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Abstract

Face swapping manipulations in video streams represents an increasing threat in remote video communications, due to advances
in automated and real-time tools. Recent literature proposes to characterize and exploit visual artifacts introduced in video frames
by swapping algorithms when dealing with challenging physical scenes, such as face occlusions. This paper investigates the
effectiveness of this approach by benchmarking CNN-based data-driven models on two data corpora (including a newly collected
one) and analyzing generalization capabilities with respect to different acquisition sources and swapping algorithms. The results
confirm excellent performance of general-purpose CNN architectures when operating within the same data source, but a significant
difficulty in robustly characterizing occlusion-based visual cues across datasets. This highlights the need for specialized detection
strategies to deal with such artifacts.
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I. INTRODUCTION

The synthesis and manipulation of facial images and videos have achieved increasingly hyper–realistic results in recent years
[4], leading to numerous research efforts for the automated identification of non-genuine visual data [25] [27].

The wide majority of the detection techniques proposed in the literature operates in a passive fashion (i.e., assuming no
or little a priori information on the media generation and distribution pipeline) [1]. Data-driven approaches based on deep
networks are predominant, with an extensive use of general-purpose architectures originally devised for image classification,
revisited for these tasks [2] [23] [28]. Practical applications range from the analysis of user-generated content on the web for
fact checking purposes to the validation of digital visual evidence in forensic investigations.

A highly relevant scenario where detecting manipulations becomes essential is remote live video communications, where
one (or more) subject stands in front of a camera capturing the video scene in real-time and interacts remotely with another
subject or with an automated interface. If not properly protected, such scenario might be vulnerable to advanced impersonation
attacks enabled by real-time video face manipulation tools, potentially leading to severe security issues. It is the case of video
calls, which recently emerged as a channel for perpetrating scams and frauds1. In fact, remote identity proofing processes (such
as Know-Your-Customer applications) based on face verification [6] [7] [18] are threatened by these new tools [13] [20], in
addition to known presentation attack vectors [21]. In this context, face swapping is a particularly powerful technique, as it
allows an attacker to modify only the facial area (typically used for verifying the subject’s identity), while leaving the rest of
the scene under his control.

The detection of face swapping in remote video communications has so far been relatively little explored, with only a few
approaches explicitly targeting this scenario [8], [26]. Recently, the work in [16] has proposed to exploit the interactive nature of
the setting to create a detection advantage, inspired by biometric challenge-response protocols [12]: the user performs (mostly
voluntary) actions denoted as challenges, which are devised to interfere with manipulation algorithms and, in case of ongoing
impersonation attack, produce visible visual artifacts in the video frame. While the quality levels of manipulation engines are
rapidly improving, handling diversified challenge requests in real-time (with no post-processing options) represents a complex
task. Face occlusions are a notable case where evident artifacts are likely to be produced, providing precious hints for human
observers.

This paves the way for automated detectors exploiting such tell-tale visual cues to identify swapped faces over genuine ones.
The authors in [16] provide empirical evidence of a learning-based approach, validated on their proposed dataset. However,
a known crucial issue of data-driven solutions for manipulation detection is their ability to generalize in non-aligned testing
modes [27] [1], thus when testing data do not come from the very same data source as the training set. Thus, it remains an open
question to which extent learned cues can effectively detect occlusion artifacts across data coming from different acquisition
settings and manipulation algorithms.

1https://edition.cnn.com/2024/02/04/asia/deepfake-cfo-scam-hong-kong-intl-hnk/index.html

https://edition.cnn.com/2024/02/04/asia/deepfake-cfo-scam-hong-kong-intl-hnk/index.html
https://arxiv.org/abs/2506.16497v1


The experimental analysis proposed in this paper investigates this scenario. We introduce a newly collected data corpus of
genuine and manipulated videos systematically depicting subjects with face occlusions, as reported in Section II. This, together
with the dataset in [16], allows us to perform a cross-dataset analysis (described in Section III) and benchmark the performance
of CNN-based data-driven detection models in different experimental settings. The influence of both the data source and the
frame content are analyzed, revealing insightful empirical evidence reported in Section IV.

