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Abstract
Deep neural networks often use large, high-quality datasets to achieve high performance on

many machine learning tasks. When training involves potentially sensitive data, this process
can raise privacy concerns, as large models have been shown to unintentionally memorize and
reveal sensitive information, including reconstructing entire training samples. Differential privacy
(DP) provides a robust framework for protecting individual data and in particular, a new
approach to privately training deep neural networks is to approximate the input dataset with a
privately generated synthetic dataset, before any subsequent training algorithm. We introduce
a novel principled method for DP synthetic image embedding generation, based on fitting a
Gaussian Mixture Model (GMM) in an appropriate embedding space using DP clustering. Our
method provably learns a GMM under separation conditions. Empirically, a simple two-layer
neural network trained on synthetically generated embeddings achieves state-of-the-art (SOTA)
classification accuracy on standard benchmark datasets. Additionally, we demonstrate that our
method can generate realistic synthetic images that achieve downstream classification accuracy
comparable to SOTA methods. Our method is quite general, as the encoder and decoder modules
can be freely substituted to suit different tasks. It is also highly scalable, consisting only of
subroutines that scale linearly with the number of samples and/or can be implemented efficiently
in distributed systems.

1 Introduction
The rise of massive datasets and increasingly complex machine learning (ML) models has transformed
a large number of fields such as computer vision, natural language processing, and pattern recognition.
These advancements have been fueled by the availability of high-quality datasets, enabling deep
neural networks to achieve unprecedented performance across diverse tasks. However, the widespread
reliance on large-scale data in ML introduces significant challenges and potential risks. One such risk
is inadvertently exposing private user information in the output of a machine learning system [SM21].
These risks have led to the establishment of strict data privacy regulations that forbid the storage
of data that can be re-traced to individuals (re-identification) [VV17]. Thus, privacy-preserving
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Fig. 1: Synthetic and original CIFAR-10 images at ε = 8, δ = 10−5. Each row corresponds to a
different class. The left-most columns are synthetic images obtained with our method, while the
right-most columns are original images.

machine learning is no longer only a desirable property, but a necessity. When dealing with private
data, differential privacy (DP) [DMN+06] (Definition D.3) has emerged as the gold standard for
ensuring strong privacy protection. DP ensures that outputs of an algorithm are statistically similar
regardless of the inclusion of any single data point, thus provably avoiding privacy risks such as
re-identification. As such, DP presents a strong framework for regulation-compliant training on
sensitive data [CD18].

In this paper, we study the problem of differentially-private synthetic data generation [AZK+18;
TKP19; RLP+20; MJW+22; TFR22; GBG+23; HJS+23; KPS+23; YIL+23; HSZ+24; LGK+24;
XLB+24; AAB+25; TXX+25]. The goal of DP synthetic data release is to privately obtain
approximations of potentially sensitive datasets that effectively extract, from the data, the useful
information needed to achieve the system’s goals, while at the same time ensuring that no individual’s
privacy is compromised.

Specifically, consider the problem of training a machine learning model for a certain task (e.g.,
classification) with DP guarantees [ACG+16]. In this context, DP synthetic data can be used to
output a privatized version of the training dataset (see Figure 1), where then arbitrary non-private
training techniques can be applied without additional privacy risk. This approach is an increasingly
popular alternative to directly training an ML model for the task using DP-SGD [ACG+16; DBH+22;
YNB+22; HLY+23; MGN+23] due to several advantages over private model training:

(1) Publishing synthetic datasets can enable direct inspection of an approximation of the underlying
data, allowing model designers the freedom to explore the data to identify issues, debug model
behaviors, and assess data quality.

(2) DP synthetic data generation allows plug-in use of any existing model architecture without the
need to run more complex privacy-preserving training methods, such as Differentially Private
Stochastic Gradient Descent (DP-SGD) [ACG+16; DBH+22]. This avoids the additional
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engineering effort needed to support DP training pipelines, which may require a fine-grained
understanding of the interplay between privacy and the underlying training mechanics. For
instance, Opacus [YSS+21], a popular DP training library, requires a custom implementation
of a per-sample gradient calculator for custom layers.

(3) Private synthetic data release allows for unlimited training of models without incurring
additional privacy costs. By comparison, repeated private training requires accounting for
accumulated privacy loss.

In this work, we design novel methods for practical DP synthetic data generation by taking
inspiration from the embedding clustering literature [XGF16]. Our guiding insight is that an
appropriate embedding of the input data makes it more amenable to clustering. Indeed, embedding
objects into an appropriate space and clustering these embeddings has been theoretically [Lux07;
Spi25] and empirically [HHW+14; JZT+17; RSB+19; RDS+19] shown to be effective at capturing
desirable structures within data.

1.1 Problem Definition

Our overarching goal is to develop private synthetic data to perform downstream tasks. Though
our methodologies focus on image classification, we first provide a formal model to quantify the
performance of a synthetic dataset for general classification. Formally, consider an ML task where
the goal is to perform classification on an input space X for a label space Y = {1, . . . , L}. We
remark that X can either be the original input dataset or an embedding of the dataset under any
fixed encoding scheme.

Suppose the loss function ℓ(·, ·; θ) : X × Y → R is parameterized by the vector θ over the
hypothesis class. Here, the vector θ denotes the parameters of the deep learning model, e.g., the
weights, biases, and hyperparameters of the model. We assume access to a collection S of n data
points that are sampled i.i.d. over the space Z = X × Y so that (xi, yi) ∼ DZ for each i ∈ [n], for
some probability distribution DZ . We would like to apply a learning algorithm A onto the input S
to learn a model that can accurately predict the correct labels for new, unseen data by capturing the
underlying patterns or relationships in the training data, while simultaneously protecting potentially
sensitive information. Our approach is to privately estimate the true distribution, say with D̃Z , and
release a private synthetic dataset S̃ from D̃Z , such that any algorithm A trained on S̃ retains good
accuracy when applied to D rather than S̃. Quantitatively, our goal is to minimize the classification
loss of the private synthetic dataset, which can be decomposed as follows:

E
x,y∼DZ

[ℓ(x, y; θ)] ≤ 1
|S̃|

∑
x̃,ỹ∈S̃

ℓ(x̃, ỹ; θ)

︸ ︷︷ ︸
training error

+

∣∣∣∣∣∣∣
1
|S̃|

∑
x̃,ỹ∈S̃

ℓ(x̃, ỹ; θ)− E
x̃,ỹ∼D̃Z

[ℓ(x̃, ỹ; θ)]

∣∣∣∣∣∣∣︸ ︷︷ ︸
synthetic data generation error

+
∣∣∣∣∣ E
x̃,ỹ∼D̃Z

[ℓ(x̃, ỹ; θ)]− E
x,y∼DZ

[ℓ(x, y; θ)]
∣∣∣∣∣︸ ︷︷ ︸

estimation error

, (1)

where S̃ = {x̃j , ỹj} is a (private) synthetic dataset.
Thanks to the postprocessing property of DP, we can sample as many points from our privately

estimated distribution D̃Z as desired. Hence we do not focus on the generation error but note that
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under mild assumptions, we can show that the generation error converges uniformly to 0 across all
parameters θ ∈ Θ using techniques such as metric entropy [Wai19]. Thus our primary concern is to
develop a principled DP distribution estimation algorithm.

Loss function regularity conditions. We remark that although the problem formulation is
simple, there is no upper bound to the private synthetic data loss without additional assumptions on
the loss function. To circumvent these limitations due to poorly behaved loss functions, existing works
often assume the dataset lies in a metric space that is “well-behaved” with respect to the loss function
of the model. For example, Sener and Savarese [SS18] assumes the loss function is λ-Lipschitz, i.e.,
|ℓ(x, y)− ℓ(x′, y)| ≤ λ · ∥x− x′∥2, while Axiotis, Cohen-Addad, Henzinger, et al. [ACH+24] assumes
the loss function is (z, λ)-Hölder continuous, i.e., |ℓ(x, y)− ℓ(x′, y)| ≤ λ · ∥x− x′∥z2 and demonstrate
experimentally that this holds true for in the context of large language models (T5-model [RSR+20]
for a translation task and BERT embeddings [DCL+19a]).

Embedding space. Functionally, the elements of the dataset can be embedded into a metric
space, e.g., graph embeddings [GL16], word embeddings [MCC+13; PSM14; DCL+19b], or image
embeddings [SZ15; HZR+16; RKH+21]. In general, an embedding can be acquired from the
last layers of a neural network, which is especially appropriate when the model has already been
pre-trained on publicly available data and the goal is to either fine-tune the model on private data
for a specific task. In these settings, a natural view is that the input dataset to the algorithm is the
embedding of the original dataset, while the loss function may be the norm of the gradient of the
embedding.

