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ABSTRACT

The rise of the Internet of Things and Cyber-Physical Systems

has introduced new challenges on ensuring secure and robust com-

munication. The growing number of connected devices increases

network complexity, leading to higher latency and traffic. Dis-

tributed computing architectures (DCAs) have gained prominence

to address these issues. This shift has significantly expanded the

attack surface, requiring additional security measures to protect

all components – from sensors and actuators to edge nodes and

central servers. Recent incidents highlight the difficulty of this

task: Cyberattacks, like distributed denial of service attacks, con-

tinue to pose severe threats and cause substantial damage.

Implementing a holistic defense mechanism remains an open

challenge, particularly against attacks that demand both enhanced

resilience and rapid response. Addressing this gap requires inno-

vative solutions to enhance the security of DCAs.

In this work, we present our holistic self-adaptive security

framework which combines different adaptation strategies to cre-

ate comprehensive and efficient defense mechanisms. We describe

how to incorporate the framework into a real-world use case sce-

nario and further evaluate its applicability and efficiency. Our

evaluation yields promising results, indicating great potential to

further extend the research on our framework.

1 Introduction

The hype surrounding the Internet of Things (IoT) and Cyber-
Physical Systems (CPSs) drives a surge in Internet-connected
devices. Managing this many devices requires careful organi-
zation, often achieved through diverse architectural styles and
patterns [9]. Instead of a centralized infrastructure, distributed
computing architectures (DCAs) are used to provide reduced la-
tency, real-time analysis, high scalability, low operational cost, and
improved quality of service [9]. Although distributed computing
helps operators deal with complexity, it affects the attack surface
of these architectures. The sheer number of devices and their
convolution, heterogeneity, diversity, interoperability, portability,
mobility, location, topology, and distribution of objects cause an
increase in attack surface and make the architecture susceptible to
cyberattacks (details in [26]). In particular, interoperability and

interdependency are crucial factors in this context [22]. A failure
caused by an attacker to one subsystem can lead to cascading
failures, rendering the whole DCA inoperable [4]. Particularly on
critical infrastructure, a successful cyberattack can cause severe
harm [29, 24, 6], ranging from compromised databases to human
injury. Recent incidents, such as the record-breaking 5.6 Tbps
Distributed Denial of Service (DDoS) attack targeting Cloudflare’s
infrastructure [35], highlight the tangible risks faced by the indus-
try. Studies [29, 24, 6] demonstrate that the scientific community
recognizes these threats, emphasizing the urgent need for resilient
security strategies in DCAs.

The reasons for such incidents still occurring are manifold. Se-
curity measures often only provide isolated and passive defense
mechanisms, severely limiting their effectiveness [34]. Passive
mechanisms usually rely on predefined rules. For example, they
may block network packets based on known signatures [23]. They
follow a “detect then patch” philosophy, meaning they are only
effective after an attack. As a result, they cannot adapt proactively
and respond to threats in real-time [34]. – As a result, the ques-
tion of securing DCAs with a holistic and active security solution
to efficiently adapt to the evolving threat landscape remains. In
this paper, we propose a novel idea of combining self-adaptive
architectural patterns to improve the security of DCAs. More
specifically, we leverage, among others, hierarchical adaptation
strategies [33], adaptation strategies used in Systems of Systems
(SoS) [32], and the concept of security levels (cf. Section 3.2) to
enhance the overall resilience of DCAs in the event of attacks.
To the best of our knowledge, no prior work combines hierar-
chical, collaborative, and decentralized adaptation strategies to
ensure self-adaptive security under partial system failure. Our
framework addresses this gap through its dual-loop architecture
and adaptation modes. As part of this, we claim the following
contributions:
• Novel, Secure Adaptive Framework for Efficient Resilience in
Distributed computing architectures (SAFER-D) that allows for
security adaptations at the architectural level, even when under
attack.

• Prototypical implementations using real-world edge computing
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architectures for component reuse.

• Evaluation of applicability and efficiency of SAFER-D, based on
realistic security use case scenarios.

2 Motivating Architectural Challenges

In an increasingly interconnected world, the ability to dynami-
cally adapt to emerging threat scenarios is becoming ever more
critical. Adaptive threat monitoring focuses on continuously ob-
serving systems for unusual or suspicious activities and adjusting
responses based on evolving contexts. This adaptability is vital
in defending against cyberattacks targeting CPSs/IoT systems
where static approaches are insufficient. Intrusion Detection Sys-
tems (IDS) [19] often leverage an adaptive approach to detect and
withstand cyberattacks. An IDS commonly monitors network
or system activities, detects potential security threats, and exe-
cutes appropriate countermeasures or sends alerts. – This process
largely aligns with the MAPE-K (Monitor, Analyze, Plan, Execute
on a shared Knowledge base) loop [16], a foundational pattern for
self-adaptive system architectures.

