
ar
X

iv
:2

50
6.

16
32

8v
1

 [
cs

.C
R

]
 1

9
Ju

n
20

25

Sharpening Kubernetes Audit Logs
with Context Awareness

Matteo Franzila,b,∗, Valentino Armanib, Luis Augusto Dias Knobb, Domenico Siracusaa,b

aDepartment of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, Trento, 38123, Italy
bCenter for Cybersecurity, Fondazione Bruno Kessler, Via Sommarive 18, Trento, 38123, Italy

Abstract

Kubernetes (K8s) has emerged as the de facto orchestrator of microservices, providing scalability and extensibility to
a highly dynamic environment. It builds an intricate and deeply connected system that requires extensive monitoring
capabilities to be properly managed. To this account, K8s natively offers audit logs, a powerful feature for tracking
Application Programming Interface (API) interactions in the cluster. Audit logs provide a detailed and chronological
record of all activities in the system. Unfortunately, K8s auditing suffers from several practical limitations: it generates
large volumes of data continuously, as all components within the cluster interact and respond to user actions. Moreover,
each action can trigger a cascade of secondary events dispersed across the log, with little to no explicit linkage, making
it difficult to reconstruct the context behind user-initiated operations.

In this paper, we introduce K8NTEXT, a novel approach for streamlining K8s audit logs by reconstructing contexts,
i.e., grouping actions performed by actors on the cluster with the subsequent events these actions cause. Correlated API
calls are automatically identified, labeled, and consistently grouped using a combination of inference rules and a Machine
Learning (ML) model, largely simplifying data consumption. We evaluate K8NTEXT’s performance, scalability, and
expressiveness both in systematic tests and with a series of use cases. We show that it consistently provides accurate
context reconstruction, even for complex operations involving 50, 100 or more correlated actions, achieving over 95%
accuracy across the entire spectrum, from simple to highly composite actions.

Keywords: Kubernetes, Audit logs, Log analysis, Machine Learning

1. Introduction

Kubernetes is a powerful and flexible platform for man-
aging containerized applications. It is designed to be highly
scalable, allowing users to easily add or remove nodes and
workloads as needed. However, scaling up a K8s clus-
ter dramatically increases the complexity of the system
and the amount of data it generates. Despite this added
complexity, users’ requirements and expectations for per-
formance and reliability do not change. As a result, the
need for efficient monitoring and diagnosis of issues in K8s
clusters has become increasingly important [1].

K8s packs a rich set of self-monitoring capabilities, of
which the most powerful one is the Auditing feature [2].
K8s audit logs provide a detailed, chronological record of
all the activity in a cluster, performed by all actors, includ-
ing users, applications, and system components. This in-
formation is invaluable for diagnosing issues, understand-
ing the system’s behavior, and ensuring compliance with

∗Corresponding author
Email addresses: matteo.franzil@unitn.it (Matteo Franzil),

varmani@fbk.eu (Valentino Armani), l.diasknob@fbk.eu (Luis
Augusto Dias Knob), domenico.siracusa@unitn.it (Domenico
Siracusa)

security and regulatory requirements. However, auditing
in K8s does not come free of any challenge.

When a user performs any action on a K8s cluster,
what may look like a simple request is translated under
the hood into a series of actions that are performed by
multiple components. Creating a Pod may involve the
creation of Volumes, the scheduling of the Pod on a Node,
the creation of a Service, and so on. This is normal and
expected behavior, since the cluster must manage multiple
interdependent components dynamically and must adapt
to changes in real-time. However, from a monitoring per-
spective, each of these actions generates its own log line,
complicating the analysis of logs and the understanding of
the system’s state.

In audit logs, all the lines correlated to a single user ac-
tion are usually scattered, and, as the interactions increase
in complexity and length, this problem becomes even more
pronounced. Furthermore, correlating these lines by hand
is at best a daunting task. Each line contains dozens and
dozens of fields that may or may not be relevant, and there
is often no direct way of linking lines together. To further
complicate the matter, even small-sized clusters with few
nodes are inherently verbose. For example, nodes need
to constantly report their status, even when no Pods are
running on them. As workloads are added and the cluster

https://arxiv.org/abs/2506.16328v1

Figure 1: A screenshot of a K8s audit log line of a Deployment action.

scales up, the amount of generated data exacerbates the
correlation problem and also becomes a challenge in terms
of storage and processing.

Nothing makes a point clearer than a concrete exam-
ple: in a controlled experiment using a three-node Kuber-
netes cluster (details follow in later sections), we observed
a considerable level of complexity in the system’s behav-
ior. We ran 238 distinct K8s actions, executed a total of
1155 times. Among these, one of the most common, and
practically unavoidable, was the creation of a Deployment:
a K8s object responsible for declaratively managing repli-
cated pods, including automated rollouts and rollbacks.
Every time this action was triggered (what we refer to as
the triggering event), K8s audit produced a bulky log line,
like the one shown in Figure 1, containing 4700 characters.
In addition to that, it produced, on average, another 16
similarly large lines, describing secondary actions related
to it. These additional events are often neither directly
linked together nor uniquely associated with the Deploy-
ment action alone; indeed, many of them can be triggered
by different actions across the system. In our contained ex-
perimental setting, Deployment actions occurred 40 times
and resulted in 636 log lines. If that does not already sug-
gest a tangled puzzle, consider this: deleting a Namespace
generates even more complexity, as each resource within
the Namespace must first be assessed and then individu-
ally removed. In just three Namespace deletions, our sys-
tem produced 408 log lines, all unrelated to the original
triggering event.

Auditing was created specifically to address fundamen-
tal questions on cluster actions: what happened, when,
who did them, and so on [2]. Yet, we believe that, used
as it is, it fails at its purpose. Analyzing data line by line,
like most current tools do [3, 4], is inefficient and does not
leverage the potential of the information available.

To address these shortcomings, in this paper, we pro-
pose a novel approach to the analysis of K8s audit logs,
called K8NTEXT. Our idea is based on the reconstruc-
tion of contexts. A context is defined as the action that an
actor performs on the cluster, plus all the supplementary
events that were directly caused by that action. Using a
Deep Learning (DL) model, we group correlated lines to-
gether, reducing noise in the log and allowing users and
machines alike to focus on the most relevant information

while retaining all information produced by the auditing
system. We evaluate K8NTEXT with regard to its per-
formance, scalability, and expressiveness, and show that
K8NTEXT both accurately clusters related actions to-
gether and does so in a scalable and efficient manner.

We believe that by structuring audit data into mean-
ingful contexts, our approach lays the necessary ground-
work for enabling real-time analysis, an essential step to-
ward timely detection of misconfigurations, anomalies, and
security threats in K8s environments.

The rest of the paper is organized as follows. Section 2
provides a brief overview of the background information
that is necessary to understand the rest of the paper. Sec-
tion 3 presents the motivation behind our work, while Sec-
tion 4 discusses related work in the field of log analysis and
correlation. Section 5 describes the design and implemen-
tation of K8NTEXT, including the architecture of the DL
model and the clustering algorithm. Afterwards, Section 6
extensively evaluates K8NTEXT, focusing on the capabil-
ities of its DL model and the performance of the clustering
algorithm. Finally, Section 8 concludes the paper and dis-
cusses future work.

2. Background

In this section, we present a small review of K8s and
its audit logging feature.

2.1. Kubernetes

Figure 2: Simplified overview of the interactions in a K8s cluster.
Yellow components are the possible outputs of the audit logging fea-
ture.

Kubernetes (K8s) [5] is an open-source container or-
chestration platform that automates the deployment, scal-
ing, and management of containerized applications. It was
originally developed by Google, and it is now maintained
by the Cloud Native Computing Foundation (CNCF). K8s
is designed to be extensible and scalable, allowing users
to deploy and manage containerized applications across a
cluster of machines.

