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Abstract
This paper systematizes research on auditing Differential
Privacy (DP) techniques, aiming to identify key insights into
the current state of the art and open challenges. First, we
introduce a comprehensive framework for reviewing work
in the field and establish three cross-contextual desiderata
that DP audits should target—namely, efficiency, end-to-
end-ness, and tightness. Then, we systematize the modes
of operation of state-of-the-art DP auditing techniques, in-
cluding threat models, attacks, and evaluation functions.
This allows us to highlight key details overlooked by prior
work, analyze the limiting factors to achieving the three
desiderata, and identify open research problems. Overall,
our work provides a reusable and systematic methodology
geared to assess progress in the field and identify friction
points and future directions for our community to focus on.

1 Introduction
In today’s data-driven economy, a large number of poten-
tially sensitive datasets are collected, shared, and released,
including demographic [106], behavioral [105], and medi-
cal [85] data. Alas, this comes with inherent privacy risks
that are difficult to mitigate in practice [81, 102]. In this
context, Differential Privacy (DP) [39] provides a robust
mathematical framework offering formal privacy guaran-
tees. More precisely, DP bounds the impact that any single
user can have on the output of a data release. In recent years,
DP techniques have been deployed in both the public and
private sectors. High-profile examples include the 2020 US
Census release [2], Apple’s local DP system for learning user
preferences [9], Google’s next-word prediction models [74],
and Microsoft’s synthetic data release with the UN’s Interna-
tional Organization for Migration [77].(For a comprehensive
and up-to-date list of real-world DP deployments, we refer
the reader to [32].)

DP Auditing. In practice, implementing differentially pri-
vate algorithms correctly can be quite challenging. In the
presence of incorrect implementations and/or bugs, the
guarantees provided by DP can be severely degraded [6, 82]
or completely compromised [56, 104], resulting in the un-
intended leakage of sensitive user data. This has prompted
extensive research on verifying whether DP’s theoretical

guarantees are met in practice [8, 19, 34, 54, 66, 82, 100, 111],
a process known as DP auditing [35]. As outlined in Figure 1,
this involves conducting experiments on a mechanism’s im-
plementation, analyzing its outputs, and comparing against
the theoretical guarantees of the mechanism’s specification.

DP auditing is also a powerful and versatile technique to
investigate the tightness of theoretical guarantees [7, 54, 71,
82, 83], develop theoretical intuitions for improved privacy
analyses [20, 84], and refute conjectures [5]. Moreover, it
can be used to bound the adversarial success with respect
to privacy attacks like membership inference [54], attribute
inference [72], or reconstruction [51, 71].

Motivation. To the best of our knowledge, research on DP
auditing dates back to 2013 [35]; yet, extending and improv-
ing DP auditing techniques or proposing new ones remains
an active area of research today. Early work [19, 34] required
running the implementations millions of times, thereby
making their computational overhead prohibitively high
for auditing complex private machine learning pipelines.
More recent efforts have focused on efficiency, aiming to re-
duce the number of implementation runs down to a single
one [71, 100, 111]. However, for complex DP mechanisms,
these techniques are still largely ineffective in identifying
bugs and violations as the audits fail to produce estimates
of the empirical privacy leakage that are “close” to the theo-
retical DP bounds—i.e., the audits are not “tight.”

While some results, e.g., [82], provide audits that are both
efficient and tight, they require aggressive modifications to
the implementations, including adversarial assumptions
that might not always be realistic in practice. Thus, these
techniques may fail to detect a large class of bugs or extend
to other mechanisms; we refer to this characteristic as not
being “end-to-end.” This prompts the need for a unified ap-
proach to building and evaluating DP auditing techniques
that can simultaneously be efficient, end-to-end, and tight,
arguably achieving the “gold standard” of DP auditing.

Roadmap. In this paper, we set out to systematize the large
body of recent work on DP auditing along several key axes,
aiming to identify fresh insights, open research problems,
and promising directions to guide future work in improving
auditing techniques. We define and formalize three desider-
ata for DP auditing – efficient, end-to-end, and tight – and
provide a comprehensive framework for evaluating progress
in the field. Finally, we set out to systematize the modes
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Figure 1: High-Level Overview of DP Auditing.

of operation of current DP auditing techniques, including
threat models, attacks, and evaluation functions.

Our analysis sheds light on key details overlooked by prior
work and the limiting factors in achieving the three desider-
ata. For instance, one of the main limitations to tighter
audits is the lack of tight theoretical privacy analyses for
sub-sampling schemes, such as shuffling. We also show
that, while recent audits have focused on the restrictive
“black-box” threat model (where adversaries can only insert
a single input sample and observe only the algorithm’s fi-
nal output), much less attention has been given to slightly
stronger threat models where audits are equally not tight.
Finally, we find that, while recent work achieves efficient
and tight audits for simple mechanisms, this remains far
from reach, even in strong threat models, for more realistic
and complex mechanisms like DP-SGD [1].

Contributions. In summary, our work makes three key con-
tributions:

• We introduce a comprehensive framework to system-
atize state-of-the-art research on DP auditing with re-
spect to its key aspects, namely the algorithmic founda-
tions and the modes of operation involved.

• We analyze the progress made by work in this field vis-à-
vis three main desired properties, i.e., efficiency, end-to-
end-ness, and tightness, underscoring the importance of
achieving all three simultaneously both for simple mech-
anisms and complex private machine learning pipelines.

• We discuss several insights and directions that future
work could focus on to improve auditing techniques.

2 Background
In this section, we review background concepts related to
Differential Privacy. Readers familiar with these topics can
skip it without losing continuity.

2.1 Differential Privacy
Differential Privacy (DP) provides a rigorous framework to
control the privacy risk to individuals in a dataset. It en-
sures that the output of a computation, e.g., an answer to
a statistical query or inference from a machine learning
model, is not significantly affected by the presence/absence
of any one individual’s data—commensurate to a parameter
ϵ. Over the years, a few variants of the DP definition have
been proposed, as reviewed next.

Definition 2.1 (Pure DP [37]). A randomized mechanism
M : D → R satisfies ε-DP if, for any two adjacent datasets
D,D ′ ∈D and S ⊆R, it holds:

Pr[M (D) ∈ S] ≤ eεPr[M (D ′) ∈ S]

Pure DP is defined by a single ε parameter describing the up-
per bound on the probability an adversary can distinguish
between outputs on two adjacent inputs (cf. Section 2.2).

Approximate DP. (ε,δ)-DP is relaxation of Pure DP that in-
troduces a “failure probability” δ, i.e., the probability that
the ε-DP guarantee does not hold.

Definition 2.2 (Approximate DP [38]). A randomized mech-
anism M : D →R satisfies (ε,δ)-DP if, for any two adjacent
datasets D,D ′ ∈D and S ⊆R, it holds:

Pr[M (D) ∈ S] ≤ eεPr[M (D ′) ∈ S]+δ

Rényi DP (RDP). (α,γ)-RDP captures a collection of (ε,δ)-
DP guarantees in one definition to more tightly analyze
privacy guarantees of DP mechanisms.

Definition 2.3 (Rényi divergence [94]). For any two proba-
bility distributions, P and Q, the Rényi divergence of order
α> 1 is:

Dα(P,Q)≜
1

α−1
logEx∼Q

(
P (x)

Q(x)

)α
and D1(P,Q) = limα→1 Dα(P,Q) = Ex∼P log

(
P (x)
Q(x)

)
.
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Definition 2.4 (Rényi DP [79]). A randomized mechanism
M : D → R satisfies (α,γ)-RDP if, for any two adjacent
datasets D,D ′ ∈D, it holds:

Dα(M (D),M (D ′)) ≤ γ
where Dα is the Rényi divergence of order α≥ 1.

Functional DP ( f -DP). f -DP uses the hypothesis testing
interpretation of DP [58] (reviewed in Section 2.4) to bound
the type II error achievable by an adversary aiming to distin-
guish between the outputs of a DP mechanism on adjacent
inputs at a significance level of α. A specific instantiation
of f -DP is Gaussian Differential Privacy (aka µ-GDP), for
f = T (N (0,1),N (µ,1)).

Definition 2.5 (Trade-off function [36]). For any two proba-
bility distributions on the same space, P and Q, the trade-off
function T (P,Q) : [0,1] → [0,1] is defined as:

T (P,Q)(α)≜ inf
φ

{βφ :αφ ≤α}

with the infimum taken over all rejection rules φ for which
αφ and βφ are the type I and type II errors, respectively.

Definition 2.6 (Functional DP [36]). A randomized mech-
anism M : D → R satisfies f -DP if, for any two adjacent
datasets D,D ′ ∈D, and α ∈ [0,1] it holds:

T (M (D),M (D ′))(α) ≥ f (α).