Consider the following DCA example, which will serve as our
running case: Edge computing, combined with fog and cloud
computing, places substantial computing and storage resources at
the (physical) outer “edges,” where data is generated. The system
processes data directly, forwards only aggregated data to fog com-
puting components, aggregates it again, and then sends only the
relevant data to the next central server, continuing this pattern[5].
An IDS applied to one of the edge devices of such an edge comput-
ing architecture monitors, for instance, the network traffic on the
device, analyzes the data to identify anomalies or suspicious pat-
terns (e.g., a DDoS flooding attack), plans appropriate responses
(e.g., block a specific Internet Protocol (IP) address), and executes
the countermeasures (append IPs to a blocklist) or generates alerts,
all supported by a knowledge base to enhance detection accuracy
and adaptability. In the following, we highlight Architectural
Challenges (ACs) concerning a self-adaptive security framework
for DCAs. These challenges are informed by our industry collabo-
rations and supported by academic literature, based on recurring
needs identified in regular technical meetings and through a struc-
tured review of recent research on self-protective and adaptive
systems.
AC 1 - Managing adaptation in complex and large-scale

DCAs using a singleMAPE-K loop is insufficient: Weyns et al.
formalized a series of architectural patterns comprising multiple
interconnected MAPE-K loops to deal with large, complex, and
heterogeneous systems [33]. Among others, they introduced the
hierarchical control pattern. This pattern manages the complexity
of self-adaptation by establishing a layered separation of concerns
through a hierarchy of MAPE-K loops. Loops at lower layers
operate on a short time scale, ensuring that the portion of the
system under their direct control adapt promptly. Higher levels
operate on a more global/strategic scale over an extended period.
Ultimately, the MAPE-K loop at the system’s summit determines
the system’s overarching adaptation objectives. Applying the
hierarchical MAPE-K pattern to our aforementioned example
implies that, for instance, the fog nodes in the edge computing

architecture use the monitoring data of multiple underlying edge
devices for the adaptation loops and then roll out a collective
adaptation strategy for all devices associated with the respective
fog node.
AC 2 - Hierarchical adaptation strategies break when

intermediate nodes are compromised: In our example, the
edge computing architecture follows a hierarchical organization,
which creates dependencies. Suppose fog node in the hierarchy
is compromised and unavailable, e.g., due to a successful attack.
In that case, the underlying edge devices will not receive adap-
tation updates and thus remain susceptible to subsequent cyber-
attacks. Regarding security, individual system components must
be independent from an operational and managerial viewpoint,
exhibiting SoS characteristics [32, 7]. Self-adaptive architectural
patterns for SoS have been frequently studied [32]. One of them,
the Collaborative Adaptations style, allows for adaptations on a
control-theoretic level. Additionally, the architecture allows for
interactions among the managed systems, supporting collabora-
tion between the subsystems. Using this pattern, the SoS can
adapt comprehensively while considering each component [32].
Subsystems can then coordinate locally and continue adaptation
without relying on the compromised node.

AC 3 - Security mechanisms must remain effective even

when parts of the system are already compromised: The Risk
of an attacker compromising a system is defined as follows [15]:

𝑅 = {𝑠𝑖 , 𝑝𝑖 , 𝑥𝑖 }, 𝑖 = 1, 2, ..., 𝑁 (1)
where 𝑅 represents the risk; 𝑠 an undesirable event scenario de-
scription; 𝑝 the probability of the scenario; 𝑥 the potential damage
caused by the scenario; and 𝑁 the number of possible scenarios
that may cause damage to a system. It is important to note that 𝑝
and 𝑥 are not constants but rather evolve over the time of an at-
tack, serving here as a conceptual model to illustrate this dynamic.
In our edge computing example, if an attacker compromises one
edge device, the probability that they successfully compromise an-
other edge device increases (i.e., 𝑝 in Eq. (1) evolves). If attackers
can circumvent security mechanisms once, they can reproduce the
attack on other devices with the same security mechanisms. Simi-
larly, once a publicly available proof of concept exploit exists for
a known vulnerability, the probability of reproduction increases.
A compromised single system can also influence the “neighbors”
communicating with the device. Depending on the type of at-
tack, the attackers move laterally [12] and propagate [1] to the
controlling (managing) systems [17], i.e., in the best case (from
an attacker’s perspective), up the hierarchy to attain more and
more control. Security solutions are required to respond promptly
to attacks and must be able to cope with already compromised
system components.
AC 4 - Security adaptations must consider the evolving