1.2 Our Contributions

In this paper, we present a novel training-free approach based on Gaussian mixture models (GMMs,
c.f., Definition D.1) to privately generate synthetic data to minimize the error specified in Equation (1)
after training. We first seek to privately partition the input dataset into k clusters, adapting a
recent line of work [SS18; ACH+24] for the non-private active learning problem. Existing works use
the resulting clustering to sample a number of points from each cluster, a procedure that inherently
violates differential privacy. Instead, we privately estimate the intra-cluster covariance as our goal is
to release a private synthetic dataset based on the resulting clustering. Informally, we would like to
preserve the distribution of the input points, since the sample distribution serves as an estimate of
the true distribution. The main intuition is that if the dataset can be partitioned into k clusters
such that each cluster can be well-approximated by a Gaussian distribution, then by generating
data points using a GMM, we expect that the distributional distance between generated points and
the input distribution to be small.
Theorem 1.1 (Informal Parameter Estimation; See Theorem G.7). Let ε, δ, α, β ∈ (0, 1). Given
n samples from a well-separated k-Gaussian mixture model DGMM in d-dimensional space for
n = poly(k, d, 1/α, 1/ε, log(1/β), log(1/δ)), Algorithm 1 is an (ε, δ)-DP algorithm that outputs parameter
estimates ŵi, µ̂i, Σ̂i such that with probability 1− β, ∥w − ŵ∥1 , ∥µ− µ̂∥2 ,

∥∥∥Σ− Σ̂
∥∥∥

F
≤ α.

Algorithms for probably learning GMMs have been well-studied by the Theoretical Computer
Science community. Our algorithm accomplishing Theorem 1.1 follows the well-studied cluster-
then-learn paradigm [Das99], which requires some form of separation condition of the underlying
distribution. See Section 1.3 for more details.
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Now, for a “well-behaved” loss function, e.g., Lipschitz, we can provably approximate the loss of
the original dataset for the purposes of downstream training. Moreover, our parameter estimation
algorithm yields a conditional generation algorithm for labeled data by running the estimation
algorithm for each class.

Theorem 1.2 (Informal Downstream Training; See Theorem G.11). Let ε, δ, α, β ∈ (0, 1) and f
be a (λ, z)-Hölder continuous loss function for z ∈ [1, 2]. Suppose Z = (X, Y ) is a joint feature-
label distribution for Y ∈ [c] where each conditional distribution (X | Y = y) ∼ D(y)

GMM is a
well-separated Gaussian mixture model. Given n samples from each conditional distribution for
n = poly(k, d, 1/α, 1/ε, log(1/β), log(1/δ)), there is an (ε, δ)-DP algorithm that outputs a distribution
Z̃ = (X̃, Y ) such that with probability 1− β, E

Z
[f(Z)] ≤ Ẽ

Z

[
f(Z̃)

]
+ λ · α .

We also show that our algorithm satisfies (ε, δ)-DP and can be implemented in near-linear time.

Theorem 1.3 (Informal; See Theorems G.1 and G.2). Let (ε, δ) ∈ (0, 1), n be the number of input
images, T be the maximum runtime of Encode and Decode on a single input, and d the embedding
dimension. Algorithm 1 is (ε, δ)-DP and can be implemented in Õ(n(d + T ) ·poly(1/ε, log(1/δ))) time.

We implement and test our framework on standard benchmark datasets from DP classification
and synthetic data literature [TKP19; DBH+22; GBG+23; LGK+24] at the same privacy levels as
the state-of-the-art (SOTA) DP classification [DBH+22]. While our theoretical analysis hinges on
separability conditions, we find that our method empirically yields strong downstream classification
accuracy regardless. Specifically, we train a simple two-layer neural network on DP synthetic
embeddings and compare its accuracy against all DP training methods, including those that do
not use synthetic data. We obtain SOTA classification accuracy on standard datasets in the DP
synthetic data literature (See Section 3).

Note that one would expect training via DP synthetic data generation to achieve worse per-
formance than direct training via DP-SGD, as the former is a more general task. This belief is
supported by previous work on DP synthetic image generation [LGK+24]. Thus it is very surprising
that we can achieve comparable, not to mention new SOTA DP classification results.

1.3 Related Works

There are many related works that are relevant to this paper. We discuss the immediately related
works and defer the rest to Appendix B.

DP synthetic data. Given a private dataset D, the goal is to privately generate a synthetic
dataset which is statistically similar to D [AZK+18; TKP19; RLP+20; MJW+22; TFR22; GBG+23;
HJS+23; KPS+23; YIL+23; HSZ+24; LGK+24; XLB+24]. See [CKF24; HWL+24] and references
therein for a survey of recent developments. One related line of work on DP synthetic data given
only API-access to foundation models [LGK+24; XLB+24] also develops training-free methods
that leverage pre-trained embeddings. However, they only do so in the context of establishing a
measure of difference between a candidate synthetic dataset and the true sensitive dataset. We
further leverage the power of pre-trained embeddings by clustering together similar data points in
the embedding space and modeling each cluster using a Gaussian distribution.
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DP clustering. DP k-means clustering seeks to identify groups of similar data points while
ensuring the output is not overly sensitive to the value of any particular entry. [SCL+16; SCL+17;
HL18; LWG+19]. A particularly relevant line of work is that on scalable DP clustering algorithms
which terminate in near-linear running time [CEL+22; CEM+22].

(DP) Gaussian mixture models. Mixture models were introduced by Pearson [Pea94] for
modeling the presence of subpopulations. The most popular algorithm for estimating GMMs in
practice is a heuristic called Expectation-Maximization (EM) [DLR77]. Unfortunately, EM does
not provably learn GMMs. In a seminal paper, Dasgupta [Das99] designed the first (efficient)
clustering-based algorithm that provably learns a GMM under separation conditions similar to
ours. The cluster-then-learn scheme introduced by Dasgupta [Das99] led to follow-up works [DS00;
VW04; AK05] following said scheme that shaved the degree of separation needed. Departing from
clustering-based techniques, Kalai, Moitra, and Valiant [KMV10] and Moitra and Valiant [MV10]
developed sophisticated algorithms for learning GMMs without any separation conditions. Unlike
clustering-based algorithms, These algorithms have polynomial dependence on relevant parameters
except k (the number of components), which is unfortunately necessary in the absence of separation
conditions. See e.g. [Moi18] for a more detailed survey of prior algorithmic developments.

In general, the covariance matrices within each component of a GMM (Definition D.1) can be
arbitrary. However, various restrictions of the covariance structure have been studied and applied
across various fields, including spherical covariances [HK13], diagonal covariances [Rey+09], and
tied covariances [GRG06].

In the differential privacy community, prior works have studied the task of privately learning
a GMM under various assumptions [PFC+17; KSS+19]. See Arbas, Ashtiani, and Liaw [AAL23]
and references therein for a more comprehensive history. However, practical implementations have
so far been underexplored. Our simple algorithm for privately fitting a GMM based on the more
well-studied task of DP clustering may be of interest beyond synthetic data generation.

1.4 Preliminaries

We defer standard preliminaries to Appendix D.

Notation. We write d to denote the ambient dimension, ε, δ to denote the approximate-DP
parameters, and α, β to denote the accuracy and failure probability parameters. We use k to
denote the number of clusters or components for k-means or Gaussian mixture models, respectively.
Typically, we use µ, Σ to denote the mean and covariance of a distribution.

2 Overview of Techniques & Utility Analysis
In this section, we provide the theoretical guarantees for our training-free pipeline. We describe our
procedures and the corresponding analysis for unconditional generation. That is, there is no notion
of a label for the dataset or equivalently, all the labels of the dataset are assumed to be the same.
We remark that this is without loss of generality because for the case of conditional generation,
it suffices to repeat the procedure and analysis in parallel for each class in the training set. We
provide pseudocode for our method in Algorithm 1.
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Algorithm 1 DP Synthetic Generation
1: Input: data D = {x1, . . . , xn}, privacy parameters ε, δ, number of clusters k, number of

generations m

2: DEmbedding ← {Encode(x) : x ∈ D}
3: (c1, n1), . . . , (ck, nk)← DP-Cluster(DEmbedding, ε/5, δ/5)
4: for j = 1, . . . , k do
5: Dj ← {x ∈ DEmbedding : cj = argminc=c1,...,ck

∥x− c∥2}
6: µj ← DP-Mean(Dj , ε/5, δ/5)
7: Σj ← DP-Covariance(Dj , ε/5, δ/5)
8: pj ← nj/

∑k
j=1 nj

9: ZEmbedding ← ∅
10: for ℓ = 1, . . . , m do
11: j ∼ [k] with probability pj

12: zℓ ∼ N (µj , Σj)
13: ZEmbedding ← ZEmbedding ∪ {zℓ}

14: Z ← DP-FilterEmbedding(ZEmbedding, D, ε/5, δ/5)
15: yield Z

16: ZImage ← {Decode(z) : z ∈ Z}
17: yield DP-FilterImage(ZImage, D, ε/5, δ/5)

2.1 Subroutines

Encoders & decoders. Our utility analysis relies on the loss function being Hölder continuous
over the input space. embedding space. While this may seem to be a strong assumption, it has
been experimentally verified to hold for certain embeddings [DCL+19a; RSR+20].

Thus, to privately train a classifier by training on DP synthetic embeddings, we assume there is
a publicly available encoder module Encode that takes a (C ×W ×H) image and outputs a vector
x ∈ Rd. Here C is the number of image channels and W, H are the width and height of the input
image.

If in addition, we wish to generate DP synthetic images, we assume access to a decoder module
Decode that takes a vector x ∈ R and maps it back to an image, possibly of different dimensions
(C ′ ×W ′ ×H ′).