II. DATASET COLLECTION

We denote as FOWS (Face Occlusion With Swapping) the newly collected dataset. Each video clip depicts a human subject
in front of a camera who is asked to perform voluntary actions (also indicated as challenges) leading to face occlusions. In fact,
in [16] those have proved highly effective in producing visual artifacts after face swapping and obtained a high usability score
when rated by users among the different considered alternatives (i.e., head movements, facial deformation, facial illumination).
In particular, our subjects are asked to place in front of their face either their own hand (hand occlusion challenge) or a supplied
rectangular object (object occlusion challenge) in predefined locations.

We developed a recording interface to streamline the video collection from volunteer users. The interface contains a short
description and some visual examples of correct/incorrect positions for each of the challenges to be performed. Then, during
the actual execution, a guiding video displaying visual instructions on where to place the face and the occluding objects is
overlaid on the current camera frame, as represented in Figure 1(a). Subjects have been instructed to follow as closely as
possible the motion shown in the guiding videos; for each clip, we visually verified the compliance of the user’s motion with
the displayed instructions at the recording phase.

As pointed out in [16], multiple and diversified occlusions per user help in better detecting potential manipulation attacks.
Therefore, we created three different variants of the hand and object occlusion challenges to be performed by each user, where
the occluding objects follow different spatial trajectories and overlaps with diverse portions of the face. Thus, six different
guiding videos have been developed lasting around 40 seconds, all of them are structured as follows (see Figure 1(a)): they
start with a static temporal segment depicting only the subject’s face in a prescribed location, followed by a more dynamic
segment where the occluding object moves and overlaps the face (lasting around 15 seconds). We recorded videos from 7
volunteers, each of them recording the six challenge variants. All videos were captured with a Logitech C920 HD PRO webcam
recording at 1080p resolution and 30 fps. From the dynamic segment of each genuine video, three manipulated versions have
been then generated through the recent face-swapping algorithms SimSwap (SSF) [3], GHOST (GHF) [11] and FaceDancer
(FDF) [22]. These algorithms are particularly powerful as they perform face swapping from a single image of the target face.
We used royalty-free pictures of celebrities as target faces. Examples of genuine and manipulated frames with and without face
occlusion are reported in Figure 1(b). In agreement with [16], occlusion-based artifacts are present in all manipulated videos.

In total, the dataset is composed of 168 videos (42 genuine and 126 manipulated), and approximately 70k video frames.

III. EXPERIMENTAL SETUP

The dataset and part of the code used used in this study are available at https://st.fbk.eu/complementary/IWBF2025.

A. Datasets

Our experimental analysis involves the previously described FOWS dataset and the one proposed in [16], denoted as GOTCHA
dataset. Among the available datasets including face swapping manipulations, this is the only one where subjects systematically
perform face occlusion and thus fits the purpose of our study. The dataset involves 47 participants performing several challenges;
it includes genuine videos and two corresponding swapped versions, obtained through the algorithms DeepFaceLab (DFLG)
[19] and FSGAN (FSGANG) [17]. Data are provided as sequences of static frames. In particular, we selected the data related
to the hand and object occlusion challenges only; for each user, swapped videos from three different target faces for each
challenge are considered among the available ones.

Overall, from the union of the two datasets we can obtain seven data partitions: five corresponding to the swapping algorithms
(denoted as SSF, GHF, FDF, DFLG, and FSGANG) and the two sets of genuine frames (ORF and ORG), where the subscripts
indicate the dataset they belong.

B. Frame category separation

As it will be discussed in Section IV, we perform detection tests separately on two categories of frames: the ones where the
face is fully shown and the ones where the subject places the hand/object in front of the face, indicated as no-occ and occ,
respectively. This is functional for our experimental analysis (see Section IV-B), as the sought occlusion-based artifacts in the
swapped data appear only in the latter category.

This separation is performed within all data partitions in a semi-automated manner for both datasets. For FOWS, we applied
the BlazeFace detector offered by the Google mediapipe framework [10] to locate the face bounding box in all video frames,
which was then increased by a factor of 1.3 (as suggested in [23], [24]), to extract the whole user face. Then, 100 frames are

https://st.fbk.eu/complementary/IWBF2025


(a)

(b)

Fig. 1: (a) Pipeline of the video recording with the guiding videos for the hand occlusion challenge. (b) Examples of original
(left) and manipulated (right) frames.

sampled from the static segment (see Figure 1(a)) for the no-occ category; for the occ category, we run the BlazeFace detector
with strict tolerance on the frames of dynamic segment, and selected 100 frames among the ones where such detector failed
due to occlusion.