criticality and impact of threats over time: Not only does the
probability evolve, but also the potential damage (cf. 𝑥 in Eq. (1)).
For instance, if the running example’s edge computing system
supports autonomous driving, it must prioritize safety to protect
human lives [20]. A collision becomes more likely if the vehicle
malfunctions (due to an attack). Autonomous vehicles must slow
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down, or even shut down entirely, after detecting malicious ac-
tivity. To cope with these evolving factors, security mechanisms
must support means of criticality.

3 The SAFER-D Framework

In the following, our novel SAFER-D framework addresses the
architectural challenges (AC 1-4).

3.1 Core Components

Fig. 1 depicts a high-level overview of SAFER-D. The core idea is
that SAFER-D is deployed on every single subsystem of the DCA.
In the running case, this implies server, fog, and edge computing
subsystems each run an instance of SAFER-D. Naturally, these
instances must be tailored to the respective hardware capabilities,
meaning that resource-intensive tools may only be available on
more powerful subsystems, while lightweight variants are de-
ployed on constrained edge devices. Subsystem n represents one
of 𝑁 subsystems in the computing architecture, e.g., a single edge
device, where the SAFER-D instance communicates with other
SAFER-D instances deployed on the rest of the architecture (i.e.,
the Subsystems of Interest). With the term “subsystem,” we refer
to a single independent computing node. As part of SAFER-D, we
use two types of MAPE-K loops: First, Local MAPE-K represents the
“traditional” adaptation loop commonly found in a self-adaptive
system, running locally and only internally on each subsystem.
Second, the adaptation loop Global MAPE-K has a dedicated com-
munication channel to other subsystems in the architecture, i.e.,
other edge and fog devices running a SAFER-D instance.

Local MAPE-K: The Local Runtime Monitor gathers data from
the Managed system and forwards it to the Local Adaptation

Middleware. The Local SL Manager (SL: Security Level) plans an ap-
propriate security level (cf. Section 3.2). Finally, a Local Execution

Adapter executes the planned adaptations on the Managed system

( M ⇒ A ⇒ P ⇒ E ).
Global MAPE-K: This adaptation loop serves two purposes: (𝑖)

The loop allows for holistic adaptations together with other sub-
systems (cf. AC 1) and (𝑖𝑖) ensures a prompt response in the event
of an attack (cf. AC 3).

(𝑖) The Global SL Monitor forwards adaptation information
from the other Subsystems of Interest. In our running case for
a fog subsystem, the subsystems of interest are the superordinate
server subsystems and the subordinate edge subsystems. The
adaptations, i.e., the security levels of other computing systems,
are then forwarded to the Local Adaptation Middleware. The
Local MAPE-K can then, besides the local monitoring data, also take
comprehensive information from other connected systems into
account for performing adaptations ( M / M ⇒ A ⇒ P ⇒ E ).

(𝑖𝑖) Security incidents can lead to isolated subsystems, disrupt-
ing their integration into the Subsystems of Interest (cf. SoS
in AC 2). When this happens, it is critical to ensure prompt
adaptation times to prevent other subsystems from being com-
promised. Disruptions can cause delays in the adaptation time,
e.g., due to unanswered requests during an attack (cf. AC 3).
The Global MAPE-K takes these disruptions into account by adapt-
ing the Managed API (Application Programming Interface). The

API configuration uses two operational modes: Full Adaptation
(FA) when all other subsystems are available and Partial Adap-
tation (PA) when at least one subsystem of interest is not reach-
able. In both modes, the Global MAPE-K will be executed, and the
Managed API adapts continuously. The difference lies in the num-
ber of Subsystems of Interest checked for adaptation updates
(cf. details in Section 3.3). The switch between these modes is
decided within the Global MAPE-K: The Managed API gathers the
Global SL Adaptations and forwards the Network Status Data to
the Global Network Monitor. The Global Adaptation Middleware

checks the connections to other subsystems and detects if a subsys-
tem in the Subsystems of Interest is unresponsive. The Global

Config Manager then triggers the respective mode, and the Global
Execution Adapter carries out the adaptation by reconfiguring
the Managed API ( M ⇒ A ⇒ P ⇒ E ).

