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ABSTRACT

Cyber Threat Intelligence (CTI) parsing aims to extract key threat information from massive data,
transform it into actionable intelligence, enhance threat detection and defense efficiency, including
attack graph construction, intelligence fusion and indicator extraction. Among these research topics,
Attack Graph Construction (AGC) is essential for visualizing and understanding the potential attack
paths of threat events from CTI reports. Existing approaches primarily construct the attack graphs
purely from the textual data to reveal the logical threat relationships between entities within the
attack behavioral sequence. However, they typically overlook the specific threat information inherent
in visual modalities, which preserves the key threat details from inherently-multimodal CTI report.
Inspired by the remarkable multimodality understanding capabilities of Multimodal Large Language
Models (MLLMs), we explore its potential in enhancing multimodal attack graph construction.
To be specific, we propose a novel framework, MM-AttacKG, which can effectively extract key
information from threat images and integrate it into attack graph construction, thereby enhancing the
comprehensiveness and accuracy of attack graphs. It first employs a threat image parsing module
to extract critical threat information from images and generate textual descriptions using MLLMs.
Subsequently, it builds an iterative question-answering pipeline tailored for image parsing to refine
the understanding of threat images. Finally, it achieves content-level integration between attack
graphs and image-based answers through MLLMs, completing threat information enhancement. We
construct a new multimodal dataset, AG-LLM-mm, and conduct extensive experiments to evaluate
the effectiveness of MM-AttacKG. The results demonstrate that MM-AttacKG can accurately identify
key information in threat images and significantly improve the quality of multimodal attack graph
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construction, effectively addressing the shortcomings of existing methods in utilizing image-based
threat information. Code and the corresponding dataset will be released upon acceptance.

Keywords Cyber Threat Intelligence · Attack Graph Construction · Multimodal Large Language Models

1 Introduction

As cyber attacks increase in frequency and complexity, they represent a critical challenge to modern cybersecurity
defenses. Attack graph serve as the effective means to combat these escalating threats by graphically depicting the
progression of attacks through interconnected nodes that represent individual attack steps, exploited vulnerabilities, and
targeted assetss [1–5]. Attack Graph Construction (AGC), the task of generating such graphs systematically, relies on
diverse data sources, such as system logs, human-curated knowledge, and Cyber Security Intelligence (CTI) reports.
Among these, CTI reports are especially promising. They deliver timely and precise threat intelligence, which helps
identify key attack paths and focus on high-risk threats [6–9]. Due to its immense application value, the attack graph
construction task has attracted extensive attention from both academia and industry.

Images in CTI Reports

Case Display Attack Flow Chart Code Table

ScreenshotFileInfo Timeline More--Logo

Figure 1: Motivation for incorporating images into constructing attack graphs is explained as follows. The images in
CTI reports are highly complex and diverse, containing rich threat information. By parsing these images, we can greatly
improve our understanding of threat events and thus enhance the quality of attack graphs.

The research on attack graph construction methods has gone through the following phases. In the initial phase,
researchers established rules through expert knowledge, extracted Indicators of Compromise (IoCs) based on regular
expressions, and constructed attack graph frameworks as perceived [2]. However, this approach was limited by the fixed
patterns of regular expressions and the subjective understanding of experts, making it difficult to adapt to the constantly
changing tactics and techniques of cyber attackers. To address these challenges, deep learning-based methods have
been proposed, such as AttacKG and ThreatKG [1, 3]. Incorporating deep learning has significantly enhanced the
construction efficiency of attack graphs. Nevertheless, the complexity of model selection and the stringent requirements
on labeled data quality pose challenges for practical implementation. Then, with the tremendous success of Large
Language Models (LLMs), more and more researchers have begun to explore the use of LLMs to address the problem
of attack graph construction. These pioneering works have explored ways to apply LLMs in attack graph construction
tasks. Such as the use of In-Context Learning (ICL) to apply LLMs to attack graph construction sessions like threat
data automatic labeling [10], threat entity recognition [11], and threat event extraction [12]. Compared with traditional
methods, LLM-based approaches demonstrate advantages in effectiveness, usability, and scalability.

Despite the advantages of the LLM-based method, existing research often neglects the rich multimodal information
in CTI reports, such as attack process diagrams, case study illustrations, and system screenshots. We refer to these
visual materials containing threat-related content as "threat images". As is illustrated in Figure 1, threat images exhibit
complexity and diversity. Threat images are distributed in different locations of the CTI report according to their
functional type, providing visual evidence of the corresponding attack scenarios, complementing the textual descriptions,
and providing unique insights. Overlooking these images can limit the depth and accuracy of attack graph construction.
How to parse threat images to enhance attack graphs remains a pressing research gap.

To bridge this gap, we aim to integrate images into cyber threat analysis to construct multimodal attack graphs. Even
though image understanding research is well established, we face three major challenges for this task [13–15] : First,
domain-specific knowledge is essential. Analyzing textual cybersecurity data requires domain knowledge to enhance
LLMs’ understanding of threat contexts [11, 12]. Similarly, existing general LLMs lack inherent mechanisms to
effectively parse cyber-specific visual semantics (e.g., network diagrams, intrusion detection alerts), limiting their
applicability to threat image analysis (Challenge 1). Second, a picture is worth a thousand words. We need to determine
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how to precisely and swiftly capture the most critical information from threat images for attack graph construction.
Therefore, a new prompt approach is needed to unleash the potential capabilities of MLLMs (Challenge 2). Finally,
the quality of threat information extraction is critical. Previous studies [16] have shown that improving performance
through image feature exploration typically depends on large quantities of labeled training data. However, these data
often lack generalizability across different task definitions. Consequently, there is a pressing need for a self-supervised
mechanism capable of optimizing the extracted threat image information (Challenge 3).

To address the aforementioned challenges, we develop a novel framework for multimodal attack graph construction,
named as MM-AttacKG. Specifically, to solve the first challenge, we integrate cybersecurity knowledge into threat
image parsing. In LLMs usage, prompt learning and knowledge introduction improve the expertise and relevance of
threat image information parsing. Then, to address the second challenge, we redefine threat image parsing as an iterative
question-answering process, inspired by human brainstorming. Each question targets a specific aspect of attack graph
construction. During each iteration, questions are systematically generated to probe critical aspects of the image within
the cybersecurity domain, ensuring targeted exploration of its meaningful implications. Finally, to address the third
challenge, we set up two answer optimization paradigms. Evaluate the answer content from different dimensions and
further optimize the parsed threat information to improve the quality of threat information extraction. To evaluate our
approach, we constructed an exploratory dataset by incorporating images from threat intelligence. We call the dataset
AG-LLM-mm. The final evaluation results show that multimodal attack graphs have richer threat information than
text-based attack graphs when supplemented with visual information. The main contributions are as follows:

• To the best of our knowledge, this is the first comprehensive study of exploring visual information for attack graph
construction in the era of LLMs.

• We designed a multimodal attack graph construction framework that identifies and integrates threat image information
into an LLMs-based attack graph construction process.

• Extensive experiments justify that our framework is able to effectively identify important information embedded in
threat images, and the visual information can enhance the completeness of attack graph construction. In addition,
these findings point out promising and relevant directions for future research.

2 Related Works

In this section, we review related work in three branches.1) CTI report extraction, 2) LLMs for cyber security. 3)
Multimodal for cyber security.

2.1 CTI Report Extraction

Indicators of Compromise (IoCs). Structured IoC sharing remains a cornerstone of open source CTI frameworks, as
evidenced by platforms and studies such as [17–20]. These systems catalog attributes including malicious file hashes,
process identifiers, and malware metadata [21–23]. However, their reliance on isolated, low-fidelity data limits their
utility in reconstructing multi-phase adversarial campaigns, as they fail to capture contextual or behavioral linkages
between indicators.

Unstructured Text Intelligence Extraction. The cybersecurity community has developed advanced methods to
transform unstructured threat reports into actionable intelligence. Ramnan pioneered automated extraction of vul-
nerability exploitation patterns and mitigation strategies from unstructured CTIi [24]. Subsequent work by Ghazi
established frameworks for correlating extracted threat concepts [25], while Ghaith introduced information-theoretic
metrics (entropy and mutual information) for text analysis in security contexts [26]. The EXTRACTOR system [2]
generated attack behavior graphs without domain-specific text assumptions, complementing the joint extraction method
of network relation triples from [27]. Mao [28] addressed coreference resolution challenges in threat action extraction,
whereas [29] mitigated OOV issues through multi-granular feature extraction. Advanced neural architectures like
TA-GCN [30] and KnowCTI [31] further improved entity-relationship modeling by integrating domain knowledge and
dependency-aware embeddings.

TTP Identification & Operationalization. MITRE Technology, Tactics, Procedures (TTP) matrix [32] has become
the de facto classification standard for cyber threat adversarial pattern recognition. Recent advances include: Context-
aware TTP extraction via [5] enables real-time defense orchestration, while Ayoade automates TTP classification and
mitigation mapping from heterogeneous threat reports [33]. Ge employs semantic impact scoring with conditional
probability for TTP prediction [34], whereas Liu’s ATHRNN architecture captures hierarchical TTP dependencies
through transformer-recurrent hybrid networks [35]. The TCENet framework bridges TTP and operational defense by
generating Sigma rules directly from TTP descriptions [36].
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2.2 Multimodal for cyber security

Multimodal learning enhances threat understanding by fusing heterogeneous data sources.