Filtering embeddings & images. Similar to any (not necessarily private) data generation process,
our method may occasionally generate an embedding or an image that is a poor representation of
the underlying sensitive data. Thus, our algorithm optionally supports filtering at the embedding
and image level, where we discard some of the generated embeddings or images based on some rules
DP-FilterEmbedding, DP-FilterImage. Similar to Hou, Shrivastava, Zhan, et al. [HSZ+24], Lin,
Gopi, Kulkarni, et al. [LGK+24], and Xie, Lin, Backurs, et al. [XLB+24], we allow the filtering to
depend on private data.

7



2.2 Synthetic Embeddings

Our full algorithm for generating synthetic data is presented in Algorithm 1. While the pseudocode
includes the optional image generation step, it suffices to stop before the decoding step for the
purpose of training a classifier on DP synthetic embeddings. The rest of this section delves into
some details and analysis of Algorithm 1.

Encoding images. We use a variant of the pre-trained CLIP [RKH+21] image encoder to
encode each training and test image into 768-dimensional embeddings. In particular, we use
CLIPImageProcessor1 and CLIPVisionModelWithProjection2. Both the models and model weights3

are publicly available on HuggingFace. Note that there are no private operations in this step.

Privately learning a GMM. Next, we privately fit a k-Gaussian Mixture Model (k-GMM)
on the embeddings produced by the previous step. This comprises of two steps: learning a
partition of the dataset using a private k-means algorithm and privately estimating the intra-cluster
means/covariances given these private centers. We analyze both steps in Appendix G.3.

Intuitively, assuming the data embeddings were generated from a k-GMM, a reasonable approxi-
mate k-means solution must place a center close to each cluster. Then, assuming the components
are sufficiently well-separated, it should be the case that each output center is also well-separated
and hence we can “classify” points by nearest center. We formalize this intuition in Theorem G.6.

Then, these k centers induce a partition of the dataset, where a point belongs to the i-th partition
if its closest center is the i-th center. Assuming we managed to capture only points from the i-th
component in the i-th partition, we can estimate the parameters of the i-th component using any
algorithm for Gaussian estimation. This is made formal in Theorem G.7.

In our experiments, we use the practical DP k-means algorithm by Chang and Kamath [CK21]
to privately compute k centers. Note that the number of clusters k is a tuned hyperparameter. We
also output a noisy count of the number of elements within each partition (cf. Algorithm 1).

For the second step, we estimate the intra-cluster means and covariances by clipping and adding
appropriate Gaussian noise. There are many variations of restricted covariance models within GMMs
(see Section 1.3) and we empirically noticed that diagonal covariances yield the best performance.

Private synthetic embedding generation. Given the private k-GMM, we can then generate
an unlimited number of synthetic embeddings simply by sampling from the GMM. This does not
incur additional privacy loss as it is post-processing.

Optionally, we prune the generated point using noisy votes from original training data, similar to
a single iteration of Private Evolution [LGK+24; XLB+24]. That is, each original embedding point
votes for its nearest neighbor in the generated embeddings. After adding an appropriate amount of
noise to the count to preserve privacy, we keep a generated embedding only if its noisy vote is above
a certain threshold. This threshold is a hyperparameter.

1https://huggingface.co/docs/transformers/v4.48.0/en/model_doc/clip#transformers.CLIPImageProce
ssor

2https://huggingface.co/docs/transformers/v4.48.0/en/model_doc/clip#transformers.CLIPVisionMode
lWithProjection

3https://huggingface.co/diffusers/stable-diffusion-2-1-unclip-i2i-l/tree/main
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Training a classifier on synthetic embeddings. Given a dataset of synthetic embeddings, our
goal is to train a model by minimizing an appropriate well-behaved loss function over the synthetic
embeddings. We analyze this step in Appendix G.4.

As mentioned before, since we can generate as many synthetic embeddings as we want, Equa-
tion (1) shows that the proxy error arising from training on synthetic embeddings should be
dominated by the estimation error. We translate the parameter estimation error to a distributional
bound in Wasserstein distance between GMMs, which implies a bound on the proxy error for Hölder
continuous functions. This is quantified in Theorem G.11.

Experimentally, we train a simple two-layer neural network on the synthetic embeddings and test
its accuracy on the original test set embeddings. As remarked earlier, using non-private training
techniques does not incur any private loss, as the synthetic embedding generation process is differ-
entially private. We achieve SOTA accuracy on CIFAR-10 [Ale09] and CAMELYON17 [BGM+19].
We also achieve comparable accuracy on the more challenging CIFAR-100 [Ale09] dataset. See
Section 3.2 for more details.

2.3 Synthetic Images

The above already suffices to train a private classifier. If we wish to also generate images, it can be
obtained with the help of a decoder module.

Decoding Embeddings into Images. We use StableUnCLIP, a stable diffusion model fine-tuned
on CLIP embeddings [RBL+22] to decode CLIP embeddings into 768× 768 images. Specifically, we
use the class StableUnCLIPImg2ImgPipeline4 with publicly available weights5 through Hugging-
Face.

Optionally, we use NIQE [MSB13] and PIQE [She05; VPB+15] image quality filters to filter out
the generated images that are too noisy. Note that the two pruning strategies do not depend on the
private data and simply compute a “quality” score given an input image.

Training a Classifier on Synthetic Images. We use the decoded images to fine-tune a
torchvision [MC16] implementation of the ResNet50 model [HZR+16] that was pre-trained on
Imagenet [DDS+09]. The only modification is to change the final classification layer to match the
number of classes for the dataset in question. Again, we note that any non-private training method
can be used to obtain a private classifier since the training data is guaranteed to be differentially
private.

3 Experiments
We begin by describing our experimental setup in Section 3.1.

In Section 3.2, we compare the classification accuracy of a simple two-layer neural network
trained on DP synthetic embeddings against SOTA private training methods on standard benchmark
datasets. We emphasize that we compare against all DP training methods, including those that do
not utilize synthetic data like DP-SGD. Surprisingly, we achieve new SOTA results on CIFAR-10

4https://huggingface.co/docs/diffusers/en/api/pipelines/stable_unclip#diffusers.StableUnCLIPImg
2ImgPipeline

5https://huggingface.co/diffusers/stable-diffusion-2-1-unclip-i2i-l/tree/main
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and CAMELYON17 while obtaining competitive accuracy on the more challenging CIFAR-100
dataset.

In Section 3.3, we demonstrate that our method is also able to generate useful private synthetic
images and compare the downstream classification accuracy of models trained on such images
against SOTA private synthetic image generation methods for CIFAR-10. In particular, our method
achieves superior classification accuracy at all privacy budgets.

Finally, Section 3.4 presents a detailed comparison of our method against DP-SGD on various
privacy budgets on CIFAR-10.

3.1 Experimental Setup

Public data. The CLIP embedding module [RKH+21] was pre-trained on unspecified image-text
pairs scoured from the internet. We emphasize that our experiments on synthetic embeddings only
use CLIP as public data. Our results on synthetic images also requires a decoder. Our decoder
module is based on Stable Diffusion 2.1 [RBL+22], which is trained on the LAION-5B [SBV+22]
dataset and fine-tuned to invert CLIP embeddings using the same dataset. For classification on
synthetic images, we fine-tune a model that was pre-trained on ImageNet [DDS+09]. We consider
the above as publicly available data.

We selected CLIP embeddings because it is a crucial component of the only known general large
pre-trained encoder-decoder model pair. We were unable to find other encoder-decoder pairs that
generalize beyond the specific data sets upon which they were pre-trained.

Sensitive data. We execute our DP synthetic generation pipeline on CIFAR-10, CIFAR-100 [Ale09],
and CAMELYON17 [BGM+19], which we consider as private sensitive data. The first two consist of
natural images with 10 and 100 classes respectively, and the CAMELYON17 is a medical dataset for
binary classification of breast cancer metastases. We emphasize that these are standard benchmark
datasets within the DP synthetic images literature [TKP19; GBG+23; LGK+24].

Hyperparameter tuning. We performed hyperparameter search on the number of clusters as
well as the clipping radii for the generation algorithm and followed the TorchVision formula for
training6 without hyperparameter search. Similar to other works on DP synthetic data [GBG+23;
LGK+24], we do not account for hyperparameter search as part of the privacy budget.

Setup. Each training experiment is repeated for 3 runs and we report the mean accuracy and
standard deviation. Our experiments are performed using eight H100 GPUs (80GB memory each).
See Appendix C for more setup details for our experiments.

3.2 Private Training

We compare the downstream classification of a simple two-layer neural network trained on private
synthetic embeddings against the classification accuracy of all other private training methods. See
Appendix C.3 for details of the two-layer neural network.

DP-finetuning [DBH+22] achieves the current SOTA on CIFAR-10, CIFAR-100 and DP-
Diffusion [GBG+23] achieves the current SOTA on CAMELYON17. We also display the non-DP

6https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primiti
ves/
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Table 1: Private training classification accuracies for various data sets. DP-SGD results taken from
respective papers. δ = 10−5 for all experiments.