3.2 Security Levels

Security (criticality) levels (SLs) in SAFER-D represent varying
degrees of protective measures specifically tailored to the current
risk and criticality of a system (cf. AC 4). The concept is inspired
by so-called “readiness levels,” found, for instance, in the US mili-
tary’s DEFense readiness CONdition (DEFCON) stages [30]. They
enable dynamic adaptation of security mechanisms, ensuring sys-
tem can escalate or de-escalate their defenses based on evolving
threats or environmental conditions. We introduce SLs as part
of SAFER-D’s Local SL Manager to adjust security based on dy-
namic changes (cf. 𝑥 and/or 𝑝 in Eq. (1)). For example, in our
running case, under normal conditions, an edge device operates
at DEFCON 5. If unusual behavior suggests a potential attack, it
escalates to DEFCON 4, increasing the monitoring of system load,
as sudden spikes may indicate a DDoS attack. The DEFCON level
continues to adapt as risks rise. The highest escalation is DEF-
CON 1 in critical cases (e.g., a confirmed DDoS attack) where the
system may even shut down. The discrete SL design encourages
security engineers to define clear, scenario-specific countermea-
sures per threshold, though we acknowledge this limits flexibility
in multi-threat situations; addressing such conflicts will be a focus
in future iterations of the framework.
The Local Adaptation Middleware, and the subsequent Local

SL Manager, consider two sources when deciding on the appropri-
ate SL. The local Security Events provided by the Local Runtime

Monitor ( M ) and theGlobal SL Adaptations of the other Subsystems
of Interest in the architecture forwarded by the Global SL

Monitor ( M ). SAFER-D supports a human-in-the-loop approach
for returning to less restrictive security levels.

3.3 Full and Partial Adaptation Mode

The Global MAPE-K leverages two distinct operational modes to
speed up the global adaptation loop (cf. Section 3.1): Full Adap-
tation (FA) and Partial Adaptation (PA). In both modes, SAFER-D
tries to gather adaptation information from other Subsystems of

Interest.
In a perfect world, a single subsystem can always communicate

with the other subsystems of interest. Consider the example in
Fig. 2a, showing a conceptual edge computing architecture with
server, fog, and edge computing subsystems. For instance, #2
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Figure 1: High-level Overview of SAFER-D.

communicates updates to its superordinate server subsystem #1

and its subordinate subsystems #6 and #4. During FA, full adapta-
tion within the DCA is possible, and every subsystem can receive
respective adaptation updates from every other subsystem. For
the example in Fig. 2a, the subsystems adapting and exchanging
data consists of all subsystems: [#1, #2, #3, #4, #6, #7, #5, #8].

In practice, a subsystem of interest can become unresponsive or
unavailable due to an attack. In such a case, fast and timely adapta-
tion becomes one of the most important properties for preventing
and potentially repelling attacks on other uncompromising sub-
systems. The unavailable subsystem interferes with this goal. For
instance, when subsystem 𝐴 sends a request to the unresponsive
subsystem 𝐵. 𝐴 cannot continue the adaptation until it reaches
a timeout, thereby delaying the adaptation loop. The problem is
exacerbated when more than one subsystem is already compro-
mised. – In such a case, SAFER-D uses the PA mode, displayed in
Fig. 2b. In the example, subsystem #2 is unresponsive due to an
attack. As part of SAFER-D’s Global MAPE-K loop, the remaining
(still available) subsystems form adaptation subgroups based on
the availability of connections. In the example in Fig. 2b, the
architecture is split into three adaptation subgroups: [#1, #3, #5,
#8], [#4, #7], and [#6]. Splitting the architecture and excluding
the unresponsive subsystem #2 helps maintain adequate adapta-
tion times. The splitting (i.e., the mode switch) in SAFER-D is
performed by reconfiguring the Managed API and dictating which
subsystems of the Subsystems of Interest should be requested
for adaptation updates (i.e., contribute to the Global SL Adapta-
tions) and which are ignored. As part of the Global MAPE-K loop,
a recovery strategy is in place to check the responsiveness of
unavailable subsystems, similar to a heartbeat function. Once a
subsystem is up and running again, the subsystem is reintegrated

into the adaptation set until the system can switch back to the FA
mode.
In the following, we further describe the interplay of the two

MAPE-K loops. SAFER-D is efficiently greedy in the sense of
how it conducts adaptations. The more subsystems are available,
the more information can be used. SAFER-D always tries to con-
nect to the other Subsystems of Interest as part of the Global

MAPE-K. When this is impossible, it still uses its PA mode to re-
ceive as many timely adaptations as possible. In the worst case,
no other subsystems are available (i.e., M is exhausted). In this
case, SAFER-D can at least adapt locally (i.e., M is the only source
for adaptations). The interplay of the loops is also visualized in
Fig. 3. The novelty of SAFER-D lies in its flexibility in different
situations. SAFER-D is capable of dealing with interruptions and
can, whenever necessary, adapt so that two MAPE-K loops are
always running efficiently: One to adapt the Managed System, and
one to adapt the Managed API. This flexibility directly adheres to
the resilience of the architecture SAFER-D is deployed to and
marks the main contribution of our framework.