Multimodal data fusion and threat detection. In the area of cyber threat analysis and modeling, Nirnimesh proposed a
multimodal graph-based approach for modeling and analysing cyber attacks [37]. This work constructs a comprehensive
analysis framework that includes victims, adversaries, autonomous systems, and cyber events by representing the stages,
actors, and outcomes of cyber attacks as multimodal graphs. Multimodal data fusion techniques were widely used for
critical infrastructure protection and threat detection. For example, Nikolaos proposed an attack detection framework
based on multimodal data fusion and adaptive deep learning for the vulnerability of critical water infrastructure to cyber
attacks [38]. The framework improves the detection of attacks by integrating multimodal data. In addition, Li proposed
an LLM-based detection method for phishing attacks, which combines image and text information of web pages to
overcome the limitations of traditional single-modal-based methods [39].

Multimodal threat information recognition. Automated extraction of cyber threat intelligence is another important
application area of multimodal learning. Zhang proposed the EX-Action framework, which extracts threat actions from
CTI reports through natural language processing techniques and combines them with multimodal learning algorithms to
identify threat behaviors [40]. Similarly, Xiao proposed an advanced persistent threat participant attribution method
based on multimodal and multilevel feature fusion (APT-MMF), which solves the problem of ignoring heterogeneous
information in existing methods [41].

Security of Multimodal Large Language Models. To address the security of multimodal learning models, researchers
have proposed various defense mechanisms. Liu proposed a ‘machine forgetting’ based defence mechanism for
backdoor attacks in multimodal comparative learning to reduce the impact of malicious behaviors on the inference
process of the model [42]. Shan reveals the vulnerability of text-to-image model generation to poisoning attacks under
large-scale training data and proposes a ‘night shadow’ attack method to precisely control the model output through
a small number of poisoned samples [43]. JailGuard focuses on the vulnerability of large and multimodal language
models to jailbreak and hijacking attacks and proposes a generic detection framework for identifying multiple attacks
across modalities [44].

2.3 LLMs for Cybersecurity Threat

The application of large language models in cybersecurity has emerged as a multi-faceted research frontier.

Systematic methodological frameworks form the theoretical basis for LLM security implementations. Kucharavy
established essential taxonomies for generative language modeling, delineating capability boundaries and implemen-
tation principles [45]. Building on this foundation, Wrsch proposed a semantic pattern recognition framework for
cybersecurity knowledge entity extraction [46], while Pan achieved breakthroughs in log anomaly detection through
retrieval-augmented architectures with vector database integration [47]. In complex pattern recognition, Ferrag demon-
strated FalconLLM’s effectiveness in identifying multi-stage attack vectors through contextual reasoning [48]. Charan
quantitatively evaluated LLMs capabilities in implementing MITRE ATT&CK techniques, establishing benchmark
comparisons between ChatGPT and Bard for tactical code generation [49]. For security operations, Rigaki deployed pre-
trained models as autonomous agents in network environments, optimizing sequential decision-making processes [50].
The chained prompt engineering framework proposed by Moskal structured threat response workflows through plan-act-
report cycles [51]. Addressing LLM domain adaptation challenges, Kereopa constructs an evaluation system combining
expert case analysis with quantitative metrics, while current research generally faces the challenge of enhancing models’
cybersecurity-specific cognition [52].

3 Preliminary

3.1 Problem Formulation

Current research on multimodal attack graph construction does not have a rigorous paradigm. Specific application
scenarios influence the characterization and structure of attack graphs. To formally define the problem, we adopt the
attack graph definition in text-based attack graph work as a basis.

CTI Report. A CTI Report is an evidence-based, structured analysis that encompasses the context, mechanisms,
indicators of compromise, potential impacts, and actionable recommendations regarding existing or emerging cyber
threats. It serves as a critical output of the cyber threat intelligence lifecycle, providing organizations with actionable
insights to proactively manage and mitigate cyber risks.
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Tactic

Tactics represent the "why" of an ATT&CK 
technique or sub-technique. 

Techniques represent 'how' an adversary 
achieves a tactical goal by performing an 
action.

Procedure is the  detail description of how 
to execute a tactic using the chosen 
techniques and actions.

Technique

Procedure

Tactics such as “Reconnaissance”: The adversary 
is trying to gather information they can use to 
plan future operations. 

Techniques such as “T1595-Active Scanning”: 
Active scans are those where the adversary 
probes victim infrastructure.

Procedure such as “In the Triton Safety 
Instrumented System Attack, TEMP.Veles engaged 
in network reconnaissance of targets  ...”

Reconnaissance

T1595-Active Scanning

Procedure Case

Figure 2: The atomic event data structure of the attack graph contains three parts: Tactics, Techniques & Procedures,
where procedures are presented in the structure of the threat behavior graph.

Attack Graph. An attack graph is a graphical representation method used for modeling and analyzing cyber attack
pathways. It illustrates the relationships of the elements in a threat event and the steps taken by an attacker to launch an
attack, thereby assisting security analysts in understanding potential threats within a network environment and assessing
the security posture of a system.

Text-based Attack Graph Construction. Text-based attack graph obtains threat information from the textual modal
content of CTI reports. Given a collection of historical threat intelligence text events E = {e1, e2, . . . , ek}. This
formulation defines extracting each threat behavior as a quadruple (s, a, o, t), which is also called an atomic event,
where s, a, o and t correspond to the subject, threat action, object, and timestamp in the current threat event. At each
timestamp t, all the quadruples form an event graph, denoted as AGt = {(s, a, o, t)}N , where N is the number of
atomic events at the threat event. It can be seen that the scheme uses a sequence of threat actions to characterize the
evolutionary process of the attack graph. Furthermore, as is shown in Figure 2, some works [1] focus on the content
support of TTP (Technology, Tactics, Procedures) labels for attack graphs to characterize the cyber threat technologies
to which threat atomic events are mapped. Specially, each atomic event is extended from a quadruple (s, a, o, t) to a
quintuple (s, a, o, t, p), where s ∈ E , a ∈ A, o ∈ E and p ∈ P , represent the subject, threat action, object, and TTP
label. Correspondingly, the atomic event at each timestamp will be extended as AGt = {(s, a, o, t, p)}N . It is worth
mentioning that for the presence of non-verbal relations R in threat events, R is the set of non-verbal relations that are
not ignored, but rather are used as attack graph supplementary links that hang over the relevant entities, but not as attack
steps descriptions.

Multimodal Attack Graph Construction by Image-enhanced. Based on the text-based attack graph, the images
associated with structured events in CTI reports are introduced to construct the multimodal attack graph, where the
images are represented by V = {v1, v2, . . . , vm}Mm=1, where M is the number of images. The image-enhanced attack
graph construction process is divided into two phases: multimodal attack information extraction and attack graph
integration.

• Image Attack Information Extraction. This phase is based on the content summarization of the text-based attack
graph, and parses the attack information contained in the images of the CTI report from different aspects, providing
additional context and detail for the construction of the attack graph.

• Multimodal Attack Graph Integration. This phase leverages the attack information extracted from the images in
the CTI report as the basis, and supplements the text-based attack graph from three dimensions: entities, relation, and
techniques. By integrating threat information from multiple modalities, it forms an image-enhanced attack graph.

Finally, the multimodal attack graph construction task can be characterized as follows: given a collection of historical
threat intelligence text events E = {e1, e2, . . . , ek} and associate images V = {v0, v1, . . . , vm}, identify quintu-
ples (s, a, o, t, p) from text and images form that can portray the evolutionary flow of threat events to form a multimodal
attack graph.
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Figure 3: The overall framework of MM-AttacKG consists of five modules: (1) Text-based Construction, here we
use AttacKG+ as the constructor to construct a text-based attack graph by parsing CTI text. (2) Brainstorming, the
module targets key aspects of image parsing through question generation; (3) Extraction, the module that combines the
question set with the image content to extract key information from CTI images; (4) Verification, the module optimizes
the quality of threat image understanding through a two-stage process of question filtering and answer refinement; and
(5) Integration, the module refines the attack graph by adding modal information from CTI image.

3.2 Text-based Attack Graph Construction

AttacKG+ 1 is a novel attack graph construction framework based on large language models, designed to transform
textual cyber threat intelligence reports into structured attack graphs. The framework employs a modular design to
build multilayered attack graphs, comprising four modules: Rewriter, Parser, Identifier, and Summarizer. Each module
leverages the instruction prompting and in-context learning capabilities of LLMs to sequentially perform tasks such as
report rewriting, behavior graph extraction, technique label matching, and state summarization. Furthermore, AttacKG+
introduces an upgraded attack knowledge schema that represents the attack process as a temporally unfolding complex
event. Each temporal step encompasses three layers: behavior graph, TTP labels, and state summary, providing a more
comprehensive characterization of the attack process.

By utilizing the powerful language understanding and zero-shot learning capabilities of LLMs, AttacKG+ overcomes
the limitations of traditional methods in terms of generalization ability and adaptability to new attack scenarios. Given
the superior processing performance of AttacKG+ in text-modal threat intelligence, we use it as a textual attack graph
constructor for multimodal attack graph construction work as shown in Figure 3. Meanwhile, we obtain the summary
information of the current report (Global-Context) and the image context information (Image-Aware-Context) as the
parsing support of the threat image through the summary function module in it.