Figure 2 shows a simplified view of the architecture of
a K8s deployment. At a high level, K8s is composed of a
control plane and a set of worker nodes. The former is re-
sponsible for managing the cluster, scheduling workloads,
and ensuring that the state of the cluster converges to-
wards the state desired by the user. Worker nodes, on the

2

other hand, are responsible for running the actual work-
loads – in the form of containers – and reporting back
to the control plane their status. The control plane and
worker nodes communicate in an asynchronous manner,
using a well-defined set of APIs that are exposed by the
K8s API server.

K8s is designed to be highly scalable. Worker nodes
can be added or removed from the cluster dynamically,
and the control plane can be replicated to provide high
availability. Workloads themselves can be replicated ar-
bitrarily, and K8s will ensure that the desired number of
replicas are running at all times. This is achieved through
the use of controllers, which are responsible for managing
the lifecycle of a given resource. Finally, a rich set of au-
thentication and authorization mechanisms enables Access
Control (AC) to the cluster and allows multiple users to
interact with it.

2.2. Audit logging
K8s provides an audit logging feature that allows users

to track all API activity that takes place within the clus-
ter [2]. Everything that happens in a cluster is logged:
from users authenticating and creating Pods, to controllers
creating new resources, to the API server itself modifying
the state of the cluster.

Each API request is logged in a structured format (JSON)
and its content can be configured with different levels of
granularity. First, cluster administrators define an audit
policy that specifies the required level of detail for the au-
dit logs. As an example, policies may choose to save only
the metadata of the request, or the entire request and re-
sponse bodies. Furthermore, administrators can specify
which resources should be audited and which should be
excluded. Finally, the logs can be sent to either a file or a
webhook (the yellow boxes in Figure 2).

3. Motivation

Audit logs are a crucial component of any system that
aims to be secure and reliable, and in K8s, they are no
exception. However, they have so far struggled to strike
mainstream adoption [6, 7]. This can be attributed to
a twofold issue: the sheer amount of data they generate
and the complexity of extracting data from them. In this
section, we present the motivation behind this work, dis-
cussing the importance and challenges of these issues.

3.1. Contextualization
The first and foremost issue when dealing with K8s

audit logs is the lack of a context tying different log lines
together. As mentioned above, any action – e.g., an API
call by a user – that happens in the cluster is logged. How-
ever, executing one of these actions will usually result in
the cluster performing one or more additional actions as
a direct or indirect consequence, essentially causing a cas-
cade effect.

Figure 3: Interactions between components when creating a names-
pace. On the left side, the various user agents are shown. Each
outer box represents a namespace, while inner boxes represent re-
source types and dark boxes represent objects. Arrows represent
interactions between components, with the verb used in the action.

Let us consider, for instance, a simple scenario in which
a user creates a namespace. On the client side, all that the
end user sees after typing kubectl create [namespace]
is a simple confirmation message. However, on the server
side, several actions are performed, both sequentially and
in parallel, by different actors. After generating the Names-
pace object, the Kube Controller Manager will provide the
Service Account controller with a token to access it. Then,
the Service Account controller will generate the default
service account in the new namespace. In the meantime,
the Root Certificate Authority (CA) Publisher will gen-
erate a new certificate for the new namespace, and the
Kubelet will start watching for changes to it. All of these
actions are performed in parallel, and while none of them
directly involve the user who created the namespace, they
were triggered by the user’s action. Figure 3 illustrates
this scenario.

This lack of context is immediately apparent even when
giving a cursory look at an audit log. This namespace
creation could be scattered across twenty lines in a small
cluster, but across hundreds in a busy, large cluster. To
make matters worse, each line is a stand-alone JSON that
could be by itself large: in this scenario, each line contains
3450 characters on average, or a number of fields varying
between 40 to more than 100.

In this vast sea of information, it is easy to lose track
of the original action that triggered all the others. The
original, triggering action is logged as a single event, with
its request and response payload, clearly identifying the
user who created the namespace. However, the actions
that are performed as a consequence of the original action
are logged as separate events, with their own request and
response payloads, potentially spread dozens of lines apart

3

from each other. In fact, given the distributed nature of
clusters, such events may be logged almost simultaneously
or in a few seconds, depending on the cluster’s size and
network health.

On the surface, this might seem like a minor and dis-
missible issue, as the core action should always be logged
correctly. However, as we show below, disregarding the
context of an action can lead to false alarms, misidentifi-
cation of issues, and, in the worst case, security breaches.
Furthermore, this “modus operandi” of K8s, where differ-
ent components in parallel perform actions, is not limited
to namespace creation, but is pervasive throughout the
system. Deployments get scaled up and down, Services
get exposed, and Pods get created and destroyed, all in
parallel and in response to different actions with little to
no user intervention and, most importantly, intertwined
with each other without clear separation.

3.2. Verbosity and complexity
To exacerbate the contextualization problem, K8s au-

dit logs are inherently verbose and complex. Even in a
small, freshly configured cluster, enabling audit logging
right out-of-the-box will generate a hefty flow of informa-
tion. Indeed, as K8s is by design a distributed system, the
number of components that interact with the API server
and with each other is large, and each and every single
small interaction is logged, when no filter is applied. As
a non-exhaustive list, these “background” interactions in-
clude: heartbeats1 between the control plane and worker
nodes, service account token requests and renewals, con-
trol plane components watching for changes in the cluster
state, and so on. All of these interactions are logged, and
some of them could be confused with the results of user
actions.

Furthermore, as the cluster scales up, the amount of
generated data increases dramatically. Multiple users and
actors may interact with several resources at once, compli-
cating the context reconstruction process. An innocuous-
looking action such as a Deployment creation could gener-
ate ten lines of logs in a small cluster. In a bigger cluster
with several nodes, the same action could generate hun-
dreds of lines, as the Deployment controller will create
several Pods, which in turn will generate several events,
and so on. Indeed, the number of lines generated by a sin-
gle action is not fixed, but rather depends on the cluster’s
size and complexity.

To further complicate the matter, these lines are hard
to contextualize and filter and extremely varied. First,
the K8s API is vast and complex [5], resulting in hun-
dreds or thousands of distinct behaviors that may or may
not be relevant to the task at hand. Second, even with
the efforts made by the API Machinery Special Interest

1Heartbeats are periodic API exchanges between the control plane
and worker nodes to ensure that the nodes are still alive and healthy.

Group (SIG)2, by the nature of K8s code, distinct SIGs
will create objects in different ways, generating JSON with
fields that are not entirely compatible. At last, the API
presents some corner cases that are not immediate to ad-
dress. For example, the objectRef field in the logs refers
to the object being acted upon, but it is often unclear
what the object is, as the field is not always populated.
Such a scenario makes it incredibly difficult for a human
to manually parse the logs – even if already familiar with
the K8s API – and for a machine to efficiently categorize
and identify information.

One might argue that a correct configuration, verbosity
and an efficient log management system can alleviate these
issues. Yet, deploying effective configurations is not al-
ways straightforward, especially in large, complex clusters.
Knowing in advance which data types should monitor and
which not is often unfeasible, as K8s’ highly extensible and
dynamic API allows for the creation of custom resource
which may not be known in advance. On the other hand,
using a log management system such as Elasticsearch [8] or
Splunk [9] can help in filtering and querying the logs, but
it does not solve the problem of the complexity of the logs
themselves. Indeed, these systems are designed to store
and query logs, not to understand them.

3.3. Motivating examples
Finally, we present three real-world scenarios that il-

lustrate the importance of audit logs in K8s, and how the
lack of context and the verbosity and complexity of the
logs can hinder their usefulness.