4 Evaluation

We executed a series of rigorous experiments. We evaluated the
Feasibility and Security in an earlier framework version [28] here,
we focus on Applicability and Efficiency. to evaluate our frame-
work’s general applicability and efficiency. In this section, we first
describe the research questions, use case scenarios, evaluation
setup, results, and finally, the answers to our research questions.
RQ1: (Applicability) To what extent can SAFER-D be applied to
execute security adaptations, and what is the integration effort when
embedding it into existing system architectures? With this first
research question, we aim to qualitatively evaluate the applica-
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bility of SAFER-D. Applicability is essential to bridge theory and
practice, and we try to approach an answer by addressing some
of the key factors used in similar evaluation setups (see [18]).
For measuring the integration effort, we report on the reusability
of components and the required resources to use SAFER-D in a
given scenario, i.e., the time and Lines of Code (LoC) it takes to
configure and run SAFER-D.
RQ2: (Efficiency) To what extent can SAFER-D be used to execute
security adaptations efficiently? With the second research question,
we quantitatively determine the efficiency of SAFER-D. Since a
timely adaptation is paramount during an attack (cf. [8] and
AC 3), short adaptation times are a crucial indicator of SAFER-D’s
efficiency. We assess the Time to Adapt (𝑇𝑡𝐴) on the deployed
architecture of all MAPE-K loops. First, we measure the Time to
Adapt for Security Levels (𝑇𝑡𝐴𝑆𝐿) to evaluate the adaptation times
of M / M ⇒ A ⇒ P ⇒ E . Hence, the adaptations from one

SL to another. Second, we measure the Time to Adapt for Global
Adaptations (𝑇𝑡𝐴𝐺 ) to measure the switch between PA and FA to
form adaptation subgroups. Hence,𝑇𝑡𝐴𝐺 reflects the time it takes
for a M ⇒ A ⇒ P ⇒ E loop configuration to take effect on
the Managed API.

4.1 Use Case Scenario

Our use case is motivated by a real-world example provided by our
industry partner ENGEL Austria GmbH. The company is a large
machine manufacturing enterprise operating in over 80 countries
worldwide, with several thousand employees. The company is
one of the leading manufacturers of industrial injection molding
machines. With its globalized status, the company provides multi-
ple large edge computing architectures distributed worldwide for
its customers. Machine data (e.g., production cycles, usage data) is
collected and distributed to central cloud computing nodes via a

5
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hierarchically structured edge computing architecture. This data
is used, among other things, for predictive maintenance, remote
support, and data analysis to increase production efficiency and
reduce energy consumption and scrap. Multiple machines are
connected via edge devices, which are again connected to fog
computing nodes and ultimately report to a central cloud server.
Although the machines can be operated standalone, downtime
of the edge computing architecture due to a security incident or
a cyberattack can impede normal operation and cause financial
losses. With its underlying edge computing architecture and secu-
rity requirements, the company provides an excellent example for
evaluating the different aspects of SAFER-D. For the evaluation,
we focused on DDoS attacks on the edge computing architec-
ture [34]. More specifically, we used SAFER-D to adapt in the
event of an Internet Control Message Protocol (ICMP) flood attack.
In such an attack, an excessive number of ping requests are sent
to the target, thereby clogging up its resources, such as network
bandwidth and processing capabilities. The use case’s goal is
to dictate security-level adaptations among the edge computing
subsystems during an ICMP flood attack. If a system becomes un-
available due to the attack, the respective subsystems shall switch
into the PA mode to allow for respective adaptations within the
remaining adaptation subgroup.

