deviation, and
sensitivity. In this algorithm, α is dynamically selected to minimize cumulative privacy consumption under specific
requirements.

For scenarios where users have different requirements—such as minimizing the standard deviation of the Gaussian
mechanism to enhance data utility—a similar algorithm can be employed (Algorithm 2). By leveraging the specified
failure probability, total iterations, sensitivity, and an upper bound on the overall privacy consumption, the optimal α
and its corresponding standard deviation can be effectively determined. As shown in Figure 5.

In conclusion, our empirical results show that, over multiple iterations, the relationship between α and other privacy
parameters is non-monotonic, instead exhibiting a behaviour that resembles convexity. This means that excessively
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Algorithm 1 Find Alpha that Minimizes Privacy Consumption for Gaussian Mechanism
Input: Number of iterations ℓ, Standard deviation σG, Failure probability δ, Sensitivity ∆f2
Output: Minimum privacy consumption ϵmin and optimal alpha α∗

1: Initialize ϵmin ←∞, α∗ ← 2
2: // E.g. we can take α from 2 to 100
3: for α in a suitable range do
4: Compute the ADP privacy consumption for a single query.
5: ϵ← 1

α(α−1)

(
exp

(
(α2−α)∆f2

2

2σ2
G

)
− 1
)

6: Compute the cumulative ADP privacy consumption for ℓ iterations.
7: ϵnew ← 0
8: for i = 1 to ℓ do
9: Update ϵnew ← ϵnew + ϵ+ α(α− 1) · ϵ · ϵnew

10: end for
11: Convert ADP privacy consumption to traditional privacy consumption.
12: ϵtemp ← log(ϵnew·α(α−1)+1)

δ(α−1)

13: if ϵtemp < ϵmin then
14: Update ϵmin ← ϵtemp, α∗ ← α
15: end if
16: end for
17: Return ϵmin, α∗

Algorithm 2 Find Alpha that Minimizes Standard Deviation for Gaussian Mechanism
Input: Number of iterations ℓ, Privacy consumption bound ϵbound, Failure probability δ, Sensitivity ∆f2
Output: Minimum standard deviation σmin and optimal alpha α∗

1: Initialize α∗ ← 2, σmin ←∞
2: // E.g. we can take α from 2 to 100
3: for α in a suitable range do
4: // E.g. we can take σG from 1 to 500
5: for σG in a suitable range do
6: if σG ≥ σmin then
7: break
8: end if
9: Compute the ADP privacy consumption for a single query.

10: ϵ← 1
α(α−1)

(
exp

(
(α2−α)∆f2

2

2σ2
G

)
− 1
)

11: Compute the cumulative ADP privacy consumption for ℓ iterations.
12: ϵnew ← 0
13: for i = 1 to ℓ do
14: Update ϵnew ← ϵnew + ϵ+ α(α− 1) · ϵ · ϵnew
15: end for
16: Convert ADP privacy consumption to traditional privacy consumption.
17: ϵtemp ← log(ϵnew·α(α−1)+1)

δ(α−1)

18: if ϵtemp < ϵbound then
19: Update σmin ← σG, α∗ ← α
20: break
21: end if
22: end for
23: end for
24: Return σmin, α∗
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high or low values of α can adversely impact the dependent privacy parameters, thereby affecting overall performance.
This highlights the necessity of dynamically selecting α based on specific constraints to optimize privacy requirements
or data utility. Our simulations indicate that evaluating a small range of α values—typically between 2 and 300—is
generally sufficient to identify the optimal choice.

Figure 5: Optimal standard deviation (σG) of the Gaussian mechanism over 1000 iterations under varying required
upper bounds of cumulative privacy consumption, with a required failure rate of δ = 1e-5 and a required sensitivity of
∆f2 = 1. The horizontal axis represents the value of α, while the vertical axis indicates the standard deviation (σG).

8 Simulation and Discussion

In this section, we conduct simulations to explore the privacy consumption of different differential privacy frameworks,
including alpha differential privacy (ADP), Rényi Differential Privacy (RDP), Zero-Concentrated Differential Privacy
(zCDP), and the Advanced Composition (Adv.) theorem [19] under different iteration scenarios. This section is further
divided into three parts: the simulation settings, the obtained results, and a detailed discussion of the observed trends.