2.2 Adjacency

In the above DP definitions, the notion of adjacent (aka
neighboring) datasets is deliberately left generic as it varies
depending on the setting. We now review three common
notions of adjacency:

• Add/Remove: corresponds to inserting or deleting a
record from the dataset. It is also referred to as “un-
bounded DP” since the dataset size is not the same, i.e.,
|D| = |D ′|±1.

• Edit: replacing one record with another. It is also re-
ferred to as “bounded DP”, i.e., |D| = |D ′|. Guarantees
under edit adjacency are typically twice as strong as
add/remove as one edit corresponds to one remove and
one add.

• Zero-out [57]: introduced to bridge guarantees provided
under the add/remove and edit adjacencies and simplify
theoretical privacy analyses. Two datasets are zero-out
adjacent if exactly one record in one dataset is replaced
with a special zero-out record, ⊥ in the other.

2.3 Sub-Sampling

A common technique used to amplify a mechanism’s DP
guarantees and/or make DP compatible with modern
machine-learning techniques is known as sub-sampling.
More precisely, a mechanism is run iteratively on small,
randomly chosen subsets of the input dataset, resulting in

substantially improved privacy guarantees compared to run-
ning the mechanism on the full dataset. This is referred to as
“privacy amplification by sub-sampling” [22] and depends
on the specific sub-sampling scheme used. We now review
four common ones:

• Poisson: at each iteration, each record is chosen with
some sampling probability q .

• Sampling w/ (or w/o) replacement: a batch of B records
is chosen, at each iteration, by sampling uniformly at
random w/ (or w/o) replacement. For brevity, we denote
these schemes as Sampling WR and WOR, respectively.

• Shuffling: the dataset is randomly permuted (shuffled)
and then partitioned into b batches of B records. The
batches are iterated over in sequence until the final one is
processed, and the dataset is randomly permuted again.

• Balls-in-bins [25, 27]: each record is uniformly assigned
to one of b batches, then, the batches are processed
in sequence for each iteration. After the final batch is
processed, the first one is processed again in a round-
robin fashion.

2.4 Hypothesis Testing Interpretation of DP

The notion of hypothesis testing interpretation of DP, in-
troduced in [58] for (ε,δ)-DP, allows to evaluate a mecha-
nism’s privacy guarantees based on the difficulty an adver-
sary faces in distinguishing between two adjacent datasets.
Given a random output from a mechanism y ← M (D∗)
(where D∗ ∈ {D,D ′} for adjacent D,D ′), DP can be inter-
preted as inducing the following a hypothesis test:

H0 : y ∼M (D) H1 : y ∼M (D ′)

Privacy Region. For a choice of rejection region S, i.e., H0

is rejected if y ∈ S, the type I and type II errors are defined
as PFA(D,D ′,M ,S) = Pr[M (D) ∈ S] and PMD(D,D ′,M ,S) =
Pr[M (D ′) ∉ S], respectively. Thus, (ε,δ)-DP bounds the type
I and type II errors as per the following theorem:

Theorem 2.1 ([58]). A randomized mechanism M : D →
R satisfies (ε,δ)-DP if and only if the following conditions
are satisfied for all adjacent datasets D,D ′ and all rejection
regions S ⊆R:

PFA(D,D ′,M ,S)+eεPMD(D,D ′,M ,S) ≥ 1−δ∧
eεPFA(D,D ′,M ,S)+PMD(D,D ′,M ,S) ≥ 1−δ

This interpretation can also be operationalized, i.e., an
analyst can pick a pair of adjacent datasets D,D ′ and plot
the type I and type II errors obtained for different rejection
regions S. This will form a “privacy region” defined by (ε,δ)-
DP, which is often used for DP auditing.

3 DP Auditing
We now discuss the notion of DP auditing – a set of empiri-
cal techniques involving an adversary instantiated against
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a DP mechanism to distinguish between the mechanism’s
outputs on adjacent datasets. We discuss its two main moti-
vating use cases and the desired properties we believe DP
auditing algorithms should satisfy.

3.1 Goals of DP Auditing

Arguably, the two main goals of DP auditing include: 1)
verifying that the theoretical guarantees provided by DP are
met in practice and 2) estimating the actual privacy leakage
observed from the mechanism empirically.

3.1.1 Verifying Privacy Guarantees

While the increased adoption of DP in real-world applica-
tions [2, 9, 63, 74, 77, 87] is a promising development for
privacy-enhancing technologies, it can often be difficult to
implement DP correctly. Bugs leading to unintended pri-
vacy leakage, in some cases completely breaking DP guar-
antees, have been found in many implementations [6, 8,
47, 56, 66, 69, 117]. For instance, Lyu et al. [69] and Zhang
et al. [117] focus on the differentially private Sparse Vector
Technique (SVT) [40] and show, through manual analysis,
that most of its implementations [23, 41, 64, 69, 95, 101] are
not differentially private at all.

Bugs in the implementation of machine-learning algo-
rithms like Differentially Private Stochastic Gradient De-
scent (DP-SGD) [1, 6, 56] and DP synthetic data [8, 47] have
also been found through both manual and automated tech-
niques. However, manual analysis can be error-prone and
may miss subtle implementation details, thus prompting
the need to scale up automated approaches [8].

Limitations of Static Analysis. Early work aiming to auto-
matically verify DP guarantees in algorithms’ implementa-
tions has used static code analysis tools, e.g., type checkers
and specialized programming languages. For example, Reed
and Pierce [93] present a type system that enables program-
mers to write privacy-safe programs by design. Overall, a
large body of work [3, 14–16, 46, 108, 109, 116] has focused
on making type systems more expressive and efficient.

However, this approach faces some fundamental limita-
tions. First, type systems implicitly trust that some “basic”
DP algorithms (e.g., Gaussian mechanism, Laplace mech-
anism) are implemented correctly by the underlying lan-
guage. As pointed out in [66], this may not necessarily be
the case if, e.g., the noise addition mechanisms suffer from
floating-point vulnerabilities [78]. Second, these type sys-
tems require mechanisms to be implemented in a very spe-
cific language, thus, they are substantially limited to simple
algorithms like SVT or Report Noisy Max [41]. Specifically,
they struggle to capture the complexities involved in algo-
rithms like RAPPOR [43] or DP-SGD [1].

Enter DP Auditing. Rather than statically checking pro-
gram specifications, DP auditing allows an auditor to run
experiments and statistically refute the theoretical privacy
guarantees provided by DP. In other words, if the auditor

fails, programmers and clients can be assured that the im-
plementation satisfies the DP guarantees at some (possi-
bly pre-defined) level of confidence—e.g., for more critical
applications, the auditor can perform the test at 99.999%
confidence [104] or 95% for less critical applications [54].

Overall, DP audits can offer more flexibility than static
methods, accommodating more complex algorithms such
as private machine learning pipelines [54]. They are also
easier to implement as they do not involve specific program-
ming languages or typing rules.

3.1.2 Empirical Privacy Estimation

DP auditing can also be useful to provide precise estimates
of the privacy leakage in different settings, e.g., vis-à-vis
different real-world adversaries and/or attacks.

From Worst-Case to Real-World Adversaries. DP provides
formal privacy guarantees against powerful theoretical ad-
versaries that are conceivably not always realistic in prac-
tice. In some cases, these strong adversarial assumptions
may be needed to provide robust protections that hold in
worst-case settings. In other cases, this may instead be a di-
rect consequence of limited known ways of proving privacy
guarantees [83]. For instance, the privacy analysis of DP-
SGD [1] assumes an adversary that has access not only to
the final trained model but also to all intermediate models
at each training step. This assumption is not entirely real-
istic across the board as intermediate parameters are not
usually released, but needed since theoretical privacy analy-
sis capabilities in this threat model are limited [26, 44, 112].
Therefore, DP auditing can be used to empirically estimate
privacy leakage in real-world settings [5, 7, 20, 54, 84].

In this context, an empirical estimate εemp can be derived
experimentally and then compared against the theoretical
bound ε. This allows to investigate the tightness of the-
oretical guarantees [7, 54, 71, 82, 83], develop theoretical
intuitions for improved privacy analyses [20, 84], and refute
widely believed conjectures [5].

Testing Resistance to Different Privacy Attacks. Another
use-case of DP auditing stems from its modularity. DP au-
diting can be instantiated, e.g., on different adjacency defi-
nitions or DP variants or using different attacks. While the
DP definition directly maps to the notion of membership
inference (MI), which we review in Section 5.2, DP guaran-
tees can also be extended to and empirically verified against
other attacks such as attribute inference (AI) and reconstruc-
tion attacks (Recon) [51, 96, 113]. Privacy analyses under
more general privacy attacks may not always be optimal,
thus, DP auditing can be used to investigate the tightness of
the protections provided by DP against them [51, 71].