3.3.1. Malfunctioning components
A system administrator is in charge of a large K8s clus-

ter with multiple nodes, namespaces, and users. In such
a complex system, issues are bound to happen: nodes run
out of space, Pods crash, and components fail. The ad-
ministrator needs to identify the root cause of the issue
quickly: to do so, they employ a system of log collection
and alerts to notify them of any issues. However, linking
the alerts to the actual cause of the issue is often difficult.

Every ten seconds, nodes exchange a heartbeat mes-
sage with the control plane. If a Node stops sending heart-
beats or sends malformed ones, the control plane marks
the Node as unhealthy and starts the eviction process.
This process may generate a lot of logs, which are hard
to correlate, contextualize, and filter. On the other side
of the spectrum, problems affecting the underlying operat-
ing system (e.g., running out of disk space, the Container
Runtime Interface (CRI) crashing, etc.) may not generate
any logs at all. In both cases, the administrator is left with
a lot of logs to sift through and no clear way to identify
the root cause of the issue.

2SIGs are working groups within the K8s community that focus
on specific areas of the project.

4

As an example, following a successful upgrade of a Ku-
bernetes cluster, the control plane failed to establish secure
communication with its nodes. Although the nodes them-
selves remained healthy—continuing to send heartbeats,
the leader election process repeatedly timed out, and the
control plane could not schedule or deploy any new work-
loads. Inspection of the extracted log entries revealed that
every attempt by the kube-controller-manager to fetch its
own Lease object under the coordination.k8s.io API
was being met with HTTP 401 "Unauthorized" responses.
This kind of problem is not easy to identify, and even
during a cluster’s boot-up phase, the audit logging mod-
ule will generate thousands of lines. This breakdown in
TLS certificate validation effectively severed the control
plane–node channel and halted cluster operations.

3.3.2. False alarms
In large multi-tenant K8s clusters, multiple users fre-

quently deploy large Helm charts for testing purposes. These
deployments involve legitimate actions like creating names-
paces, service accounts, and secrets, which are difficult
to distinguish from malicious activities, but may gener-
ate many alerts. The security team needs a way to quickly
identify the context of these actions and filter out the noise
generated by the components of the control plane.

As outlined in this paper, deploying K8s objects gener-
ates a lot of logs, which are hard to correlate, contextual-
ize, and filter. Tools such as Falco [10, 3], while proficient
in parsing the logs, are only able to detect incidents line by
line and do not perform any temporal correlation. For ex-
ample, deploying a Helm chart for Prometheus3 generates
at least 1300 lines of audit log. Feeding these 1300 lines
into Falco outputs 389 lines of Falco logs. Most of these er-
rors and warnings relate to new control plane components
being created and interacting with secrets, for example:
1 Error K8s Secret Get Successfully (user=system:
2 serviceaccount:rising:kube -[..]- operator
3 secret=prometheus -kube -[..]- prometheus -web -config
4 ns=rising resource=secrets resp =200 decision=allow
5 reason=RBAC: allowed by ClusterRoleBinding
6 "kube -[..]- operator" of ClusterRole
7 "kube -[..]- operator" to ServiceAccount
8 "kube -[..]- operator/rising ")

None of these are malicious (provided the request was
legitimate in the first place).

3.3.3. Evading detection
The department of a company that is in charge of se-

curity has just received a report that a user has been com-
promised. The hacker knows how to avoid detection, for
example by leveraging proxy forwarding, keeping persis-
tent connections open, or by abusing legitimate commands
to extract information from the cluster. The security team
is unable to detect the breach, and the hacker is able to
exfiltrate a large amount of data from the cluster.

3https://artifacthub.io/packages/helm/prometheus-
community/kube-prometheus-stack

Some corner cases of the K8s API are extremely tricky
to identify and are often abused or misconfigured. Some
of these behaviors can be detected line-per-line, such as
kubectl exec. However, as mentioned in the previous
section, such types of actions will likely generate several
false alarms by systems such as Falco. On the other hand,
the use of Node and Pod proxies is not detected by tools
such as Falco at all. In both cases, an attacker could easily
evade detection by opening a persistent connection to the
cluster and exfiltrating data slowly over time.

Assume the attacker has successfully leaked a user’s
credentials in the cluster. Even if a security expert sus-
pects that a user has been compromised, looking specifi-
cally at the audit log is not straightforward since it only
shows individual API calls without enough context to tell
routine admin work from malicious activity. On top of
that, attackers often stick to valid API calls or built-in es-
calation paths that raise no errors. Hence, the administra-
tor needs to manually piece together behavioral patterns,
network indicators, and threat intelligence just to hint at
the real compromise path.

4. Related Work

This section provides an overview of the related work.
First, we focus on the state of the art in K8s audit log-
ging, then we provide an overview of other log analysis
approaches, including classic log analysis and provenance.
Finally, we discuss the use of ML in log analysis.

4.1. Cloud and Kubernetes audit logging
The concept of audit logging in cloud platforms is rel-

atively new. Amazon Web Services (AWS) introduced its
CloudTrail service [11] in 2013, which provides a record of
all actions performed on an AWS account. Google intro-
duced its Cloud Audit Logs [12] in 2017, which provides
a similar service for Google Cloud Platform (GCP) re-
sources. Finally, K8s audit logging [2] was introduced in
2017, with the release of version 1.74.

Unfortunately, K8s audit logging has so far garnered
little attention from the research community. To the best
of our knowledge, PerfSPEC [13] is the first and only pub-
lication that actively employs K8s audit logs, albeit as a
means of proactively identifying overheads when managing
security policies.

On the industry side, Sysdig [14, 15] and Falco [3] are
two companies that have developed tools to analyze K8s
audit logs. Sysdig is a cloud-native security platform that
provides a wide range of features for monitoring and secur-
ing cloud-native applications. It can ingest audit logs from
a K8s cluster and provide insights into the security of the
cluster. Audit logs are shown in Sysdig as a list of events,
with the ability to filter and search for them. However,

4https://kubernetes.io/blog/2017/06/kubernetes-1-7-secur
ity-hardening-stateful-application-extensibility-updates/

5

https://kubernetes.io/blog/2017/06/kubernetes-1-7-security-hardening-stateful-application-extensibility-updates/
https://kubernetes.io/blog/2017/06/kubernetes-1-7-security-hardening-stateful-application-extensibility-updates/

Sysdig does not perform any correlation between different
log lines nor does it provide a comprehensive analysis of
the relationships between events in the audit logs. Falco,
on the other hand, focuses on real-time security monitoring
and can detect anomalous behavior based on audit logs.
Falco ships with a set of pre-defined rules that can be used
to detect suspicious activity in a K8s cluster. These rules
are customizable and can be tailored to the specific needs
of the user. However, they are very prone to false posi-
tives, as they are based on a set of policies that may not
be applicable to all environments. Finally, another tool
that recently started employing K8s audit logs is Lace-
work [4], a cloud security platform that provides insights
into the security of several cloud services. Lacework can,
too, ingest audit logs from a K8s cluster, although again it
performs no correlation between different log lines, and the
extent of the anomaly detection capabilities is undisclosed.

4.2. Unstructured log analysis
The field of log analysis is vast and has seen a surge

in popularity in recent years. Both academia and industry
have been actively researching the topic, with a plethora of
papers exploring the topic from both an observability and
a security standpoint and using both ML and traditional
techniques.

The work described in this paper deals with audit logs,
which are provided in a structured format. However, the
majority of the research in the field of log analysis has
focused on classic log analysis, i.e., the analysis of un-
structured logs written in plain text, such as those from
Linux’s auditd [16]. Most systems have been using and
still use this format, and it comes with its own set of chal-
lenges.