Dataset ε Ours SOTA
(DP)

SOTA
(non-DP)

cifar-10 8 97.0± 0.01 96.6 99.5
cifar-100 8 80.5± 0.177 81.8 96.1
camelyon17 10 93.1± 0.067 91.1 95.7

SOTA results, as reported by Lee, Oh, Choi, et al. [LOC+19], Dosovitskiy, Beyer, Kolesnikov, et al.
[DBK+21], and Foret, Kleiner, Mobahi, et al. [FKM+21]. For the above datasets, we generate the
same number of synthetic embeddings as the original training splits and train a simple two-layer
neural network from scratch on said embeddings. We then test on embeddings of the original
(non-synthetic) test set. Table 1 shows that our method achieves an improvement on the SOTA for
CIFAR-10 and CAMELYON17 at the same privacy budgets as prior works.

We emphasize that this runs contrary to conventional beliefs [LGK+24], as DP synthetic data is
more general-purpose than training via DP-SGD, which is optimizing for a single task.

Our results suggest that even on private datasets with significant distribution shift from the
encoder training data, training on synthetic embeddings can yield classifiers with strong privacy-to-
utility tradeoffs.

3.3 Private Synthetic Images

Next, we compare the downstream classification accuracy of classifiers trained on synthetic images
generated by decoding embeddings against other baseline DP synthetic image techniques on
CIFAR-10. Private Evolution [LGK+24] achieves the current SOTA on lower values of ε while
DP-Diffusion [GBG+23] achives the current SOTA on higher values of ε.

We fine-tune a ResNet50 [HZR+16] classifier pre-trained on ImageNet [DDS+09] using 50,000 DP
synthetic images and test its accuracy on the original (non-synthetic) CIFAR-10 test set. Figure 2
compares the results across various levels of ε. We note that Harder, Jalali, Sutherland, et al.
[HJS+23] achieve an accuracy of 51% (not shown).

The above shows that when the decoder module is pre-trained on similar data to the private
dataset, our method can achieve strong utility at lower privacy budgets.

3.4 Privacy-Utility Tradeoffs

Finally, we consider the privacy-utility tradeoffs of our methods by examining the performance at
varying levels of ε.

Our first comparison is quantitative, and we examine the downstream classification accuracy
for both synthetic embeddings and actual images for the CIFAR-10 dataset. For reference, we
consider DP-finetuning [DBH+22]. Table 2 shows that our classifier trained on synthetic embeddings
consistently outperforms the one trained by DP-finetuning at various levels of ε.

Next, we qualitatively compare of the images generated at different privacy levels. See Appendix A
for examples of synthetic CIFAR-10 images at various levels of ε. Interestingly, while the classification

11



Fig. 2: Downstream classification accuracy on 50,000 generated CIFAR-10 images at various levels
of ε and δ = 10−5. We report the baseline accuracies at every available level of ε, exactly as stated
in their respective papers.

Table 2: Downstream classification accuracies when trained on 50,000 synthetic embeddings or
images and tested on CIFAR-10. δ = 10−5 for all experiments.

ε
DP-SGD

(fine-tuning)
Ours

(embeddings)
Ours

(images)

1 94.8 96.6± 0.074 89.7± 0.143
2 95.4 96.8± 0.087 90.2± 0.129
4 96.1 96.9± 0.064 90.5± 0.044
8 96.6 97.0± 0.01 90.6± 0.054

accuracy does not significantly decrease as ε varies, the variance of the generated images noticeably
increases as ε decreases. Consider for example, the 9-th row of Figures 3 and 6, which displays
synthetic images of boats at ε = 8, 1, respectively. In Figure 3, each of the 10 images is recognizable
as a boat. However, in Figure 6, only 3 of the 10 images resemble some form of a boat while the
others in the row are abstract shapes. Similar occurrences can be observed for the other classes

4 Limitations & Future Works
DP clustering. An important subroutine in our generation pipeline is DP clustering. Improved
implementations of DP clustering can also improve our algorithm, further motivating research on
DP clustering.

Decoding. We were unable to find other encoder-decoder pairs that generalize beyond their
training data, which necessitated the use of CLIP embeddings if we wish to generate images.
Progress on general-purpose encoder-decoder models or exploration of domain-specific encoder-
decoder pairs will broaden the applicability of our method.
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Filtering. The generated images were not carefully filtered, and we used two simple filtering
heuristics that are agnostic to the sensitive data. Using more sophisticated methods [EM18;
KWW+21] may yield better performance. Furthermore, we can use existing image enhancement
methods [QYS+21] to improve the quality of generated images.

5 Conclusion
Our work introduces a novel principled framework for private training and data generation by
clustering embeddings, demonstrating significant improvements in privacy-utility tradeoffs compared
to existing approaches in the DP synthetic data literature. Moreover, by leveraging DP synthetic
embeddings, we achieve state-of-the-art classification accuracy on CIFAR-10 and CAMELYON17,
highlighting the potential of our method in real-world applications. Our method offers a practical
solution for privately training classifiers without exposing real data, which is particularly valuable
in domains where data sharing is restricted.
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A CIFAR-10 Synthetic Images
In this section, we show examples of synthetic CIFAR-10 images generated at various levels of ε.
We randomly chose 10 images per class from each of the synthetic and original training sets and
display them side-by-side. As expected, there is a noticeable decrease in the fidelity of the synthetic
images as ε decreases, due to the increase in noise injected into the system.

Fig. 3: CIFAR-10 synthetic images at ε = 8, δ = 10−5. Each row corresponds to a different class.
The left-most columns are synthetic images while the right-most columns are original images.
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Fig. 4: CIFAR-10 synthetic images at ε = 4, δ = 10−5. Each row corresponds to a different class.
The left-most columns are synthetic images while the right-most columns are original images.

Fig. 5: CIFAR-10 synthetic images at ε = 2, δ = 10−5. Each row corresponds to a different class.
The left-most columns are synthetic images while the right-most columns are original images.

25



Fig. 6: CIFAR-10 synthetic images at (ε = 1, δ = 10−5). Each row corresponds to a different class.
The left-most columns are synthetic images while the right-most columns are original images.

B Related Work
The areas most related to our work are that of data selection, (non-private) synthetic data generation,
and private fine-tuning.

Synthetic data generation. The seminal paper of Goodfellow, Pouget-Abadie, Mirza, et al.
[GPM+14] introduced Generative Adversarial Networks (GANs), which intuitively train the generator
not to minimize the loss function for labels of individual images, but instead to fool a “discriminator”
neural network that can tell how “realistic” the input seems. GANs have been widely used for
generating synthetic data [RMC16] across a wide range of applications, e.g., to privately create
synthetic medical images to enhance CNN performance [FDK+18; SYP+19] in healthcare, as
well as for applications in data augmentation [ASE17], facial recognition [YLL+14], image super-
resolution [LTH+17], and text-to-image synthesis [RAY+16].

Private fine-tuning. Another relevant area is that of private fine-tuning, which has been used
for tasks such as privately training large language models [YNB+22]. Private fine-tuning is the
process of adapting a pre-trained machine learning model to a specific task using a sensitive dataset,
while ensuring that individual data points in the dataset remain private. The main intuition behind
private fine-tuning is to modify the model’s training process with private techniques to prevent the
model from compromising sensitive information, e.g., using methods such as DP-SGD [ACG+16],
which adds noise to the gradients during training and clips them to control the influence of any
single data point. Consequently, the resulting model retains useful task-specific knowledge while
preserving differential privacy.
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Recently, Lin, Gopi, Kulkarni, et al. [LGK+24] observed that API-based solutions are becoming
increasingly popular, in part due to the accessibility of these systems to users without ML-specific
expertise. Thus, they view API providers as untrusted entities and proposed the Private Evolution
algorithm for generating private synthetic data using black-box APIs of foundation models. Despite
not having access to model weights and gradients, the key idea of Private Evolution is to iteratively
utilize private samples to determine the most similar samples generated from the black-box model
and ask the black-box models to generate more of those similar samples.

Data selection. Data selection aims to select the most “important” data points to label from a
pool of unlabeled examples, thereby maximizing accuracy with a smaller labeled dataset, reducing
the cost and effort of labeling while still achieving high model performance. While a universally
optimal data selection strategy is not achievable [Das04], several heuristics [Set09; RXC+22] have
proven to be effective in practice. Nevertheless, these traditional data selection approaches all focus
on selecting the most important data points to improve model performance. Indeed, data selection
inherently and necessarily reveals crucial structural information about these data points that is
subsequently used for generalization.

Data selection for machine learning is a well-studied approach for improving model efficiency,
robustness, and generalization, particularly in the context of deep learning and neural networks.
Perhaps the most relevant technique to our line of study is importance sampling, where training
emphasizes samples that contribute most to the learning objective, enhancing gradient efficiency
and thus convergence rates [KF18]. Similarly, data pruning methods seek to remove redundant or
less informative samples in the training data, while retaining critical patterns, thereby lowering
computational costs without sacrificing accuracy [MTK+17]. For CNNs, where spatial structure in
data is crucial, hard example mining [SGG16] is often employed to focus training on misclassified or
challenging samples, which helps the model learn more expressive features. Other data augmentation
and selection methods, such as diversity-based selection, aim to include a wide range of spatial
and contextual patterns, to reduce overfitting and improve robustness [SK19]. On the other hand,
task-specific methods, such as domain-aware selection in transfer learning, prioritize source domain
samples similar to the target domain, enabling better feature transfer [PY10].