3.2 DP Auditing Algorithms

We now present a formal definition of a DP auditing algo-
rithm, which we use in our systematization to identify rele-
vant papers in this area.
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Algorithm 1 Prototypical Auditing Algorithm

Require: Mechanism, M . DP Guarantee, κ ∈ K . Data domain,
X . Number of runs, nR. Number of canaries, nC. Confidence
level, α. Privacy attack, P . Evaluation function, ζ.
▷ Adversary

1: Pick dataset: D− ∈X ∗
2: Pick canary distributions: C

3: Define auxiliary information: aux

▷ Challenger
4: Y = [ ]
5: DC = [ ]
6: for i ∈ [nR] do
7: DC[i ] ← {x ∼C [i ]|i ∈ [nC]}
8: Y [i ] ←M (D−∪DC[i ]; aux)
9: end for

▷ Adversary
10: O = [ ]
11: for i ∈ [nR] do
12: O[i ] ←P (Y [i ];M ,D−,C )
13: end for

14: return z ← ζ(O;M ,DC,C ,α,κ)

To ease our definition, we first define an ordering over
the space of possible DP guarantees K :

Definition 3.1 (Ordering of DP Guarantees). For κ,κ′ ∈K ,
κ⪰ κ′ if M satisfies κ′-DP → M satisfies κ-DP.

In Pure DP, K =R+∪ {0}, κ= ε, and the ordering follows the
natural ordering of real numbers.

Definition 3.2 (DP Auditing Algorithm). A DP auditing
algorithm ADP takes in input a κ-DP mechanism M , the
claimed DP guarantees κ̃ ∈K , and some additional hyper-
parameters Θ and outputs z ←ADP(M , κ̃;Θ).

If ADP is used for verification, z ∈ {0,1} and ADP(M , κ̃;Θ) = 1
if κ̃ ⪰ κ. If used for empirical estimation, z ∈ K and
κ⪰ADP(M , κ̃;Θ).

This definition also encodes a notion of “correctness” for
DP auditing algorithms, which informally states that the
output of the algorithm agrees with the actual guarantees
satisfied by the mechanism (i.e., if M satisfies κ-DP, the
algorithm confirms this to be true as well). However, this
definition admits vacuous algorithms (e.g., an algorithm
that always outputs ‘1’); thus, in Section 3.3, we define addi-
tional desirable properties of DP auditing algorithms.

Auditing Game. A DP mechanism is typically audited vis-
à-vis a privacy game played between an Adversary and a
Challenger. Although this game can slightly vary depend-
ing on the auditing goal and threat model, we present the
prototypical DP audit algorithm in Algorithm 1.

First, the Adversary chooses an initial dataset in the
data domain D− and distributions from which special data
points used to audit the mechanism, i.e., canaries, are sam-
pled from. The Adversary can also provide additional “auxil-

iary” information to the mechanism if necessary. Next, the
Challenger runs the mechanism nR times, each time sam-
pling nC fresh canaries from the canary distributions to form
the input dataset. The Challenger then sends the outputs
back to the Adversary. The Adversary post-processes the
outputs of the mechanism, typically using a privacy attack
P . This is because the outputs of the mechanism may be in
an arbitrary domain y ∈Y , which can be difficult to design
a decision function around (e.g., to decide if the mechanism
satisfies the claimed guarantees). Thus, the post-processing
yields simple observations that can be easily analyzed.

Finally, the audit’s outcome can be computed from the
observations using an evaluation function ζ, which outputs
either a bit z ∈ {0,1} for the verification of a theoretical DP
guarantee or z ∈K for empirical privacy estimation. This is
typically done by relying on the hypothesis testing interpre-
tation of DP discussed above. In practice, the outcome of
the audit is typically computed with a desired level of confi-
dence α, especially when refuting/confirming the claimed
DP guarantees of the mechanism.

3.3 Desiderata: The Gold Standard of DP
Auditing

Next, we define three key properties we believe audits
should satisfy – efficiency, end-to-end-ness, tightness. We
believe these properties are crucial for the widespread and
rigorous adoption of DP auditing, especially in production
systems. As discussed later, achieving all three simultane-
ously mostly remains an open research problem.

Efficiency. For DP audits to be deployable in practice, they
have to be computationally efficient. Early work [18, 34]
required implementations to be executed millions of times –
while this is achievable for simple mechanisms (e.g., Laplace
and Gaussian mechanisms), it can be prohibitively expen-
sive for complex mechanisms like DP-SGD [1]. Therefore,
recent work [4, 71, 100, 111] has focused on developing au-
diting techniques that only require implementations to be
executed a handful of times, possibly even just once.

Definition 3.3 (Efficient Audit). A DP auditing algorithm
ADP(M ,κ;Θ) is efficient if it requires the mechanism M to
be run only a few times (typically once or twice).

End-to-End. DP audits should also apply to end-to-end
privacy guarantees of the implementations; ideally, these
should be run by simply providing inputs to the mechanism
and observing its final output. This is often referred to as
“black-box” auditing [65] and reflects realistic threat models
encountered in practical settings as opposed to worst-case
threat models assumed by the privacy analysis of certain
mechanisms. For instance, the privacy analysis of the DP-
SGD [1] algorithm assumes that all intermediate models are
released, even though in practice only the final model may
be accessible to the adversary. Since “black box” may have
different meanings in different areas (e.g., query-access to
machine learning models [99] vs. access to fixed generated
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synthetic data records [52], etc.), we use the notion of “end-
to-end” auditing to avoid confusion.

End-to-end audits are also broadly applicable to many
mechanisms as they do not require access to how they are
implemented internally. For example, although different DP
mechanisms can be used to train private ML models (e.g.,
DP-SGD [1], PATE [89], DP-ZO [103]), relying on one single
auditing technique that takes in input the training dataset
and observe the trained model’s outputs would make it sig-
nificantly easier to integrate auditing into different training
pipelines. Once again, this would also more closely match
the capabilities of realistic adversaries.

Definition 3.4 (End-to-End Audit). A DP auditing algorithm
ADP(M ,κ;Θ) is end-to-end if it does not modify the mech-
anism M and performs the audit simply by observing the
mechanisms output(s) on specific input(s).

Tightness. Informally, a tight audit means that the empiri-
cal audit is consistent with the theoretical privacy analysis.
More precisely, the empirical estimates obtained through
auditing should not be far from the theoretical guarantees
(e.g., εemp ≈ ε and δemp ≈ δ).

Moreover, when verifying DP guarantees, tight DP audits
would ensure that implementations are successfully verified
only if their actual privacy leakage is strictly lower than the
theoretical DP bounds. As a consequence, tight audits are
needed in this context to reinforce their accuracy and pro-
vide strong confidence in the process. By contrast, a loose
audit that successfully verifies implementations where the
actual privacy leakage is, say, twice the theoretical upper
bounds would inherently not be very useful to identify bugs.

Definition 3.5 (Tight Audit). A DP auditing algorithm
ADP(M ,κ;Θ) is tight if it it never underestimates the
true privacy parameters, i.e., assuming M satisfies
κ-DP, ADP(M ,κ;Θ) = κ for estimation and ∀κ′ <
κADP(M ,κ′;Θ) = 0 for verification.

4 The DP Auditing Body of Work
In this section, we present the methodology we use to com-
pile a comprehensive and representative snapshot of re-
search on DP auditing.

Querying Scopus. In January 2025, we queried the Sco-
pus research database [42] using several keywords (see Ap-
pendix A for the complete list) and obtained a total of 179
papers that mention DP auditing or similar terms in their
title or abstract. We use Scopus as it indexes the top-four
Security and Privacy venues (IEEE S&P, ACM CCS, USENIX,
and NDSS), the major Machine Learning conferences (e.g.,
NeurIPS, ICLR, ICML), as well as prominent journals like
the Transactions of Machine Learning Research (TMLR).

Manual Review. We then manually reviewed the abstracts
of the 179 articles and filtered relevant ones that either ex-
plicitly estimate the DP parameters of an implementation

or verify whether claimed DP guarantees are met following
Definition 3.2. We also followed a snowballing approach
(aka citation chaining) by examining the references cited
in these papers to identify recently accepted work on DP
auditing not yet indexed by Scopus, as well as non-peer-
reviewed papers that already informed published research
at top conferences (e.g., articles published on arXiv). This
yielded an additional 24 papers.

Final List. After manual review, we identified 45 relevant
DP auditing papers, which form the basis for our system-
atization effort. To ease presentation, in Table 1, we report
21 key papers (out of the 45) that arguably represent the
state of the art, while reporting earlier/seminal work in Ap-
pendix B. Specifically, Table 1 lists papers that are the first to
audit a particular DP guarantee (e.g. [34, 82]), mechanism
(e.g. [54, 72]), or achieve the current “best” auditing results
(e.g., [82, 111]). Along with the relevant selected papers, we
also report key details of the auditing methods introduced in
these papers, which we extract through our systematization
process as discussed later in Section 5.