To begin with, having an unstructured log means that
information must be manually extracted from the log lines,
which is a tedious and error-prone task. Works such as
Drain [17] use a tree-based structure to parse logs, while
others like Spell [18] instead employ longest common sub-
sequence and prefix trees. All of these works focus on the
problem of pattern mining, i.e., the identification of com-
mon patterns in log lines.

Once these common patterns are identified, log lines
must be consistently clustered together. In classic logs
such as system logs, linking information includes the Process
Identifier (PID), the files being accessed, or the network
connections being made. Several works first parse the logs
into log templates, then link lines together by means of
the information found in each line. For example, LogClus-
ter [19] vectorizes logs and then attempts to find past log
lines that are similar to the current one. On the other
hand, LogMiner [20] clusters system logs into behaviors
(e.g., deleting files, compressing, etc.) by analyzing system
calls made in the system. All of these works, however, are
of little use in the context of K8s audit logs, since JSON
logs are already structured and easily parsable.

4.3. Provenance
Strictly correlated to log analysis is the concept of

provenance. In security, provenance refers to the recon-
struction and analysis of the history of a system, in order
to identify the root cause and the sequence of events that
led to a security incident [21]. In this context, logs are a vi-
tal, almost irreplaceable resource for security experts, both
in classic environments and in cloud-native ones [22, 23].

Provenance has been extensively studied in the litera-
ture, with dozens of works showing how information can
be efficiently extracted from logs and used to reconstruct
the history of an intrusion, or to identify the root cause
of a failure. Core to most works is the concept of causal
dependency, which refers to the relationships between dif-
ferent events in a system. For example, if event A is the
cause of event B, then A is said to be a causal predecessor
of B.

Works in the field that perform causal analysis in-
clude NoDoze [24], ProvGRP [25], HERCULE [26], DEP-
COMM [27]. Other works that improve on this approach
include Winnower [28], which proposes a system that uses
grammatical inference over the single logs, clusters them,
and generates behaviors using a state machine; and ProvG-
Searcher [29], which performs embedding over the logs and
then uses a graph-based approach to identify the relation-
ships between them. Finally, LogApprox [30] quantifies
how much redundancy in logs can be removed while still
being able to reconstruct the original log lines.

Overall, these works perform post-mortem analysis, i.e.,
they analyze logs after they have been generated and stored
elsewhere. Post-mortem analysis is powerful and can pro-
vide fine-grained intelligence. However, when dealing with
systems that constantly generate large amounts of logs,
timely analyzing them becomes unfeasible, as does storing
all the logs for later analysis. To address this issue, some
works have proposed real-time analysis of logs, i.e., the
ability to analyze logs as they are generated. In the litera-
ture, works such as HOLMES [31], Sleuth [32], and Node-
Merge [33] all perform real-time analysis of logs. How-
ever, these works are still limited to classic logs and do
not take into account the specificities of distributed envi-
ronments. When multiple components possibly scattered
across multiple machines are involved, the relationships
between events can become complex and difficult to iden-
tify. Aiming to untangle such complexity, works such as
CLARION [23] and ALASTOR [22] extend the concept of
provenance to microservice deployment. Using a combina-
tion of data aggregation, resource renaming, and summa-
rization, these works efficiently collect data from workloads
scattered across multiple machines and aid in the detection
of intrusion. This focus on microservices is not limited to
provenance works: the research community is actively ex-
ploring microservice tracing for performance monitoring
and debugging [34, 35]. However, all of these works fo-
cus on the analysis of logs generated by the microservices
themselves, and do not take into account the audit logs
generated by the orchestration layer.

6

4.4. Machine learning and log analysis
ML has seen a surge in popularity in recent years,

thanks to the ever-increasing amount of data that is be-
ing generated by modern systems and the commonplace
availability of powerful computing resources. ML models
are proficient in quickly identifying patterns and anoma-
lies in logs, either by generalizing from a small set of la-
beled data (supervised learning) or independently identi-
fying patterns by themselves (unsupervised learning). As
an example, DyCom [36] groups logs into communities and
then uses an embedding-based graph encoder to identify
the relationships between them. LogGraph [37] employes
Graph Neural Networks to obtain a similar result.

With the advent of Large Language Models (LLMs),
the field of log analysis has also seen a shift towards us-
ing bigger models to analyze and understand the rela-
tionships between different events. LLMs are trained on
large amounts of text data and can generate human- and
machine-like text. They have been shown to be effective
in a variety of natural language processing tasks, such as
text classification and machine translation. LogPrécis [38]
shows promising results in log classification, using a small
set of labeled data to fine-tune a pre-trained LLM.

4.5. Summary
The state of the art in K8s audit logging is still in its

infancy, with little research being done on the topic. The
few (mostly non-academic) works that do exist do not per-
form any correlation between different log lines, limiting
their usefulness. On the other hand, existing techniques
are ill-equipped to analyze K8s audit logs. Casual analysis
solutions are often tailored to system audit logs, whose fea-
tures such as process IDs and file descriptors aid in estab-
lishing relationships between events. Sequential analysis
solutions, on the other hand, are often limited to analyz-
ing logs line by line, failing to capture any dependency at
all. Finally, rule-based approaches require creating and
maintaining a vast, ever-growing catalog of event patterns
to correctly contextualize logs. This approach is not only
labor-intensive but inherently brittle, as it needs frequent
updates to accommodate the constant changes to the K8s
API and the introduction of new features.

Thus, there is a need for a new approach to analyze
K8s audit logs, one that can efficiently capture the re-
lationships between events and provide a comprehensive
analysis of the logs while doing so efficiently, in real-time,
and without requiring a vast catalog of rules. ML is a
promising approach to achieve this, as it can quickly iden-
tify patterns and anomalies in logs and can be trained to
understand the quirks of K8s audit logs. However, some
specific challenges such as linking complex relationships
between events, handling a high volume of logs and fields,
and supporting a vast number of possible events, have not
yet been addressed in the literature, leaving a gap that
needs to be filled.

5. K8NTEXT

To address the limitations identified in Section 3 and
unresolved by existing tools, we present K8NTEXT. K8N-
TEXT is a pipeline that leverages machine learning to
automatically identify relationships between log lines, en-
abling effective event contextualization. Our approach
transforms the raw, unstructured audit logs into struc-
tured, queryable contexts that provide a holistic view of
cluster activities.

5.1. System architecture
Figure 4 shows the system architecture of K8NTEXT.

The system is designed to be modular and extensible, al-
lowing users to customize it to their needs. The main
components of the system are:

• Log pre-processing: audit logs coming from the
K8s cluster are parsed, filtered and reordered;

• Label prediction: a ML model predicts the label
of the log lines;

• Context reconstruction: the log lines are clus-
tered into contexts using the predicted labels.

K8NTEXT exposes the now-clustered log lines in var-
ious formats, optionally including a query engine that al-
lows users to query the contexts that have been recon-
structed and visualize them in a user-friendly way. The
query engine is not mandatory, and users can choose to
use K8NTEXT as a simple log parser that outputs the
clustered log lines in a format of their choice. K8NTEXT
is very fast and can perform inference in milliseconds even
on large clusters, enabling real-time consumption of audit
logs.

All components of K8NTEXT are written in Python
3.10 and use the Keras 3.0 library [39] for the ML model,
making it agnostic to the underlying ML framework. The
query language is implemented using Lark [40], a Python
library for parsing context-free grammars. The source
code of K8NTEXT is available on GitHub [41].