The latter procedure has also been used on the GOTCHA dataset, which does not have separated static and dynamic segments.
Therefore, the separation based on the BlazeFace detector has been applied on the whole temporal sequence. For both datasets,
a manual revision of the frames identified for each category was performed to refine the separation.

a) Training/Testing split: For FOWS, data related to 5 users have been used for training, while the remaining 2 for testing.
We consider the challenging setting where the two testing subjects are (i) the only woman in the dataset and (ii) the only man
with a thick beard. The 100 frames sampled from the dynamic and static segment during category separation yield 600 frames
per user in each category, multiplied by 4 (the original version plus the three manipulated counterparts). Thus, for both occ



TABLE I: Numerosity of GOTCHA training/testing splits.

ORG

trn — tst
DFLG

trn — tst
FSGANG

trn — tst
Total

trn — tst
occ 28395— 19463 13716— 9899 14057— 10019 56168— 39381

no-occ 15188 — 13200 7922 — 6338 7906 — 6407 31016 — 25945

and no-occ data, the training and testing splits are composed by 12000 (3000 original/ 9000 manipulated) and 4800 (1200
original/ 3600 manipulated) frames.

In GOTCHA, 30 users are selected for training and the remaining 17 for testing, making sure that no subject appears in both
sets either as host or target face. In general, GOTCHA provides more original samples than swapped ones, probably due to the
fact that fake videos were saved at lower fps after processing. To compensate for this, we sample original frames for each user
and each challenge, to obtain a comparable number of frames. The resulting split is reported in Table I.

C. Detection models

We consider a battery of five CNN architectures, most of them previously used on face video manipulation detection [23].
While we are aware that more sophisticated approaches exist, the analysis in [28] shows that such general-purpose architectures
provide performance comparable to handcrafted approaches, in front of a reduced complexity. We therefore consider three
baseline models pretrained on ImageNet: MobileNetv2 (MobNet), EfficientNetB4 (EffNetB4), and XceptionNet (Xception) [5].
Moreover, we include two CNNs already specialized in deepfake detection:

• ICPR2020: proposed in [2], based on the EfficientNetB4 architecture and trained on the DFDC dataset;
• NeurIPS2023: used in [28], based on the Xception architecture and trained on FaceForensics++.
Both models are selected due to their performance in the respective papers. We use the original versions released by the

authors [2] [28] and replicate their data preprocessing to ensure fairness in the evaluation.

D. Testing protocol

We adopt a binary classification framework: the frames in ORF and ORG are associated to the label 0, the manipulated
frames in the other partitions are associated to the label 1. Classification is performed according to the default 0.5 threshold
on the CNN output score. All CNN models are retrained on both FOWS and GOTCHA datasets, separately. For the baselines,
we use the focal loss function [14], a modified version of the Cross Entropy loss that adaptively focuses the model learning on
less represented samples, to counter the class imbalance between original and manipulated data in the FOWS dataset. A simple
early-stopping procedure (with patience 3) was adopted to control overfitting during training. Models are trained for 10 epochs
on FOWS, using the Adam optimizer as in [28] [2], and for 15 epochs on GOTCHA, applying the AdamW optimizer [15].
After some preliminary tests (not reported for the sake of space), we identified the best performing PyTorch data augmentation
configuration as follows: random resize crop at (224,224), random horizontal flip, rotation in the range [-5,5] degrees, and color
jitter with default values. For the ICPR2020 and NeurIPS2023 CNNs, we used the same loss and augmentation configurations
as in the original code.

E. Metrics

We applied different metrics for a comprehensive evaluation. Based on the model decisions, we report the Balanced Accuracy
(B-ACC), defined as the average between sensitivity and specificity, which is typically used in case of imbalanced datasets
and provides more representative values with respect to the overall accuracy; we also report the accuracy ACC(p) separately
for each partition p defined in Section III-A. Moreover, we compute the Area Under Curve (AUC), obtained by binarizing the
network output with different thresholds, and the Equal Error Rate (EER).

