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We propose a quantum authentication and digital signature protocol whose security is founded on
the Quantum Merlin Arthur (QMA)-completeness of the consistency of local density matrices. The
protocol functions as a true public-key cryptography system, where the public key is a set of local
density matrices generated from the private key, a global quantum state. This construction uniquely
eliminates the need for trusted third parties, pre-shared secrets, or authenticated classical channels
for public key distribution, making a significant departure from symmetric protocols like quan-
tum key distribution. We provide a rigorous security analysis, proving the scheme’s unforgeability
against adaptive chosen-message attacks by quantum adversaries. The proof proceeds by a formal
reduction, demonstrating that a successful forgery would imply an efficient quantum algorithm for
the QMA-complete Consistency of Quantum Marginal Problem (QMP). We further analyze the effi-
ciency of verification using partial quantum state tomography, establishing the protocol’s theoretical
robustness and outlining a path towards practical implementation.

INTRODUCTION

The advent of scalable quantum computers threat-
ens the security of conventional public-key cryptosys-
tems [1, 2]. Shor’s polynomial-time algorithm for in-
teger factorization and discrete logarithms undermines
RSA [3] and elliptic-curve cryptography [4, 5], while
Grover’s quadratic speed-up lowers the effective strength
of symmetric ciphers [6]. Although block ciphers such
as AES can be hardened by increasing the key size, the
prospective collapse of public-key infrastructure compels
the search for alternative paradigms [7].

In response to the quantum threat, two principal direc-
tions have emerged. The first is post-quantum cryptog-
raphy (PQC) [8], which seeks to develop classical cryp-
tographic schemes believed to be secure against both
classical and quantum attacks. Notable examples in-
clude lattice-based encryption [9], code-based cryptog-
raphy [10], and multivariate polynomial schemes [11].
While these constructions currently resist known quan-
tum algorithms, their long-term security remains an open
question, especially in the face of unforeseen advances in
quantum algorithms or cryptanalysis. The second di-
rection is quantum cryptography [12, 13], which lever-
ages the fundamental principles of quantum mechanics
to achieve information-theoretic security. Protocols such
as quantum key distribution (QKD) offer provable secu-
rity guarantees based on the laws of physics, rather than
computational assumptions, and represent a fundamen-
tally different approach to secure communication in the
quantum era [14–17].

QKD is a foundational quantum cryptography method
that enables information-theoretically secure key ex-
change via quantum principles, e.g. the no-cloning theo-

rem [12, 18]. When combined with one-time pads (OTP),
it guarantees unconditional security [14, 19]. However,
QKD is fundamentally a system for generating sym-
metric keys that cannot function securely without a
pre-authenticated classical channel [16, 20]. QKD also
does not provide the public-private key pairs required
by modern asymmetric cryptographic systems, which of-
fers features like nonrepudiation and scalable trust mod-
els through infrastructures like Public Key Infrastructure
(PKI) [21].
Following QKD, another major branch of quantum

communication is Quantum Secure Direct Communica-
tion (QSDC) [22–24], which aims to transmit secret mes-
sages directly over a quantum channel without first es-
tablishing a secret key. This approach promises enhanced
efficiency and immediacy by condensing key distribution
and ciphertext transmission into a single quantum pro-
cess [24]. Recent advances have demonstrated its po-
tential, with experimental systems achieving communi-
cation over 100 km of fiber [25, 26] and the development
of small multi-user networks [27]. However, QSDC is not
entirely self-sufficient, as it still fundamentally requires
an authenticated classical channel for coordination and
eavesdropping detection [23].
While QKD and QSDC aim to secure the transmis-

sion process, quantum identity authentication (QIA) and
quantum digital signature (QDS) protocols are designed
to leverage quantum infrastructure to achieve secure
communication [28–30]. Identity authentication is the
process of ensuring the identity of the communicating
parties, guaranteeing they are who they claim to be [31].
Digital signatures, on the other hand, are designed to
ensure the authenticity and integrity of the message it-
self, providing guarantees that it came from a specific
sender and was not altered in transit [32, 33]. Both of
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these functions are critically important and constitute
the foundation of modern cryptography, which is why
developing quantum-resistant versions is a major focus
of research.