Table 1 reveals that state-of-the-art work in DP auditing
spans a wide range of mechanisms audited, from “simple”
(e.g., Laplace, Noisy Histogram, etc.) to more complex ma-
chine learning and federated learning pipelines, vis-à-vis
various DP guarantees and adjacency notions and employ-
ing different sub-sampling techniques. Thus, to support
this wide range of mechanisms and techniques, auditing
algorithms use different privacy attacks and evaluation func-
tions, which we analyze in Sections 5.2 and 5.3, respectively.
Overall, DP auditing techniques have achieved the three
desiderata discussed in Section 3.3 only for simple mecha-
nisms (e.g., Gaussian), while doing so for complex mecha-
nisms remains an elusive task.

Although our selection was done in Jan 2025, we are con-
fident it is meaningfully representative of the state of the art
in DP auditing as of the time of submission; i.e., even if one
were to add or remove a small number of papers to our list,
our main takeaways would not substantially change.

Out-of-scope Research. As our systematization focuses on
DP auditing, we did not include work estimating privacy
leakage from algorithms using privacy metrics other than
DP guarantees, e.g., using attack success rate and/or adver-
sarial advantage [55, 92]. We also excluded research focus-
ing on using static methods, such as type checkers, to verify
the DP guarantees of an implementation without executing
the program. While these methods are useful in various
ways, they are arguably limited in the range of mechanisms
they can audit, which makes them ineffective for verifying
the DP guarantees of complex modern DP mechanisms, e.g.,
in the context of deep learning, as discussed in Section 3.1.

5 Systematizing DP Auditing Research
Based on their Operational Modes

In this section, we systematize the state-of-the-art work on
DP auditing based on the modes of operation specific to
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Foundations Operational Details Progress

Reference
Mechanisms

Audited
DP Guarantee Sub-Sampling Attack

Eval.
Function

Efficient End-to-End Tight

Ding et al. [34] Simple ε-DP – – Output-set ✗ ✓ ✓

Bischel et al. [18] Simple ε-DP – – Output-set ✗ ✓ ✓

Jagielski et al. [54] DP-SGD (ε,δ)-DP Poisson MI FPR/FNR ✗ ✓ ✗

Nasr et al. [83] DP-SGD (ε,δ)-DP Poisson MI FPR/FNR
✗ ✓ ✗

✗ ✗ ✓

Malek et al. [72] ALIBI Label DP – AI Accuracy ✓ ✓ ✗

Houssiau et al. [52] Synthetic Data (ε,δ)-DP – AI FPR/FNR ✗ ✓ ✗

Askin et al. [12] Simple ε-DP – – Distance Est. ✗ ✓ ✓

Lokna et al. [66] Simple (ε,δ)-DP – DPD Output-set ✗ ✓ ✓

Nasr et al. [82] DP-SGD f -DP
Poisson

MI FPR/FNR
✗ ✓ ✗

– ✓ ✗ ✓

Maddock et al. [70] DP-FedSGD User-level DP Poisson MI FPR/FNR ✓ ✗ ✗

Pillutla et al. [91] DP-SGD (ε,δ)-DP Poisson MI Custom
✗ ✓ ✗

✗ ✗ ✗

Steinke et al. [100] DP-SGD (ε,δ)-DP Poisson MI Accuracy
✓ ✓ ✗

✓ ✗ ✗

Galen et al. [4] DP-FedAvg User-level DP Shuffle MI Variance Est. ✓ ✗ ✗

Chadha et al. [21] PATE (α,γ)-RDP – MI Custom ✗ ✗ ✗

Annamalai et al. [8] Synthetic Data (ε,δ)-DP Poisson MI FPR/FNR
✗ ✓ ✗

✗ ✗ ✓

Feng et al. [45] DP-SGD (ε,δ)-DP Poisson – Output-set ✗ ✓ ✓

Annamalai et al. [7] DP-SGD µ-GDP – MI FPR/FNR ✗ ✓ ✗

Mahloujifar et al. [71]
DP-SGD f -DP Poisson

Recon Accuracy
✓ ✗ ✗

Gaussian µ-GDP – ✓ ✓ ✓

Annamalai et al. [6] DP-SGD (Shuffle) (ε,δ)-DP Shuffle MI FPR/FNR ✗ ✗ ✗

Cebere et al. [20] DP-SGD µ-GDP Poisson MI FPR/FNR ✗ ✓ ✗

Xiang et al. [111]
DP-SGD f -DP Poisson

MI Accuracy
✓ ✗ ✗

Gaussian µ-GDP – ✓ ✓ ✓

Table 1: Summary of key prior work on DP auditing (see Appendix B for a full summary). NB: “Simple” mechanisms refer to Laplace,
Report Noisy Max, Noisy Histogram, and Sparse Vector Technique mechanisms. Please see Sections 2, 3.3, and 5 for definitions of DP
guarantees and sub-sampling methods, progress metrics, and attacks and evaluation functions, respectively.

DP auditing. Specifically, we extract the threat models used
in the literature and introduce a new taxonomy to further
break down these threat models into specific adversarial
capabilities. Furthermore, we extract the types of privacy
attacks and evaluation functions instantiated by auditing
techniques. Finally, we discuss different techniques to cal-
culate confidence levels for audits.

5.1 Threat Modeling

When auditing DP implementations, especially those de-
ployed in the wild, it is important to do so vis-à-vis mean-
ingful threat models. Naturally, these do not only affect
the privacy guarantees of a mechanism but also impact
whether the audit can be considered end-to-end as stronger
adversarial models often require mechanisms to be modi-
fied before auditing. In this section, we focus on auditing

the DP-SGD algorithm [1] since the natural threat model for
simple mechanisms like Laplace is already the end-to-end
model.

In the context of private machine learning, different
threat models have been used to instantiate privacy attacks
(e.g., black-box, white-box, etc.). For more fine-grained anal-
ysis, we break them down into specific capabilities – namely,
model visibility and types of canary used by the attacks –
which enables us to systematize research along these axes
independently.

Model Visibility. When training ML models using DP-SGD,
only the final trained model is released and visible to the
adversary.1 However, the theoretical privacy analysis of DP-

1Except for specific settings, e.g., Federated Learning [75], where algo-
rithms like DP-FedAvg and DP-FedSGD inherently disclose intermediate
model updates.
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SGD assumes that the intermediate models across all it-
erations are released as we do not know how to prove DP
guarantees otherwise. Thus, early work assumes that the ad-
versary has access to all intermediate models [82, 83]. More
recently, the focus has shifted to auditing DP-SGD when
only the final model output [7, 71, 91, 100] is available.

When only the final model is visible, the prototypical au-
diting algorithm outlined in Algorithm 1 should be modified
so that the Challenger does not send all the intermediate
outputs produced by the mechanism to the Adversary (line
8), but rather only the final output.

Canaries. DP definitions assume a strong adversary that
can in theory define the entire dataset given as input to a
given mechanism (i.e., “dataset canary”). However, in the
context of DP-SGD, auditing in this threat model typically
entails training on so-called “pathological” datasets, which
can destroy model utility [83] or may not reflect real-world
threat models. While these considerations do not affect the
theoretical analysis of DP-SGD, which provides guarantees
against the worst-case adversary, they can inform model
developers of the privacy properties satisfied by the specific
model being built.

Consequently, several DP-SGD auditing algorithms in-
volve adversaries that can insert individual sample gradients
at each step (i.e., “gradient canary”) [8, 20, 82]. In practice,
however, adversaries may only be able to insert a single sam-
ple into the input dataset (i.e., “sample canary”). While early
work has focused on inserting dataset canaries [83], more
recent research relies on inserting sample canaries instead,
which is much more restrictive [7, 71, 82, 91, 100].

To account for the use of canaries, in Algorithm 1, the
Adversary defines the entire dataset (line 1) only in the
dataset canary threat model. Whereas in the gradient and
sample canary threat models, in line 1, the dataset D− is
(possibly randomly) sampled from a “natural” distribution,
e.g., CIFAR-10, instead. Additionally, in the gradient canary
threat model, the DP-SGD algorithm is modified to allow
the Adversary to provide gradient canaries associated with
the input canaries through the auxiliary information, which
will be inserted by the algorithm in place of those computed
on the input canaries.

5.2 Attacks

When auditing DP implementations of simpler algorithms
(e.g., Laplace mechanism or Report Noisy Max) [18, 34, 65,
86], the algorithm can directly analyze the outputs of the
mechanism. However, when auditing more complex algo-
rithms (e.g., DP-SGD), it becomes crucial to rely on privacy
attacks to post-process the raw outputs from mechanisms
into observations that can be analyzed more easily. We dis-
cuss these attacks and their role next.

Differential Privacy Distinguishability (DPD). Here, we
consider an adversary aiming to learn a “distinguishing func-
tion” to tell apart outputs from adjacent inputs [8, 10, 11, 17,
19, 66, 68, 118]. For instance, assume a machine learning

model is trained on outputs from adjacent datasets M (D)
and M (D ′) for binary classification (‘0’ for M (D) and ‘1’ for
M (D ′)). Then, fresh outputs (not used in training) are sam-
pled from the mechanism and converted into scalar “scores”
by running inference on the model. The scalar scores repre-
sent the adversary’s confidence that the outputs came from
processing D ′ as opposed to D .

