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Abstract—Intelligent Transportation Systems (ITS) are in-
creasingly vulnerable to sophisticated cyberattacks due to their
complex, interconnected nature. Ensuring the cybersecurity of
these systems is paramount to maintaining road safety and
minimizing traffic disruptions. This study presents a novel multi-
agent framework leveraging Large Language Models (LLMs) to
enhance traffic simulation and cybersecurity testing. The frame-
work automates the creation of traffic scenarios, the design of cy-
berattack strategies, and the development of defense mechanisms.
A case study demonstrates the framework’s ability to simulate a
cyberattack targeting connected vehicle broadcasts, evaluate its
impact, and implement a defense mechanism that significantly
mitigates traffic delays. Results show a 10.2% increase in travel
time during an attack, which is reduced by 3.3% with the defense
strategy. This research highlights the potential of LLM-driven
multi-agent systems in advancing transportation cybersecurity
and offers a scalable approach for future research in traffic
simulation and cyber defense.

Index Terms—Cybersecurity, Autonomous Connected Vehicles,
Large Language Model (LLM), Multi-Agent LLM, Simulation

I. INTRODUCTION

A. Importance of cybersecurity in ITS

Cybersecurity is of critical importance in ITS due to the
increasing reliance on technology and the interconnected na-
ture of these systems [1]. As ITS integrates more advanced
technologies such as sensors, communication networks, and
data analytics to monitor and manage traffic flow, it also
becomes more susceptible to cyber threats [2]. The integrity
and reliability of ITS are paramount to ensuring road safety
and preventing disruptions, which can lead to significant
economic losses.

The growing connectivity of vehicles and infrastructure in-
troduces new vulnerabilities that can be exploited by malicious
actors [3]. Cyberattacks can compromise the safety of road
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users by manipulating traffic signals, injecting false infor-
mation, or disrupting critical systems. For instance, attackers
can manipulate traffic signals, causing accidents, long delays,
and severe congestion [4]. Studies have demonstrated that
disabling traffic signals can lead to substantial increases in
travel delays, with one study reporting a 4.3 times increase in
travel time when 26 signals were disabled [5]. Furthermore,
attackers may also penetrate the system to falsify traffic data,
which can lead to serious consequences such as crashes and
severe traffic congestion.

ITS is vulnerable to a range of cyber threats due to the
interconnected components such as control systems and data
processing platforms [6]. These vulnerabilities can arise from
inadequate security measures, poor network design, outdated
software, and weak authentication. Attackers can target various
components of the ITS, including signal controllers, vehicle
detectors, on-board units (OBUs), and road-side units (RSUs)
[7]. Also, the use of wireless communication channels, par-
ticularly with connected vehicles, introduces further vulner-
abilities [8]. Cyberattacks can take various forms, including
unauthorized access, denial-of-service attacks, data breaches,
and tampering with traffic signals or sensors . Some specific
attacks include Sybil attacks, where fake vehicle identities are
injected into the network to manipulate traffic data, and data
spoofing attacks, where intentionally modified vehicle data is
injected into the system [9].

B. Challenges in current cybersecurity testing methods for ITS

Current cybersecurity testing methods for ITS face sev-
eral challenges, particularly in the context of dynamic and
complex real-world scenarios. Traditional cybersecurity meth-
ods often fall short in detecting advanced threats, especially
in decentralized networks like V2X (vehicle-to-everything)
communication [10]. One significant issue is the difficulty
in generating diverse and realistic attack scenarios that can
effectively evaluate the robustness of these systems. Moreover,

https://arxiv.org/abs/2506.16699v1


the increasing sophistication of cyberattacks, such as false
data injection, replay attacks, and stealthy attacks, requires
more advanced detection mechanisms. The dynamic nature
of traffic environments and the unpredictable interactions of
vehicles make it difficult to model and test for all possible
attack vectors. Moreover, the large volume of data generated
by vehicles adds complexity to the analysis required for real-
time threat detection, demanding advanced algorithms and
computing resources [11].