For QIA, early protocols often relied on the principles
of QKD as a foundational layer [22, 23]. The logic was to
use the tamper-evident nature of quantum communica-
tion to establish trust. However, it is well-established
that QKD by itself does not solve the authentication
problem; it secures a key exchange but cannot verify
the identity of the participants at the outset [15, 20].
Later protocols have attempted to build more sophisti-
cated QIA schemes, sometimes embedding authentica-
tion directly into other protocols or combining quantum
techniques with classical methods like hash functions [34].
Despite these advances, a common thread persists: the
need for a trusted third party or, more fundamentally, a
pre-existing authenticated classical channel to bootstrap
the process [28]. This dependency is required to prevent
man-in-the-middle attacks where an adversary could im-
personate a legitimate party during the initial communi-
cation.

Quantum digital signature is to use quantum meth-
ods to sign on messages, either quantum one-way func-
tion [29] or relying on non-locality of Bell state, non-
cloning theorem, offering a higher level of security than
their classical counterparts. However, QDS protocols
face significant practical limitations and dependencies.
Early schemes explicitly required a trusted third-party,
or “arbitrator,” to validate and authenticate the signed
message, creating a central point of failure [35, 36].
More recent protocols, including Measurement-Device-
Independent (MDI) schemes, have tried to remove this
dependency but still explicitly require authenticated clas-
sical channels for coordination [33, 37]. Furthermore, the
very nature of a “quantum public key” makes it diffi-
cult to manage; the no-cloning theorem makes it phys-
ically impossible to freely copy and distribute the key,
and many protocols require advanced, and still largely
experimental, technology like quantum memory to store
the fragile quantum states for verification [38, 39]. Re-
cent research aiming to remove the trusted party has had
to introduce other strong assumptions, such as the re-
quirement of an un-tamperable quantum channel for key
transmission [32, 40].

In this work, we propose a QIA–QDS protocol that
eliminates the need for pre-registration, trusted third
parties, and pre-authenticated classical channels. Specifi-
cally, in our scheme, each user’s private key is represented
by a quantum state, while the corresponding set of local
reduced density matrices functions as the public key. The
digital signature is realized by encoding classical mes-
sages into the global quantum state before transmission,
thereby ensuring strong guarantees of message integrity
and authenticity. Crucially, the security foundation of
our protocol lies in the QMA-completeness of the QMP,
also known as the Consistency of Local Density Matri-

ces (CLDM) problem [41]. The QMA-complete problem
analogous to classical NP-complete problems—remains
computationally intractable even for quantum comput-
ers.

PRELIMINARIES: THE QUANTUM MARGINAL
PROBLEM AND COMPLEXITY

The QMP is a fundamental question concerning the
relationship between a whole quantum system and its
parts [42, 43]. Formally, given a set of n particles indexed
by the set I = {1, . . . , n}, a collection of index subsets
Jk ⊂ I, and a corresponding set of density matrices ρJk

,
the QMP asks for the conditions under which a global
state ρI exists such that for all k, TrI\Jk

(ρI) = ρJk
. This

problem is also known as the N -representability problem
in quantum chemistry [44].
For cryptographic purposes, we focus on the associated

decision problem, known as the CLDM problem [45].
Throughout this paper, we will use QMP to refer to the
general conceptual problem and CLDM to denote the
precise computational problem that underpins our secu-
rity proof.

Definition 1 (CLDM problem [41]). Consider a system
of n qubits. We are given a collection of local density
matrices ρ1, . . . , ρm, where each ρi acts on a subset of
qubits Ci ⊆ {1, . . . , n}. Every matrix entry is specified
with poly(n) bits of precision. We also havem ≤ poly(n),
and each subset satisfies |Ci| ≤ k for some constant k.
In addition, a real number β is provided (again with

poly(n) bits of precision) such that β ≥ 1/ poly(n).
The task is to distinguish between the following two

cases:

YES: There exists an n-qubit state σ such that, for all i,∥∥Tr{1,...,n}\Ci
(σ)− ρi

∥∥
1
= 0.

NO: For every n-qubit state σ there is some i for which∥∥Tr{1,...,n}\Ci
(σ)− ρi

∥∥
1
≥ β.