Membership Inference (MI). When auditing differentially
private machine learning algorithms (e.g., DP-SGD, DP syn-
thetic data), a common post-processing technique is mem-
bership inference (MI) [5–8, 20, 21, 24, 31, 45, 47, 52, 54, 67,
70, 73, 82–84, 91, 100, 104, 110, 111, 114, 115] owing to its
popularity as a privacy measurement tool for (non-private)
ML models. In an MI attack, the adversary attempts to infer
whether a given record was used to train the model. This
strongly aligns with the add/remove adjacency where either
a canary is added to the dataset or not.

Typically, when auditing in the Sample Canary threat
model, MI is run by computing the model’s loss on the ca-
nary [5, 7, 8, 45, 54, 67, 71, 82–84, 91, 100, 104, 114, 115]
or by training shadow models similar the target model
(in terms of model/training architecture and data distri-
bution) [8, 24, 31, 47, 52]. In the Gradient Canary threat
model, the adversary can also compute the dot prod-
uct [8, 70, 71, 82, 100, 100, 110, 111] or cosine similar-
ity [4, 20, 73] between the gradient canary and noisy model
updates or explicitly compute the likelihood ratio func-
tion [6].

Attribute Inference (AI). Although MI is the most com-
monly used privacy attack for auditing DP-ML techniques,
in specific circumstances, such as Label DP [48] and syn-
thetic data [8], Attribute Inference (AI) has also been
used [52, 72]. In AI, the adversary attempts to infer specific
private attributes of a given record, given the record’s public
attributes. To perform auditing, Malek et al. [72] infer the
label associated with the canary sample in Label DP, while
Houssiau et al. [52] infer sensitive attributes of a tabular ca-
nary given all other attributes for DP synthetic data. Overall,
establishing a baseline attack success rate is typically more
complicated for AI [52].

Reconstruction (Recon). Drawing on the theoretical
bounds by Hayes et al. [51], reconstruction attacks (Recon)
can also be used to audit DP implementations [71]. Here,
the adversary attempts to generate canaries from the data
domain given only the output of the mechanism and the
canary distribution. Although this can be difficult for arbi-
trary canary distributions, [71] shows that the problem is
tractable when the canaries are uniformly sampled from
discrete distributions each containing k canaries.

5.3 Evaluation Functions

Once simple scalar scores have been extracted from the
mechanism outputs, there are different ways to fulfill the
goal of the audit. While early work required the mecha-
nism to be run multiple times (nR > 1), to reduce compu-
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tational overhead, recent work has focused on doing so in
a single run (nR = 1). In theory, the evaluation function
can be specifically designed with the goal of the audit in
mind—i.e., verification or estimation. However, in practice,
evaluation functions are typically designed for the estima-
tion goal, while verification is done by simply checking if
the estimated parameters are consistent with the claimed
DP guarantees – i.e., compute (εemp,δemp) ← ζ(·) and check
if εemp ≤ ε and δemp ≤ δ for verification. Next, we discuss
estimation variants of different evaluation functions.

5.3.1 Multiple Runs

Output-set optimization. Early work on auditing DP imple-
mentations [18, 34, 65, 66, 86] focused on simple algorithms
(e.g., Laplace mechanism or Report Noisy Max), directly test-
ing the approximate DP condition with respect to a set of
outputs E , i.e., Pr[M (D) ∈ E ] ≤ eεPr[M (D ′) ∈ E ]+δ. Since
the outputs of these mechanisms are already simple scalars,
the attack function P simply returns the output of the mech-
anism without modifying it. To maximize the power of the
audit, the evaluation function optimizes the output-set E
that results in the largest ε for a given δ.

Distribution estimation. Alternatively, one can empirically
estimate the distributions the observations are drawn from.
For instance, Askin et al. [12] and Gorla et al. [50] use ker-
nel density estimators and histogram estimators, respec-
tively, to estimate the distributions of observations drawn
from M (D) and M (D ′). After estimating the distribution,
they test the approximate DP condition directly as done in
output-set optimization. Conversely, Kong et al. [62] com-
pute the Hockey-stick2 or Rényi divergence depending on
the claimed DP guarantees, while Huang et al. [53] estimate
the variance of the distributions and estimate the privacy
guarantees from the variance.

FPR/FNR. In the context of private ML, the most popu-
lar technique is to compute the false positive and false
negative rates of the privacy attack and compare them
with the bounds inferred from DP guarantees (cf. Sec-
tion 2.4). First introduced by Jagielski et al. [54] for DP-
SGD, this technique has been used in numerous research
papers and extended to audit other DP mechanisms such
as synthetic data generation, federated learning, and pri-
vate prediction [5–8, 20, 21, 24, 31, 45, 47, 52, 67, 70, 73, 82–
84, 104, 110, 114, 115].

One drawback is that this requires thousands, if not mil-
lions, of observations to provide reasonable confidence in-
tervals [6]. Lu et al. [67] and Zanella-Beguelin et al. [115]
attempt to reduce the number of runs required by optimiz-
ing the confidence interval computation but still require
around a thousand runs to audit. Nasr et al. [82] reduce
the number of runs to two by auditing each step of the DP-
SGD algorithm independently. Similarly, Maddock et al. [70]
only require a single run of the DP-FedSGD [76] algorithm,
although they audit each round independently.

2Hα(P,Q) = ∫
x max{P (x)−αQ(x),0} [97].

Multiple Canaries. While previous work [34, 54, 82, 83] has
focused on techniques that add only a single canary in each
run, Pillutla et al. [91] use multiple canaries per run. Specifi-
cally, they perform multiple hypothesis tests (one for each
canary) for each mechanism output, thus reducing the num-
ber of runs required to a few hundred. However, for com-
putationally expensive algorithms like DP-SGD, even a few
hundred runs can make it computationally prohibitive to
audit in practice, especially for large language models [88].

5.3.2 One Run

Guessing Game. As mentioned, recent work has focused
on reducing the number of runs needed to audit mecha-
nisms to only one. This is formalized through a guessing
game where DP guarantees are estimated using the accuracy
of a privacy attack instead of FPR/FNRs. Malek et al. [72]
introduce a heuristic to audit DP mechanisms by inserting
multiple canaries into the mechanisms’ input. Steinke et
al. [100] formalize this heuristic for MI and demonstrate
that MI attacks targeting multiple canaries can indeed be
used for DP auditing, albeit only achieving loose audits.

Mahloujifar et al. [71] and Xiang et al. [111] improve by
auditing with, respectively, f -DP and information theory.
Specifically, Mahloujifar et al. [71] extend [100] to cover f -
DP, audit using Recon attacks, and improve the bound on
attack success of Hayes et al. [51]. Xiang et al. [111] stick to
MI but model the auditing task using information-theoretic
principles (i.e., noisy channels).

Beyond fully connected neural networks and convolu-
tional neural networks, recent work by Panda et al. [88] use
the techniques from [100] to optimize canary design and
audit large language models.

Variance estimation. In the context of Federated Learning,
Galen et al. [4] audit the DP-FedAvg algorithm by inserting
multiple independent isotropically distributed canaries into
each round of the algorithm. They then estimate the mean
and variance of the cosine similarities between the inserted
canaries and the mechanism’s output.

5.4 Confidence Level

Whether the audit goal is verification or estimation, as men-
tioned in Section 3.1, performing it at a given confidence
level can be important to provide auditors with statistical
assurance that the result of the audit is correct.

One popular method is to estimate the type I and type II
errors of the privacy attack to a given level of confidence us-
ing statistical tools like the Clopper-Pearson [30] interval [5–
8, 10, 19–21, 24, 47, 52, 54, 66, 70, 72, 73, 82–84, 86, 104,
114, 115], Katz-log [60] interval [67, 82], or credible inter-
vals [4, 31, 82, 110, 115]. Some audits also use custom meth-
ods to specify the confidence level tuned to their specific au-
diting algorithms [11, 12, 17, 19, 34, 50, 62, 71, 91, 100, 111].
However, some do not report any confidence intervals at
all [18, 53, 65, 68, 107, 118].
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5.5 Remarks

In this section, we reviewed and extracted key details of
auditing techniques, including the types of mechanisms
and DP guarantees audited, privacy attacks and evaluation
functions employed, and the progress made along the three
desiderata discussed in Section 3.3 (i.e., efficiency, end-to-
end-ness, and tightness).

While DP audits have used a wide range of techniques,
very few techniques have achieved all three desired proper-
ties, and only for simple DP mechanisms. Next, we discuss
the main research findings based on our systematic review
of the DP auditing body of work.

6 Towards Efficient, End-to-End, and
Tight DP Audits

We now discuss several key details of DP auditing that have
been neglected by prior work, discover limiting factors to
achieving all three desiderata, and identify novel directions
for future work to focus on.