5.2. Contextualization
We first explain the concept of contextualization and

how it is implemented in K8NTEXT. The goal of K8N-
TEXT is to reconstruct the context of an event, i.e., the
set of events that are related to it. An event e is defined
as a single log line, while its context of an event e as the
set of events E s.t.,

1. ∃ê ∈ E : ê is the triggering event or the event that
directly caused all the other events in E to happen,

2. ∀e ∈ E, e ̸= ê, e happened as a direct or indirect
consequence of ê,

3. the timespan (t0, t1) that contains all the events in
E is as small as possible.

7

Figure 4: System architecture of K8NTEXT. Dotted lines indicate the flow for the training phase, while solid lines indicate the flow for the
inference phase. Black boxes represent the DL components, blue (dark) boxes represent the K8s components, and the yellow (light) boxes
represent all other log-handling components. For clarity, the query engine is optional and is left out of the figure.

K8s is at its core a distributed system. Thus, events
may happen in parallel or in quick succession. As a result:

• the triggering event ê may not be the first event in
E,

• the events in E may be unordered,

• the timespan (t0, t1) can contain events that are not
directly related to the triggering event,

• the timespan (t0, t1) may be excessively large or open
on the right.

Furthermore, some tools such as kubectl and its client-
side apply5 intentionally perform some initial actions (e.g.,
getting information on the namespace of an object) before
actually sending the request to the K8s API, further com-
plicating the task of identifying the triggering event.

Table 1 summarizes the symbols used in this section to
define and describe the various components of K8NTEXT,
both in this section and in the rest of the paper.

Symbol Description
e Event
ê Triggering event
E Set of events

t0, t1 Timespan containing events in E
|E| Number of events in E
W Window size
|F | Number of features
|L| Length of the label tuple
m Highest integer in the label tuple
n True if the object is namespaced
u True if the action was on a single object

r, s, v Resource, subresource, and verb identifiers
fA API version, resource and subresource → (r, s)
fV Verb name → v

Table 1: Table of symbols.

5https://kubernetes.io/docs/reference/using-api/server-s
ide-apply/#comparison-with-client-side-apply

5.3. Log parser
To begin with, audit logging must be properly config-

ured in the K8s cluster [2]. Kubernetes auditing natively
supports several criteria for filtering events at the source,
such as the resource type or the user that performed the
action. However, in our implementation, no filtering is
performed. This allows K8NTEXT to ingest all events
generated by the cluster, and thus, to have a comprehen-
sive view of the cluster’s activity and to truly capture ev-
ery dependency and interaction between events. Filtering
at the source would reduce the amount of data ingested,
but it would also provide K8NTEXT with an incomplete
view of the cluster’s activity, potentially leading to missed
dependencies and interactions between events.

Once the logs are generated, they are sent to the log
parser. The log parser reads the logs generated by the
K8s cluster and filters, reorders, and normalizes them in a
way that is suitable for the label predictor and the cluster’s
version of the API. null values are added for some missing
fields (see Section 5.4), and some lines unrelated to API
calls are discarded.

For compatibility reasons, the log parser supports any
CustomResourceDefinition (CRD) added to the cluster au-
tomatically, but without extracting any context. CRDs
are by nature dynamic and diverse, a trait hard to cap-
ture with a fixed-size model. We leave the extraction of
contexts from CRDs as future work.

5.4. Fields and features
Each log line is a distinct JSON object that contains

a variable set of key-value pairs. Some of these fields are
fixed and appear in every log line, while others are optional
and may or may not be present depending on the type of
event being logged, the status of the cluster, and its con-
figuration. K8s defines in its documentation three types
of audit levels: Metadata, Request, and RequestResponse.
In turn, we categorize key-value pairs generated by each
audit level as Metadata, Request, or Response fields.

8

https://kubernetes.io/docs/reference/using-api/server-side-apply/#comparison-with-client-side-apply
https://kubernetes.io/docs/reference/using-api/server-side-apply/#comparison-with-client-side-apply

Metadata fields are always present in the logs and com-
prise key information about the event: its timestamp, the
user that performed the request, the target of the request,
and so on. Request and response payloads, on the other
hand, contain a wealth of information that greatly varies
even between different events of the same type. Their
structure is unpredictable, containing fields that are some-
times duplicate, nested, or in non-string format (such as
a raw YAMLs as a value of a key). Sometimes, they may
not be present altogether: some API calls do not require a
request body, while others do not return a response body.

Table 2 shows a selection of the most relevant features
we chose for the model, while the complete list is available
in the source code. To obtain the features, each JSON is
flattened, i.e., all nested fields are extracted and converted
into a single-level dictionary. This allows us to easily access
the fields we are interested in, regardless of their nesting
level.

Choosing the features was a two-phase process. First,
we performed a systematic analysis of the logs generated
by several K8s clusters, including both production and test
clusters. We thoroughly examined the logs and the K8s
source code to understand how the logs are generated and
what fields are available in each log line. This allowed
us to identify key linking fields across different types of
resources in the API. Using this approach, we obtained
50 features. These 50 features were then further reduced
to 39 by means of an iterative feature selection process,
removing some redundant and less relevant ones.

Finally, in Section 6, the features are evaluated in terms
of their impact on the model’s performance. We show that
while the 39 features could be further reduced, they are
sufficient to achieve an optimal accuracy.

5.5. Labels
The next step is to define an aggregation mechanism for

grouping correlated events together. The goal is to parti-
tion a set of log lines into a set of clusters, each containing
a triggering event ê and all the events E that are related
to it. Since directly identifying such clusters is complex,
we instead introduce an intermediate representation where
we aggregate together log lines related to the same type of
action.

Recall the example of creating a namespace mentioned
in Section 3.1. In a cluster, multiple namespaces may be
created over time or possibly concurrently. Rather than at-
tempting to uniquely identify each act of creating a names-
pace plus all the correlated actions, we first group together
all the lines that are in some sort connected with the cre-
ation of a namespace. To do so, we employ a ML model
(described later in detail in Section 5.8) to perform mul-
ticlass classification, i.e., we train the model to recognize,
for each log line, the type of action it is related to. To
achieve so, we need to define a set of labels that can be
used to identify the type of action.

We start from a subset of the features briefly described
in the previous section. These features, shown in Table 3,

are always present in the logs and do not have any tempo-
ral or identity information: they are solely related to the
characteristics of the action itself.

Then, we augment this information by introducing two
additional fields, objectRef.namespace and objectRef.name,
that are present in the logs only if the object exists in a
namespace and the action was performed on a single ob-
ject, respectively. 6

Finally, we define two helper functions fA and fV that
take as input the K8s API version, the resource name, and
the subresource, and return a tuple (r, s), where r, s ∈ Z
are the resource and subresource identifiers, respectively.
The function fV is similar, but it takes the verb name as
input and returns a verb identifier. These functions are
used to map the K8s API version, resource name, subre-
source, and verb to a unique identifier. This allows us to
define a consistent set of generic behaviors that are com-
mon to all K8s clusters running that version.

We can now define the label L of a triggering event
as a tuple L = (r, s, v, n, u).

• r, s ∈ Z are the resource and subresource identifiers
as defined by fA,

• v ∈ Z is the verb identifier as defined by fV ,

• n ∈ (0, 1) is a boolean that indicates if the object is
namespaced (1) or not (0), i.e., if the action has been
performed on a namespaced object or on a cluster-
wide object,

• u ∈ (0, 1) is a boolean that indicates if the object is
“single”, i.e., if the action has been performed on a
single object (1) or on multiple objects (0).

To obtain the last two items, we check if the name-
space and name fields are present and not null in the logs.
If they are, the object is namespaced and single, respec-
tively. With this definition in place, the label of an event
is a tuple that uniquely identifies the characteristics of the
triggering event of which the log line is part of. Such an
approach allows us to maintain a small and manageable set
of labels, while still being able to capture the complexity
of the K8s API.