The CLDM problem is known to be QMA-complete,
indicating that it is as hard as the most difficult problems
verifiable by quantum computation. To clarify this classi-
fication, we briefly introduce the QMA complexity class.
The complexity class QMA is the quantum analogue of
the classical complexity class NP. In the QMA frame-
work, an all-powerful but untrustworthy prover (Merlin)
sends a quantum state, or ”witness,” |ψ⟩ to a polynomial-
time quantum verifier (Arthur). Arthur performs a ver-
ification circuit on the witness and outputs ’accept’ or
’reject’. A problem is in QMA if it satisfies two condi-
tions:
Completeness: For any YES instance of the problem,

there exists a witness state |ψ⟩ that causes Arthur to
accept with high probability (e.g., P (accept) > 2/3).
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Soundness: For any NO instance of the problem, ev-
ery possible witness state causes Arthur to be rejected
with high probability (i.e., P (accept) < 1/3).

The gap between the acceptance probabilities for YES
and NO instances is crucial and can be amplified by re-
peating the protocol. A problem is QMA-complete if it is
in QMA and any other problem in QMA can be reduced
to it in classical polynomial time.

A remarkable result in quantum complexity theory is
that the CLDM problem is QMA-complete [41]. The
computational structure of QMA is what makes its com-
plete problems suitable for cryptography. QMA prob-
lems are fundamentally promise problems. The verifier is
guaranteed that the input instance belongs to one of two
disjoint sets: YES instances, for which a ”good” proof
exists, or NO instances, for which no convincing proof
can be constructed. For CLDM problem, this promise
manifests as a gap: the given marginals are either highly
consistent (a YES case) or any potential global state will
be highly inconsistent with at least one of them (a NO
case). A cryptographic protocol can exploit this gap to
distinguish between legitimate and malicious behavior.
An honest user’s actions, by design, will correspond to
a YES instance of the underlying problem. A success-
ful forgery, as will be shown, would require the creation
of a valid witness for a NO instance, an act deemed im-
possible by the soundness property of QMA. Thus, the
promise gap inherent to the complexity class provides the
necessary separation for cryptographic security.

THE QMP-BASED CRYPTOGRAPHIC
PROTOCOL

Our protocol consists of three phases that together re-
alize a quantum public-key scheme. In the key genera-
tion phase, Alice’s private key is a polynomial-depth cir-
cuit; her public key is the full set of k-qubit marginals
of the circuit’s output state, checkable via local con-
sistency. In the authentication phase, Bob challenges
Alice with an arbitrary M-qubit subset; Alice then re-
turns the corresponding fragment, and Bob verifies its
marginals against the public key. In the digital signature
phase, Alice encodes a message into a unitary generated
from some publicly-known, message-dependent transfor-
mation. A;ice applies the unitary to the challenged frag-
ment, and any verifier can invert the unitary and test
the marginals. The scheme requires no pre-registration.
Its security is based on the hardness of reconstructing a
highly entangled state from sparse local data.

Key Generation

To initiate the key generation process, Alice first se-
lects a security parameter λ and constructs a classical
description of a quantum circuit CircuitA with depth

poly(λ). Applying CircuitA to the fixed initial state

|0⟩⊗N
yields her private key, the N -qubit state ρA. Once

the private key state is prepared, Alice computes all k-
qubit marginals by performing state tomography on each
overlapping subsystem of size k. The resulting set of clas-
sical density matrices forms her public key, which she
publishes. This workflow starts with Alice using her pri-
vate circuit to prepare the global state ρA. She then pub-
lishes all its k-qubit reduced states. Anyone can down-
load these marginals and check that they fit together
consistently. However, without knowing the exact cir-
cuit parameters in CircuitA, rebuilding the full N -qubit
state is believed to be computationally infeasible.

Alice’s Private Key (skA): Alice’s private key is
a classical description of an efficient quantum circuit,
CircuitA. This circuit, when applied to a standard ini-
tial state like |0⟩⊗N

, prepares a specific, highly entangled
N -qubit system. The choice of ρA should be such that
it is highly-entangled thus its global entangled structure
would be destroyed or only partially exist locally. The
generation of large, structured entangled states is an ac-
tive area of experimental research. The classical descrip-
tion of an efficient quantum circuit, CircuitA is to be used
to generate Alice’s private key. CircuitA is subject to a
security parameter λ. The depth of CircuitA is poly(λ).