Furthermore, many existing simulation and testing methods
lack the flexibility to interact with or manipulate the envi-
ronment effectively, preventing thorough training and testing
of customized scenarios [12]. Online, interactive testing of
Autonomous Driving Systems (ADS) is also challenging be-
cause actors need to react to each other’s behaviors, which
is difficult to achieve with data collected from real traffic.
Furthermore, real-world testing is costly and constrained in
scope, making it difficult to cover all potential corner cases
[13]. Traditional methods may also lack the ability to account
for rare events, such as the presence of emergency vehicles
or degraded communication [14]. These limitations highlight
the need for more advanced, AI-driven solutions that can
generate realistic adversarial attacks and enhance the training
of detection models.

C. The need for autonomous, multi-agent cybersecurity testing

Given the challenges discussed above, a potential solution to
address these issues is to use multi-agents LLMs to automate
cybersecurity testing. Several studies and frameworks have
emerged to address the need for automated penetration testing
and security simulations [15]. These approaches use LLMs and
multi-agent systems to simulate the collaborative workflow
of human testing teams [16]. The frameworks often use a
modular design, with specialized agents for different tasks or
phases of testing [17]. For example, Bianou and Batogna [18]
developed PENTESTAI which includes agents for scanning
and searching, exploit validation, and reporting. Similarly,
Kong et al. [16] developed VulnBot which utilizes agents for
reconnaissance, scanning, and exploitation, with a summarizer
module to facilitate inter-agent communication.

D. Current LLM applications in traffic simulation

Recently, LLMs are being integrated with traffic simulation
to enhance various aspects of traffic simulation, analysis,
and control [19]. LLMs can interpret natural language inputs
to generate traffic scenarios, road networks, and simulation
parameters, which reduces the need for manual coding [20].
LLMs can also be used to generate green wave control policies
for urban arterial roads, which can reduce congestion and im-
prove traffic flow [21]. They can also help in refining decisions
made by RL agents by incorporating real-time information,
such as the presence of emergency vehicles [14].

II. METHODOLOGY

In this research, we propose a multi-agent system architec-
ture (see Figure 1) that leverages LLM-based agents, each with

a specialized role in creating, managing, and testing traffic
scenarios under potential cyberattacks.

The system defines specific roles and responsibilities for
each LLM-based agent to ensure an efficient and compre-
hensive simulation of connected vehicle traffic models. The
Road Network Creation Agent automates the generation of
realistic road networks in simulation. The Traffic Scenario
Generation Agent creates varied traffic conditions and intro-
duces anomalies like accidents or road closures. The Traffic
Control Parameter Agent manages dynamic traffic elements,
such as traffic light timings and speed limits. Meanwhile, the
Traffic Observation Agent monitors traffic flow, collecting data
on congestion and anomalies, which supports the Attack Plan
Development Agent in crafting realistic cyberattack strategies.
The Attack Implementation Agent executes these strategies
within the simulation, ensuring they interact with real-world-
like conditions. The Impact Evaluation Agent measures disrup-
tions caused by attacks using metrics like delay and through-
put changes, while the Countermeasure Development Agent
devises strategies to mitigate identified threats.

Agents communicate using standardized protocols, ensuring
seamless data sharing and coordinated actions. This inter-agent
communication creates a feedback loop that enhances both
attack planning and countermeasure development. Each agent
operates with well-defined input and output parameters, such
as the Road Network Creation Agent, which uses map data to
generate simulation network files.

A Central Coordination System oversees agent interactions,
ensuring synchronized tasks and efficient resource manage-
ment. This system monitors agent performance and facilitates
adaptive role refinement based on simulation needs. The
process is inherently iterative, with continuous feedback loops
enabling ongoing optimization of cyberattack planning and
mitigation strategies. This comprehensive approach ensures
robust testing and enhancement of traffic network resilience
against evolving cyber threats.
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Fig. 1: Overview of the Multi-Agents LLM Framework

III. CASE STUDY

This case study presents an investigation into the application
of multi-agent LLMs for creating, attacking, defending, and
evaluating a traffic simulation of connected vehicles. The



study leverages LLMs to generate Python simulation code,
design cyberattack strategies targeting vehicle speed and lo-
cation broadcasts, develop defense mechanisms, and assess
their effectiveness. The experiment uses multiple AutoGen
agents. Each agent handles a specific task. We tested different
APIs, including ChatGPT and Deepseek, to evaluate their
performance. This section provides a comprehensive analysis
through subsections on data description, experiment design,
results, evaluation, and discussion.