Before moving on, we must note that the label is not
a unique identifier of the event itself, but rather a unique
identifier of the type of action. After the ML model has
predicted the label, we obtain clusters, each containing one
or more contexts that need to be separated. This process
is then performed by the clustering module, described in
Section 5.9.

6K8s differentiates between namespaced and non-namespaced ob-
jects, which can affect how events are processed and interpreted. The
latter are cluster-wide objects, while the former are confined to a spe-
cific namespace. Some resources may exist in both namespaced and
non-namespaced versions. Second, some actions can be performed
on a single object, while others can be performed on multiple objects.

9

Feature Description
objectRef.apiGroup API group of the object
objectRef.namespace If the object is namespaced
objectRef.resource Resource acted upon
objectRef.subresource Subresource acted upon
user.groups[0/1/2] User groups (first three)
userAgent.extra Extra information in the user agent
userAgent.tool Tool used to interact with the API
userAgent.version Version of the tool used
verb Verb of the request
requestObject.metadata.ownerReferences.[...] Information on the parent object
responseObject.involvedObject.[...] Information on additional objects
responseStatus.code Status code of the response

Table 2: Key features used in the model.

Field Description Example
objectRef.apiGroup The K8s API group of the object core,

apps, rbac.authorization.k8s.io
objectRef.apiVersion The K8s API version of the object v1, v1beta1
objectRef.resource The resource type of the object pods, namespaces, secrets
objectRef.subResource The subresource type of the object status, scale
verb The action that was performed on the object create, delete, get, list, update

Table 3: List of fields used to define the label of a triggering event.

5.6. Dataset
Given the lack of publicly available datasets for this

task, we generated our own dataset, available along with
the source code of K8NTEXT on GitHub [41]. The dataset
contains a total of 18478 log lines collected from a K8s clus-
ter running in a virtualized environment in our premises.
To generate this dataset, we created a simple three-node
cluster using kubeadm. One single node performed control
plane duties, while all three nodes could schedule work-
loads.

Audit logs are agnostic to the number of nodes in the
cluster, since they refer to API calls that are handled in the
control plane, mostly incoming from itself and users in the
system. As a result, we decided to settle on a three-node
architecture, a compromise between our computational re-
sources at our disposal and the fact that arbitrarily scaling
the cluster would add little value to both the dataset and
the evaluation of K8NTEXT.

The dataset was generated in a systematic and repro-
ducible way. Starting from the official API documentation,
we generated a list of all the possible endpoints and meth-
ods supported by each, then narrowed it down to a list of
typical interactions with the API resources.

This list comprises typical interactions with the clus-
ter (such as creation, deletion, inspection of Pods, Deploy-
ments, and so on), network management (creation of Net-
workPolicies, Ingresses, etc.), storage management (cre-
ation of PersistentVolumes, StatefulSets, etc.), and ad-
vanced interactions with the cluster (such as Jobs, Cron-
Jobs, etc.). We also included interactions with authenti-
cation resources, such as Roles and RoleBindings, and the
creation and management of users.

We also tried to retain realism in the dataset, simu-
lating failed rollouts of Deployments, concurrent creation
of resources, and other edge cases. This increased realism

came at a cost of a great imbalance in the dataset. In-
deed, resources such as Pods and Deployments are central
to a cluster’s operation, while others may only see mini-
mal usage. Generating a perfectly balanced dataset would
have been both time-consuming and potentially counter-
productive. The impact of this choice is investigated in
Section 6.5. We also purposely left out some deprecated
and lesser-known API resources such as FlowSchemas.

Overall, the dataset comprises a total of 238 unique
actions out of the possible 1356 that are supported by the
K8s API. While this may seem a small number, it must be
noted that several combinations are either deprecated or
rarely used in practice, and the dataset is not meant to be
exhaustive. Our dataset focused on the most common and
representative actions, which are sufficient to demonstrate
the effectiveness of our approach while providing a flexible
model for most use cases.

5.7. Label encoding
Using the labels defined in Section 5.5, we manually

labeled the dataset, taking care in assigning to each log
line a label representing the type of action of its triggering
event. To do so, we convert the tuple L = (r, s, v, n, u)
into an integer representation. As an example, the act of
deleting a ReplicaSet is represented as L = (r, s, v, n, u) =
(17, 0, 2, 0, 1), where r is our internal resource ID of Repli-
caSet, s is our internal subresource ID (0 in this case),
v is our verb ID of delete, n is 1 because ReplicaSets
are namespaced, and u is 1 because we are deleting a
single ReplicaSet. Using a simple and invertible encod-
ing scheme7, we convert this tuple into a single integer

7Its implementation is omitted for brevity, but it is available in
the source code.

10

l = 70048. Such a representation is convenient for man-
ual labeling but extremely space inefficient. Indeed, after
manually labeling the dataset, we ended up with a total
of 1356 unique labels. This means that the model would
need to perform multiclass classification over 1356 classes,
which is a big yet computationally feasible number.

To improve the model’s efficiency, when importing the
dataset, we convert the integer back to its tuple represen-
tation and then separately one-hot-encode each element of
the tuple. Doing so allows us to reduce the size of the one-
hot-encoded vector from 1356 to |L| ×m, where |L| is the
number of elements in the label tuple and m is the max-
imum integer in all tuples after it has been categorically
encoded. In our case, |L| = 5 and m = 59, so the final size
of the one-hot-encoded vector is 5 × 59 = 295. This is a
significant reduction in size, and it allows the model to be
more efficient both in training and in inference.

5.8. Deep Learning model
Once the log has been parsed, encoded, and normal-

ized, it is sent to the deep learning model for label predic-
tion.

5.8.1. Input and output shapes
Our model was designed from the ground up to be mod-

ular and flexible, allowing it to be easily adapted to dif-
ferent datasets and environments. To do so, we rely on
some hyperparameters that are set on the fly before the
model training. The key hyperparameter is the window
size W : the number of log lines to consider in each batch.
This number is strictly related to the traffic proper of the
cluster itself. Indeed, smaller clusters with less traffic may
require smaller window sizes, while busier clusters with
several nodes and requests per second will require a larger
window size. The experiments with W are shown in Sec-
tion 6.2.

The other three main hyperparameters are those that
directly affect the number of input and output units of
the model. The first one is the number of features |F |,
which is manually set during the model configuration and
in this case is equal to 39. Thus, the model requires as
input a tensor of shape (W, |F |), where W is the window
size and |F | is the number of features.

The second and third ones, on the other hand, deter-
mine the output shape of the model. As described in Sec-
tion 5.5, the model is trained to predict a label that is a
tuple of integers. This tuple is composed of |L| elements,
and each element is an integer that, once encoded, can take
a value between 0 and m− 1. Our model outputs a tensor
of shape (W, |L|,m): in other words, for each log line in
the batch (W), we can reconstruct the original tuple L by
applying a softmax activation function to each element Li

of the output tensor.
A study on the impact of these hyperparameters, among

others, is presented in Section 6.

5.8.2. Model architecture
We chose simplicity and efficiency as the guiding prin-

ciples for the design of our model, aiming to create a model
that is easy to understand and can be trained in a reason-
able amount of time. The model is based on a Bidirectional
Long Short-Term Memory (BiLSTM) architecture, which
is a type of recurrent neural network (RNN) that is partic-
ularly well-suited for sequence prediction tasks. BiLSTM
networks are able to capture long-term dependencies in the
input data, making them ideal for processing sequences of
log lines. Figure 5 shows the architecture of the model.

The figure shows the layers of the model, which are
described in detail below. The model is designed to take
as input a tensor of shape (W, |F |), where W is the win-
dow size and |F | is the number of features. The output of
the model is a tensor of shape (W, |L|,m), where |L| is the
number of elements in the label tuple and m is the max-
imum integer in all tuples after it has been categorically
encoded.