4 Approach

The proposed framework is outlined in Figure 3. Our approach MM-AttacKG consists of five phases, which smoothly
implements the flow from threat image parsing to attack graph multimodal gain. Section 4.1 outlines the brainstorming
procedure, which is intended to clarify the key aspects of threat image parsing. Section 4.2 defines the threat information

1https://github.com/multilayer-go/AttacKG-plus
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extraction process, which is specifically designed to accurately extract threat-related information from threat images.
Section 4.3 presents the question filtering mechanism, which can effectively screen out threat information aspects that
meet the criteria for constructing attack graphs. Section 4.4 proposes two optimization paradigms to enhance the quality
of answers in threat image extraction. Section 4.5 introduces the attack graph integration scheme, which can integrate
the parsed threat image information into text-based attack graphs.

Table 1: Annotated descriptions of each assessment aspect involved in the answer quality assessment process.

Aspects Instructions

Score 1: The description is entirely incorrect to the question and contains severely misleading information.
Score 2: The description is partially correct but includes significant errors or irrelevant content.

Accuracy Score 3: The description is mostly accurate but contains minor errors or ambiguous phrasing.
Score 4: The description is accurate and correct but lacks direct image references.
Score 5: The description is fully accurate, unambiguous, and directly supported by the image content.

Score 1: The description completely contradicts or is unrelated to the image information.
Score 2: The description includes limited relevant details, but most content deviates from the image information.

Consistency Score 3: The description partially aligns with the image information but contains irrelevant or redundant content.
Score 4: The description closely adheres to the image information, with only minimal unrelated content.
Score 5: The description is entirely based on the image information, with no extraneous or redundant elements.

Score 1: The description fails to address any critical aspects of the question, omitting all essential information.
Score 2: The description addresses only a subset of the question, omitting most key details.

Completeness Score 3: The description broadly covers the question’s requirements but lacks minor details.
Score 4: The description comprehensively addresses the question, with only negligible omissions of minor details.
Score 5: The description fully addresses all requirements of the question, providing thorough details.

Score 1: The description is entirely unrelated to cybersecurity and provides no value for threat analysis.
Score 2: The description has marginal relevance, requiring substantial inference to connect to threat analysis.

Relevance Score 3: The description partially relates to cybersecurity but lacks explicit ties to practical applications.
Score 4: The description directly aligns with cybersecurity and offers moderate analytical value for threat analysis.
Score 5: The description focuses heavily on cybersecurity and provides actionable insights into threat analysis.

4.1 Brainstorming

In multimodal threat intelligence analysis, accurately interpreting domain-specific threat images is essential for
constructing attack graphs. These images visually depict cybersecurity scenarios and have different roles and contextual
links in attack graphs. Brainstorming phase mimics human cognition by analyzing image types and key features,
generating critical questions to pinpoint image parsing priorities, thus underpinning follow-up work.

Specifically, in this phase, we first seed the LLMs with an initial set of questions, named leading questions (Table 5).
The leading questions contain a set of general questions that security practitioners are interested in for different types of
threat images, which are grouped according to different image types. Secondly, the LLMs are guided by the prompts to
generate a set of general questions for the current threat image based on the content of the image and the corresponding
leading questions. Then, in order to better construct task associations with the attack graphs extracted from the textual
modalities, the prompts guide the LLMs to generate a set of task-specific questions for the image based on the structure
of the unimodal attack graph and the content of the current threat image. The general and task-specific question seeds
are explained below.

• General Question. This type of question focuses on mining information about the attributes that the images
themselves have. Such as image subject, image type, and image source. The purpose is to prompt LLMs to perform a
summary of the content of the image itself.

• Task-specific Question. This type of question focuses on the task-oriented nature of threat images in constructing
attack graphs. Such as “What are the temporal features exhibited by the attack flow graph?” The purpose of this is to
motivate LLMs to mine threat image information from the attack graph construction task.

where the prompts used to generate the question pool are displayed in Table 6 (Question Generation). Following the
brainstorming phase, the general questions and task-based questions together form the question pool, which forms
parsing guidance for the current threat intelligence images.
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4.2 Extraction

The extraction phase builds on the brainstorming output. It uses a framework to help LLMs give accurate answers
to parsing questions. This approach facilitates the construction of attack graphs by introducing threat image context
information as parsing support to create high quality answers.

Specifically, after generating the question pool, we will prompt the LLMs to answer the questions based on the question
descriptions and threat image contents. In this phase, we focus on mining the content of threat images by answering the
corresponding questions. In the actual threat image parsing process, we found that when LLM parses threat images
without CTI contexts, the results are ambiguous and lack logical reliability. For example, the answer only describes
abstract concepts but cannot identify specific threat objects. And such threat information is not suitable as a basis for the
construction of multimodal attack graphs. To address this issue, we enhanced the summarization module of AttacKG+
to extract two types of parsing-support information via image tag localization: image-aware context and global context.
Section 5.5 (Ablation Study) evaluates their importance for threat information extraction.

• Image-Aware-Context. In this setting, the Image-Aware-Context is derived from the summarization of the image
context paragraph, such as image type and analysis approach, providing dynamic contextual information for threat
images.

• Global-Context. In this setting, the Global-Context originates from the content abstract of the CTI report in which
the threat image is located, encompassing the outline of the CTI report’s subject matter and offering a macrosemantic
framework for threat image parsing.

We control the output from three aspects: content limitation, topic relevance, and expression format through rule setting.
The template of question answering prompts is shown in Table 6 (Question Answering).

4.3 Verification-Question Filtering

Question filtering aims to be more targeted and effective in parsing threat images, so as to exclude irrelevant questions.
This is because the quality of a question largely determines how helpful its answer is for attack graph construction.
The question filtering module consists of two phases: direct correlation question capture and answer-oriented question
capture.

• Direct correlation question capture. The idea of direct correlation question capture is to prompt LLMs to judge the
quality of questions by taking the attack graph summary and domain rules as the basis. This method is suitable for
cases where the direct formulation of the question has domain characteristics. For example, “What is the functional
role of the malicious script in this image.” In this case, “malicious script” has strong cyber security domain context.

• Answer-oriented question capture. The idea of answer-oriented question capture is to first generate the answer
to the corresponding question, and then judge the quality of the question based on the content of the answer and
the hints of the LLMs. This method is suitable for cases where the direct formulation of the question does not have
domain characteristics or the domain characteristics are weak. For example, “What trend does the graph in this
image reflect?” The description of the question does not have direct domain characteristics, but is based on the image
identification and embedded text description of the chart. It is possible that threat information will be obtained that
will assist in the construction of the attack graph.

After filtering the set of questions generated in the threat image parsing phase, we labeled the above two types of
questions and fused them into the question candidate set for constructing multimodal attack graphs.

4.4 Verification-Answer Refinement

After completing question pool (Q) construction and question filtering, we input the questions along with the current
threat images into the LLMs to obtain the corresponding set of question answers called answer pool (A) . Specifically,
these answers are our analysis of threat intelligence images from both general and task perspectives. However, we have
to pay attention to two issues: First, it is necessary to determine that the questions currently generated are relevant to
the attack graph construction rather than the minutiae. Second, we need to ensure that the answer to the question at
hand is superior.

To address the above issues, we set up a self-learning module for LLMs to help optimize the quality of answer generation
by iterative question-answering. Here, we propose two basic prompt optimization paradigms, question-led (Q-Led)
and answer iteration (A-Iteration), drawing on the idea of textual answer optimization. Specifically, after completing
the answer relevance analysis, we set up an answer assessment module to evaluate the quality of generated answers.
The quality criteria for the answers are divided into four levels, including: failing, satisfactory, good, excellent. As is
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Figure 4: The threat image parsing answer optimization paradigm. Question-led, generate a target refinement parsing
guide to guide the next round of question parsing of threat images. Answer Iteration, generate an initial answer, and
refine the current answer in the next round based on the optimization comments.

shown in Table 1, the assessment of answer quality is realized by guiding the LLMs to evaluate from four dimensions:
accuracy, consistency, completeness, and relevance. Accuracy represents whether the answer accurately answers the
corresponding question. Consistency represents whether the answer maintains content relevance to the threat image
information. Completeness represents whether the answer adequately answers the needs of the corresponding question.
Relevance represents whether the answer fits the cybersecurity domain in terms of presentation.

For answers below the good level, we perform answer refinement. The stopping condition for the number of iteration
rounds of answer refinement is that (1) the current answer reaches "excellent/good" or (2) the set iteration threshold is
reached. The optimization approach adopted in the answer refinement process is as follows:

IAcurrent = LLM
(
IAlast + Image

)
(1)

As shown in equation 1, IAcurrent denotes the threat image extraction answer in the current round, IAlast denotes the
threat extraction answer in the previous round, and Image denotes the current threat image file to be parsed. The idea of
answer iteration is to evaluate the answers by co-inputting the generated answers and the belonging images into LLMs
(without history). Then LLMs will output quality ratings and optimized comments for the current answer. Then the
current answer is refined in the next iteration based on the optimization comments.