8.1 Simulation Settings

Our simulations concentrate on the privacy consumption of the Gaussian mechanism, which is extensively employed
in numerous differential privacy applications owing to its advantageous characteristics, especially in maintaining the
utility of processed data. We choose the results generated by Gaussian as the basis for comparison to ensure that the
results reflect real-world settings where different privacy approaches are often adopted. The simulations adjust the
number of iterations and the failure probability δ, to compare the performance of each mechanism under different
conditions, ranging from a minimum to a wide range of iterations and varying δ values. We also establish the variance
parameter σG at various levels (σG = 10, 50, 100) to assess the sensitivity of each privacy framework to this variable.
For alpha differential privacy (ADP) and Rényi differential privacy (RDP), we demonstrate the results under their
optimal parameter choice for α, providing an evaluation of their performance when optimally configured. It should be
noted that for the curves of Adv., δ represents the overall δ after applying the advanced composition theorem.

For Figure 6, the ϵ values for a single query under the ADP framework are 5.00e-5, 5.05e-5, and 5.24e-5, respectively.
Similarly, for Figure 7, the ϵ values for a single query under ADP are 5.29e-5, 5.19e-5, and 5.12e-5, respectively. For
Figure 8, the ϵ values for a single query under ADP are 5.02e-3, 2.01e-4, and 5.04e-5, respectively. It is important to
emphasize that these ϵ values represent the privacy parameter ϵ defined within the ADP frameworks, rather than the
privacy consumption in the traditional (ϵ, δ)-differential privacy framework mentioned earlier. These data are provided
here for the readers’ reference.

8.2 Simulation Results

Our simulation results are shown in Figures 6, 7, and 8, which compare the privacy consumption of different differential
privacy mechanisms, including ADP, RDP, zCDP, and Advanced Composition, in detail. These figures aim to illustrate
the effectiveness of each privacy framework under varying conditions, such as different numbers of iterations and
different values of the failure probability δ. In these figures, the horizontal axis represents the number of iterations, while
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the vertical axis shows the corresponding privacy consumption. This visualization allows for a detailed comparison of
how each mechanism performs in terms of cumulative privacy consumption over multiple iterations.

Figure 6 shows the privacy consumption trends of different mechanisms under three different δ values (1e-5, 1e-10, and
1e-15) with a small number of iterations. The main observation is that although the privacy consumption of both ADP
and RDP estimates shows a linear growth, the lower intercept of ADP shows that it provides a stronger initial privacy
estimate.

Figure 7 shows the privacy consumption when the number of iterations is relatively large, where δ is set to 1e-5. Here,
we observe the performance difference between ADP and other frameworks as the number of iterations increases.
While ADP starts with a relatively lower privacy consumption, it has a steeper slope compared to RDP, increasing the
cumulative privacy consumption as the number of iterations increases.

Figure 6: Comparison of cumulative privacy consumption between alpha differential privacy and other mainstream
differential privacy frameworks for the Gaussian mechanism under small iterations, with a fixed standard deviation
σG = 100 and a fixed sensitivity ∆f2 = 1. The horizontal axis represents the number of iterations, and the vertical axis
represents the corresponding privacy consumption (ϵ). The blue line represents the advanced composition of differential
privacy, the red line represents Rényi differential privacy, the green line represents zero-concentrated differential privacy,
and the purple line represents alpha differential privacy. The results are shown for three different values of the failure
probability: δ =1e-5, δ =1e-10, and δ =1e-15. For ADP, the selected α values to minimize cumulative privacy
consumption are 136, 152, and 164, respectively, while for RDP, the corresponding α values are 69, 97, and 119.

Figure 8 provides the privacy consumption under strict failure probability requirements (δ =1e-25). In this case, ADP
maintains a clear advantage over RDP regarding the increasing slope of the privacy consumption curve, indicating that
its cumulative privacy consumption grows slower than RDP as δ becomes smaller.