The model consists of the following layers:

• An initial input tensor, which depends on the num-
ber of features and the window size (|F |,W);

• Two consecutive BiLSTM layers, with decreasing units
and separated by a batch normalization layer;

• A dropout layer;

• A time-distributed dense layer that converts the BiLSTM
per-timestep predictions to a per-line output;

• A second batch normalization layer;

• A softmax activation function.

Initial experiments with single Long Short-Term Mem-
ory (LSTM) layers were not satisfactory, as they showed
poor performance with out-of-order or far-apart log lines.
We therefore switched to a BiLSTM architecture, which is
able to process the input sequence in both directions, from
the beginning to the end and vice-versa. We experimented
with several layer configurations, including the number of
units in the BiLSTM layers, the number of units in the
dense layers, the dropout rate, and the number of layers,
using Keras’ hyperparameter tuning capabilities8.

We settled on a decreasing number of units in the
BiLSTM layers, with the first layer having 4 · |F | units and
the second layer having 3 · |F | units. This configuration
allows the model to scale well with the number of features,
while still being able to capture the dependencies in the in-
put sequence. For the dropout layer, we found that a rate
of 0.4 was the best at reducing overfitting while maintain-
ing a good performance. The dropout layer is placed after
the second BiLSTM layer, to prevent overfitting on the
training set.

8https://keras.io/keras_tuner/

11

https://keras.io/keras_tuner/

Figure 5: The architecture of the deep learning model used for label prediction.

The model is compiled using the Adam optimizer and
the categorical focal cross-entropy loss function, which is a
variant of the categorical cross-entropy loss function that
is more robust to class imbalance. Early stopping, learning
rate reduction on plateau, and other techniques are used to
prevent overfitting and improve the model’s performance.
The model is trained for a maximum of 130 epochs. The
training process is monitored using the validation loss, and
the best model is saved for later use.

The model’s final hyperparameters are described in Ta-
ble 4. Some of them are further studied in Section 6, while
others are fixed and not subject to further analysis.

Hyperparameter Value
Window size W 60
Number of features |F | 39
Number of labels |L| 5
Maximum integer m 59
Number of units (1st layer) 4 · |F |
Number of units (2nd layer) 3 · |F |
Dropout rate 0.4
Initial learning rate 0.004
Early stopping patience 8
Reduce LR factor 0.1
Reduce LR patience 4

Table 4: Model hyperparameters.

5.8.3. Batching
The final issue that must be dealt with before using

the model is the batching strategy. With our window size
W , log lines will appear in up to W different batches.
Depending on the position within the batch, the model
may predict different labels for the same log line. To obtain
a single label for each log line, we implemented a simple
majority voting system. For each log line, the model takes
the most represented label in the batches it appears in, or
the first in case of a tie. This label is the final prediction
for the log line and is appended to the log line before being
sent to the query engine.

5.9. Clustering
At the end of the labeling process, each log line has

been assigned a label that uniquely identifies the trigger-
ing event it is part of. However, recall that we explicitly
embedded only a subset of the fields in the label, namely,
the generic fields. This means that while triggering events
and their consequences are categorized, the specific con-
texts in which they occur are not yet fully reconstructed.
As an example, imagine the creation of two namespaces.
Their label will be shared, but the contexts in which they
were created will be different. At the moment, we have no
way to distinguish between them.

To do so, we need to group log lines that are related to
the same triggering event together. This is a non-trivial
task, as the log lines are not ordered in any way, and the
only information we have is the label of the triggering
event. We can pursue different clustering approaches.

5.9.1. Matching objectRef
We can group log lines together that have the same

objectRef field. This is a simple approach that is guar-
anteed to work if the object is namespaced and single.

5.9.2. Matching involvedObject, claimRef, ownerReferences
Some advanced K8s objects, such as Deployments, State-

fulSets, or Events generate a cascade of objects and events
when they are created, updated, or deleted. For example,
creating a Deployment called test will first create a Repli-
caSet, called test-xxxxx, which will then create one or
more Pods, called test-xxxxx-yyyyy. The linking infor-
mation is usually found in the request or response bodies
in the form of the ownerReferences field. A similar role
is played by the claimRef field in PersistentVolumeClaims
and PersistentVolumes, and the involvedObject field in
Events. By matching these fields, we can group log lines
together that are related to the same object.

12

5.9.3. Uniform distribution
If no other field is present that can assist in the clus-

tering process, but a certain set of log lines is present in
the same quantity or multiple of the triggering event(s),
we can divide them among the contexts based on their oc-
currence. For example, the act of describing a Deployment
is internally translated into a series of get and list op-
erations on all pods and events related to it. Assume for
simplicity that each kubectl describe executes one get
and one list. These actions are usually executed by the
user itself (and in this case, linking them is trivial), but
sometimes by the control plane proxies it or fetches other
contextual information to complete the user requests. If
two users are both describing the same Deployment, we
will have two log lines for the get action and two log lines
for the list action. If we cannot match them by user, we
can assign the first log line to the first context, the second
to the second context, and so on. This is a simple ap-
proach that works well in most cases that have a uniform
distribution of log lines and no clear linking information.

5.10. Querying
Finally, K8NTEXT optionally provides a way to query

the contexts that have been reconstructed. The query en-
gine is not mandatory, and users can choose to use K8N-
TEXT as a simple log parser that outputs the clustered
log lines in a format of their choice.

When enabled, users can query the contexts that have
been reconstructed using a simple query language. Us-
ing classic boolean operators such as ∧,∨, <,≥,¬, and the
exists and regexp operators, users can express complex
queries that are then parsed by the engine. For example,
the query verb == "create" and objectRef.namespace
== "default" will return all the contexts that are related
to the creation of an object in the default namespace.

The power of such a system derives from the fact that
users express queries in terms of the fields of the triggering
event they desire to investigate, without having to perform
complex subqueries to retrieve tailored contexts for each
type of event. This contrasts with tools such as jq, which,
while powerful, cannot differentiate between the triggering
event and other events in the context.

6. Deep Learning model evaluation

This section evaluates K8NTEXT by assessing its pre-
diction model’s performance.

All the tests were conducted on an Ubuntu 24.04 LTS
virtual machine with 24 GB of RAM, 10 vCPUs based
on an Intel Xeon Gold 5218R CPU, and a PCI-passed-
through NVIDIA A5000 GPU. Each experiment outlined
in this section was run twenty times, and the results were
averaged to obtain a more accurate estimate of the model’s
performance. The source code used to run the experiments
is provided alongside K8NTEXT’s implementation [41].

6.1. Metrics
6.1.1. Storage space

The storage space, expressed in bytes (and multiples),
measures the amount of disk space needed to store both
the logs and the model. The latter is relatively less im-
portant, as our model will rarely exceed some hundreds of
megabytes. The former, however, can be quite large, es-
pecially in large-scale deployments, and we evaluate how
K8NTEXT can reduce the space needed to store the logs.

6.1.2. Time
The time metric, measured in seconds, indicates the

time needed to perform various operations. The initial
training time is the time needed to train the model on
the datasets, which in our case was done using a GPU.
The training time is not negligible, but it is not critical,
as training is performed only once. The inference time,
on the other hand, is the time needed to predict labels.
Inference time is fundamental for K8NTEXT’s usability.
We evaluate how it scales with the dataset size, content,
number of features, window size, and test-train-split. Fi-
nally, the querying time is the time needed to query the
logs using K8NTEXT, and we evaluate how this time com-
pares to manual inspection and how the addition of queries
impacts the clustering of the logs.