6.1 DP Guarantees & Adjacency

Naturally, the DP guarantee variant being audited is a fun-
damental requirement of any DP auditing algorithm, as
per Definition 3.2. As evident from Table 1, while earlier
work [12, 19, 34, 52, 54, 66, 83] focuses on simpler vari-
ants of DP such as ε-DP and (ε,δ)-DP, more recent au-
dits [7, 20, 71, 82, 111] do so on f -DP and µ-GDP instead to
achieve tight audits of mechanisms.

This is because simpler variants of DP may not always de-
scribe the privacy leakage of specific mechanisms optimally,
i.e., the actual privacy leakage of the mechanism may be far
from the theoretical privacy leakage expected from simple
DP guarantees. In turn, audits are loose since DP auditing
measures the actual privacy leakage from mechanisms. For
instance, Nasr et al. [82] achieve tight audits of DP-SGD us-
ing the f -DP guarantee, which they show models the actual
privacy leakage of DP-SGD much more closely compared
to (ε,δ)-DP initially used for auditing [54, 83]. Therefore,
recent audits of DP-SGD use the f -DP or the related µ-GDP
guarantee instead [7, 20, 71, 82, 111].

On the other hand, auditing with f -DP poses several
challenges. Firstly, as discussed in Section 6.2, f -DP guar-
antees of mechanisms are not always known (this is an
active area of research). Furthermore, when used for DP
estimation, it can be difficult to estimate the full f -DP
curve compared to DP guarantees with only a few scalar
parameters (e.g., ε-DP, (ε,δ)-DP, µ-GDP). In fact, even
when estimating (ε,δ)-DP, the δ parameter is typically
fixed [6, 8, 12, 45, 52, 54, 66, 83, 91, 100] so that only ε is
being estimated. Therefore, there are no known methods
to estimate f -DP guarantees with confidence intervals, and
doing so constitutes an open research question.

Moreover, the DP guarantees and adjacency notions au-
dited might not always be explicitly stated. This is the case

for the adjacency notion in several key papers [7, 11, 45,
53, 84]. Furthermore, several results [7, 20, 71, 82, 111] are
given with respect to (ε,δ)-DP, although closer inspection
of their methodology reveals that they are instead auditing
the f -DP or µ-GDP guarantees.

Takeaway 1

DP audits should be clear about the exact DP guarantee
being audited along with the adjacency notions consid-
ered. In general, auditing f -DP guarantees are optimal,
but deriving tight guarantees for specific mechanisms
is currently an open challenge.

6.2 Sub-sampling Schemes

Another key detail when auditing mechanisms is the under-
lying sub-sampling scheme. From Table 1, we observe that
the most common sub-sampling scheme audited is Pois-
son [8, 20, 45, 54, 70, 71, 82, 83, 91, 100, 111], owing to its use
in the DP-SGD algorithm. However, recent work [4, 6] has
also looked at auditing the shuffling scheme. Overall, while
audits not involving sub-sampling schemes are known to
be tight [12, 19, 34, 66, 71, 82, 111], tight audits involving
sub-sampling schemes are much rarer [8, 45, 83], usually
requiring additional assumptions, such as step-by-step au-
diting or simple models.

In this context, the main challenge is having tight DP guar-
antees of mechanisms employing sub-sampling schemes,
i.e., knowing that the actual privacy leakage of mechanisms
matches the theoretical privacy leakage expected from the
DP guarantee. Next, we focus on the Gaussian Mechanism
since sub-sampling schemes are most commonly used with
that, e.g., in DP-SGD [1]. In Table 2, we summarize the sub-
sampling schemes and adjacency notions for which tight
DP guarantees are currently known. While tight guaran-
tees are known for Poisson sub-sampling, Sampling WR,
and Balls-in-Bins sampling for the Add/Remove, Edit, and
Zero-out adjacencies, respectively, for the vast majority of
sub-sampling scheme and adjacency pairs, tight guarantees
remain unknown.

Takeaway 2

Deriving the tight guarantees for many popular sub-
sampling schemes is an open research question; thus,
the ability to tightly audit mechanisms that use them is
currently limited.

6.3 Threat Models

One elusive combination of desired properties for audits of
modern complex mechanisms like DP-SGD is for them to
be both end-to-end and tight. Specifically, Table 1 reveals
that end-to-end audits of DP-SGD are not tight [7, 20, 54, 71,
82, 83, 91, 100] and viceversa [82, 83]. The only exception
is the work by Feng et al. [45], who achieve both tight and
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Sub-Sampling Scheme

Poisson Sampling WR Sampling WOR Shuffling Balls-in-Bins

Adjacency
Add/Remove [119] [13]

Edit [98] [119]
Zero-Out [28] [28, 29] [27]

Table 2: Summary of whether tight guarantees of Gaussian Mechanism are currently known for sub-sampling schemes and adjacency
notions. NB: Cell colored green if prior work has identified tight guarantees, yellow if there have been prior work but tight guarantees are
not currently known, and brown otherwise.

Canary Type

Sample Gradient Dataset

Model
Visibility

Intermediate Models [53] [17, 71, 73, 82, 83, 91, 100, 111] [83]
Final Model [31, 45, 54, 67, 71, 82–84, 88, 100, 111, 115] [20] [5, 11, 83]

Table 3: Summary of different threat models for DP-SGD auditing considered in prior work. NB: Cell colored green if tight auditing has
been achieved and brown otherwise.

end-to-end audits of DP-SGD, but only for simple logistic
regression models.

To analyze this further, we break down end-to-end audits
into specific adversarial capabilities (model visibility and
canary type), as explained in Section 5.1. In Table 3, we
highlight the threat models where state-of-the-art DP-SGD
audits are tight. Generally, tight auditing in stronger mod-
els has been accomplished; however, while there has been
significant work on the weakest (Final Model, Sample
Canary) model, aka “Black-box,” less work has focused
on the slightly stronger (Final Model, Gradient Canary)
and (Intermediate Models, Sample Canary) models.3

Overall, we consider a DP audit “end-to-end” only in
the weakest threat model (Final Model, Sample Canary).
Given that these audits are still far from tight, focusing ef-
forts on the two slightly stronger threat models would be
promising interim directions.

Takeaway 3

More research on auditing DP-SGD in the (Final Model,
Gradient Canary) and (Intermediate Models, Sample
Canary) threat models can potentially pave the way
toward tight audits in (Final Model, Sample Canary),
which is crucial for end-to-end audits.

6.4 Evaluation Functions

Another elusive combination of the desiderata is accom-
plishing DP audits that are both efficient and tight. From
Table 1, we observe that only recently this has been achieved,
albeit only for simple mechanisms like Gaussian [71, 111].
As a result, an important problem for future research is de-
signing evaluation functions that only require mechanisms
to be run once for auditing.

As discussed in Section 5.3, Nasr et al. [82]’s techniques

3To ease presentation, we use the (Model Visibility, Canary Type)
notation to quickly refer to the corresponding threat models.

only require two runs but they only manage to audit a single
step of the DP-SGD mechanism. Steinke et al. [100], Mahlou-
jifar et al. [71], Panda et al. [88], and Xiang et al. [111] all pro-
pose techniques to audit the entire DP-SGD mechanism in
one run. However, even in the strong (Gradient Canary,
Intermediate Models) threat model, their audits remain
loose, at best only achieving an empirical lower bound of
εemp ≈ 4.5 for a theoretical ε = 8 [111]. Similarly, one-run
audits of Federated Learning variants of DP-SGD (i.e., DP-
FedAvg and DP-FedSGD) are also loose [4, 70]. By contrast,
tight one-run audits for simpler mechanisms such as the
Gaussian Mechanism are possible [111]. This suggests there
may be fundamental challenges that may need to be over-
come when auditing DP-SGD in one run—we discuss this
in more detail in Section 7.4.

Takeaway 4

Efficient auditing in a single run is a primary focus of
recent DP auditing work but, even in powerful threat
models, e.g., (Gradient Canary, Intermediate Models),
audits remain loose. Given the complications surround-
ing auditing in weaker threat models (see Section 6.3),
research should focus on achieving tight audits in one
run in these more powerful threat models first.

6.5 Privacy Region & Confidence Level

The concept of privacy region has been used by auditors
to both verify and estimate DP guarantees of the mecha-
nisms under study. In Figure 2, we plot how the Gaussian
mechanism (σ = 1) gets audited under both the (ε,δ)-DP
and µ-GDP variants. More precisely, in Figure 2a, the pri-
vacy region is estimated from the mechanism and compared
against the hypothetical guarantees of (1,10−5)-DP, which
the mechanism does not satisfy. Note the presence of large
sections of the estimated privacy region that fall well outside
the shaded theoretical privacy region for (1,10−5)-DP. This
suggests that the claimed DP guarantees are wrong and they
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(a) Verifying (incorrectly) claimed (1,10−5)-DP guarantees. (b) Estimating empirical privacy guarantees using µ-GDP, with
µ= {0.5,0.75,1.25,1.5}.