Figures 6, 7, and 8 illustrate that although zCDP initially exhibits a higher growth rate of privacy consumption, its
logarithmic growth becomes favourable over a wide range of iterative scenarios.

Each figure also highlights the consistent behaviour of the advanced combination mechanism, which shows higher
privacy consumption in all scenarios compared to ADP, RDP, and zCDP.

8.3 Discussion

One of the key observations from the results is the behaviour of ADP versus RDP under small iterations. Figure
6 illustrates that both ADP and RDP demonstrate linear growth in privacy consumption. Nonetheless, ADP has a
continually lower intercept, signifying a diminished initial privacy consumption. This attribute indicates that ADP
is very efficient in situations necessitating a limited number of repeats, hence providing enhanced initial privacy
assurances relative to RDP. However, this initial benefit gradually diminishes as the number of iterations increases,
with ADP having a higher growth rate of privacy consumption than RDP, ultimately leading to a larger cumulative
privacy consumption over a large number of iterations. This trade-off must be meticulously evaluated when choosing a
differential privacy method, especially for applications that entail repetitive queries.

Another important finding in the results is related to zCDP. As the number of iterations increases, its logarithmic growth
rate under the combination becomes increasingly favourable. The continued decline in the growth rate of zCDP with
increasing iterations allows it to remain stable across various privacy settings. Despite the high initial growth rate of
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Figure 7: Comparison of cumulative privacy consumption between alpha differential privacy and other mainstream
differential privacy frameworks for the Gaussian mechanism under relatively large iterations, with a fixed standard
deviation σG = 100 and a fixed sensitivity ∆f2 = 1. The horizontal axis represents the number of iterations, and the
vertical axis represents the corresponding privacy consumption (ϵ). The blue line represents the advanced composition
of differential privacy, the red line represents Rényi differential privacy, the green line represents zero-concentrated
differential privacy, and the purple line represents alpha differential privacy. The results are shown for three different
values of the failure probability δ =1e-5, δ =1e-10, and δ =1e-15. For ADP, the selected α values to minimize
cumulative privacy consumption are 13, 64, and 127, respectively, while for RDP, the corresponding α values are 6, 25,
and 49.

Figure 8: Comparison of cumulative privacy consumption between alpha differential privacy and other mainstream
differential privacy frameworks for the Gaussian mechanism under relatively large iterations, with a fixed failure
probability δ =1e-25 and a fixed sensitivity ∆f2 = 1. The horizontal axis represents the number of iterations, and the
vertical axis represents the corresponding privacy consumption (ϵ). The blue line represents the advanced composition
of differential privacy, the red line represents Rényi differential privacy, the green line represents zero-concentrated
differential privacy, and the purple line represents alpha differential privacy. The results are shown for three different
values of the standard deviation σG = 10, σG = 50, and σG = 100. For ADP, the selected α values to minimize
cumulative privacy consumption are 14, 67, and 133, respectively, while for RDP, the corresponding α values are 7, 32,
and 63.
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privacy consumption, zCDP is well suited for situations where data needs to be accessed frequently or for long-term
continuous analysis, where managing the cumulative privacy consumption is essential.

The findings also underscore a notable aspect of ADP under rigorous δ criteria, as illustrated in Figure 8. With a tight
failure probability promise (δ = 1e-25), the slope of the privacy consumption curve for ADP increases at a slower
rate than that of RDP, indicating that ADP is especially appropriate for situations necessitating exceptionally rigorous
privacy assurances. This attribute renders ADP beneficial for applications dealing with extremely sensitive data, where
minimizing privacy consumption during repeated accesses is essential.

In contrast, the advanced composition framework, indicated by the blue line in all figures, consistently demonstrates the
largest privacy consumption in every scenario. This persistently elevated expense constrains its applicability in contexts
where reducing privacy consumption is a primary goal. The advanced composition approach may remain relevant
in situations when simpler privacy accounting is favoured and computing speed is emphasized over the reduction of
cumulative privacy consumption.