IV. RESULTS

We first analyze model performance in a fully aligned setting, i.e., where train and test data belong to the same dataset and
frame category. In Table II, results for FOWS and GOTCHA are arranged column-wise, while the top (bottom) row refers to the
occ (no-occ) category.

It can be observed that most models yield excellent results in all cases. For GOTCHA in particular, the distinction is essentially
perfect for both the occ and no-occ categories. We observe that ICPR2020 and NeurIPS2023 do not obtain superior results with
respect to their baseline versions, EffNetB4 and Xception, on the no-occ data. In other words, it emerges that being previously
trained on swapped data from other datasets (DFDC and FF++) does not bring an advantage in dealing with swapped data
coming from different sources (FOWS and GOTCHA). This holds in particular for NeurIPS2023, for which retraining on FOWS
(where less retraining data are available with respect to GOTCHA) does not lead to accurate results. This shows a general
difficulty of detectors in effectively capturing discriminative cues for data subject to equivalent manipulations (face swapping
with no occlusion) but coming from different data sources, as also observed in [28].



TABLE II: Model performance in the fully aligned setting.

Train: FOWS, occ. Test: FOWS, occ.

Model B-ACC ACC(ORF) ACC(SSF) ACC(GHF) ACC(FDF) AUC EER
MobNet 99.56 99.17 99.92 100 99.92 1.0000 0.0033
EffNetB4 97.88 95.75 100 100 100 0.9999 0.0050
Xception 99.10 98.25 99.83 100 100 0.9999 0.0033
ICPR2020 99.05 98.92 99.92 100 97.58 0.9995 0.0100
NeurIPS2023 71.03 46.83 91.42 100 94.25 0.8472 0.2700

Train: GOTCHA, occ. Test: GOTCHA, occ.

Model B-ACC ACC(ORG) ACC(DFLG) ACC(FSGANG) AUC EER
MobNet 99.96 99.91 100 100 1.0000 0.0001
EffNetB4 99.99 100 100 99.95 1.0000 0.0000
Xception 99.98 99.96 100 100 1.0000 0.0001
ICPR2020 99.97 99.96 100 99.96 1.0000 0.0003
NeurIPS2023 99.76 99.51 100 100 1.0000 0.0029

Train: FOWS, no-occ. Test: FOWS no-occ.

Model B-ACC ACC(ORF) ACC(SSF) ACC(GHF) ACC(FDF) AUC EER
MobNet 100 100 100 100 100 1.0000 0.0000
EffNetB4 100 100 100 100 100 1.0000 0.0000
Xception 99.92 100 100 100 100 1.0000 0.0000
ICPR2020 95.72 99.00 99.83 99.83 77.67 0.9965 0.0325
NeurIPS2023 66.51 74.33 51.17 53.08 71.83 0.7368 0.3392

Train: GOTCHA, no-occ. Test: GOTCHA, no-occ.

Model B-ACC ACC(ORG) ACC(DFLG) ACC(FSGANG) AUC EER
MobNet 100 99.76 100 100 1.0000 0.0013
EffNetB4 100 100 100 100 1.0000 0.0000
Xception 100 99.21 100 100 0.9998 0.0020
ICPR2020 100 99.99 100 100 1.0000 0.0000
NeurIPS2023 100 100 100 100 1.0000 0.0000

A. Cross-dataset tests

In order to assess their generalization capabilities, detection models are tested in a cross-dataset fashion, thus training on
one dataset and testing on the other. Table III reports the results for both categories, where right and left blocks refer to
the training dataset. Here, the accuracy metrics show a significant drop in performance for all settings. The B-ACC almost
halves for most models, and accuracy values on the different dataset partition reveals poor capabilities of correctly classifying
video frames. We observe that the prominent type of misclassification error changes together with the testing dataset: models
trained on GOTCHA tend to miss manipulated frames on FOWS, while models trained on FOWS are prone to classifying genuine
GOTCHA frames as manipulated. While not reporting here the full results for the sake of space, we stress that the aligned and
cross-dataset setting tests have also been replicated in a transfer learning mode (by training the last layer only instead of the
whole network) for an extended evaluation. The results obtained are consistent: the median B-ACC over the models in the
aligned setting is equal to 90%, while it drops to 65% in the cross-dataset setting.