A. Scenario 1: Baseline 5-Vehicle Simulation

1) Data Description: The dataset includes simulated tra-
jectories for five connected vehicles (labeled 0 to 4) on a
5 km road, with each vehicle’s position, speed, acceleration,
broadcasted position, and broadcasted speed recorded at 0.1-
second intervals. The simulation parameters, as shown in
Table I, define the physical and behavioral properties of the
vehicles and the road. In this simulated scenario, each vehicle
broadcasts its speed and location to all vehicles behind it. Each
vehicle receives broadcasted speed and location information
from all vehicles in front of it to adjust its own acceleration.
Also, each vehicle is equipped with sensing capabilities, such
as a camera or LiDAR, to measure the speed and location of
the immediate vehicle in front of it. Therefore, for the vehicle
immediately ahead, it uses the sensed speed and location,
while for all other vehicles in front, it relies on the broadcasted
speed and location.

TABLE I: Simulation Parameters for Connected Vehicle Traf-
fic Model

Parameter Description Value
v0 Desired velocity (m/s) 33.33 (120 km/h)
T Safe time headway (s) 1.6
a Maximum acceleration

(m/s²)
1.0

b Comfortable deceleration
(m/s²)

2.0

s0 Minimum distance (m) 2.0
δ Acceleration exponent 4.0
road length Road length (m) 5000
L Vehicle length (m) 5
nvehicles Number of vehicles 5
dt Time step (s) 0.1
entry interval Entry interval (s) 5
hacked vehicle id Hacked vehicle ID 0
vf Fake broadcasted speed

(m/s)
0.0

xf Fake position offset (m) -500.0

The IDM calculates each vehicle’s acceleration aIDM as:

aIDM(v,∆v, s) = a

(
1−

(
v

v0

)δ

−
(
s∗

s

)2
)

(1)

where v is the vehicle’s current speed, ∆v = v − vlead is the
relative velocity to the leading vehicle, s is the actual gap, and
s∗ is the desired minimum gap, given by:

s∗ = s0 + v · T +
v ·∆v

2
√
a · b

(2)

For connected vehicles, the acceleration is extended to
account for multiple vehicles ahead, using broadcasted or
sensed data based on adjacency. The connected vehicle IDM
calculates the acceleration aconnected as the minimum acceler-
ation across all leading vehicles, considering their perceived
states:

aconnected(v,∆vi, si) = min
i

[aIDM(v,∆vi, si)] (3)

where i indexes all vehicles ahead of the current vehicle,
∆vi = v − vleadi is the relative velocity to the i-th leading
vehicle, and si is the gap to the i-th leading vehicle, defined
as:

si =

{
xleadi − x− L (immediate leader),
xleadi,broadcast − x− L (broadcasted, non-adjacent).

(4)
with xleadi,broadcast being the broadcasted position of the i-th
leader, potentially modified by the hacker (e.g., xbroadcast =
x + xf ) and vleadi,broadcast being the broadcasted speed (e.g.,
vbroadcast = vf ). The choice between actual and broadcasted
data depends on adjacency: immediate leaders (e.g., Vehicle
i − 1 for Vehicle i) use actual x and v, while non-adjacent
leaders use xbroadcast and vbroadcast.

2) Experiment: The experiment utilizes a multi-agent LLM
framework to simulate, attack, defend, and evaluate a con-
nected vehicle traffic system. The framework consists of
four specialized LLM agents, each assigned a distinct role.
The first agent generates Python simulation code, modeling
five vehicles on a 5 km road using the Intelligent Driver
Model (IDM). This simulation incorporates vehicle broadcast
capabilities and history tracking. The second agent, acting as
a hacker, designs a cyberattack strategy targeting Vehicle 0 by
manipulating its broadcasted speed to 0 m/s and introducing
a position offset of -500 m. The attack aims to exploit the
IDM’s gap sensitivity to maximize traffic delay.