Alice’s Public Key (pkA): Alice defines a set of k-
local overlapping subsystems, {C1, C2, . . . , C(Nk)

}, where
Ck

N is a combinatorial number and S is a collection of
the indices of qubits in the N -qubit entangled system
ρA. Alice then generates the marginal density matrix for
each subsystem by state tomography.

Her public key, pkA, is the set of classical de-
scriptions of these k-local density matrices, pkA =
{ρC1 , ρC2 , . . . , ρC(Nk)

}, which she makes publicly avail-

able. By its construction, the set of local density ma-
trices representing Alice’s public key is perfectly consis-
tent, with the state ρA serving as the unique global-state
witness to this consistency. The pseudocode of key gen-
eration is shown as Algorithm 1.

Algorithm1 KeyGen()

Input: security parameter λ
Output: (skA, pkA)
1: Choose a circuit CircA of poly(λ) size to prepares an N -

qubit state ρA.
2: skA = ρA
3: Define Ck

N subsystems {C1, C2, . . . , C(Nk )
}.

4: for k = 1, . . . ,
(
N
k

)
do

5: Compute local density matrix ρCk = Tr{1,...,n}−Ck
(ρA)

6: Append local density matrix ρCk to public key pkA

7: end for
8: return (skA, pkA)
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Authentication

We design a challenge-response protocol to prove Al-
ice’s identity with a verifier Bob.

Challenge: In this protocol, Bob first send a challenge
to Alice by randomly selecting an M -qubits subsystem
from {1, . . . , N} qubits system of Alice, where k < M <
N . He sends the classical description of all the indices of
qubits and send this challenge to Alice. The state Bob
asked for is denoted as sM , which is a string of indices of
corresponding qubits.

Response: After receiving the challenge string, Alice
uses her private key CircuitA to prepare the state ρA.
According to the challenge string sM . She then sends
the state ρM to Bob as a response.

Verification: Bob receives multiple copies of the
subsystem state ρM and performs quantum state to-
mography to reconstruct the corresponding k-qubit lo-
cal density matrices, which we denote by ρCk

=
Tr{1,...,M}\Ck

(ρM ). He then checks each reconstructed
marginal against the corresponding public-key marginal
ρCk

by verifying

1

2

∥∥ρCk
− ρCk

∥∥
1
≤ ϵ,

for every Ck ⊂ sM and |Ck| = k, where ϵ is a predeter-
mined acceptance threshold. If every inequality holds,
Bob accepts that the responder is Alice, as only she can
produce the global state ρA from which these statistics
arise.

Digital Signature

Signing: To sign a classical message m, Alice applies
a publicly known, message-dependent, and efficiently in-
vertible unitary transformation Um to the state asked by
Bob, ρM . In many digital signature protocols, there is
a preprocessing process: a plain-texted, arbitrary, un-
structured x is first compressed through a publicly spec-
ified cryptographic hash function h, producing the fixed-
length message [46] m = h(x). The digest m is then
a standardized message that enters the signature proto-
col. After transformation, the resulting quantum state,
σm = UmρM , then constitutes the quantum digital signa-
ture for the message m. Alice prepares multiple identical
copies of σm and transmits them to the verifier.

In the following paragraph, we first give a proper def-
inition or to say, limitation on the message that is to be
sent, and then give a proper definition for a message-
dependent transformation Um:

Definition 2 (Classical messages). Let L be a finite,
publicly agreed-upon alphabet, say language. A message
is a finite word

m = m1m2 · · ·m|m|, mj ∈ L (1 ≤ j ≤ |m|).

Typically |m| ≤ γ, where γ is the allowed message length.
A simple example is: with L = {0, 1} we recover ordinary
binary strings.

Definition 3 (Message-dependent unitary Um). A pub-
licly known universal gate set is given to construct quan-
tum circuit and give operation on qubits. Such gate set
is

G = {G1, G2, . . . , GL}.

For every i ∈ {1, . . . , L} and every ℓ ∈ L we specify a

unitary G
(ℓ)
i via the public rule

G
(ℓ)
i =


I, if ℓ encodes “skip”,

Gi, if ℓ encodes a non-parametric gate,

Gi(θℓ), if Gi is a rotation and ℓ 7→θℓ ∈ [0, 2π).