4.2 Evaluation Setup

Based on the conceptual framework above, we created a proto-
type implementation in Python to conduct the evaluation. In the
following, we provide a brief overview of SAFER-D’s instantiation
(see details in suppl. material). The industry partner provided
us with edge devices (hardware) utilized on-site at their manu-
facturing plants. We use these devices to replicate a typical edge
computing architecture for the evaluation. The evaluated archi-
tecture is depicted in Fig. 2a and consists of four layers: one cloud,
two fog, and one edge layer.
RQ1: The Local Runtime Monitor1, Local Execution Adapter

(together 96 LoC), and the initialArchitecture Configuration (47 LoC)
are use-case-specific; the remaining implementation is reusable
for other use cases (approx. 3h). We created three use-case-specific
SLs with increasing measures for a potential ICMP flood attack.
The levels are implemented using the Python state machine pack-
age [21] (70 LoC, approx. 1.5h) and are defined as follows: Level 3 –
Normal Readiness, Regular monitoring; Level 2 – Moderate Readi-
ness, Rate limiting; Level 1 – Maximum Readiness, Block entirely.
Each SL represents a state in the state machine. In the event of an
attack, the Local MAPE-K triggers state transitions from one state
to another. The stepwise transitions are in place for control and
dependency management. SAFER-D fully supports configurable
SL transitions (e.g., skipping a SL) when needed, which can be en-
abled by modifying the state machine definition. At runtime, each
subsystem periodically issues heartbeat requests to check for the
SLs of the other connected subsystems. For instance, #2 sends a
heartbeat every ten seconds (interval aligns with typical machine

1The specificity concerns the selection of monitored properties, not the under-
lying mechanism. Industrial systems often expose extensive metrics (e.g., Netdata),
allowing the Local Runtime Monitor to function as a configurable filter or
bridge

cycle times, allowing heartbeats to be sent alongside operational
data), requesting the SLs of #1, #6, and #4. If one of the connected
subsystems of interest responds with a higher criticality level than
the one currently used for #2, #2 adapts, i.e., transitions to the
most critical SL. We prioritize the most restrictive SL to ensure
rapid and effective response in high-impact scenarios like DoS
attacks; in less time-critical contexts, incorporating human-in-the-
loop decision-making can offer a more balanced trade-off between
security and functionality. Furthermore, RESTful communication
allows us to easily identify whether a device is unresponsive: If a
request times out, the prototype adapts accordingly using global
adaptations. The global adaptations are implemented by adding
functionality to the periodic heartbeat checks. Each system sends
out a tree traversal (REST calls), checking which subsystems are
still reachable.

RQ2: We evaluated 𝑇𝑡𝐴𝑆𝐿 by monitoring our deployed frame-
work operating on top of the edge computing architecture. Adap-
tations are checked every ten seconds via a heartbeat (i.e., Local
MAPE-K and Global MAPE-K are periodically triggered). The goal is
to capture the time from the beginning of an adaptation cycle (i.e.,
the start of the heartbeat) until an adaptation is detected (mon-
itored), analyzed, processed, and executed. For instance, when
considering Fig. 2a, #1 is before the adaptation heartbeat in Level
3. #2 is under attack and, therefore, in Level 2. For 𝑇𝑡𝐴𝑆𝐿 , we
measure the time from the beginning of the heartbeat from #1

until #1 completes the adaptation to Level 2. – We chose #1 as the
monitored subsystem to control the influence of network depth:
The closer the attacked subsystem is to the one monitored (in
our case #1), the faster it can adapt. For instance, #2 is closer to
#1 than #8. Since the heartbeat adaptation checks occur sequen-
tially, network depth matters. Therefore, #1 provides the best-case
and worst-case scenario. It has systems connected directly (e.g.,
#2) and, at the same time, exhibits the longest depth to traverse.
During the evaluation, we seeded predefined SL triggers for each
system depicted in Fig. 2a. We measured the 𝑇𝑡𝐴𝑆𝐿 and validated
that the adapted SLs were correct according to our seed, i.e., check-
ing if #1 transitions to Level 2 when it is supposed to. We repeated
this process for every subsystem 𝑁 = 100 (i.e., a total of 700 SL
adaptations). We employed a similar procedure for 𝑇𝑡𝐴𝐺 . We
randomly terminated components in Fig. 2a. The rest of the edge
computing architecture had to respond accordingly and globally
adapt to the PA mode. We measured the time again from the start
of a heartbeat cycle until the system transitioned to the PA mode
(i.e., all adaptation subgroups were formed). We chose #1 again as
our monitored component to control for network depth. Every
subsystem in Fig. 2a is randomly terminated 𝑁 = 50 times (350 in
total).