To counter this, the third agent develops a defense mech-
anism based on decentralized consensus. In this approach,
vehicles validate broadcasted data by computing a weighted
average of values from neighboring vehicles, with weights
determined by proximity. This reduces reliance on potentially
compromised data from the hacked vehicle. Finally, the fourth
agent evaluates the defense’s effectiveness by comparing traffic
delays—measured as the time for all vehicles to traverse
the 5 km road—under two scenarios: with and without the
defense. Statistical metrics are reported to assess the defense’s
performance.

Table II provides a simplified prompt for each agent,
outlining their respective tasks and strategies. Due to size
limitations, the table presents a condensed version of the
prompts used to generate the simulation code, attack strategy,
defense mechanism, and evaluation metrics.

3) Experiment Results: Table III presents the mean total
travel times for five connected vehicles traversing a 5 km
road under three scenarios: Baseline (No Attack), Attack-Only,



TABLE II: Experimental Design for Multi-Agent LLM Traffic
Simulation

Component Simplified Prompt Description

LLM Agent 1
(Simulation)

”Create Python IDM traf-
fic simulation for 5 ve-
hicles on 5 km road
with broadcast and history
tracking.”

Generates Python code
for IDM-based traffic
simulation: aIDM =

a

(
1−

(
v
v0

)δ
−

(
s∗

s

)2
)

,

with s∗ = s0 + v · T +
v·∆v

2
√

a·b
.

LLM Agent 2
(Hacker)

”Design cyberattack on
Vehicle 0: set broadcast
speed to 0 m/s, position
offset to -500 m.”

Designs cyberattack: sets
Vehicle 0’s vbroadcast = 0
m/s, xbroadcast = x − 500
m.

LLM Agent 3
(Defender)

”Develop defense: average
leader’s broadcast with
follower’s sensed values
for consensus.”

Implements a consensus
mechanism: for non-
adjacent leaders,
calculates xconsensus =
xlead broadcast+xfollower actual

2
and vconsensus =
vlead broadcast+vfollower actual

2
,

averaging the leading
vehicle’s broadcasted
position and speed with
the immediate follower’s
actual sensed values.

LLM Agent 4
(Evaluator)

”Evaluate traffic delay
across baseline, attack,
and defense scenarios,
report mean time and
SD.”

Measures traffic delay
(time for all x ≥ 5000
m), comparing baseline,
attack-only, and attack-
with-defense.

and Attack + Defense. The Baseline scenario, with a mean
travel time of 167.2 seconds. The Attack-Only scenario shows
a mean travel time of 184.2 seconds, a 10.2% increase due to
a cyberattack on vehicle 0’s broadcasted data, causing trailing
vehicles to perceive a stationary or overlapping leader and
triggering emergency braking. The Attack + Defense scenario
reduces the delay to 178.1 seconds, a 3.3% improvement over
the Attack-Only scenario, as the defense mechanism averages
hacked broadcast data with actual follower data. However, the
residual 10.9-second delay compared to the baseline suggests
the defense partially restores efficiency, leaving room for
further optimization.

TABLE III: Traffic Simulation Results Across Scenarios

Scenario Total Travel Time (s, mean)

Baseline (No Attack) 167.2
Attack-Only 184.2
Attack + Defense 178.1

Figure 2 presents a visualization of vehicle trajectories
(Distance vs. Time and Speed vs. Time) across three scenarios:
Baseline (No Attack), Attack-Only, and Attack + Defense. The
figure, organized into six subplots (a–f), illustrates the impact
of a cyberattack on the lead vehicle’s broadcasted data and
the effectiveness of a defense mechanism. Each scenario is
represented by a pair of plots: Distance vs. Time (subplots a,
b, c) and Speed vs. Time (subplots d, e, f), with vehicles color-
coded by ID. The Baseline scenario (subplots a and d) shows
smooth, linear trajectories, with all vehicles reaching 5000

meters in approximately 167 seconds. Speed plots confirm
steady cruising at 33 m/s.

In the Attack-Only scenario (subplots b and e), the cyberat-
tack causes significant disruption. The lead vehicle (Vehicle
0)’s trajectory remains unaffected, but Vehicles 2, 3, and
4 come to a complete stop around 20 seconds due to the
manipulated broadcast data. Vehicle 1 experiences a temporary
slowdown but recovers. The Speed vs. Time plot reveals that
Vehicles 2–4 drop to low speed, while Vehicle 0 maintains its
speed. This stoppage, caused by the attack’s manipulation of
Vehicle 0’s position and speed, results in a 10.2% increase in
travel time (184 seconds).