Construction of Um. Read m = m1 · · ·m|m| from left
to right and assign gates cyclically with i(j) = (j mod
L) + 1, rightmost-first-ordered,

Um =

|m|∏
j=1

G

(
mj

)
i(j) . (1)

Properties.

(i) Efficient invertibility. U−1
m is obtained by reversing

the product in (1) and taking adjoints, so both Um

and U−1
m have depth O(|m|).

(ii) Injectivity. Different messages change at least one
factor in (1); hence the map U : L∗→U(2n), m 7→
Um is injective.

(iii) Public computability. Because the rule (i, ℓ) 7→
G

(ℓ)
i is public, both U and its inverse U−1 are effi-

ciently computable.

During the signing phase Alice applies Um from Defi-
nition 3 to the challenged subsystem ρM , producing the
signature state σm = UmρM . The pseudocode of signing
a message by private key is shown as Algorithm 2.

Algorithm2 Sign(skA, sM ,m)

Input: private key skA, challenge sM , message m
Output: multiple copies of σm

1: Alice uses CircA to prepare ρA.
2: Alice uses sM and ρA to prepare ρM .
3: Alice applies the public, message-dependent unitary Um

to get σm = UmρM .
4: Alice outputs multiple copies of σm.

Verification: Any party in possession of Alice’s public
key pkA, the message m, and the signature copies σm can
perform verification. The verifier’s goal is to confirm that
the received state, when untransformed, has marginals
consistent with Alice’s public key. To do this, the veri-
fier first applies the inverse transformation U−1

m to each
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copy of the signature, yielding the state σ′
m = U−1

m σm.
Verification then proceeds exactly as in the Authentica-
tion procedure, with each instance of ρM replaced by σ′

m.
The methods for performing this check are detailed in the
Section Security Analysis. The pseudocode of verifying
a signature is shown as Algorithm 3.

Algorithm3 Verify(pkA,m, σm)

Input: public key pkA = {ρC1 , ρC2 , . . . , ρC(Nk )
}, message m,

signature σm, acceptance threshold ϵ
Output: accept or reject
1: Verifier construct U−1

m by message m and defined rule
2: Verifier reduction the signature state to private key frag-

ment: σ′
m = U−1

m σm.
3: for k = 1, . . . ,

(
M
k

)
do

4: Verifier compute σCk = Tr{1,...,M}\Ck
(σ′

m)

5: if 1
2

∥∥ρCk − ρCk

∥∥
1
> ϵ then

6: return REJECT
7: end if
8: end for
9: return ACCEPT

SECURITY ANALYSIS

After rigorously defining the digital signature and au-
thentication protocol, we need to analyze the security
of the proposed scheme. The analysis is to be conducted
within the standard cryptographic framework of an adap-
tive chosen-message attack (CMA), which is extended to
accommodate a quantum adversary. The adversary, Eve,
is hereby modeled as a quantum polynomial-time algo-
rithm. The security goal of this model is to achieve exis-
tential unforgeability (EUF) [47], which asserts that an
adversary cannot produce a valid signature for any new
message.

The security is defined by the Existential Unforge-
ability under adaptive quantum Chosen Message Attack
(EUF-qCMA) game [48], where a challenger runs Algo-
rithm KeyGen() to generate a key pair (skA, pkA) and
provides the public key pkA to the adversary Eve. Eve is
then given oracle access to a signing oracle, OSign. She
can adaptively make a polynomial number of queries,
sending messages m1, . . . ,mq to the oracle. For each
query mi, the oracle uses skA to compute the signature
σmi and returns a set of identical copies to Eve. After
the query phase, Eve outputs a message-signature pair
(mE , σE), where mE is a message she did not query,
i.e. mE /∈ {m1, . . . ,mq}. Eve wins the game if the
Verify(pkA,mE , σE) procedure returns Accept with
a probability that is non-negligible in the security pa-
rameter.

The signature scheme is considered secure if no quan-
tum polynomial-time adversary can win the EUF-qCMA
game with more than negligible probability. As the dig-
ital signature scheme is constructed on the identity au-
thentication scheme, the proof of security of the authen-

tication model is also given in This model is a quan-
tum generalization of well-established classical security
notions.