C Further Experimental Details

C.1 Datasets

CIFAR10 consists of 60,000 32× 32 natural images in 10 equal-sized classes. The standard training
split consists of 50,000 images.

CIFAR100 is similar and consists of 60,000 32×32 natural images in 100 equal-sized classes. The
training split consists again of 50,000 images. This is a challenging dataset for DP synthetic data as
each class has only 500 training images and different classes can have very similar appearances.

Finally, CAMELYON17 is a medical dataset for classification of breast cancer metastases. It
consists of 96 × 96 image patches of lymph node tissue from five different hospitals. The label
signifies whether at least one pixel in the center 32× 32 pixels has been identified as a tumor cell.
CAMELYON17 is part of the WILDS [KSM+21] leaderboard as a domain generalization task: The
training split contains 302,436 images from three different hospitals whereas the test split contain
85,054 images from a fourth and fifth hospital.
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C.2 Generation Details

We perform a gridsearch over the number of k of GMM components, and the intra-cluster clipping
radius for covariance estimation. We choose k ∈ {1, 2, 4, 8, 16} and the clipping radius between
{2.0, 4.0, 6.0, 8.0, 10.0}.

We tried various covariance models of GMMs and found that diagonal covariances yielded the
best performance, as spherical covariance models do not capture enough of the intra-cluster data
and the noise needed to privately estimate a full covariance matrix overwhelms the signal from the
data.

When pruning embeddings, we discard all generated embeddings that do not have a noisy vote
of at least 6.0. If the number of images per class is m, we generate 6m synthetic embeddings and
find that approximately 2m embeddings survive.

When decoding images, we process embeddings in batches of 16 per GPU and generate 2 images
per embedding. We discard all images whose NIQE [MSB13] or PIQE [She05; VPB+15] score falls
below 20.0. We found that approximately m images per class survive this process.

C.3 Embedding Classification Details

We train a simple two-layer neural network with a 128-dimensional hidden layer, batch normalization,
and dropout probability 0.5.

We train on a single GPU with a batch size of 512 for 50 epochs. We use SGD with an initial
learning rate of 10−3 and cosine annealing learning rate scheduler. For further regularization, we set
label smoothing to 0.2 and weight decay to 10−4.

Before training, if there are more than n synthetic embeddings where n is the size of the input
sensitive training set, then we select a random subset of size n. This is to maintain fair comparison
against private training baselines that do not use synthetic data and therefore only have access to n
training points.

C.4 Image Classification Details

We fine-tune the torchvision implementation of ResNet50 [HZR+16] which was pre-trained on
ImageNet [HZR+16] with pre-trained weights publicly available from torchvision [MC16].

We train on a cluster of eight H100 GPUs (80GB memory each) with a batch size of 256 per
GPU for 30 epochs. As mentioned, we follow the torchvision training recipe.7 The only change is
the initial learning rate of 10−2 and a pre-processing step where we encode and decode the test set
(without using it in the training process). We believe this last step improves test accuracy since the
decoder creates some distributional shift between the synthetic embeddings. Encoding and decoding
the test set ensures the same shift is applied to the test set.

Before training, we again restrict the synthetic training set to the same size as the original
non-synth training set for fair comparison against other private synthetic data baselines.

7https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primiti
ves/
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D Deferred Preliminaries
Definition D.1 (Gaussian Mixture Model (GMM); see e.g. [Rey+09]). A Gaussian Mixture Model
(GMM) is a parametric probability density function represented as a weighted sum of Gaussian
component densities

∑k
i=1 wi · N (µi, Σi) where w ≥ 0 satisfies

∑
i wi = 1

We also require our loss function to be well-behaved so that small perturbations in the input space
do not result in large perturbations in the label space. Lipschitz continuity and its generalization
to Hölder continuity are standard assumptions for this purpose (see e.g., Axiotis, Cohen-Addad,
Henzinger, et al. [ACH+24]).

Definition D.2 (Hölder continuity). We say a function f : X ×Y → R is (z, λ)-Hölder continuous
if for all (x, y), (x′, y) ∈ X × Y, |f(x, y)− f(x′, y)| ≤ λ∥x− x′∥z2.

D.1 Differential Privacy

We first recall the following preliminaries from differential privacy.

Definition D.3 (Differential privacy; Dwork, McSherry, Nissim, et al. [DMN+06]). Given ε > 0
and δ ∈ (0, 1), a randomized algorithm A : X n → R is (ε, δ)-differentially private if, for every pair
of neighboring datasets D, D′ ∈ X n that differ by a single entry and for all subsets U ⊆ R of the
output space R,

Pr [A(D) ∈ U ] ≤ eε ·Pr
[
A(D′) ∈ U

]
+ δ .

Definition D.4 (Laplace distribution). A random variable x follows the Laplace distribution with
mean µ and scale parameter b > 0, denoted as x ∼ Lap(µ, b), if its probability density function is
given by 1

2b exp
(
− |x−µ|

b

)
. We use x ∼ Lap(b) to denote x ∼ Lap(0, b).

A common method to ensure differential privacy involves adding Laplacian noise, with scale
parameter proportional to the following notion:

Definition D.5 (L1 sensitivity). Let x ∼ y denote neighboring databases that differ by a single
entry. The ℓ1 sensitivity of a function f is defined by

∆f = max
x,y:x∼y

∥f(x)− f(y)∥1.

Informally, the L1 sensitivity of a function is the largest amount that a single entry in a database
can affect f .

Definition D.6 (Laplace mechanism). Given a function f , an input x, and a privacy parameter
ε > 0, the Laplace mechanism outputs f(x) + η, where η ∼ Lap

(∆f

ε

)
.

The Laplace mechanism is a fundamental technique for establishing differential privacy:

Theorem D.7 (Dwork and Roth [DR14]). The Laplace mechanism preserves (ε, 0)-differential
privacy.

An important property of differential privacy is that performing computation on a privatized
dataset cannot lose additional privacy:
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Theorem D.8 (Post-processing of differential privacy; Dwork and Roth [DR14]). Let M be an
(ε, δ)-differential private mechanism and g be any arbitrary random mapping. Then g(M(·)) is
(ε, δ)-differentially private.

Moreover, multiple computations on a dataset incur privacy cost in a natural manner.

Theorem D.9 (Basic composition of differential privacy; Dwork and Roth [DR14]). Let M1 and
M2 be (ε1, δ1) and (ε2, δ2)-DP mechanism, respectively. Then the composition (M1(·),M2(·)) is
(ε1 + ε2, δ1 + δ2)-differentially private.

On the other hand, executing a private mechanism on disjoint partitions of the same dataset
does not incur any additional privacy cost.

Theorem D.10 (Parallel composition of differential privacy; McSherry [McS09]). Let M be an
(ε, δ)-DP mechanism and D1, . . . , Dk k-disjoint subsets of the dataset D. Then the mechanism that
outputs (M(D1), . . . ,M(Dk)) is (ε, δ)-DP.

There are more sophisticated composition results, but Theorem D.9 and Theorem D.10 suffice
for our purposes.

D.2 Concentration Inequalities

Theorem D.11 (Hanson and Wright [HW71]). Suppose Yi ∼i.i.d. N (µ, Σ) for i ∈ [N ]. Then with
probability 1− β, ∥∥∥∥∥ 1

N

∑
i

Yi − µ

∥∥∥∥∥
2
≤

√
Tr(Σ)

N
+

√
2 ∥Σ∥2 log(1/β)

N
.

Theorem D.12 (Remark 5.40 in Vershynin [Ver10]). Suppose Yi ∼i.i.d. N (µ, Σ) for i ∈ [N ] and let
Ȳ = 1

N

∑
i∈[N ] Yi. Then with probability 1− β,

∥∥∥∥∥ 1
N

∑
i

(Yi − Ȳ )(Yi − Ȳ )⊤ − Σ
∥∥∥∥∥

2
≤ O

√ d

N
+

√
log(1/β)

N

 ∥Σ∥2 .

Theorem D.13 (Chernoff Bound; Corollary 4.6 in Mitzenmacher and Upfal [MU05]). Let X1, X2, . . . , Xn ∈
{0, 1} be independent Bernoulli random variables and let X = ∑n

i=1 Xi. Then for any γ ∈ (0, 1),

Pr [|X − E [X] | ≥ γ · E [X]] ≤ 2 exp
(
−γ2 · E [X]

3

)
.

Theorem D.14 (Dvoretzky, Kiefer, and Wolfowitz [DKW56] and Massart [Mas90]). Let F (x)
denote the CDF function for an arbitrary distribution. For x1, . . . , xn ∼i.i.d. F , write Fn(x) =
1
n

∑n
i=1 1{x = xi} to denote the n-sample empirical CDF function Fn. It holds that

Pr
[
sup

x
|Fn(x)− F (x)| > γ

]
≤ 2 exp(−2nγ2) .
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E Private Gaussian Estimation
The first sample-optimal DP Gaussian mean/covariance estimation algorithms were due to Aden-Ali,
Ashtiani, and Kamath [AAK21]. However, their algorithms require exponential running time. Recent
transformations from robust algorithms to private algorithms obtained the same optimal sample
complexities for mean estimation [HKM22] and covariance estimation [HKM+23] in polynomial
time. We state their results below. See Hopkins, Kamath, Majid, et al. [HKM+23, Table 1, Table
2] for a detailed summary of prior algorithmic results. The sample complexities are tight up to
logarithmic factors [KV18; KMS22; Nar24; PH24].