4.3 Evaluation Results

RQ1: As a first step, we validated that every SL adaptation was
carried out correctly as expected. Each change in the SL of an
attacked subsystem in the architecture resulted in the expected
change of #1. For the global adaptations, we can also confirm
that SAFER-D’s implementation executed correct adaptations in
the architecture every time. Regarding the integration effort, we
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identified the components that would need re-implementation and
counted the LoC and the time it took us to implement them. A total
of 213 LoC are use-case-specific, which took us approximately
4-5h. Since every subsystem runs the same instance of SAFER-D,
the development and configuration effort must be invested once.
The code is pulled via version control on every subsystem and
is ready to run without further configuration. Considering that
the majority of SAFER-D’s components can be reused for other
use cases, 213 LoC and 4.5h of effort represent a considerably low
effort with respect to the benefits SAFER-D can bring to such an
architecture.
RQ2: Fig. 4a and Fig. 4b show the boxplots of our quantita-

tive analysis. One can notice the considerably long adaptation
times for 𝑇𝑡𝐴𝐺 , especially compared to 𝑇𝑡𝐴𝑆𝐿 . However, 3 sec-
onds of the values in 𝑇𝑡𝐴𝐺 can be attributed to the initial HTTP
timeout. An HTTP request always waits 3 seconds (the time
an SL adaptation would take additionally) for a response during
the heartbeat. After the waiting period, the system is deemed
unresponsive. Therefore, these numbers always contain a fixed
constant of 3000 ms. The adaptation times for the 𝑇𝑡𝐴𝑆𝐿 remain
consistent across runs (cf. distribution in Fig. 4a). The average
median of 𝑇𝑡𝐴𝑆𝐿 is 344.86 ms (roughly comparable to the 333 ms
in [25]). Therefore, most of 𝑇𝑡𝐴𝑆𝐿 are considerably lower than
half a second. Similarly, for 𝑇𝑡𝐴𝐺 , the average median adapta-
tion time is 4543.29 ms, which means 1543.29 ms (total minus 3
seconds timeout) solely for the adaptation. However, adaptation
times are still longer compared to 𝑇𝑡𝐴𝑆𝐿 . The reason is that once
a subsystem is unresponsive, the system again traverses through
the tree to determine the subgroup. The traversal takes time, as
shown in 𝑇𝑡𝐴𝐺 . The distribution of adaptation times among the
subsystems can be considered equally stable for all subsystems
for 𝑇𝑡𝐴𝑆𝐿 . For 𝑇𝑡𝐴𝐺 , the distribution is dense for #6, #4, #5, and
#8. #2 and #3 yielded a rather loose distribution, although their
median is similar to the other subsystems.

4.4 Answers to Research Questions

Answer to RQ1: The use case was inspired by a real-world in-
dustrial example. SAFER-D was successfully implemented within
the edge computing architecture similar to the one utilized by the
partnering company. This application validated the framework’s
capability to address practical challenges in an industry-relevant
context. Although not discussed here, due to space constraints, we
deployed SAFER-D to a second use case focused on web authen-
tication, further showcasing SAFER-D’s adaptability to different
domains and highlighting its ability to cater to security require-
ments in diverse settings (details can be found in the supplemental
material; cf. data availability). Both prototypical implementations
are publicly available, enabling users to explore and leverage the
adaptation mechanisms provided by SAFER-D. The implementa-
tion effort for SAFER-D’s adaptation components in our scenario
offers a first indication of manageable integration (considering
time and LoC), though further validation is needed. A total of
21h were invested to implement Global MAPE-K components and
the Local Adaptation Middleware and Local SL Manager (i.e., the
reusable parts of SAFER-D); the Local Runtime Monitor and Local

Execution Adapter are use-case-specific and took us approx. 4.5h.
We found the PA mode particularly helpful during development
since even a network misconfiguration immediately resulted in
respective global adaptations. For this reason, we find SAFER-D’s
global adaptations helpful not only in the event of a security in-
cident but also in maintenance or operational malfunctions. In
summary, through these applications, we demonstrated SAFER-
D’s applicability in real-world scenarios. The initial results indi-
cate that integration is feasible; however, a more comprehensive
evaluation is required for general claims.
Answer to RQ2: We comprehensively evaluated SAFER-D’s

efficiency by quantitatively analyzing data from our use case,
measuring adaptation times for SL adaptations (𝑇𝑡𝐴𝑆𝐿) and global
adaptations (𝑇𝑡𝐴𝐺 ). Adaptation times were sufficiently efficient
for the given scenarios. Our analysis suggests that the centrality of
the subsystem being considered influences adaptation times across
the architecture (cf. Fig. 4b). In general, top-level systems require
longer adaptation times compared to low-level systems. Opti-
mized implementation strategies can improve performance, such
as parallel tree traversal for adaptation checks. While our findings
highlight areas with potential for further optimization, the proto-
typical implementations provide a proof of concept. The results
affirm that SAFER-D delivers promising efficiency, making it a
viable framework for dynamic system adaptations in distributed
computing systems.