Proof of Unforgeability (Reduction to CLDM
problem)

The proof of unforgeability of our protocol proceeds
by reduction. We demonstrate that if a quantum
polynomial-time adversary E could successfully forge a
signature, then we could construct another quantum
polynomial-time algorithm F that uses E as a subroutine
to solve the QMA-complete CLDM problem [44, 45].
Since CLDM problem is believed to be intractable for
quantum computers (that is, BQP ̸= QMA), this implies
that no such adversary E can exist.

Theorem: The QMP-based digital signature scheme
is existentially unforgeable under adaptive chosen-
message attacks, assuming BQP ̸= QMA.

Proof : Assume, for the sake of contradiction, that
there exists a quantum polynomial-time adversary E that
wins the EUF-qCMA game with non-negligible proba-
bility δ. We construct an algorithm F to solve a given
instance of CLDM problem. Such algorithm F receives
an instance of the CLDM problem, which consists of a
set of k local density matrices ρ′Ck

and a promise that
this set is either a YES instance (highly consistent) or a
NO instance (highly inconsistent). F’s task is to decide
which is the case. Such algorithm F then initiates the
EUF-qCMA game with the forger E and sets the pub-
lic key for the game to be the CLDM instance it was
given: pkE ← ρ′Ck

. Using the oracle provided in the
EUF-qCMA game, when E queries the signing oracle for
a message mi, B is faced with a challenge: it cannot gen-
erate the signature because it does not know the global
state ρE corresponding to the public key (and for a NO
instance, no such state exists). However, the reduction
cleverly avoids this issue. The security proof does not
require B to answer the queries correctly. The existence
of a successful forger is assumed regardless of how oracle
queries are handled.

After its queries, the adversary E outputs its forgery:
a pair (mE , σE) for a new message mE . By our initial
assumption, this forgery must pass the verification check
with non-negligible probability. Algorithm F takes the
forged quantum state σE and applies the publicly known
inverse unitary U−1

mE
to obtain the state σ′

m = U−1
mE

σE .
According to the Verify algorithm, for the signature to
be valid, the marginals of σ′

m must be consistent with
the public key ρ′Ck

. This means the state σ′
m is a quan-

tum witness that satisfies the consistency conditions of
the original CLDM problem instance provided to F. F
can now use σ′

m to solve the CLDM problem. It sub-
mits the state σ′

m as a witness to a standard QMA ver-
ifier for CLDM. If the original CLDM instance was a
NO instance, the soundness property of QMA guaran-
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tees that no quantum state can serve as a convincing
witness. Therefore, if E produces a forgery, the CLDM
instance given to F could not have been a NO instance. If
the original CLDM instance was a YES instance, a valid
witness exists, and the forger E might succeed.

By observing whether the forger succeeds in producing
a valid witness, F can distinguish between YES and NO
instances of CLDM problem . E successful forgery by E
implies the instance is YES. The absence of a successful
forgery (over many runs) implies the instance is NO. This
allows F to solve CLDM problem with a non-negligible
advantage, which contradicts the assumption that CLDM
problem is QMA-complete.

Therefore, the initial assumption must be false: no
such polynomial-time quantum adversary E can exist.
The signature scheme is secure.

Authentication Security

The security of the authentication protocol follows a
similar logic. An imposter, Eve, attempting to respond to
Bob’s challenges would need to produce quantum states
whose measurement statistics on a subsystem Ck match
those of the public marginal ρCk

. To do this successfully
for arbitrary challenges across all subsystems, Eve would
effectively need to possess a global state consistent with
the entire set ρCk

. The ability to generate such a state
on demand is equivalent to solving the CLDM problem.

Non-Repudiation and Transferability

The protocol provides essential properties for a digital
signature scheme.

Non-Repudiation: Alice cannot deny having signed
a message m if a valid signature σm exists. The verifica-
tion process is public and relies only on publicly available
information (pkA, m). If Verify accepts, it is a math-
ematical proof that the provided state has the correct
properties relative to the public key. The link between
Alice’s identity and her public key is a prerequisite for
any public-key system and is typically handled by a pub-
lic ledger or directory.

Transferability: A recipient, Bob, who has received
and verified a signature (m,σm), can forward these to a
third party, Victor. Victor can independently perform
the same Verify procedure using Alice’s public key to
convince himself of the signature’s validity. This trans-
ferability is a direct consequence of the public nature of
the verification algorithm.