IAcurrent = LLM
(
Suggestionslast + Image

)
(2)

In contrast, as shown in equation 2. Suggestioncurrent represents the optimization tips given by LLM in the previous
round based on the answers and image content. The idea of question guidance is to evaluate the answers by co-entering
the generated answers and the belonging images into LLMs (without history). Then LLMs will output quality ratings
and the targeted refinement parsing guide for the current image. It is worth noting that the suggestion differs from the
answer comment. The suggestion is not oriented toward the previous round’s answers but rather provides LLMs with an
outline for a more comprehensive understanding of the image. In the next round, the question, the image along the
guide will be fed into LLMs together to get the new round of answers.

The processing of the above two answer refinement paradigms can effectively improve the quality of responses
against cyber threat intelligence images. The template of answer optimization prompts is shown in Table 6 (Answer
Optimization).

4.5 Integration

According to the problem formulation in section 3.1, this section presents a framework for constructing multimodal
attack graphs based on LLMs. The construction of text-based attack graphs by AttacKG+ mainly involves (1) threat
behavior extraction and (2) TTP labeling. These two sub-tasks identify the behavior level and technique level threat
information from the cyber threat intelligence respectively and portray the evolution flow of the whole threat event.
The details are as follows: for cyber threat intelligence, the method takes as input cyber threat intelligence in textual
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modality. First, an attack graph ontology model is constructed via the STIX 2.0 standard [53], and then threat atomic
event (s, a, o, t) is extracted based on the ontology model, where t is derived from the relative timing of that atomic event
in the intelligence. Then, the dictionary of technology labels is constructed by the TTP matrix of MITRE ATT&CK [32],
identifying the technology labels corresponding to atomic events, and expanded to form the quintuple (s, a, o, t, p).
Next, based on the timestamp t, the attack graph AGt = {(s, a, o, t, p)}N is formed.

It is worth considering that the image parsing module will generate multiple questions and their corresponding answers
for the given image. However, answers originating from the same threat image do not necessarily correspond to the
same atomic event in the attack graph. This is because the information in the images can complement different aspects
of the threat event. For example, the content in the attack flow diagram involves information about the flow of the
entire current threat event. To solve this problem, we construct each problem as a corresponding "threat enhancement
reference". Then, the structural enhancement of the attack graph is achieved by using the threat enhancement units as
reference information.

First, we use LLMs to merge image topics, questions, and their corresponding answers to form threat enhancement
reference extracted from the current threat image. For example, ‘This is the temporal description (Question) of the
protocol attack flowchart (Image Theme) as follows:(Answer)’. In this case, the protocol attack flowchart is the topic of
the current threat image, the temporal description is the corresponding particular question, and the specific content
is the answer obtained through three stages of brainstorming, extraction, and verification. Then, we use the threat
enhancement information as a basis to correlate and enhance the current attack graph. We regulate three kinds of
functional enhancements of threat image attack graphs:

• Node Extension. Adding new nodes or checking the node descriptions of existing attack graphs to supplement data
or attack resources through threat image information.

• Relation Update. If the image reveals a new attack action (such as deliver or execute), add or replace the relation and
description.

• Technique Addition. Match the added technique (such as T1204.002-User Execution) according to the MITRE
ATT&CK framework.

Through the targeted parsing and fusion of threat images by LLMs, the attack graphs combined with threat images can
be greatly improved in the three levels of data integrity, structural flow and technical richness.

5 Evaluation

We conduct extensive experiments to answer the following research questions:

• RQ1: How does MM-AttacKG perform against existing threat information extractors? (see Section 5.2)
• RQ2: How effective is MM-AttacKG in enhancing attack graph with threat image information? (see Section 5.3)
• RQ3: Whether each key module in MM-AttacKG effective? (see Section 5.4)
• RQ4: How does each technical module function within the MM-AttacKG framework? (see Section 5.5)

5.1 Experiments Setting

To ensure the rationality and reproducibility of the evaluation phase for MM-AttacKG, we describe the experiments
setting, including the dataset, baseline methods, and implementation details.

5.1.1 Dataset

To evaluate MM-AttacKG, we constructed the dataset by collecting cyber threat intelligence reports from Cisco Talos
Intelligence Group [54], Microsoft Security Intelligence Center [55]. We utilize AMinerU-PDFScanner 2 to extract
each CTI report into two parts: textual content and threat images. For the textual content, we extract it into attack
graphs using the construction process provided in AttaKG+ [12], and manually verify the extraction results. For the
threat images, we follow the following process: first, due to the layout, the original CTI reports or web pages often
contain a large number of irrelevant, low-quality threat images. Therefore, we preliminarily filter the threat images
and remove those with the following problems. (a) containing irrelevant information such as logos, advertisements,
etc. (b) presence of occlusion or strong watermarks; (c) weakly informative visual samples; (d) poor image quality or
lack of clarity; and (e) crippled images or incomplete graphics. Then, to achieve this, we set up image rule filtering
rules, write the prompting scheme, and use LLMs to analyze the content and board style of images in order to eliminate

2https://github.com/liuhuapiaoyuan/MinerU-PDFScanner
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irrelevant images. Meanwhile, we arranged researchers with cybersecurity background to proofread again. Finally,
we integrate textual content and threat images. Then name the dataset as Attack Graph-LLM-multimodal, short for
AG-LLM-mm. Three postgraduate students from our team acted as participants in the manual assessment of the CTI
reports. Participants exchanged views after completing the assessments individually, which was secondarily discussed
in order to obtain a comprehensive assessment.

Table 2: Effectiveness of MM-AttacKG for multimodal threat information extraction. For each column, the bold
number indicates the best performance, and the underlined number corresponds to the second-best performance. Human
Anotation-Text represents the entity, relation and technique extraction of threat intelligence text under the manual
annotation process.

Method
Entity Relation Technique

Precision Recall F-1 Precision Recall F-1 Precision Recall F-1
Text-based Method

Extractor 0.6568 0.5387 0.5919 0.2158 0.1026 0.1391 - - -
AttacKG 0.5580 0.2612 0.3559 - - - 0.2060 0.3399 0.2565

AttacKG+ 0.7701 0.5294 0.6274 0.7693 0.6806 0.7222 0.4502 0.4481 0.4491
Human Anotation-Text 1.0000 0.4559 0.6263 1.0000 0.6820 0.8109 1.0000 0.6547 0.7913

Image-enhanced Method
ICL 0.6901 0.7326 0.7107 0.7106 0.8261 0.7640 0.4948 0.5383 0.5156
CoT 0.6805 0.7432 0.7105 0.6949 0.8383 0.7599 0.5063 0.5508 0.5277

MM-AttacKG 0.7224 0.8280 0.7716 0.7460 0.8973 0.8147 0.5256 0.6232 0.5703

5.1.2 Baseline Methods

To assess the effectiveness of MM-AttacKG for threat information extraction and image-enhanced attack graph
integration, we compare it with four text-based threat information extractors (e.g., AttacKG [1], EXTROCTOR [2],
AttacKG+ [12]). Meanwhile, we migrate two LLM-based methods (ICL [56] and CoT [57]) to the multimodal threat
information extraction and attack graph aggregation task. More details are in Appendix Table 7 and Table 8.

5.1.3 Implementation Details

As the field of cybersecurity requires transparent information processing and prevents information leakage, commercial
API services may be unstable and face service restrictions. We have chosen to use the open-source multimodal large
language model from the Qwen [2] series (e.g., Qwen2.5-VL-72B, Qwen2.5-VL-32B, Qwen2.5-VL-7B) for relevant
experiments. We hosted the large language models on an AliCloud Elastic Compute Service (ECS) 3. instance and
developed all implementation modules within a Python 3.10.14 environment. To ensure the reproducibility of the
research, we fixed the temperature parameter of the proprietary LLMs used to 0.7 and set the seed parameter to a
constant value. Meanwhile, to keep the experiments manageable, for different LLMs prompt methods, we provide them
with exactly the same context and specify output limits in the same format. ethod, we turn on the relevant optimization
setting to ensure the construction quality of the attack graph. To prevent invalid responses, we limit the maximum
output length to 512 tokens when parsing threat images.

5.2 Performance Comparison for Threat Extraction (RQ1)

This experiment aims to quantify the effectiveness of images in enhancing CTI understanding by counting the threat
information that can be mined from CTI reports. Specifically, we analyze the performance improvement of threat
information extraction with the introduction of visual information.

Based on the problem formulation in section 3.1, a cyber threat event consists of multiple threat atomic events in
temporal order. These atomic events are represented in the threat behavior graph as interconnected quintets (s, a, o, t, p),
where s and o are coordinated for entity extraction, and actions a and entity-entity relations are coordinated for
relation extraction. p represents the TTP technique label involved in the current behavior. By parsing the threat image
information, more information can be gained to introduce to the attack graph. The gained information includes three
aspects: (1) Entity. Subjects and objects in cyber threat behavior. (2) Relation. Descriptions of correlations between
subjects and objects in cyber threat behavior. (3) Technique. Mining technique labels from threat images based on the
TTP matrix. Table 2 summarizes the effectiveness of MM-AttacKG for multimodal threat information extraction. Our
findings are:

3https://www.aliyun.com/
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Figure 5: Performance of MM-AttacKG’s threat gain in different prompting schemes and LLM versions.

(1) Advantages of multimodal integration. The image-enhanced method demonstrates superior performance across
entity extraction, relation extraction, and technical identification tasks compared to Text-based methods. This indicates
that incorporating visual information significantly improves threat intelligence mining efficacy and enhances perception
of complex threat scenarios.