5 Threats to Validity

Like any study, our work faces threats to validity. For conclu-
sion validity, we used quantitative metrics 𝑇𝑡𝐴𝑆𝐿 and 𝑇𝑡𝐴𝐺 and
repeated runs to ensure consistency, though relying solely on
time-based measures limits insight into security–functionality
trade-offs; broader quantitative applicability metrics could offer
a more comprehensive picture. Regarding internal validity, we
controlled the experimental setup to isolate the framework’s ef-
fect on adaptation times, minimizing the influence of hardware /
network factors, although real-world deployments may introduce
unforeseen variables. For external validity, our use cases and
metrics (e.g., time, LoC) serve as a foundation for generalization;
however, further validation in diverse environments is necessary
to confirm broader applicability.

6 Related Work

Multi-level Adaptation: In their work, Jahan et al. [13] pro-
pose a framework for dynamically maintaining functional and
security concerns in autonomous systems, ensuring coordination
between multiple MAPE-K feedback control loops. An additional
MAPE-SAC loop is introduced that emphasizes security-related
adaptations. Similarly, also employing a multi-feedback loop ap-
proach, Vromant et al. [31] relied on intra-loop and inter-loop
coordination of multiple MAPE-K loops to perform coordinated
adaptation actions. Braberman et al. [3] present MORPH, a refer-
ence architecture for self-adaptation based on the MAPE-K loop.
MORPH consists of three layers for goal management, strategy
management, and strategy enactment with different reconfigura-
tion strategies. Ben Halima et al. [2] introduce a set of MAPE-K
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Figure 5: Boxplots of 𝑇𝑡𝐴𝑆𝐿 & 𝑇𝑡𝐴𝐺 .

design patterns tailored for decentralized control in self-adaptive
CPSs. Gerostathopoulos et al. [11] propose IRM-SA, an Invari-
ant Refinement Method for Self-Adaptation, tailored to ensure
dependability and adaptivity in software-intensive CPSs.
Security Adaptation: Fotohi et al. [10] propose an Agent-

based Self-Protective method (ASP-UAVN) inspired by the human
immune system to enhance secure communication in Unmanned
Aerial Vehicle Networks. Riegler et al. [25] introduce DSEC4IoT,
a distributed MAPE-K framework for self-protective IoT devices,
enabling local and centralized monitoring, analysis, planning,
and execution of security measures. Jones et al. [14] present
Crispy, a CRISPR-inspired (bacterial adaptive immune system)
resiliency mechanism to protect N-variant systems from DoS
attacks by leveraging automatic attack signature generation. Fi-
nally, Skandylas [27] presents an approach for enhancing adaptive
security in software-intensive systems by equipping them with
self-protective capabilities, including runtime threat modeling,
proactive adaptation, and decentralized trust-based mechanisms.
We provide an overview of the addressed contents of related

work and how it compares to SAFER-D in Table 1. The table
reveals that SAFER-D is closely related to Fotohi et al. [10] and
Riegler et al. [25]. – Fotohi et al. [10] focus on securing com-
munication between UAVs, relying on detecting network-layer
attacks and isolating malicious nodes. In contrast, SAFER-D pro-
tects the devices themselves through hierarchical coordination (vs.
purely peer-to-peer) and adaptive security levels (vs. strict iso-
lation), enabling graded and context-aware responses. Unlike
Riegler et al. [25], who rely on a central “Managing Server” to
coordinate security adaptation across independently operating
devices, SAFER-D enables fully decentralized coordination among
autonomous subsystems. Moreover, DSec4IoT supports a fixed
two-level structure (server and devices) while SAFER-D introduces
a multi-level hierarchy where adaptation decisions can propagate
and adjust across layers. Therefore, in case of connection loss,
SAFER-D can adapt within subgroups while DSec4IoT adapts only
locally.

7 Conclusion

In this paper, we presented SAFER-D, a novel self-adaptive secu-
rity framework for DCAs. SAFER-D integrates diverse adaptation
strategies to enable security adaptations, even in the event of sys-
tem failures caused by attacks. Our evaluation using a realistic use

case scenario has confirmed that SAFER-D can be used in practice
and that the adaptations are efficiently carried out. As part of
our ongoing and future work, we aim to extend our adaptation
strategies, improve performance and scalability for large-scale
architectures, and incorporate advanced runtime threat modeling
techniques.

Data Availability

Supplemental material on GitHub: Edge computing use case /
WebAuthn use case.
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