Observations above demonstrate that ADP exhibits compelling advantages in practical scenarios characterized by
small to moderate iterations and stringent failure probability requirements (δ). These conditions are particularly
prevalent in highly sensitive domains such as healthcare and finance, where robust privacy guarantees are imperative.
In healthcare applications, particularly electronic health record (EHR) analysis, privacy regulations such as Health
Insurance Portability and Accountability Act (HIPAA) mandate extraordinarily stringent privacy safeguards. Typical
scenarios involve constrained query patterns (approximately less than 100 iterations) with extremely low failure
probabilities (e.g., δ = 1e-15 or smaller) to protect sensitive patient information. In such cases, ADP enables dynamic
selection of α to minimize cumulative privacy consumption while meeting the given constraints. Our empirical analysis,
as illustrated in Figure 6, demonstrates that with δ = 1e-15 and 50 iterations, ADP achieves approximately 20%
reduction in cumulative privacy consumption compared to existing frameworks like RDP and zCDP by determining an
optimal α.

The advantages of ADP extend similarly to financial applications, where protecting sensitive financial data (e.g.,
account transactions, credit histories, investment portfolios) is crucial. In scenarios such as credit risk assessment
and fraud detection systems, which typically require 50 to 200 iterations, ADP’s adaptive framework demonstrates
superior performance. As evidenced in Figure 8, under the extreme constraint of failure probability (δ = 1e-25), ADP
outperforms other privacy frameworks in minimizing cumulative privacy consumption. These scenarios highlight the
practical significance of ADP in real-world applications.

9 Conclusion and Future Work

This section concludes the findings of our research and outlines potential directions for future work.

9.1 Conclusion

The results of this study demonstrate that alpha differential privacy (ADP) is particularly appropriate for applications
with small to moderate iterations, especially in settings where the failure probability needs to be strictly limited. Alpha
divergence provides ADP with the necessary flexibility to fine-tune privacy consumption while achieving a customized
balance between privacy and utility. In the small iteration setting, ADP has a unique advantage in that it can evaluate
the initial privacy consumption more strictly than other privacy frameworks. This feature is particularly advantageous
in privacy-sensitive applications where low privacy consumption in small iterations and failure probability are essential,
such as in healthcare or financial analytics.

In instances with high iteration counts, the performance of ADP requires careful evaluation due to the relatively large
growth rate of privacy consumption. Simulation results show that the total privacy consumption under ADP can become
significant as the number of iterations increases, especially when the failure probability δ is less restricted. Therefore,
although ADP offers specific advantages in the initial stage, its overall privacy cost may exceed that of other differential
privacy frameworks such as Rényi Differential Privacy (RDP) or zero-concentrated differential privacy (zCDP) during
long-term iterations. Practitioners must carefully evaluate the iteration requirements and privacy constraints of their
specific applications before choosing ADP as a privacy framework.

ADP offers a promising enhancement to conventional differential privacy models, providing refined privacy assurances
that can be adjusted to satisfy particular needs. Nonetheless, its constraints in extensive iteration scenarios underscore
the necessity of evaluating context-specific criteria while selecting among various privacy frameworks. Evaluating
ADP’s early advantages alongside its possible disadvantages over extended durations is a crucial factor in its effective
application.
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9.2 Future Work

Future research could focus on advancing the practical applications of ADP to enhance its robustness and adaptability
in diverse privacy-preserving contexts. Expanding ADP beyond the Gaussian mechanism to include other mechanisms
like the Laplace and Exponential mechanisms may provide insights into its flexibility across different data distributions
and queries, reinforcing its role as a versatile privacy framework.

Evaluating ADP in practical settings such as healthcare, and finance will be crucial to determining its real-world
utility and assessing how its theoretical benefits translate into practice. Understanding its performance amidst data
heterogeneity, dynamic updates, and varying privacy requirements will be key to optimizing its deployment.

Moreover, integrating ADP into machine learning and deep learning systems could open up new possibilities for
privacy-preserving models. This research could explore how ADP can be effectively incorporated into federated
learning or privacy-preserving optimization while ensuring model accuracy and managing privacy consumption over
multiple training iterations.
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