(2) Image-enhancement methods comparison. Among multimodal approaches, the MM-AttacKG model achieves
superior F-1 scores across all three subtasks relative to ICL and CoT. This suggests that MM-AttacKG’s architecture
provides stronger multimodal integration capabilities and semantic comprehension, offering more reliable foundations
for cybersecurity threat intelligence analysis.

(3) Subtask difficulty disparities. Technical identification exhibits markedly lower F-1 scores (e.g., 0.4491 for AttacKG+
in technical identification vs. 0.6274 and 0.7222 in entity/relation extraction). This highlights the heightened complexity
of technical identification tasks and underscores the need for algorithmic improvements to enhance semantic parsing
capabilities in this domain.

(4) Limitations of manual annotation. Though manual text annotation by humans yields high precision, it is constrained
by the absence of image information, resulting in low recall rates. Additionally, this process is labor-intensive. The
dependence on domain experts further limits scalability and real-time applicability. These factors underscore the critical
need for automated methods in large-scale data processing and continuous monitoring within cybersecurity contexts.

5.3 Performance of Attack Graph Integration (RQ2)

To address RQ2, we introduced In-Context Prompt Learning (ICL) and Chain of Thought (CoT) as comparative methods
for constructing multimodal attack graphs. ICL enables LLMs to learn directly from input examples or instructions
to complete tasks. CoT allows learners to solve problems through step-by-step reasoning, mimicking the human
thought process for complex problem-solving. MM-AttacKG enhances the performance of attack graph construction by
integrating prompts from three phases: brainstorming, extraction, and verification.

For the dataset in the experimental setup, we implemented the above prompt schemes in three versions of Qwen-VL.
We evaluated the performance of the attack graphs in terms of entity, relationship, and the gain from utilizing image
modality information. Namely, the incremental information of the updated multimodal attack graph over the text-based
attack graph at the entity, relation, and technology levels. The evaluation results are shown in Figure 5. The experimental
results indicate that: (1) Across all versions of large language models, MM-AttacKG outperforms the other two prompt
schemes in terms of information gain in the entity, relationship, and technique dimensions. (2) We observed the most
significant performance fluctuations in ICL across different LLM versions, suggesting that merely providing operational
examples results in poor robustness of LLMs for CTI image parsing and attack graph construction. Although the CoT
prompt scheme demonstrated strong robustness in constructing mult-modal attack graphs across various LLM versions,
its chain-like thinking process lacks an active guidance mechanism for performance enhancement, resulting in limited
information gain. In summary, MM-AttacKG is superior as a multimodal attack graph construction scheme.

5.4 Ablation Study (RQ3)

In our research, to evaluate the influence of support context and various components on the performance of MM-
AttacKG, we carried out two types of ablation studies through the controlled removal of support context and key
modules. To confirm the facilitating role of supporting information in threat image information extraction, we removed
specific configurations, namely Image-Aware-Context&Global-Context, Image-Aware-Context, and Global-Context. In
order to verify the importance of key components for threat image information extraction, we removed the settings of

12



Yongheng Zhang et al.

Table 3: Ablation study. For each column, the bold number indicates the best performance, and the underlined number
corresponds to the second-best performance. Support Context for Image Threat Information Extraction: I stands
for Image-Aware-Context, G stands for Global-Context. Image Threat Information Extraction Module: B stands for
Brainstorming, V stands for Verification.

Method
Entity Relation Technique

Precision Recall F-1 Precision Recall F-1 Precision Recall F-1
Our Method

MM-AttacKG 0.7224 0.8280 0.7716 0.7460 0.8973 0.8147 0.5256 0.6232 0.5703
Support Context for Image Threat Information Extraction

w/o I&G 0.6413 0.7759 0.7022 0.7298 0.8583 0.7888 0.4543 0.5795 0.5093
w/o G 0.6449 0.7913 0.7106 0.7116 0.8581 0.7780 0.4876 0.6037 0.5395
w/o I 0.6768 0.7740 0.7221 0.7027 0.8539 0.7710 0.4697 0.5826 0.5201

Image Threat Information Extraction Module
w/o B&V 0.7710 0.6000 0.6749 0.7887 0.7947 0.7917 0.5005 0.5829 0.5386

w/o V 0.7086 0.8247 0.7623 0.7386 0.8963 0.8099 0.4859 0.6225 0.5458
w/o B 0.7607 0.6028 0.6726 0.7862 0.7936 0.7899 0.4820 0.5795 0.5263

Brainstorming&Verification, Brainstorming, and Verification. The outcomes of these ablation experiments are presented
in Table 3.

(1) Multimodal Fusion Advantage. MM-AttacKG, through integrating Image-Aware-Context and Global-Context
with component collaboration (Brainstorming, Extraction, Verification), significantly outperforms text-only variants in
entity recognition and relation extraction. This highlights the effectiveness of multimodal fusion in enhancing threat
information identification, making it a key driver of model performance.

(2) Synergy of Textual Support. Image-Aware-Context and Global-Context support each excel in different tasks.
Image-Aware-Context support boosts relation extraction recall with dynamic context, while Global-Context support
improves entity recognition precision with macro semantic frameworks. It is their synergy that powerfully boosts the
model’s performance in a multitude of tasks.

(3) Module Collaboration Superiority. Comparing variants without verification module and those without both
brainstorming and verification module shows that removing only verification improves entity recognition but harms
threat information extraction. The full MM-AttacKG model achieves better balanced and slightly superior performance
in all tasks, proving its component configuration effectively meets diverse task needs.

(4) Overall Performance and Design Rationality. MM-AttacKG delivers consistently strong performance across entity
recognition, relation extraction, and threat information extraction. This validates its effectiveness and robustness in
multi-task scenarios.

5.5 In-depth and Analysis of Key Modules (RQ4)

Given that our method is an attack graph construction pipeline composed of multiple modules, to address RQ4, we
divide this question into three aspects: the diversity of questions generated by the brainstorming module, the necessity
of the question filtering module, and the superiority of the answer refinement module. For the brainstorming module,
we focus on whether the set of questions generated based on leading questions can sufficiently cover more main points
of mining CTI images and whether there is enough distinction among the questions. For the question filtering module,
we focus on the necessity of question filtering and how much unnecessary attention information in CTI images we
can reduce through this method. For the superiority of the answer refinement module, we focus on the changes in the
distribution of answers of different quality levels with the increase of iterative rounds. Then, analyzing the differences
between the two optimization paradigms.

5.5.1 The Diversity of Questions Generated By Brainstorming

During the brainstorming phase, two types of questions, namely general questions and task-specific questions were
generated. On average, 21 questions were generated per CTI image, a quantity comparable to that in manual judgment
scenarios. Specific question examples are provided in Table 5. To assess question diversity, we adopted the monotonicity
indicator from work [58]. Here, monotonicity is evaluated by measuring the similarity among questions targeting the
same threat image. Higher monotonicity indicates more similar questions and thus poorer diversity. We analyzed the
monotonicity of question sets for a random sample of 10 CTI images from the dataset, with results shown in Figure 6.
We found that (1) the number of questions varies with the CTI image, reflecting that the information richness of the
CTI image affects the number of questions generated.Richer information leads to more threat information being mined.
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Figure 6: Brainstorming questions generate evaluation situations. The abscissa represents the monotonicity of the
question set, and the ordinate represents the scale of the current image question set.
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Figure 7: The answer quality distribution changes with the number of refinement rounds. (1) Positive: Answers scored
as excellent or good are marked as positive. (2) Negative: Answers scored as failing or satisfactory are marked as
negative.

(2) The monotonicity of question sets remains stable and close to [1], indicating low similarity among the generated
questions, thus demonstrating high diversity.

Table 4: Distribution of question types in CTI images.
Scheme Direct correlation Answer-oriented Non-Related

Proportion 0.4699 0.4185 0.1116

Size 602 536 143

5.5.2 The Necessity of Question Filtering Module

The question filtering module aims to capture the set of important questions from two aspects: direct correlation and
answer-oriented, thereby enhancing the overall quality of the questions generated in the brainstorming phase through
filtering. During the construction of AG-LLM-mm, 1,281 questions were initially generated. However, some of these
questions had unclear wording or low relevance. After question filtering, the overall question distribution is shown
in Table 4. It can be observed that: (1) the proportion of direct correlation questions is 0.4699, and the proportion
of answer-oriented questions is 0.4185. This indicates that solely using question direct expression strategies to filter
relevant questions will miss many valuable aspects of CTI images. (2) Non-Related questions account for 143, which
shows that the initial set of questions generated in the brainstorming phase cannot be guaranteed to fully meet the
requirements of attack graph construction. Therefore, further filtering of questions is necessary.

5.5.3 The Superiority of Answer Refinement Module

The answer refinement module refines the parsing results of CTI images through multiple rounds based on optimization
paradigms to enhance the quality of answers. We propose two optimization paradigms: question-led and answer
iteration. question-led focuses on using the current answer as a case study to suggest optimizations for the next round
of answers, while answer iteration emphasizes supplementing and optimizing the current answer. To evaluate the
effectiveness of the answer refinement module in improving answer quality, we designed an experiment as shown in
Figure 7, setting the number of optimization rounds from 1 to 4 and tracking the changes in answer quality with each
round. Here we set the answer to be marked as positive when the score is excellent or good, indicating that it meets the
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quality requirements, and negative (failing/satisfactory) when it does not. The results show that: (1) As the number
of optimization rounds increases, the overall quality rating of the answers consistently improves, demonstrating the
effectiveness of the answer refinement module in enhancing answer quality. (2) The question-led optimization paradigm
converges more easily, indicating that suggesting new answers based on recommendations may be more effective in
addressing the questions than refining the current answers. (3) As the number of optimization rounds increases, the
answer refinement effect gradually decreases, which means gradually approaching the optimization limit.