An interesting observation is that the strong performance decrease in terms of accuracy is not always reflected in the AUC
and EER metrics: when training on GOTCHA and training on FOWS, models like MobNet and Xception retain rather good values
of AUC and EER for both categories. This indicates that the model distinguishes genuine from manipulated samples in terms
of prediction scores, but does not classify them correctly with the default threshold on 0.5, which was instead effective on
the training dataset. Figure 2 reports the score distributions (in logarithmic scale) in those cases, showing that there is indeed
a separation but approaching zero. While denoting a certain generalization capabilities, this shift on the score distribution
represents a relevant issue in practical situations where unseen data (potentially coming from different data sources) would be
tested through a pretrained model, as applying the prescribed threshold would lead to strong inaccuracies. The charts in Figure
3 visualize this scenario, showing that no model behaves reliably on all partitions.

Fig. 2: Histogram of the decision score for MobNet (left) and Xception (right) trained GOTCHA and tested on FOWS.



Fig. 3: Visualization of the accuracy on all partitions of the models trained on FOWS (left), and the ones trained on GOTCHA
(right).

TABLE III: Model performance in the cross-dataset setting.

Train: FOWS, occ. Test: GOTCHA, occ.

Model B-ACC ACC(ORF) ACC(DFLG) ACC(FSGANG) AUC EER
MobNet 62.34 25.72 98.12 99.77 0.7120 0.3135
EffNetB4 59.92 20.52 99.98 98.66 0.7833 0.2560
Xception 53.64 11.27 99.80 92.26 0.6181 0.3968
ICPR2020 50.46 0.94 100 99.96 0.8555 0.2153
NeurIPS2023 43.79 68.55 10.78 27.29 0.3901 0.5703

Train: GOTCHA, occ. Test: FOWS, occ.

Model B-ACC ACC(ORF) ACC(SSF) ACC(GHF) ACC(FDF) AUC EER
MobNet 67.39 100 61.08 9.58 33.67 0.9725 0.0942
EffNetB4 59.20 100 16.17 5.17 33.83 0.9243 0.1675
Xception 57.38 100 31.58 2.00 10.67 0.9405 0.1442
ICPR2020 52.50 99.50 12.33 2.67 1.50 0.7630 0.3075
NeurIPS2023 51.49 93.67 10.33 10.33 7.25 0.4736 0.5375

Train: FOWS, no-occ. Test: GOTCHA, no-occ.

Model B-ACC ACC(ORF) ACC(DFLG) ACC(FSGANG) AUC EER
MobNet 53.48 7.08 99.81 99.95 0.6552 0.3784
EffNetB4 51.98 3.95 100 100 0.8461 0.2113
Xception 54.14 8.704 99.15 100 0.6459 0.3887
ICPR2020 51.23 4.10 99.15 97.58 0.6708 0.3448
NeurIPS2023 31.41 25.57 15.35 59.11 0.2078 0.7363

Train: GOTCHA, no-occ. Test: FOWS, no-occ.

Model B-ACC ACC(ORG) ACC(SSF) ACC(GHF) ACC(FDF) AUC EER
MobNet 55.00 99.83 25.50 4.67 0.25 0.9462 0.1250
EffNetB4 78.00 100 79.08 56.67 32.00 0.9609 0.1258
Xception 64.00 100 42.33 37.75 1.25 0.9982 0.0225
ICPR2020 50.00 100 0.00 0.00 0.00 0.5969 0.4350
NeurIPS2023 47.99 77.33 5.58 27.33 23.00 0.4557 0.5183

B. Cross-category tests

As widely recognized in the deep learning domain, a crucial issue in the training and deployment of deep networks is
the interpretability of the discriminative cues they learn. In order to have further insights on our detection scenario, we have
performed experiments where models trained on data belonging to a certain category type are tested on the other category
of the same dataset. In fact, the occ frames contain visual artifacts caused by face occlusion while those are not present in
the no-occ frames. Table IV reports the results in two insightful settings: the first one explores the gap in terms of EER on
occ when training on occ or no-occ; the second one assesses detection performance when a model trained on occ is tested on
no-occ instead of occ data.