Theorem E.1 (Theorem 1.4 in Hopkins, Kamath, Majid, et al. [HKM+23]). Let ε, δ, α, β ∈
(0, 1). Suppose we are provided sample access to a Gaussian distribution N (µ, Σ) with unknown
parameters. There is an (ε, δ)-DP mean estimation algorithm which outputs estimates µ̂, Σ̂ such
that ∥µ̂− µ∥2 ,

∥∥∥Σ̂− Σ
∥∥∥

F
≤ α with probability 1− β. Moreover, the algorithm has sample complexity

n = Õ

(
d2 + log2(1/β)

α2 + d2 + log(1/β)
αε

+ log(1/δ)
ε

)

and poly(n) running time.

For the optimal sample complexity guarantees, we use Theorem E.1 to instantiate our DP-Mean
and DP-Covariance subroutines. However, we note that any (ε, δ)-DP Gaussian estimation algorithm
suffices. Indeed, by augmenting the assumptions with some (weak) priors about the mean and
covariances, there are near-linear time estimators achieving nearly the same sample complexities.
We state one example of such an estimator below.

Theorem E.2 (Theorems 3.1, 3.3 in Biswas, Dong, Kamath, et al. [BDK+20]). Let ε, δ, α, β ∈ (0, 1).
Suppose we are provided sample access to a Gaussian distribution N (µ, Σ) with unknown parameters
but are provided bounds R, λ, Λ > 0 such that ∥µ∥2 ≤ R and λI ⪯ Σ ⪯ ΛI. There is an (ε, δ)-DP
mean estimation algorithm that outputs estimates µ̂, Σ̂ such that ∥µ̂− µ∥2 ,

∥∥∥Σ̂− Σ
∥∥∥

F
≤ α with

probability 1− β. Moreover, we have:

(i) For a general covariance matrix Σ, the algorithm has sample complexity

n = Õ

((
d2

α2 + d2√log(1/δ)
αε

+ d1.5√log(1/δ) log(R + Λ/λ)
ε

)
log(1/β)

)

and Õ(nd2) running time.

(ii) For a diagonal covariance matrix Σ, the algorithm has sample complexity

n = Õ

((
d

α2 + d
√

log(1/δ)
αε

+ d
√

log(1/δ) log(R + Λ/λ)
ε

)
log(1/β)

)

and Õ(nd) running time.
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F Wasserstein Distance between GMMs
Suppose we have a GMM D̂ = ∑

i ŵi · N (µ̂i, Σ̂i) and would like to understand its p-th order
Wasserstein distance to DGMM. We will prove the following theorem.

Theorem F.1. Let α, γ ∈ (0, 1) and R, σ > 0. When ∥µ̂i − µi∥2 ,
∥∥∥Σ̂i − Σi

∥∥∥
2
≤ α, ∥ŵ − w∥1 ≤ γ,

maxi ̸=j ∥µi − µj∥ ≤ R, and Σi ⪯ σ2I, we have for any z ∈ [1, 2],

W z
z (DGMM, D̂) = O(γRz + γd

z
2 σz + αz + d

z
4 α

z
2 ) .

We first consider the case where the number of components k = 1.

F.1 One-Component Case

For two Gaussian distributions N (µ, Σ),N (µ̃, Σ̃), it is known that

W 2
2 (N (µ, Σ),N (µ̃, Σ̃)) = ∥µ− µ̃∥22 +

∥∥∥Σ 1
2 − Σ̃

1
2

∥∥∥2

F
.

We can translate the second term to a bound on the covariance matrices

W 2
2 (N (µ, Σ),N (µ̃, Σ̃)) ≤ ∥µ− µ̃∥22 +

√
d
∥∥∥Σ− Σ̃

∥∥∥
F

,

since the Powers–Størmer inequality implies
∥∥∥Σ 1

2 − Σ̃ 1
2

∥∥∥2

F
≤ Tr(|Σ−Σ̃|) and the standard trace-norm

inequality gives Tr(|Σ− Σ̃|) ≤
√

d
∥∥∥Σ− Σ̃

∥∥∥
F

. Finally, for any z ∈ [1, 2], a standard concavity split
yields

W z
z (N (µ, Σ),N (µ̃, Σ̃)) ≤W z

2 (N (µ, Σ),N (µ̃, Σ̃)) ≤ 2
z
2 −1 ∥µ− µ̃∥z2 + 2

z
2 −1d

z
4

∥∥∥Σ− Σ̃
∥∥∥ z

2

F
.

F.2 Multi-Component Case

Suppose now that k ≥ 2 and that up to permutation, we estimated the means and covariances in
Euclidean and spectral norm, respectively. Thus ∥µ̂i − µ∥2 ,

∥∥∥Σ̂i − Σi

∥∥∥ ≤ α. Moreover, suppose that
the weights have been estimated in total variation distance. That is, ∥ŵ−w∥1 ≤ γ. We can analyze

W z
z (DGMM, D̂) ≤ 2z−1W z

z (DGMM,Dw) + 2z−1W z
z (Dw, D̂) .

Here Dw is the auxiliary GMM whose components are equal to that of DGMM but the weights are
the estimated weights. Then, we need only bound separates cases when the parameters differ and
when the weights differ.

We note that by the one-component case,

W z
z (Dw, D̂) ≤

k∑
i=1

ŵiW
z
z (N (µi, Σi),N (µ̂i, Σi)) ≤ max

i
2

z
2 −1 ∥µ− µ̃∥z2 + 2

z
2 −1d

z
4

∥∥∥Σ− Σ̃
∥∥∥ z

2

F
.

Now we consider the case when only the weights differ in ℓ1-norm by at most γ. Under the
optimal coupling in total variation distance of the weights, the transportation cost is 0 when the
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random vectors coincide and when they differ, we can transport the mass from the component to an
arbitrary component with total cost at most

γ ·max
i ̸=j

2
z
2 −1 ∥µi − µj∥z2 + 2

z
2 −1

∥∥∥∥Σ 1
2
i − Σ

1
2
j

∥∥∥∥z

F
.

All in all, when ∥µ̂i − µi∥2 ,
∥∥∥Σ̂i − Σi

∥∥∥
F
≤ α, ∥ŵ − w∥1 ≤ γ, maxi ̸=j ∥µi − µj∥ ≤ R, and Σi ⪯

σ2I, we have for any z ∈ [1, 2] that

W z
z (DGMM, D̂) ≤ 2

3z
2 −2γRz + 2

5z
2 −2γd

z
2 σz + 2

3z
2 −2αz + 2

3z
2 −2d

z
4 α

z
2

= O(γRz + γd
z
2 σz + αz + d

z
4 α

z
2 ) .

G Theoretical Analysis
We now analyze the privacy, scalability, and utility guarantees of Algorithm 1.

G.1 Privacy Analysis

In this section, we formally prove that Algorithm 1 is differentially private.
Theorem G.1. Algorithm 1 is (ε, δ)-DP.
Proof. We can view Algorithm 1 as a composition of 5 subroutines: DP-Cluster, DP-Mean,
DP-Covariance, DP-FilterEmbedding, DP-FilterImage, each of which are (ε/5, δ/5)-DP. By simple
composition (Theorem D.9), Algorithm 1 satisfies (ε, δ)-DP.

While the analysis above was for unconditional generation, the result extends immediately to
conditional generation. Indeed, differential privacy satisfies parallel composition (c.f. Theorem D.10),
which means there is no additional privacy loss incurred by running differentially private algorithms
on separate, non-overlapping parts of the data. Hence there is no additional privacy loss compared
to running the pipeline over each of the classes in parallel.

G.2 Scalability Analysis

Suppose TEncode is the runtime required to apply a fixed embedding to each input image, TDecode is
the runtime required to decode a fixed embedding, and TDP-FilterEmbedding(n), TDP-FilterImage(n) are
the runtimes of the (possibly private) filtering subroutines for embeddings and images, respectively.
We have the following running time guarantee of Algorithm 1.
Theorem G.2. For general covariance structure GMMs, Algorithm 1 can be implemented in time

Õ
(
nTEncode + nd2 + TDP-FilterEmbedding(n) + nTDecode + TDP-FilterImage(n)

)
.

while for diagonal covariance structure GMMs, Algorithm 1 can be implemented in time

Õ
(
nTEncode + nd + TDP-FilterEmbedding(n) + nTDecode + TDP-FilterImage(n)

)
.

Proof. The only subroutines that have not been accounted for is the running times for DP-Cluster,
DP-Mean, and DP-Covariance. There are implementations of private clustering algorithms with
Õ(nd) running time [CEL+22; CEM+22]. Also, there are implementations of private Gaussian
estimation algorithms with Õ(nd2) or Õ(nd) running times, respectively, for general and diagonal
covariance structure GMMs (Theorem E.2).
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G.3 Learning GMMs via k-Means Clustering

In this section, we demonstrate that our clustering-based DP GMM algorithm can recover separated
GMMs. Our analysis is inspired by the non-private algorithm of Awasthi and Vijayaraghavan
[AV18].