Necessity of the k < M < N restriction

A fundamental design choice in both the authentica-
tion and the signature protocol is that Bob’s challenge

never asks Alice to reveal her entire N -qubit private
state. Instead, he selects a random subsystem of size
M with k < M < N. We justify this restriction with the
following lemma.

Lemma 1 (State&Key-extraction attack). Suppose an
adversarial verifier is allowed, in a single session, to de-
mand the full N -qubit state ρA that serves as Alice’s
private key. Then after that session the verifier can, with
overwhelming probability, impersonate Alice in all future
executions of the protocol and forge signatures for arbi-
trary messages.

Proof. Once the adversary receives ρA, it can store the
state in a quantum memory and reuse it indefinitely;
no inverse transformation or measurement is required.
In the authentication protocol, responding to any future
challenge merely means measuring the appropriate sub-
system of that stored state; hence the adversary’s success
probability is 1.
For the digital signature protocol, recall that Alice

signs a message m by applying the public efficient invert-
ible unitary Um to ρA, producing σm = UmρM , where
ρM is generated from ρA and new challenger sM . Be-
cause the adversary now possesses ρA, it can reproduce
exactly the same procedure:

σfake
m = UmρM .

Verification applies U−1
m and checks the marginals of the

resulting state against those published in the public key;
the forged state passes with certainty. Hence existential
unforgeability is utterly broken once the full N -qubit key
leaves Alice’s laboratory.

Lemma 1 shows that exposing the entire state would
collapse security to the trivial level: Bob (or any ma-
licious verifier) could record ρA and become a perfect
clone of Alice. By limiting each challenge to an M -qubit
slice, with M strictly less than N , we prevent any single
verifier from obtaining enough information to reconstruct
the global state, guaranteed by the QMA-completeness of
the CLDM problem. Moreover, as the locations of theM
qubits are chosen randomly each time, collecting the full
state’s all possible subsystem of M qubits would require(
N
M

)
protocol runs, during which Alice would notice the

abnormal requests and related key leakage. This subsam-
pling strategy is therefore essential to preserve both im-
personation resistance and signature unforgeability while
still allowing efficient verification.

Verification Efficiency and Practical Considerations

The practical viability of this protocol hinges on the
efficiency of the Verify algorithm. The core task is to
check the consistency condition ∥Tr{1,2,...,(N

M)}−Ck
σ′
m−

ρCk
∥ ≤ ϵ for each subsystem Ck. We analyze two promi-

nent quantum procedures for this task — to use partial
Quantum State Tomography (pQST) technique.
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Verification via Partial Quantum State Tomography
(pQST) In this approach, the verifier reconstructs a
classical description of the marginals of the received state
and compares them to the public key.

For each subsystem Ck, the verifier uses the provided
copies of σ′

m = U−1
m |σm⟩ to perform quantum state to-

mography on that k-qubit subsystem. This yields an
estimate of the local subsystem ρC′

k
. The verifier then

classically computes a distance metric, such as the trace
distance, between the reconstructed local density matrix
ρC′

k
and the public key subsystem ρCk

.
Resource Consumption: While full tomography of an

N -qubit state is infeasible, scaling exponentially with N ,
pQST is only performed on small, k-qubit subsystems.
The number of state copies required to achieve a pre-
cision ϵ for a d-dimensional system (d = 2k) scales as
O(d2/ϵ2) = O(4k/ϵ2) [49]. For a small and fixed subsys-
tem size k, this is efficient. The total cost is polynomial
in the number of local subsystems.

In the realistic implementation, the quantum states
used in our protocol will be subject to decoherence due
to environmental interactions and operational imperfec-
tions. Such noise will affect both Alice’s preparation of
her private state and the transmission of the signature
state to the verifier. As a result, even an honest signa-
ture will not pass a perfect verification check.

The protocol must therefore incorporate an error
threshold. The verifier will accept a signature if the mea-
sured inconsistency is below a threshold. This threshold
must be carefully calibrated: it must be large enough
to tolerate the expected level of natural decoherence but
small enough to reliably detect malicious modifications
that would constitute a forgery. Ultimately, for the pro-
tocol to be truly scalable and secure over long distances
or long computational times, it may be implemented us-
ing logical qubits protected by a Quantum Error Correc-
tion (QEC) code. QEC schemes encode the information
of a single logical qubit across many physical qubits, al-
lowing for the detection and correction of errors. The
security analysis presented in this paper assumes ideal,
error-free qubits and serves as the theoretical foundation
upon which a fault-tolerant version of the protocol can
be built.