The Attack + Defense Scenario (subplots c and f) demon-
strates that the recommended defense mechanism effectively
smoothens the speed vs. time curves compared to the attack
scenario. Although some fluctuations persist as vehicles reach
cruising speed, the overall performance is significantly better
than in the attack scenario. This is promising because these
results stem from a single prompt; allowing LLM agents to
refine this mechanism could potentially lead to an even more
robust defense strategy.

B. Scenario 2: Sioux Network

To evaluate scalability beyond a simple 5km road, we
applied our multi-agent LLM framework to the well-known
Sioux network, which contains multiple intersections and road
links. Unlike the single-link case, vehicles in this scenario
can dynamically reroute based on real-time broadcast data.
Figure 3 shows the overall layout of the Sioux network, with
single-lane links and all-way stop intersections.

We developed a series of prompts to guide LLM outputs
for different components of the traffic simulation framework.
For dynamic routing, a prompt was used to enable route
decisions based on real-time travel times. The LLM output
included Python code for vehicles to broadcast their latest
link travel times and update their routes accordingly. Next,
a cyberattack prompt instructed the LLM to simulate an
attack by replacing vehicles’ legitimate broadcasted travel-
time data with artificially modified values for selected links,
inducing rerouting toward congested corridors. To counter
this, a defense prompt applied a consensus-based filtering
mechanism that rejects outlier travel times deviating from the
majority. The LLM produced a short script to integrate this
defense into the simulation loop.

The initial runs indicate that the LLM-generated traffic
simulation system functions as intended. It successfully mod-
els route-choice behavior across a multi-intersection network,
simulates a targeted cyberattack by injecting falsified travel-
time data, and implements a defense mechanism. The hacked
broadcast causes significant travel delays by misleading vehi-
cles onto an ostensibly faster route, but the LLM-generated
defense partially mitigates this impact. These results validate
the system’s ability to autonomously generate, test, and re-
spond to complex traffic scenarios.
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Fig. 2: Vehicle Trajectories (Distance vs. Time) for Baseline, Attack-Only, and Attack + Defense Scenarios
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Fig. 3: Road layout of the Sioux network with multiple
intersections and single-lane links, each governed by all-way
stop rules.

C. Discussions

The results of this case study shows that the multi-agent llms
framework has great potential to generate traffic simulation
scenarios, design cyberattacks, and develop corersponding
defense mechanism to make the transportation system more
robust. The LLM APIs we have tested are able to generate the
code quite efficiently. For the first, third and fourth agents who
are responsible for generate initial simulation, cyberattack, and
evaluation code, the API is able to generate code at the first
attempts. For the defense agent, the agent has to went through
a few iterations before there is no error message. When agent 2
was asked to choose the best attack on the simulated connected
vehicles, the agent is able to choose the first vehicle through

reasonsing and pick up the appropriate fake speed and location
information to be broadcasted.

IV. CONCLUSION

This research investigates the use of multi-agent LLMs
to automate the simulation of traffic scenarios, cyberattacks,
and defense mechanisms. The authors developed a multi-
agent system utilizing the Autogen and LLM APIs. The
results demonstrate that the proposed framework can create
autonomous connected vehicle simulation and design both
cyberattack and defense strategies. The case study validates
the framework’s ability to automate these tasks.

However, several limitations and areas for future research
have been identified:

• Simulation Complexity: The current simulation scenario
is relatively simple. Future work should explore more
complex scenarios and extend the simulation to other
transportation sectors, such as transit, ports, and aviation.

• Simulation Platforms: In this study, the LLM agents
directly generated Python code for traffic simulation.
Future research could leverage existing traffic simulation
platforms like SUMO, with LLM agents generating con-
figuration files for these platforms.

• Cyberattack Scenarios: The current study focused on a
simple cyberattack that modified broadcasted speed and
location data. Future research should explore a wider
range of attack scenarios to enhance the robustness of
the defense mechanisms.
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