In both cases, we see a rather limited decrease in terms of EER when moving from an aligned to a non-aligned setting.
In particular, it is shown that the occ data are well separated by both occ- and no-occ-trained models, which have not seen
occlusion-based artifacts in training (top subtable). Also, a occ-trained model performs well also on no-occ, thus in absence of
occlusion-based artifacts (bottom subtable). This suggests that the decisions of occ-trained network are only marginally based
on actual occlusion artifacts, while they likely learn shared discriminative cues among the two frame categories.

Lastly, we investigate the discriminative features the network focuses on by applying GradCAM++ [9]. For the sake of
space, we report the results for the MobNet and ICPR2020 models (yielding superior performance in Table III) tested on sample



swapped frames. Looking at the results, we can see that the MobNet activations vary over the test data, but they are often not
concentrated on the occluded part where the visual artifacts are actually located. On the other hand, ICPR2020 activations are
consistently located in the face center, thus missing other visually relevant areas.

TABLE IV: EER values for different combinations of training/testing frame categories.

FOWS GOTCHA

Test occ

Train occ no-occ occ no-occ

MobNet 0.00 0.04 0.00 0.00
EffNetB4 0.01 0.01 0.00 0.00
Xception 0.00 0.00 0.00 0.00
ICPR2020 0.01 0.20 0.00 0.00
NeurIPS2023 0.27 0.39 0.00 0.00

FOWS GOTCHA

Test occ no-occ occ no-occ

Train occ

MobNet 0.00 0.0000 0.00 0.00
EffNetB4 0.01 0.0000 0.00 0.00
Xception 0.00 0.0000 0.00 0.00
ICPR2020 0.01 0.0000 0.00 0.00
NeurIPS2023 0.27 0.2067 0.00 0.00

Fig. 4: GradCAM++ activation maps for MobNet trained on GOTCHA and tested on FOWS (top row), and for ICPR2020 trained
on FOWS and tested on GOTCHA (bottom row).

V. DISCUSSIONS AND CONCLUSIONS

We have performed an experimental analysis exploring the effectiveness of challenge-based detection for face swapping in
video communication scenarios [16]. In those systems, the presence of visual artifacts supposedly introduced by swapping
algorithms when dealing with face occlusions is leveraged. Although it is clear how this can substantially help human-based
detection, it is conjectured in [16] that they can also improve automated detectors in separating original and manipulated
videos, although providing evidence for a single dataset. We therefore developed the FOWS dataset, our own video data corpus
containing face occlusions in genuine and manipulated videos, so as to extend the empirical evaluation of learning-based
automated detectors in a multi-source setting. We trained different baseline and state-of-the-art detectors on both FOWS and
GOTCHA datasets and performed a comparative analysis. The prominent finding is an overall lack of model generalization in
the cross-dataset setting for all networks, thus confirming a known concern for automated detectors of video manipulation [4]
[27]. In fact, models achieve excellent performance when trained and tested on the same dataset (even with limited training
data as in FOWS), thus effectively picking up intra-dataset discriminative cues between classes. However, it is shown that those



do not transfer in the inter-dataset mode, despite some cases where the output scores of CNNs are fairly separated but strongly
polarized towards zero. In fact, by studying performance when mixing data that contain and do not contain occlusion-based
visual artifacts, it emerges that the models learn mostly dataset-specific statistical cues rather than actual occlusion-related
cues.

In other words, our analysis reveals that in order to reliably exploit the advantage given by challenge-based visual artifacts,
specialized automated approaches are needed. Assessing strategies for cross-dataset generalization and a broader pool of models
proposed in the literature will be the subject of future work. Also, techniques for automatically guiding the networks towards
the relevant face areas will be explored (such as the addition of an occlusion detection module), so that the detector can
be activated only when an occlusion is happening and where related artifacts are located. Moreover, one-class detectors and
anomaly detection frameworks also represent a promising direction, as they would reduce the dependency on the swapping
algorithms used in training.
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