Figure 2: Privacy regions when auditing Gaussian mechanism (σ = 1) with (ε,δ)-DP and µ-GDP. The blue line indicates estimated
guarantees and the orange lines (and shaded regions) represent claimed or candidate guarantees.

can therefore be refuted experimentally.
On the other hand, in Figure 2b, the estimated privacy

region is compared against multiple “candidate” µ-GDP re-
gions (µ= 0.5,0.75,1.25,1.5) to estimate the empirical µemp-
GDP guarantees of the mechanism. The µ parameter is
changed to plot different theoretical privacy regions (for
simplicity, we only plot the lower boundaries). By doing
so, we can estimate that the mechanism satisfies µemp-GDP
for 0.75 ≤ µemp ≤ 1.25, which we can further fine-tune by
comparing µ-GDP regions at lower resolutions.

In both cases, either the full privacy region can be es-
timated (represented by the line), or a single point esti-
mate can be used (represented by the markers). This choice
mainly affects the confidence level of the overall audit proce-
dure as confidence levels derived for single-point estimates
may not necessarily transfer to full-region estimates.

DP auditing research typically bypasses computing valid
confidence intervals to ease experimentation. As men-
tioned in Section 5.4, some researchers either leave that out
altogether [18, 53, 65, 68, 107, 118] or they estimate the full
privacy region but report confidence intervals for a single-
point estimate instead [7, 70, 82, 83], thus making them
invalid. Nevertheless, in practice, audits should ensure that
valid confidence intervals are computed for the auditing
method used. For instance, the best possible single-point
estimate can be derived using “shadow models” [8] or the
entire region can be estimated using µ-GDP [82]. Addition-
ally, further research could also focus on reliably estimating
full privacy regions with meaningful confidence intervals.

Takeaway 5

When deploying auditing algorithms in the real world,
care has to be taken to ensure that the confidence in-
tervals computed are valid. Further research could also
focus on doing so when estimating full privacy regions.

7 Discussion & Conclusion
This paper systematized research on DP auditing using a
systematic framework geared to categorize the underlying
settings/techniques and measure progress in the state of
the art along three key desired properties: efficiency, end-to-
end-ness, and tightness.

Overall, our analysis showed that while DP auditing has
made significant and rapid progress in making audits more
effective, useful, and easily deployable against production
systems, there are still areas with substantial research gaps.
In the process, we identified several key insights and open
problems; we are confident that future work can build upon
these to establish a “Gold Standard” for DP auditing.

In the rest of this section, we review related work, present
actionable recommendations, and highlight open research
questions future work should prioritize.

7.1 Related Work

To the best of our knowledge, our work is the first to system-
atically review and analyze the body of work on DP auditing.
Namatevs et al. [80] recently present a survey of DP auditing
research; however, they do not analyze relevant work within
a systematic framework. By contrast, we do so to compre-
hensively analyze the state of the art, measure progress,
identify gaps, and highlight open research problems pri-
marily along three key characteristics: whether audits are
efficient, end-to-end, and tight.

Systematization of knowledge efforts in related areas
include [90], who present attacks and defenses on (non-
private) machine learning systems using a comprehensive
adversarial framework. Salem et al. [96] focus on privacy
risks and provide a unifying framework relying on privacy
games. Finally, Desfontaines and Pejó [33] systematize the
various variants and extensions of DP. While DP auditing
relies on and is informed by the notions of privacy attacks,
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DP Guarantee End-to-End Efficient Not Efficient

(ε,δ)-DP, ε-DP
✓

Xiang et al. [111]
Jagielski et al. [54],

✓ Lokna et al. [66]

(α,γ)-RDP ✗ – Chadha et al. [21]

f -DP, µ-GDP
✗ Nasr et al. [82] Cebere et al. [20]
✓ Xiang et al. [111] Annamalai et al. [7]

Table 4: DP auditing methods considered to be state-of-the-art
(SOTA) with respect to tightness, broken down by DP guarantee,
efficiency, and end-to-end-ness. (To ease presentation, we omit et
al. and only report the last name of each paper’s first author.)

games, and DP variants, our work focuses on the specific
process of deriving empirical bounds, which has thus far
not been explored in prior work.

7.2 What is considered SOTA in DP Auditing?

Although there are different settings and thus different au-
diting techniques in literature, we attempt to identify the re-
sults that can be considered state-of-the-art (SOTA) with re-
spect to tightness. More precisely, in Table 4, we do so while
breaking down the DP guarantees audited and whether the
other two key desirable properties are achieved.

Put simply, when efficient audits are required, Xiang
et al. [110]’s work is SOTA. Specifically, their techniques
achieve tight audits for simple mechanisms such as Laplace,
Gaussian, or Randomized Response but only loose audits
for more complex mechanisms like DP-SGD. One main lim-
itation of Xiang et al. [111]’s work is the potential loss in
model utility as it requires millions of target records to be
added to the initial dataset for audits to be tight. For DP-
SGD specifically, loosening the end-to-end property allows
us to achieve tight audits using Nasr et al. [82]’s technique,
while also preserving model utility.

When audits can be inefficient but minimal utility loss is
expected, we consider the auditing method by Jagielski et
al. [54] to be SOTA for complex algorithms like DP-SGD and
Lokna et al. [66] for simple mechanisms satisfying (ε,δ)-DP.
We also note that Chadha et al. [21]’s method is the only
technique available for mechanisms satisfying (α,γ)-RDP.
Finally, for f -DP (or µ-GDP), Annamalai et al. [7]’s auditing
method is SOTA for end-to-end audits, while that by Cebere
et al. [20] is SOTA for audits over sub-sampling that do not
need to be end-to-end.

7.3 Recommendations

Auditing Details. As discussed in Section 6.1, one not-so-
uncommon limitation in DP auditing research is that key
details of the auditing methodology are spread across vari-
ous sections of the paper and may not be explicitly stated
or left unclear. We suggest that researchers working on DP
auditing explicitly state the DP guarantee audited, along
with the adjacency notion, sub-sampling scheme, threat
model, and confidence interval considered.

Figure 3: Example of a Possible Design for Audit Cards.

For instance, they could adopt an “Auditing Card” to be
added in the appendix and/or in code repositories, similar
to the “Model Cards” released for models published on Hug-
gingFace.4 We include a draft template in Figure 3; future
work could conduct a user study with researchers and prac-
titioners working on DP auditing and explore the viability
and opportunity of this approach.

Tighter f -DP or µ-GDP guarantees. As also discussed by
Gomez et al. [49], we also advocate for the standardized
release and auditing of tighter f -DP or µ-GDP guarantees.
For example, when auditing the Gaussian mechanism, fu-
ture audits could estimate and compare the empirical µemp

value to the theoretical µ-GDP guarantee, instead of con-
verting both to a (ε,δ)-DP value with an arbitrarily chosen δ.
For mechanisms without a µ-GDP guarantee, the full f -DP
curve could be estimated, and the ∆↔-divergence [49, 59]
between the estimated and theoretical curve could be used
as a “goodness of fit” metric.

7.4 Open Research Questions

In conclusion, our systematization effort highlights the pres-
ence of at least three open research questions.

RQ1: Can we derive tight guarantees for all sub-sampling
schemes? Although tight theoretical guarantees have been
derived for many popular sub-sampling schemes (e.g., Pois-
son), much less is known about schemes like sampling with-
out replacement and shuffling. These schemes are com-
monly used to train models efficiently [6], and in the context
of auditing, having tight guarantees is necessary for audits
to be tight. Thus, deriving tight theoretical guarantees for
these schemes remains an important open problem.

RQ2: Are end-to-end and tight audits possible? One of
the most elusive combinations of desired properties is end-
to-end-ness and tightness. While this is possible for sim-
ple mechanisms, for complex algorithms like DP-SGD, very
little work has come close. Based on our systematic anal-
ysis, we believe this question can be further broken down
into investigating slightly weaker threat models, namely,
(Final Model, Gradient Canary) and (Intermediate

4See https://huggingface.co/docs/hub/en/model-cards.
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Models, Sample Canary) before addressing the end-to-
end threat model, i.e., (Final Model, Sample Canary). Ce-
bere et al. [20] audit DP-SGD in (Final Model, Gradient
Canary) but fail to achieve tightness, suggesting that tighter
theoretical analysis might be necessary, which is in it-
self an open research question [5, 84]. Hence, we call
for future work to focus on the (Final Model, Gradient
Canary) and (Intermediate Models, Sample Canary)
threat models.