5.6 Case Study

This section delves into the efficacy of MM-AttacKG in real-world security tasks through case studies. In cybersecurity,
professionals and researchers often conduct in-depth analyses of existing threats based on CTI reports. This process
focuses on two key aspects: one is to accurately extract core entities linked to the attack process from intricate event info
and remove irrelevant redundancy; the other is to bridge the inherent knowledge gap between CTI reports and actual
attacks, thus precisely determining tactical stages and identifying attack techniques. This analysis heavily depends on
the comprehensive evaluation and information extraction of textual and image information.

MM-AttacKG, with its unique advantages, leverages structured knowledge for in-depth event analysis, effectively
meeting the above two goals. As shown in Figure 8, based on MM-AttacKG’s advanced concept, firstly, it interprets
threat texts to structurally describe the attack process or event, accurately building a text-based attack graph. Then, it
parses and extracts threat image info, seamlessly integrating it with the text-based attack graph to innovatively form a
multimodal attack graph. We’ve created an intuitive and efficient visualization interface for MM-AttacKG using pyvis 4.

Take the Stuxnet worm attack as an example. MM-AttacKG first accurately extracts structured knowledge of the threat
event scenario from the text description. It can clearly identify the 6 key tactical stages and 14 specific techniques in the
attack, like using T1091-Replication Through Removable Media for initial access, T1574-Hijack Execution Flow for
execution, and T1055-Process Injection for defense evasion. Next, based on the techniques and entities related to the
threat event, MM-AttacKG accurately infers the complex system environment of the intrusion activity. Specifically, the
attack graph details how the Stuxnet worm gains initial access via malicious .LNK files and vulnerabilities, achieves
precise system control and persistence through the main module, and escalates privileges using a zero-day vulnerability.
It can scan network shares for lateral movement and employs various sophisticated techniques to evade detection.
Finally, it communicated with the C&C server through the encrypted channel to receive updates and instructions, and
adopted threat behaviors to realize serious interference with the normal operation of industrial equipment.

Notably, after integrating threat image information, MM-AttacKG captures three new techniques (T1003-OS Credential
Dumping, T1107-Function hooking, T1546-Event Triggered Execution) in the report, derived from deep information
extraction of corresponding threat images. Meanwhile, MM-AttacKG offers a more detailed entity set, uncovers deeper
and more hidden threat relationships, and accurately supplements and improves the attack process. This enriches and
optimizes the attack graph’s description of threat events, successfully integrating text and image into an advanced
multimodal attack graph. In conclusion, MM-AttacKG provides a solid and reliable foundation of key information to
reconstruct threat events with its superior performance, showing great potential for application and value in cybersecurity
analysis.

6 Conclusion and Future Work

6.1 Conclusion

In this work, we introduces CTI images into attack graph construction for the first time by analyzing the role of image
information in the cyber threat intelligence analysis process.

Leveraging the superior multimodal information understanding capabilities of LLMs, we propose an automated LLM-
based framework (MM-AttacKG) for constructing multimodal attack graphs. Given the performance advantages
of MLLMs and the parsing requirements of CTI images, we design a multistage prompt scheme that integrates
brainstorming, extraction, verification and integration. As a byproduct, we construct the multimodal threat intelligence
dataset AG-LLM-mm. Finally, through detailed experiments, we demonstrate that incorporating CTI images enhances
the overall performance of attack graphs and that LLMs hold great potential for multimodal attack graph construction.

4https://github.com/WestHealth/pyvis
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Figure 8: Example of multimodal attack graph Constrction (MM-AttacKG).
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6.2 Future Work

In this work, we present a novel multimodal attack graph construction method and develop an automated image modality
information extraction pipeline using LLMs. Although MM-AttacKG is novel and effective, there are still limitations
and areas for further research in CTI parsing.

Further Integration of Multimodal Information. Current analysis processes for multimodal threat information
separate and individually understand different modalities, but the parsing requirements of different modalities may
be interdependent. Therefore, constructing an end-to-end workflow to simultaneously analyze different modalities of
threat information and perform cross-verification and support can lead to a deeper understanding of CTI.

Joint Analysis of Multi-Source Threat Reports. There may be event correlations between multiple threat actors, such
as different application scenarios and targets of the same malware. By tracking the version iterations of the malware,
one can infer the ongoing confrontation between defense strategies and attackers, as well as potential future victims.
Analyzing multi-source threat intelligence to build joint analysis strategies can provide deeper insights into the evolution
of threats.

Training Domain-Specific Cybersecurity LLMs. General-purpose large models still have gaps in handling complex
cybersecurity problems. Therefore, exploring how to pre-train LLMs with domain-specific data and perform targeted
optimizations is valuable and can reduce processing costs.
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A

Here we show sample tasks for each stage of the MM-AttacKG runtime: Figure 9 shows the question-answer
process for the example image. Figure 10 shows the differences in the answers for the example image with different
textual support. Figure 11 shIterationExampleows the process of optimization of the answers. Figure 12 shows
CombineAnswerExamplethe process of transforming the answers into reference combinatorial process

B

Here we show the LLMs prompt templates involved in the MM-AttacKG runtime: Table 5 shows the related samples of
leading Questions. Table 6 shows the template of the task instruction prompt in different phases, which contain the
generation of questions, the answer answering, the evaluation of the answers, the optimization of the answers.
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Image

Image-Aware-Context

Question

Answer

- What is the main content of the image?
- What are the possible uses of the image?
- What are the possible attack techniques involved in the image?
- What is the sequential relationship of the processes in the image?
- What are the possible targets of attack in the image?
- What is the intended purpose of the OneDrive C&C in the image?
- What is the role of the CVE-2021-40444 Exploit in the image?
- What is the function of the Graphite Malware in the image?
- What is the significance of the Empire Server in the image?
- What are the data flows between the elements depicted in the image?
- What role does 'TrailBlazer' infrastructure play in the context of this image?
- What type of encryption is used in the communications shown in the image?
- What is the process of establishing persistence as depicted in the image?
- What is the involvement of spear phishing in the attack sequence shown in the image?

The blog post details a multi-stage espionage campaign targeting high-ranking government officials and defense industry individuals in 
Western Asia. It explains the infection chain starting with an Excel downloader exploiting a vulnerability to execute malicious code in memory. 
The attack uses multiple stages to stay hidden, leveraging Microsoft’s Graph API via OneDrive as a command and control server.

- The main content of the image is the infection chain of a multi-stage espionage campaign.
- The possible uses of the image are to illustrate the stages and components of a multi-stage espionage malware infection chain targeting high-
ranking government officials and defense industry individuals in Western Asia.
- The possible attack techniques involve an Excel downloader exploiting a CVE-2021-40444 vulnerability, a multi-stage infection chain with DLL 
and EXE files, and using OneDrive as a command and control server.
- The sequential relationship of the processes in the image is from the CVE-2021-40444 Exploit to the Empire Powershell Stager.
- The possible targets of attack in the image are high-ranking government officials and defense industry individuals in Western Asia.
- The intended purpose of the OneDrive C&C in the image is to receive followup malware.
- The role of the CVE-2021-40444 Exploit in the image is to request and send an HTML exploit that leads to the execution of a second-stage 
downloader.
- The function of the Graphite Malware in the image is to act as a second-stage downloader that communicates with the OneDrive C&C server to 
receive followup malware.
- The significance of the Empire Server in the image is to receive task results and execute tasks.
- The data flows include an HTML exploit request from a victim to the Exploit Server, sending of HTML exploit and execution of CVE-2021-40444 
Exploit, sending victim information to OneDrive C&C, receiving followup malware, executing tasks on the Empire Server, and receiving task 
results back.
- The 'TrailBlazer' infrastructure plays a role in the full infection chain, transitioning from the initial exploit server to leveraging OneDrive for 
command and control, and eventually connecting to the Empire Server for task execution.
- The type of encryption used in the communications shown in the image is standard HTTPS encryption typically employed by cloud services, 
as implied by the use of OneDrive as a command and control server.
- The process of establishing persistence as depicted in the image involves the CVE-2021-40444 exploit leading to the execution of a second 
stage downloader, which then transitions to Graphite malware, followed by the DLL Launcher Stager, the C# Stager, and finally the execution by 
the Empire PowerShell stager.
- The involvement of spear phishing in the attack sequence shown in the image is indicated by the initial stage involving a request for an HTML 
exploit, suggesting the potential use of spear phishing to deliver the initial payload.

Figure 9: QA Example
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Image

Image-Aware-Context

Question

Global-Context

What are the conclusions that can be made based on the image?

In-Context:
The document examines the geographic distribution of targeted organizations in the Nitro Attacks. Figure 2 illustrates the countries of origin for 
these targeted organizations. The US and UK are prominently featured, but the spread differs from the locations of infected computers, 
suggesting attackers may target sites based on data accessibility or perceived security weaknesses rather than specific countries.