We begin by arguing that the number of sample from each mixture concentrates about its mean.

Lemma G.3. Let γ ∈ (0, 1) and let DGMM = ∑k
i=1 wiN (µi, Σi) be a Gaussian mixture.

(i) If the number of samples is at least N = Ω
(
γ−2 log(1/β)

)
, then the number of samples Ni

drawn from the i-th component satisfies supi |Ni/N − wi| ≤ γ with probability 1− β.

(ii) If N = Ω
(

log(k/β)
γ2wmin

)
, then |Ni − wiN | ≤ γwiN with probability 1− β.

Proof. The proof of (i) is an straightforward application of the DKW inequality (Theorem D.14),
where we view the mixture components as a discrete one-dimensional distribution. Similarly, we can
prove (ii) by applying a Chernoff bound (Theorem D.13) where we view drawing a sample from the
i-th mixture component as a Bernoulli outcome and apply a union bound over all components.

Next, we provide a high-probability upper bound on the optimal k-means clustering cost. This
will soon be useful when arguing about the behavior of an approximate solution.

Lemma G.4. Let DGMM = ∑k
i=1 wiN (µi, Σi) be a Gaussian mixture for Σi ⪯ σ2I. Let A ∈ RN×d

denote the matrix of data points and M⋆ ∈ {µ1, . . . , µk}N×d is the matrix obtained from A by
replacing each row with the mean of the component that generated it. Suppose the number of samples
is at least N = Ω

(
1

wmin
log(k/δ)

)
. Then with probability 1− δ,

∥A−M⋆∥22 ≤
4
3σ2N .

Proof. The proof will be via an application of sample covariance concentration (Theorem D.12). We
partition the samples C1 ∪ · · · ∪ Ck by the components that generated them. Note that |Ci| = Ni.
Say µi is the mean of the Gaussian component that generated the points in Ci.

We claim that it suffices to show that∥∥∥∥∥∥ 1
Ni

∑
x∈Ci

(x− µi)(x− µi)⊤

∥∥∥∥∥∥
2

2

= max
v∈Rd,∥v∥2=1

1
Ni

∑
x∈Ci

⟨v, x− µi⟩2 ≤
4
3σ2

for each component i ∈ [k]. To see this, observe that

∥A−M⋆∥22 = max
v∈Rd,∥v∥2=1

v⊤

 k∑
i=1

∑
x∈Ci

(x− µi)(x− µi)⊤

 v = max
v∈Rd,∥v∥2=1

k∑
i=1

∑
x∈Ci

⟨v, x− µi⟩2 .

Proving the claim implies a bound on the last expression, which would then conclude the proof.
Now, to see the claim, we first apply Lemma G.3 with γ = 1/2 to see that Ni ≥ 1

2wiN with
probability 1− β. Then, conditional on this event, we can apply Theorem D.12 with appropriate
constants to see that Ni ≥ 1

2wiN is sufficiently large to conclude the proof.
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We say an algorithm is a (ζ, η)-approximate k-means algorithm if produces a set of k centers
that induces a clustering cost of at most ζ · OPT + η where OPT is the optimal k-means clustering
cost.

Lemma G.5. Let DGMM = ∑k
i=1 wiN (µi, Σi) be a Gaussian mixture for Σi ⪯ σ2I. Then, if the

number of samples is at least N = Ω
(

d+log(k/δ)
wmin

)
, any (ζ, η)-approximate k-means algorithm for

η = o(γσ2dN) outputs k centers ν1, . . . , νk such that

max
i

min
j
∥µi − νj∥22 ≤

12ζ

wmin
σ2d

with probability 1− δ.

Proof. Let A ∈ RN×d be the matrix whose rows consists of sample points from DGMM and M⋆ ∈
RN×d be the centers of the Gaussians that generated the corresponding point. We see that the
optimal k-means clustering has cost at most ∥A−M⋆∥2F . By Lemma G.4, we can upper bound
∥A−M⋆∥2F ≤

4
3σ2dN .

Now, suppose towards a contradiction that there is some µi such that for every center νj output
by the k-means approximation algorithm, ∥µi − νj∥22 ≥

12ζ
wmin

σ2d. Consider the cost paid by the
points Ci generated from the i-th component. We have by generalized triangle inequality,

∑
x∈Ci

∥x− ν(x)∥22 ≥
∑

x∈Ci

[1
2 ∥µi − ν(x)∥22 − ∥x− µi∥22

]
.

By assumption, the first term, i.e., 1
2 ∥µi − ν(x)∥22, contributes at least 1

2 |Ci| · 12ζ
wmin

σ2d. We can
further lower bound this by 1

4wiN · 12ζ
wmin

σ2d ≥ 3ζσ2dN using a Chernoff bound (Lemma G.3). On
the other hand, the second term can be (loosely) upper bounded by ∥A−M⋆∥2F ≤

4
3σ2dN . But

then for sufficiently large N , this is at least 4
3ζσ2dN + η, which contradicts the approximation

guarantee.

Lemma G.5 essentially ensures that running a k-means algorithm recovers the means of the
Gaussian mixture model up to some error that is independent of the number of points. Then,
assuming the means are well-separated, we can correctly classify all points of each component of the
mixture model. Estimating the mean and covariance within each class then recovers the underlying
mean and covariance.

Theorem G.6. Let DGMM = ∑k
i=1 wiN (µi, Σi) be a Gaussian mixture for Σi ⪯ σ2I. Suppose the

number of samples is at least N = Ω
(

d+log(k/β)
wminα2

)
and let ν1, . . . , νk be the output centers of some

(ζ, η)-approximate k-means algorithm for η = o(ζσ2dN). Let C1, . . . , Ck denote the partition of
sample points induced by the centers. If

∆ := min
i ̸=j
∥µi − µj∥2 ≥ 3σ

[
√

d +
√

2 log(3N/δ) +
√

12ζd

wmin

]
,

then with probability 1− β, for every i ∈ [k],

(i) there is a unique center νj(i) = argminj ∥νj − µi∥2 that is closest to µi.

35



(ii) Furthermore, each Cj(i) only contains points sampled from the i-th component N (µi, Σi).

(iii) |Cj(i)| ≥ 1
α2 wiN for all i ∈ [k].

Proof. Let µ(x), Σ(x) denote the parameters of the component Gaussian that generated the sample
x and Ni denote the number of samples that was generated from the i-th component. We condition
on the following events, each of which occurs with probability 1− δ/3:

∥νi − µi∥2 ≤

√
12ζσ2d

wmin
, ∀i ∈ [k] , (by Lemma G.5)

∥x− µ(x)∥2 ≤ σ

[√
d +

√
2 log(3N/δ)

]
, ∀x , (by Theorem D.11)

Ni ≥
1
2wiN, ∀i ∈ [k] . (by Theorem D.13)

Let E denote the intersection of all events above. Henceforth, we always condition on E occurring.
(i): Under a slight abuse of notation, we relabel νi to be the closest output center to µi and

suppose towards a contradiction that we have νi = νj for i ̸= j. By a reverse triangle inequality,

∥µi − νj∥2 ≥ ∥µi − µj∥2 − ∥νj − µj∥2

≥ ∆−
√

12ζσ2d

wmin
(conditioned on E)

≥ 2
√

12ζσ2d

wmin

> ∥µi − νi∥2 .

We can thus proceed using the relabelled notation for the set of centers as it is well-defined.
(ii): We now claim that the partition C1, . . . , Ck correctly classifies all points. Specifically, if a

point x was sampled from the i-th component N (µi, Σi), then x ∈ Ci.
Let ν(x) denote the unique closest center to µ(x). Fix a sample x and let µ(x) ̸= µ ∈ {µ1, . . . , µk}

and ν(x) ̸= ν ∈ {ν1, . . . , νk}. We have

∥ν(x)− x∥2 ≤ ∥ν(x)− µ(x)∥2 + ∥x− µ(x)∥2

≤

√
12ζσ2d

wmin
+ σ[
√

d +
√

2 log(N/δ)] . (conditioned on E)

Again by a reverse triangle inequality, we have

∥x− ν∥2 ≥ ∥µ(x)− µ∥2 − ∥µ(x)− x∥2 − ∥ν − µ∥2

≥ ∆− σ[
√

d +
√

2 log(N/δ)]−
√

12ζσ2d

wmin
(conditioned on E)

> ∥ν(x)− x∥2 . (by calculation above)

This shows that each Ci only contains i.i.d. samples from N (µi, Σi) with high probability.
(iii): This follows by Lemma G.3.
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Theorem G.6 essentially shows that k-means clustering with an additional Lloyd step will recover
the true means of the mixture model. Similarly, the intra-cluster sample covariance will recover the
true covariances of the mixture model.