RQ3: Are efficient and tight audits of DP-SGD possible?
Another elusive combination of properties is efficiency and
tightness. While several methods have been suggested to-
ward this goal [71, 100, 111], only recently Xiang et al. [111]
present efficient and tight audits, albeit only for simple
mechanisms. However, while recent work has identified fun-
damental challenges in efficiently auditing complex mech-
anisms [61], these challenges do not particularly limit DP-
SGD; thus, efficient and tight audits of DP-SGD could be
possible. Similar to RQ2, it might be useful to first consider
alternative threat models to elicit the maximal privacy leak-
age in efficient audits.
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A Scopus Search Query
Our search query was set up to catch the following keywords
in the title or abstract of the papers: differential privacy, dif-

(
TITLE-ABS-KEY("differential privacy") OR
TITLE-ABS-KEY("differentially private")

) AND
(
TITLE-ABS-KEY("audit*") OR
TITLE-ABS-KEY("find* violat*") OR
TITLE-ABS-KEY("detect* violat*") OR
TITLE-ABS-KEY("identify* violat*") OR
TITLE-ABS-KEY("discover* violat*") OR
TITLE-ABS-KEY("find* vuln*") OR
TITLE-ABS-KEY("detect* vuln*") OR
TITLE-ABS-KEY("identify* vuln*") OR
TITLE-ABS-KEY("discover* vuln*") OR
TITLE-ABS-KEY("find* privacy violat*") OR
TITLE-ABS-KEY("detect* privacy violat*") OR
TITLE-ABS-KEY("identify* privacy violat*") OR
TITLE-ABS-KEY("discover* privacy violat*") OR
TITLE-ABS-KEY("find* privacy vuln*") OR
TITLE-ABS-KEY("detect* privacy vuln*") OR
TITLE-ABS-KEY("identify* privacy vuln*") OR
TITLE-ABS-KEY("discover* privacy vuln*") OR
TITLE-ABS-KEY("violat* DP") OR
TITLE-ABS-KEY("break* DP") OR
TITLE-ABS-KEY("privacy estimat*") OR
TITLE-ABS-KEY("estimat* privacy")

)

Figure 4: Scopus Query.

ferentially private, audit, find/detect/discover privacy viola-
tions/vulnerabilities, break/violate DP, estimate privacy. The
exact search query we ran on the Scopus research database
in January 2025 to collate the list of relevant prior work is
provided in Figure 4.

B Prior Work on DP auditing
In Table 5, we provide the full list of the 45 papers that form
the basis of our systematization. Whereas, as discussed
in Section 4, Table 1 only reports a selection of 21 papers
(specifically, papers that are the first to audit a particular DP
guarantee or mechanism, or that achieve the current “best”
auditing results).
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Foundations Operational Details Progress

Reference
Mechanisms

Audited
DP Guarantee Sub-Sampling Attack

Eval.
Function

Efficient End-to-End Tight

Ding et al. [34]
Report Noisy Max

Noisy Hist
SVT

ε-DP – – Output-set ✗ ✓ ✓

Bischel et al. [18]
Report Noisy Max

NoisySum
AboveThreshold

ε-DP – – Output-set ✗ ✓ ✓

Liu et al. [65]

Report Noisy Max
Noisy Hist

SVT
Truncated Geometric

(ε,δ)-DP – – Output-set ✗ ✓ ✓

Jagielski et al. [54] DP-SGD (ε,δ)-DP Poisson MI FPR/FNR ✗ ✓ ✗

Bischel et al. [19]

Report Noisy Max
Noisy Hist

SVT
RAPPOR

Prefix Sum
Truncated Geometric

(ε,δ)-DP – DPD Output-set ✗ ✓ ✓

Bernau et al. [17] DP-SGD (ε,δ)-DP Poisson
DPD
MI

Output-set ✗ ✗ ✓

Wang et al. [107] Laplace ε-DP – DPD Output-set ✗ ✓ ✓

Nasr et al. [83] DP-SGD (ε,δ)-DP Poisson MI FPR/FNR
✗ ✓ ✗
✗ ✗ ✓

Malek et al. [72]
PATE-FM

ALIBI
Label DP – AI Accuracy ✓ ✓ ✗

Lu et al. [67]
Naive Bayes

Random Forest
DP-SGD

(ε,δ)-DP Poisson MI FPR/FNR ✗ ✓ ✗

Houssiau et al. [52]
CTGAN

MST
PrivBayes

(ε,δ)-DP – AI FPR/FNR ✗ ✓ ✗

Niu et al. [86]

Report Noisy Max
NoisyHist

SVT
Laplace
RAPPOR

(ε,δ)-DP – – Output-set ✗ ✓ ✓

Tramèr et al. [104] Backpropagation Clipping (ε,δ)-DP Poisson MI FPR/FNR ✗ ✓ ✗

Askin et al. [12]

Report Noisy Max
SVT

Laplace
Exponential Mechanism

ε-DP – – Distance Est. ✗ ✓ ✓

Lokna et al. [66]

MST
Gaussian

Discrete Gaussian
Laplace

(ε,δ)-DP – DPD Output-set ✗ ✓ ✓

Zanella-Béguelin et al. [115] DP-SGD (ε,δ)-DP Poisson MI FPR/FNR ✗ ✓ ✗

Nasr et al. [82] DP-SGD f -DP
Poisson

MI FPR/FNR
✗ ✓ ✗

– ✓ ✗ ✓

Gorla et al. [50] Truncated Laplace (α,γ)-RDP – – Histogram Est. ✗ ✓ ✓

Maddock et al. [70] DP-FedSGD User-level DP Poisson MI FPR/FNR ✓ ✗ ✗

Pillutla et al. [91] DP-SGD (ε,δ)-DP Poisson MI Custom
✗ ✓ ✗
✗ ✗ ✗

Steinke et al. [100] DP-SGD (ε,δ)-DP Poisson MI Accuracy
✓ ✓ ✗
✓ ✗ ✗

Galen et al. [4] DP-FedAvg User-level DP Shuffle MI Variance Est. ✓ ✗ ✗

Matsumoto et al. [73] LDP-SGD ε-DP Shuffle MI FPR/FNR ✗ ✗ ✗
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Chadha et al. [21]

PATE
CaPC

PromptPATE
Private k-NN

(α,γ)-RDP – MI Custom ✗ ✗ ✗

Zhang et al. [118]

Report Noisy Max
NoisyHist

SVT
Laplace
RAPPOR

Prefix Sum
Truncated Geometric

ε-DP – DPD Output-set ✗ ✓ ✓

Chida et al. [24]
PrivBayes
DPCopula

Randomized Response
MI – MI FPR/FNR ✗ ✓ ✗

Lu et al. [68]
Report Noisy Max

NoisyHist
SVT

(α,γ)-RDP – DPD Output-set ✗ ✓ ✓

Xiang et al. [110] DP-GNN f -DP Poisson MI FPRFNR ✓ ✗ ✓

Annamalai et al. [8]
PrivBayes

CTGAN
DP-WGAN

(ε,δ)-DP Poisson MI FPR/FNR
✗ ✓ ✗

✗ ✗ ✓

Feng et al. [45] DP-SGD (ε,δ)-DP Poisson – Output-set ✗ ✓ ✓

Annamalai et al. [5] DP-SGD f -DP Poisson MI FPRFNR ✗ ✗ ✓

Annamalai et al. [7] DP-SGD µ-GDP – MI FPR/FNR ✗ ✓ ✗

Yoon et al. [114] DP-SGD µ-GDP – MI FPR/FNR ✗ ✓ ✗

Kong et al. [62]

Laplace
Gaussian

SVT
DP-SGD

(ε,δ)-DP – – Divergence Est. ✗ ✗ ✓

Debenedetti et al. [31] DP-SGD f -DP Poisson MI FPR/FNR ✗ ✗ ✗

Arcolezi et al. [10]

Generalized Randomized Response
Subset Selection

Local Hashing
Unary Encoding

Histogram Encoding

(ε,δ)-DP – DPD Output-set ✗ ✓ ✓

Mahloujifar et al. [71]
DP-SGD f -DP Poisson

Recon Accuracy
✓ ✗ ✗

Gaussian µ-GDP – ✓ ✓ ✓

Annamalai et al. [6] DP-SGD (Shuffle) (ε,δ)-DP Shuffle MI FPR/FNR ✗ ✗ ✗

Huang et al. [53]
Laplace

Gaussian
DP-SGD

(ε,δ)-DP Poisson – Variance Est. ✗ ✗ ✓

Nasr et al. [84] DP-SGD f -DP Poisson MI FPR/FNR ✗ ✓ ✗

Cebere et al. [20] DP-SGD µ-GDP Poisson MI FPR/FNR ✗ ✓ ✗

Ganev et al. [47] PATE-GAN (ε,δ)-DP – MI FPR/FNR ✗ ✓ ✗

Askin et al. [11]

Laplace
Gaussian

Sub-Sampling
DP-SGD

f -DP Poisson DPD Output-set ✗ ✓ ✗

Panda et al. [88] DP-SGD (ε,δ)-DP Poisson MI Accuracy ✓ ✓ ✗

Xiang et al. [111]
DP-SGD
Gaussian

f -DP
µ-GDP

Poisson
–

MI Accuracy
✓
✓

✗
✓

✗
✓

Table 5: Full summary of key prior work on DP auditing.
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