DISCUSSION

This work has introduced a novel framework for public-
key quantum cryptography based on the computational
hardness of the quantum marginal problem. The re-
sulting authentication and digital signature protocol
is, to our knowledge, the first to leverage the QMA-
completeness of a natural physical problem to achieve
security.

The protocol’s principal advantage is its self-contained
and decentralized nature. It successfully establishes a
true public-key system-without any reliance on trusted

third parties, pre-shared secrets between users, or pre-
authenticated classical channels for the distribution of
public keys. This represents a significant step toward
building scalable quantum networks where trust can be
established dynamically and securely based on the laws
of quantum mechanics and computational complexity.
The security is proven to be robust, with existential un-
forgeability against adaptive chosen-message attacks by
quantum adversaries reducible to the intractability of the
CLDM problem.

Based on this new formalism of quantum cryptography,
we hereby propose several promising avenues for future
research based on our protocol. First, the protocol can be
optimized by exploring different families of global states
ρ and different configurations of overlapping subsystems
{Ck} to find the ideal balance between the strength of
the security assumption and the resource costs of key
generation and verification. Second, a small-scale proof-
of-principle experiment on current noisy intermediate-
scale quantum (NISQ) hardware is a direct next step.
Such an experiment could involve generating appropri-
ate quantum state as private key , distributing its local
subsystems as a public key, and performing the verifica-
tion steps to demonstrate the protocol’s core mechanics,
even in the presence of noise. Finally, the core method-
ology—using the hardness of a QMA-complete problem
as a cryptographic primitive—could be applied to other
quantum-computationally hard problems, including esti-
mating the ground-state energy of specific local Hamilto-
nians or verifying properties of quantum circuits, poten-
tially leading to new cryptographic functionalities with
different security and efficiency profiles.
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M. Dušek, N. Lütkenhaus, and M. Peev, The security of
practical quantum key distribution, Reviews of Modern
Physics 81, 1301 (2009).

[16] R. Renner, Security of quantum key distribution, Inter-
national Journal of Quantum Information 6, 1 (2008).

[17] P. W. Shor and J. Preskill, Simple proof of security of the
bb84 quantum key distribution protocol, Physical review
letters 85, 441 (2000).

[18] W. K. Wootters and W. H. Zurek, A single quantum
cannot be cloned, Nature 299, 802 (1982).

[19] G. S. Vernam, Cipher printing telegraph systems: For se-
cret wire and radio telegraphic communications, Journal
of the A.I.E.E. 45, 109 (1926).

[20] D. Mayers, Unconditional security in quantum cryptog-
raphy, Journal of the ACM 48, 351 (1998).

[21] W. Diffie and M. E. Hellman, New directions in cryp-
tography, IEEE Transactions on Information Theory 22,
644 (1976).

[22] K. Boström and T. Felbinger, Deterministic secure di-
rect communication using entanglement, Physical Review
Letters 89, 187902 (2002).

[23] F.-G. Deng and G.-L. Long, Secure direct communication
with a quantum one-time pad, Physical Review A 69,
052319 (2004).

[24] G.-L. Long, F.-G. Deng, Y. Li, K.-W. Wen, and C.-Y.
Wang, Quantum secure direct communication and de-
terministic secure quantum communication, Frontiers of
Physics in China 2, 251 (2007).

[25] W. Zhang, D.-S. Ding, Y.-B. Sheng, L. Zhou, B.-S. Shi,
and G.-C. Guo, Quantum secure direct communication
with quantum memory, Phys. Rev. Lett. 118, 220501
(2017).

[26] H. Zhang, Z. Sun, R. Qi, and et al., Realization of quan-
tum secure direct communication over 100km fiber with
time-bin and phase quantum states, Light: Science &
Applications 11, 83 (2022).

[27] Z. Qi, Y. Li, Y. Huang, et al., A 15-user quantum secure
direct communication network, Light: Science & Appli-
cations 10, 183 (2021).
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