Theorem G.7. Let DGMM = ∑k
i=1 wiN (µi, Σi) be a Gaussian mixture for Σi ⪯ σ2I. Suppose we

are given N samples from DGMM such that

N = Ω̃
(

d + log(k/β)
wmin

+ k2 log(1/β)
γ2 + k log(k/β)

εγ
+ d2 + log2(1/β)

wminα2 + d2 + log(1/β)
wminαε

+ log(1/δ)
wminε

)

and also

∆ := min
i ̸=j
∥µi − µj∥2 ≥ 3σ

[
√

d +
√

2 log(3N/β) +
√

12ζd

wmin

]
.

Then instantiating Algorithm 1 with

(1) DP-Cluster as an (ε, δ)-DP (ζ, η)-approximate k-means algorithm for η = o(ζσ2dN),

(2) DP-Mean, DP-Covariance as the (ε, δ)-DP Gaussian estimation algorithm from Theorem E.1

yields an (ε, δ)-DP algorithm that outputs with probability 1− β:

(i) Weight estimates ŵi such that ∥ŵ − w∥1 ≤ γ.

(ii) Mean estimates µ̂i such that ∥µ̂i − µ∥2 ≤ α.

(iii) Covariance estimates Σ̂i such that
∥∥∥Σ̂i − Σi

∥∥∥
F
≤ α.

Proof. The proof follows by augmenting DP-Cluster with a simple Laplace mechanism (Theo-
rem D.7) to privately estimate the weights and applying Theorem G.6 and Theorem E.1.

We note that while non-private clustering-based GMM algorithms (see Section 1.3) with weaker
separation conditions exist, they require specific clustering algorithms. In comparison, we need only
black-box access to an approximate k-means clustering algorithm.

G.4 Utility Analysis

Now we translate GMM parameter estimates to distributional estimates, which implies that mini-
mizing the objective function over the estimated distribution will also approximately minimize the
objective function over the true distribution.

G.4.1 Learning in Total Variation Distance

We begin with learning a GMM in total variation distance. When translating this to an approximation
in the objective function, we then require a bound on the maximum absolute function value.

Lemma G.8. Let Z = (X, Y ) be a joint feature-label distribution for Y ∈ [c] where each conditional
distribution (X | Y = y) ∼ D(y). Suppose the distribution Z̃ = (X̃, Y ) has conditional distributions
(X̃ | Y = y) ∼ D̂(y) satisfying TV(D(y), D̂(y)) ≤ α for all y ∈ [c]. Then for any function f , we have

E
Z

[f(Z)] ≤ Ẽ
Z

[
f(Z̃)

]
+ α ·max |f | .
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Proof. Fix any y ∈ [c]. By the definition of total variation distance, for each y there exists a coupling
of D(y) and D̃(y) such that if (X, X̃) are drawn from this coupling, then

Pr
[
X ̸= X̃ | Y = y

]
≤ TV(D(y), D̃(y)) ≤ α.

Let us construct the following joint distribution over (X, X̃, Y ):

• First draw Y ∼ DY , the marginal distribution of Y in both Z and Z̃.

• Given Y = y, draw (X, X̃) from a coupling of D(y) and D̃(y) that achieves total variation
distance at most α and such that Pr

[
X ̸= X̃ | Y = y

]
≤ α.

Define the event E to be the event that X ̸= X̃. By the law of total probability and the bound on
total variation,

Pr [E ] = E
Y

[
Pr
[
X ̸= X̃ | Y

]]
≤ α.

Now consider evaluating f under Z = (X, Y ) and under Z̃ = (X̃, Y ). We decompose the expectation:

E [f(X, Y )] = E [f(X, Y ) | ¬E ] ·Pr [¬E ] + E [f(X, Y ) | E ] ·Pr [E ] .

On the event ¬E , we have X = X̃, so f(X, Y ) = f(X̃, Y ). Hence,

E [f(X, Y )] = E
[
f(X̃, Y ) | E

]
·Pr [E ] + E [f(X, Y ) | E ] ·Pr [E ] .

We now upper bound the second term:

E [f(X, Y ) | E ] ·Pr [E ] ≤ max |f | ·Pr [E ] ≤ α ·max |f |.

Since f is a loss function and thus non-negative, then we have

E [f(X, Y )] ≤ E
[
f(X̃, Y ) | E

]
·Pr [E ] + α ·max |f |

≤ E
[
f(X̃, Y )

]
+ α ·max |f | = E

[
f(Z̃)

]
+ α ·max |f |.

This completes the proof.

Theorem G.9. Let ε, δ, α, β ∈ (0, 1) and f be a loss function. Let Z = (X, Y ) is a joint feature-
label distribution for Y ∈ [c] where each conditional distribution (X | Y = y) ∼ D(y)

GMM =∑k
i=1 w

(y)
i N (µ(y)

i , Σ(y)
i ) follows a Gaussian mixture law for Σ(y)

i ⪯ σ2I. Suppose we are given
N (y) samples from each conditional distribution D(y)

GMM such that

N (y) = Ω̃
(

d + log(k/β)
w

(y)
min

+ k2 log(1/β)
α2 + k log(k/β)

εα
+ d2 + log2(1/β)

w
(y)
minα2

+ d2 + log(1/β)
w

(y)
minαε

+ log(1/δ)
w

(y)
minε

)

and also

∆(y) := min
i ̸=j

∥∥∥µ(y)
i − µ

(y)
j

∥∥∥
2
≥ 3σ

√d +
√

2 log(3N/β) +
√√√√12ζd

w
(y)
min

 .

Then running Algorithm 1 on each class with
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(1) DP-Cluster as an (ε, δ)-DP (ζ, η)-approximate k-means algorithm for η = o(ζσ2dN),

(2) DP-Mean, DP-Covariance as the (ε, δ)-DP Gaussian estimation algorithm from Theorem E.1

yields an (ε, δ)-DP algorithm that outputs a distribution Z̃ = (X̃, Y ) such that

E
Z

[f(Z)] ≤ Ẽ
Z

[
f(Z̃)

]
+ α ·max |f | .

with probability 1− β.

Proof. Since TV(N (µ, Σ),N (µ′, Σ′)) = O(∥µ− µ′∥2 +∥Σ− Σ′∥F ), Theorem G.7 guarantees that we
learn each conditional distribution within α-TV distance. An application of Lemma G.8 concludes
the proof.

G.4.2 Learning in Wasserstein Distance

For potentially unbounded functions, we derive a second result, which requires learning the GMM
in an appropriate Wasserstein distance. Under this measure of distributional distance, we require
the objective function to be Hölder continuous.

Lemma G.10. Let Z = (X, Y ) be a joint feature-label distribution for Y ∈ [c] where each conditional
distribution (X | Y = y) ∼ D(y). Suppose the distribution Z̃ = (X̃, Y ) has conditional distributions
(X̃ | Y = y) ∼ D̂(y) satisfying Wz(D(y), D̂(y)) ≤ α for all y ∈ [c]. Then for any (λ, z)-Hölder
continuous function f , we have

E
Z

[f(Z)] ≤ Ẽ
Z

[
f(Z̃)

]
+ λ · αz .

Proof. By definition,
f(x, y) ≤ f(x′, y) + λ

∥∥x− x′∥∥z
2

for any x, x′, y. Then, taking the expectation of this inequality under the optimal W z
z coupling

yields the result.

Theorem G.11. Let ε, δ, α, β ∈ (0, 1) and f be a (λ, z)-Hölder continuous loss function for
z ∈ [1, 2]. Let Z = (X, Y ) is a joint feature-label distribution for Y ∈ [c] where each conditional
distribution (X | Y = y) ∼ D(y)

GMM = ∑k
i=1N (µ(y)

i , Σ(y)
i ) follows a Gaussian mixture law with

mini ̸=j

∥∥∥µ(y)
i − µ

(y)
j

∥∥∥
2
≤ R and Σ(y)

i ⪯ σ2I. Suppose we are given N (y) samples from each conditional

distribution D(y)
GMM such that

N (y) = Ω̃
(

d + log(k/β)
wmin

+ (R2z + dzσ2z)k2 log(1/β)
α2 + (Rz + d

z
2 σz)k log(k/β)

εα

+d3 + d log2(1/β)
w

(y)
minα

4
z

+ d
5
2 + d

1
2 log(1/β)

w
(y)
minα

2
z ε

+ log(1/δ)
w

(y)
minε

)

and also

∆(y) := min
i ̸=j

∥∥∥µ(y)
i − µ

(y)
j

∥∥∥
2
≥ 3σ

√d +
√

2 log(3N/β) +
√√√√12ζd

w
(y)
min

 .

Then running Algorithm 1 on each class with
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(1) DP-Cluster as an (ε, δ)-DP (ζ, η)-approximate k-means algorithm for η = o(ζσ2dN),

(2) DP-Mean, DP-Covariance as the (ε, δ)-DP Gaussian estimation algorithm from Theorem E.1

yields an (ε, δ)-DP algorithm that outputs a distribution Z̃ = (X̃, Y ) such that

E
Z

[f(Z)] ≤ Ẽ
Z

[
f(Z̃)

]
+ λ · α

with probability 1− β.

Proof. The sample complexity follows from adjusting the error parameters in Theorem G.7 to satisfy
the Wz error bound from Theorem F.1

W z
z (DGMM, D̂) = O(γRz + γd

z
2 σz + αz + d

z
4 α

z
2 ) .

Then, the function estimation guarantee follows from Lemma G.10.
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