Answer: The conclusions that can be made based on the image are that the targeted organizations in the Nitro Attacks are primarily located in 
the US and UK, with additional targets in Denmark, the Netherlands, Belgium, Italy, Japan, and Saudi Arabia.

Outline:
The Nitro attacks represent a targeted cyber-espionage campaign primarily aimed at companies in the chemical and advanced materials sectors. 
Occurring between July and September 2011, these attacks sought to steal sensitive intellectual property such as formulas, designs, and 
manufacturing processes. Symantec identified at least 48 affected organizations, including multiple Fortune 100 companies and defense 
contractors across 20 countries.The attackers used spear-phishing emails, often disguised as meeting requests or security updates, which 
carried malicious attachments. These files, usually password-protected 7zip archives, delivered the Poison Ivy Remote Access Trojan (RAT). 
Once executed, Poison Ivy allowed attackers to control infected machines, extract password hashes, move laterally within networks, and 
exfiltrate proprietary data.Centrally controlled via Command and Control (C&C) servers, the malware communicated over TCP port 80 using 
encrypted channels. Infected computers were found in a geographically diverse range of countries, with a notable presence in the US, UK, and 
Bangladesh. However, many compromised machines were not located in the same country as the targeted organizations, suggesting attackers 
exploited weak points in global infrastructure.Attribution efforts traced one VPS used in the operation to a Chinese individual in Hebei province, 
dubbed "Covert Grove." Although direct involvement remains uncertain, his association with hacking services and the presence of Chinese-
language metadata in the malware bolster suspicions of Chinese origin.The Nitro campaign stands out for its use of the widely available Poison 
Ivy RAT, contrasting with more sophisticated groups like those using Backdoor.Sogu. Despite its relatively basic tools, the operation 
underscores a persistent and effective strategy of industrial espionage. This case highlights the ongoing threat to corporate intellectual 
property and the global scale of such cyberattacks.

Answer: The conclusions that can be made based on the image are that the cyber-espionage campaign affected at least 12 organizations in the 
USA, 5 in the UK, 2 in Denmark, and one each in Belgium, Italy, the Netherlands, Japan, and Saudi Arabia, with some additional confirmed 
infections not contacting the command and control server during the monitoring period.

Zero-shot
Answer: The conclusions that can be made based on the image are that confirmed infections were detected in the USA, UK, Denmark, 
Netherlands, Belgium, Italy, Japan, and Saudi Arabia.

All-Context
Answer: The conclusions that can be made based on the image are that the targeted organizations in the Nitro Attacks were geographically 
diverse, with a significant focus on the US and UK, but the distribution of infected computers suggests attackers targeted sites based on data 
accessibility or perceived security weaknesses rather than specific countries.

Figure 10: Answer Example
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Image

Image-Aware-Context

Question & Initial Answer 

Answer Iteration

Question: What is the sequential relationship of the processes in the image?
Answer: The sequential relationship of the processes in the image is propagation through removable devices and local network, followed by 
installation and privilege escalation on different Windows operating systems.
Level: failing

There are fourways the rootkit candistribute itself: by means of flash drives, through network shares,through an RPC vulnerabilityand through 
the recently patched MS10-061 Print Spooler vulnerability.The figure below depicts the vulnerabilities used for propagation and installation.

Question-led

Iteration 1
Suggestion: The suggestion should improve the answer by ensuring it meets the criteria for Accuracy, Consistency, Completeness, and Relevance. 
Specifically, the current answer lacks detail on the specific vulnerabilities (MS10-046, MS08-067, MS10-061, MS10-073, and MS10-092) and the exact 
sequence of propagation and installation vectors in MS Windows, as depicted in the image. The next answer should explicitly mention these 
vulnerabilities and their roles in the propagation and installation processes, ensuring a direct alignment with the image information and providing 
actionable insights for cybersecurity analysis.
Answer: The sequential relationship of the processes in the image involves propagation through removable devices exploiting MS10-046, additional 
attack vectors targeting local networks via MS08-067 and MS10-061, and installation with privilege escalation on Win2000/XP through MS10-073 and 
on Vista/Win7/Server 2008 via MS10-092.
Level: good

Iteration 2
Suggestion: The suggestion should improve the answer by ensuring it meets the criteria for Accuracy, Consistency, Completeness, and Relevance. 
Specifically, the current answer lacks detail on the specific vulnerabilities (MS10-046, MS08-067, MS10-061, MS10-073, and MS10-092) and the exact 
sequence of propagation and installation vectors in MS Windows, as depicted in the image. The next answer should explicitly mention these 
vulnerabilities and their roles in the propagation and installation processes, as well as the privilege escalation steps on different Windows operating 
systems.
Answer: The sequential relationship involves propagation through removable devices exploiting MS10-046, additional attack vectors via local network 
leveraging MS08-067 and MS10-061, and installation with privilege escalation on Win2000/XP through MS10-073 and on Vista/Win7/Server 2008 via 
MS10-092.
Level: excellent

Iteration 1
Answer: The sequential relationship of the processes in the image is propagation through removable devices and local network, followed by installation 
and privilege escalation on different Windows operating systems, specifically targeting vulnerabilities MS10-046, MS08-067, MS10-061, MS10-073, and 
MS10-092.
Level: excellent

Figure 11: Iteration Example
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Image

Answer

- The main content of the image is a table detailing the Import Address Table (IAT) entries, including the appended entry for wmiwk.dll that 
forces the loading of a malicious DLL when the WMI service is initiated.
- The possible uses of the image are to illustrate how attackers modify a wbemcomn.dll file to load a malicious StealthVector DLL named 
wmiwk.dll during the ScrambleCross infection chain.
- The possible attack techniques involve modifying the Import Address Table (IAT) to force the loading of a malicious DLL named wmiwk.dll 
when the WMI service is initiated.
- The highlighted fields include "7E630" in the Offset column, "wmiwk.dll" in the Name column, and "82258" in both the OriginalFirstThunk and 
FirstThunk columns for the entry related to wmiwk.dll, as well as "82258" and "StreamHandler" in the Call via and Name columns of the second 
table.
- The possible informations relevant to malicious activity in the image are the presence of wmiwk.dll with a single entry for StreamHandler at 
offset 7E630, indicating a potential hijacking of WMI functionality.
- The significance of the wmivxk.dll entry in the image is that it represents a modified Import Address Table (IAT) entry with an OriginalThunk 
value of 82258, which forces the loading of the malicious wmiwk.dll DLL when the WMI service is initiated, facilitating DLL injection as part of 
the ScrambleCross infection chain.
- The details depicted by the Offset values in the image represent the starting addresses of entries in the Import Address Table (IAT) for each 
imported function, such as the Offset value `7E630` for `wmiwk.dll`, which is relevant to cybersecurity as these values are used in the context of 
DLL injection and malware execution.
- The role of the StreamHandler function (Original Thunk at 82272) is part of the malicious wmiwk.dll, which is loaded through an appended IAT 
entry as indicated in the image, and this loading mechanism is a key component of the ScrambleCross infection chain used for executing 
malicious shellcode via a legitimate WMI service.
- The implications of the FALSE Bound status in the image indicate that the DLLs, including wmiwk.dll, are not properly secured, which can be 
exploited to load malicious code during WMI service initialization as part of the ScrambleCross infection chain.
- The significance of the MoonBounce malware in the image is that it demonstrates a technique used to load a malicious DLL named wmiwk.dll 
into the WMI service, facilitating the execution of malicious shellcode through a legitimate system service.
- The presence of UEFI firmware modifications implies the loading of a malicious `wmiwk.dll` through an appended IAT entry in the modified 
`wbemcomn.dll` file, as shown in the image, indicating a potential ScrambleCross infection chain.
- APT41's tactics include modifying the Import Address Table (IAT) to force the loading of a malicious DLL named wmiwk.dll when the WMI 
service is initiated.
- The defensive evasion technique depicted is the appending of an IAT entry to force the loading of a malicious StealthVector DLL named 
wmiwk.dll when the WMI service is initiated.
- The image illustrates the persistence mechanisms employed by APT41 by showing an appended IAT entry that forces the loading of a 
malicious StealthVector DLL named wmiwk.dll when the WMI service is initiated.

Answer-Rewrite

The image depicts a cyber threat scenario involving the modification of the Import Address Table (IAT) to force the loading of a malicious DLL 
named wmiwk.dll during the initialization of the WMI service, which is part of the ScrambleCross infection chain used by APT41. This malicious 
activity is facilitated by altering the wbemcomn.dll file, resulting in the loading of wmiwk.dll, also associated with MoonBounce malware, 
through an appended IAT entry. The table highlights key entries, including offset 7E630 for wmiwk.dll and the OriginalFirstThunk and 
FirstThunk value of 82258, indicating potential functionalities like StreamHandler, which is part of the malicious payload executed via WMI. The 
implications of this technique include possible DLL injection and execution of malicious shellcode, demonstrating a defensive evasion 
approach and persistence mechanism. The FALSE Bound status suggests a lack of proper security measures, further facilitating the exploit. 
Additionally, UEFI firmware modifications imply the presence of the malicious wmiwk.dll entry, underscoring the sophisticated tactics used by 
attackers to integrate malicious code into legitimate system services.

 

Figure 12: Combine Answer Example
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Table 5: Leading Questions.

Attack Flow or
Intelligence Structure

- What is the main content of the image?
- What are the possible uses of the image?
- What are the possible attack techniques involved in the image?
- What is the sequential relationship of the processes in the image?
- What are the possible targets of attack in the image?

Malware Code

- What is the main content of code in the image?
- What are the possible uses of the image?
- What are the possible attack techniques involved in the image?
- What is the possible function of the Code in the image?
- What are the possible variables in the Code in the image?

Application Tool
Screenshot

- What is the main content of the image?
- What are the possible uses of the image?
- What are the possible attack techniques involved in the image?
- What is the key highlighted information in the picture?

Data Table

- What is the main content of the image?
- What are the possible uses of the image?
- What are the possible attack techniques involved in the image?
- What are the fields highlighted in the image?
- What are the possible informations relevant to malicious activity in the image?

Charts and Data
Visualization

- What is the main content of the image?
- What are the possible uses of the image?
- What are the trends reflected in the image?
- What are the conclusions that can be made based on the image?

File Paths and Names
- What is the main content of the image?
- What are the possible uses of the image?
- What are the possible attack techniques involved in the image?
- What paths are included in the image?

Descriptive Image and
Content Explanation

- What is the main content of the image?
- What are the possible uses of the image?
- What are the possible attack techniques involved in the image?
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Table 6: Prompts of image function identification module.

Question Generation

You are a cybersecurity threat intelligence analyst. Please generate relevant questions derived from
the content of an image based on the following rules:
1. Review the list of existing questions provided and generate new questions that explore different
perspectives, details, or contexts within the image.
2. Generate new questions that explore different perspectives or details of the image based on the
information from the knowledge graph.
3. These new questions should help further analyze the image from different perspectives.
4. These new questions should be related to cybersecurity or assist in the analysis of cyber threat
intelligence.
5. Refer to the format of the given questions, which follows the pattern: "What is/are the XXX
of/in the image?", "Where XXX should be replaced with a specific aspect of the image?".

Question Answering

You are a cybersecurity threat intelligence analyst. Please answer the questions based on the
following rules:
1. Your answer must strictly adhere to the content visible in the image when mentioning any entities,
objects, and their relationships.
2. Your answer must include a topic phrase that is specific to the question.
3. Your answer should be a single, concise sentence.
4. Only provide the direct answer to the question. Do not provide explanations or reasons for
uncertainty.

Answer Evaluation

You are a cybersecurity threat intelligence analyst. Please rate the description based on the following
rules:
1. Evaluate the description using the following four criteria:
- Accuracy: Accuracy represents whether the description accurately answers the question.
- Consistency: Consistency represents whether the description maintains content relevance to the
image information.
- Completeness: Completeness represents whether the description adequately addresses the needs
of the question.
- Relevance: Relevance represents whether the description is relevant to the cybersecurity field or
useful for cyber threat analysis.
2. Apply the following rating scale based on the overall quality:
- "excellent": The description meets three of the criteria with only minor flaws or imperfections.
- "good": The description meets two of the criteria with small deviations or omissions that do not
significantly impact the overall quality.
- "satisfactory": The description meets two of the criteria, but contains more noticeable flaws.
- "failing": The description meets only one of the criteria or none at all, with significant flaws that
make the response unable to provide useful or relevant information.
3. If there are statements in the description such as unknown, no details, not mentioned, etc., mark
it as "failing".
4. Your answer should be a single word: either "excellent", "good", "satisfactory", or "failing".

Answer Optimization

You are a cybersecurity threat intelligence analyst. Please provide your answers to the following
questions again, using the image as a reference, based on the following rules:
1. Re-answer the questions to ensure the answers meet the following four criteria:
- Accuracy: Accuracy represents the answer accurately answers the question.
- Consistency: Consistency represents the answer maintains content relevance to the image infor-
mation.
- Completeness: Completeness represents the answer adequately addresses the needs of the question.
- Relevance: Relevance represents the answer is relevant to the cybersecurity field or useful for
cyber threat analysis.
2. Improve existing unqualified answers (Paradigm 1) or re-answer questions based on suggestions
provided (Paradigm 2).
3. Ensure the revised answer differs from the previous unqualified answer (Paradigm 1), or strictly
follows the suggestions given (Paradigm 2).
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Table 7: Prompts of ICL.

Extraction of Entities
and Relation

You are a cyber-security information-extraction specialist. Given an image, its context, and a CTI
summary, identify entities and their relationships, then output them as triplets: Subject (Type);
Relation; Object (Type).
[Input]
1. An image; 2. Image In-context; 3. CTI summary; 4. Entity Types & Descriptions; 5. Relation
Table.
[Example]
Input:
Image: ... attack path from public Internet → SSH→ Public-facing Server1...
In-context: This led our responders to identify the occurrence of...
CTI summary: CrowdStrike’s analysis of the StellarParticle campaign...
Output:
Public Internet(infrastructure); communicate-with; Public-facing Server1(infrastructure)
...

Extraction of
Techniques

You are a cyber-threat intelligence specialist. Given an image, its context, and a CTI summary,
identify the one MITRE ATT&CK tactic that best matches the image.
[Input]
1. CTI image; 2. Image context; 3. CTI summary; 4. MITRE ATT&CK tactics list.
[Example]
Input:
Image: ... attack path from public Internet → SSH→ Public-facing Server1...
In-context: This led our responders to identify the occurrence of...
CTI summary: CrowdStrike’s analysis of the StellarParticle campaign...
Output:
Lateral Movement

Integrated Attack
Graph

You are a cyber-threat intelligence specialist. Given a CTI image, and a Knowledge Graph of
existing triplets, perform one of three operations based on the image:
1. New Node Addition: add a new entity to extend an existing triplet.
2. New Relationship Addition: link entities from different triplets.
3. Technique Addition: tag an existing triplet with a new MITRE ATT&CK technique.
[Input]
1. CTI image; 2.Knowledge Graph (list of triplets); 3. Entity Types & Descriptions; 4.MITRE
ATT&CK techniques list.
[Rules]
Rule 1: New Node Addition: if the image shows an entity related to a KG triplet, output a JSON
list [...] with objects containing:
...
description: reason for adding the node
new_node: {id, type, properties:{description}}
relationship: {Subject, SubjectType, Relation, Object, ObjectType}
Rule 2: New Relationship Addition: if the image connects entities from different triplets, output
objects with:
...
description: reason for the new relation
relationship: {Subject, SubjectType, Relation, Object, ObjectType}
Rule 3: Technique Addition: if the image indicates a new MITRE technique for a triplet, output
objects with:
...
[Example]
Input:
Image: attacker executes Stuxnet injection, installs a malicious module...
Knowledge Graph: triplets for Stuxnet → install → dropper; attackers → develop → capabilities...
Entity Types: includes campaign...
MITRE list: includes T1055-Process Injection...
Output:
[
{"type":"new_node_addition", ...},
{"type":"new_relationship_addition", ...},
{"type":"technique_addition", ...
]
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Table 8: Prompts of CoT.

Extraction of Entities
and Relation

You are a cybersecurity information-extraction specialist. Given a CTI image (plus its context and
summary for reference), identify visible entities and their relationships, then output them as triplets:
Subject(type); relation; Object(type).
[Thinking Process]
1. Spot entities in the image.
2. Map each to the shortest matching provided type.
3. Identify clear, active-voice relationships between them.
4. Form triplets.

Extraction of
Techniques

You are a cyber-threat intelligence expert. Given a CTI image (with optional context/summary) and
a list of MITRE ATT&CK tactics, identify the single tactic that best matches the image.
[Thinking Process]
1. Inspect the image for attack indicators (flowcharts, logs, interfaces).
2. Identify candidate tactics from the provided list.
3. Select the one tactic that most directly reflects what you see.
4. Ensure it fits the attack phase implied by the image.

Integrated Attack
Graph

You are a cyber-threat intelligence expert. Given a CTI image, a Knowledge Graph of triplets,
Entity Types & Descriptions, and MITRE ATT&CK techniques, extend the graph by discovering:
1. New Node Addition: adding an image-derived entity to an existing triplet.
2. New Relationship Addition: linking entities from different triplets.
3. Technique Addition: tagging a triplet with a new MITRE technique.
[Thinking Process]
1. Identify triplets strongly correlated with the image.
2. Extract and type entities visible in the image.
3. For each strong-match triplet: check if an image entity adds a new connection to its subject or
object (new node addition).
4. Check if an entity in this triplet should link to an entity in another triplet (new relationship
addition).
5. Determine if the image implies a new MITRE technique for the most relevant triplet (technique
addition).
6. Assemble JSON outputs.
7. If none apply, output No Match.
[Rules]
Rule 1: New Node Addition: if the image shows an entity related to a KG triplet, output a JSON
list [...] with objects containing:
...
description: reason for adding the node
new_node: {id, type, properties:{description}}
relationship: {Subject, SubjectType, Relation, Object, ObjectType}
Rule 2: New Relationship Addition: if the image connects entities from different triplets, output
objects with:
...
description: reason for the new relation
relationship: {Subject, SubjectType, Relation, Object, ObjectType}
Rule 3: Technique Addition: if the image indicates a new MITRE technique for a triplet, output
objects with:
...
description: reason for the new technique
target_relationship: {Subject, Relation, Object}
new_techniques: ["technique_id - technique_name"]
Rule 4: Use active-voice, concise verb phrases for relations.
Rule 5: Only generate JSON if there is a strong match; otherwise output No Match.
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