6.1.3. Accuracy
An important metric for the prediction model is its ac-

curacy in correctly predicting labels. To assess the model’s
performance, we first evaluate the model’s accuracy on the
test set, which is a measure of how well the model gener-
alizes to unseen data.

We use an adapted version of the F1 score for multi-
class classification, which is the harmonic mean of multi-
class precision and recall, computed with macro-averaging9.
The F1 score with macro-averaging measures how well
models perform multiclass classification over all classes,
while being more punishing towards models that perform
poorly on underrepresented classes.

6.2. Window size
The core hyperparameter of our model is the window

size, which determines how many log lines are fed to-
gether to the model at once. Larger window sizes allow
the model to capture more context, linking log lines that
are farther apart. Additionally, each log line is featured
in more batches, increasing the accuracy of the majority
voting system.

On the other hand, increasing the window size natu-
rally increases the model’s training time, inference time,
and resource usage. We evaluated this trade-off by train-
ing the model with different window sizes and measuring
the training time and resulting F1 score. The results of
this experiment are shown in Table 5.

9https://scikit-learn.org/stable/modules/generated/skle
arn.metrics.f1_score.html

13

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

W Time (s) F1 score
5 177.50 ± 27.45 s 0.8103 ± 0.0240
10 195.15 ± 42.63 s 0.9267 ± 0.0173
20 240.10 ± 41.85 s 0.9681 ± 0.0093
30 238.35 ± 36.24 s 0.9791 ± 0.0099
40 261.55 ± 51.51 s 0.9808 ± 0.0068
50 300.70 ± 43.77 s 0.9866 ± 0.0047
60 319.60 ± 43.94 s 0.9820 ± 0.0082

Table 5: Time and F1 score of the model with different window sizes.

W Line inference time (ms)
5 0.2 ms
10 0.3 ms
20 0.4 ms
30 0.5 ms
40 0.7 ms
50 0.8 ms
60 1.0 ms

Table 6: Inference time of the model with different window sizes.

In our three-node setup, increasing W beyond 50 or 60
yields no improvements in the F1 score while significantly
increasing the model’s training time. It must be under-
lined that this is a result tied to the overall size and traffic
of our cluster and the dataset we used. As clusters grow
larger, a larger window size may be needed to achieve the
same performance. Thus, users should experiment with
different window sizes to find the best trade-off between
training time and accuracy for their specific use case.

The model’s training time scales linearly with the win-
dow size, but the size on disk does not. This is because
the model’s learnable parameters are not tied to the win-
dow size, and the model’s size on disk remains constant,
regardless of the window size: ≈ 718,000 parameters or
2.7 MB. Such a dimension is acceptable for a deep learn-
ing model that needs to perform real time inference on
data on a standard cluster; however, the performance may
suffer on more resource-constrained scenarios.

The model’s inference time also scales linearly with the
window size, as the model needs to process more log lines
at once. We measured the inference time at the same
W values as the training time and using the same test
dataset used for training. The results are shown in Table 6.
The total inference time is the sum of the model inference
time and the time needed to decode the labels divided by
the total number of log lines in the batch, measured in
milliseconds. The standard deviation is not reported as it
is negligible in this case.

From the results, we can see that the inference time in-
creases linearly with the window size, as we expected. The
model is able to process batches of log lines very quickly:
even with W = 60, the model processes thousands of log
lines in just a few seconds. Such a performance enables
K8NTEXT to be used in real-time scenarios, where logs
are continuously generated and need to be processed on

Figure 6: Precision of the model with different features removed,
one per time. Only the features that caused the least and most
impact are shown. The central Average bar shows the average of the
remaining runs that are not shown. The red “All features” bar shows
the model’s performance with all features.

the fly. Given that audit logs can be already sent to a
webhook, K8NTEXT can be deployed as after a webhook
receiver and process logs in real time, exposing contextu-
alized logs to users.

6.3. Features
The model’s performance – in terms of both time and

accuracy – is heavily affected by the set of chosen fea-
tures. Minimizing them reduces the model size, training
time, and avoids overfitting. Doing so with deep learning
models, which work like black boxes, is unfortunately not
trivial. In these cases, assessing how the model combines
features is hard and approaches such as Principal Compo-
nent Analysis (PCA) are unfortunately inapplicable.

We conducted a series of experiments to iteratively
evaluate the importance of each feature. First, we trained
the model with all features and evaluated its performance
over 40 trials. Then, for each of the feature of the ini-
tial set we selected, we removed it and ran the experi-
ment again. The results of this experiment are summa-
rized in Figure 6. The experiment confirmed our assump-
tion that some features are crucial for the model’s perfor-
mance. In particular, some fields such as the namespace,
subresource and part of the involvedObject field in the
response, when removed, caused the most significant drop
in performance. On the other hand, other fields such as the
volumeBindingMode and ownerReferences.controller
were found to be slightly counterproductive, as their re-
moval led to a very slight increase in the F1 score.

6.4. Train-test-validation split
The train-test-validation split is an important driving

factor in the model’s performance. A good split ensures
that the model generalizes well to unseen data, while a bad
split can lead to overfitting and biased predictions. We
evaluated the model’s performance with different splits of
the dataset, varying the training, testing, and validation
set sizes. Figure 7 shows the results of this experiment.

14

Figure 7: Truncated confusion matrix of the model with different
training/testing (Y-axis) and training/validation (X-axis) splits.

First, we set the training/testing split to 10% and var-
ied the training/validation split. As the latter increased,
the model’s performance declined, suggesting a heavy re-
liance of the model on a consistent amount of the dataset
for its training. Indeed, the model’s performance peaked
at the initial 0.1% / 0.1% split, with a F1 score of 0.9839.
This setting was chosen as the default for the model’s
training and all subsequent experiments.

To further investigate the model’s performance, we set
the training/testing split to 20% and 30% and varied the
training/validation split again. This time, we immediately
observed poor performance and decided to halt the exper-
iment at the 30% - 30% split, with a F1 score of 0.9332.
This further confirms our previous assumption that the
model requires a large amount of data to perform opti-
mally.

Not shown in Figure 7 is the variance in the model’s
training time. As both splits increased, the model’s train-
ing time decreased. This is in line with our expectations, as
the model’s training time scales linearly with the dataset
size.

6.5. Class balance
As anticipated in Section 5.6, the dataset is inher-

ently imbalanced, with some classes being more repre-
sented than others. This imbalance can lead to biased
predictions, as the model’s performance will be skewed
towards the most represented classes, and thus a worse
accuracy and reliability during model inference.

6.5.1. Dataset splits
The results of Section 6.4 showed that the model’s

performance is heavily affected by the dataset’s balance.
Furthermore, a very high variance led us to investigate
whether some parts of the dataset were skewing the results.

To assess this claim, we employed a k-fold cross-validation
approach to verify how the accuracy varies across the dataset,
with increasing values of k. To be even more demanding
in our evaluation, we used majority accuracy as mentioned
before. Majority accuracy takes into account how many
log lines were correctly predicted, i.e., correct lines

total lines , after
batches are flattened and labels are assigned back to lines.
This allowed us to evaluate the model’s performance on

Figure 8: Heatmap of the model’s accuracy with different k-fold
splits. Each bar represents a set of experiments with a different k.
Bars are each split into k parts, and each bar is colored according
to the accuracy of the model when that part is used as the test set.
The position of splits is consistent across all bars.

Figure 9: Scatterplot of the model’s accuracy on each class against
their weight (measured across all batches, logarithmic scale). The
red dots are exceptional cases investigated in the text.

different splits of the dataset and truly obtain an accurate
estimate of the model’s performance on unseen data.

Figure 8 shows the results of this experiment. Each
of the bars shown in the graph represents the accuracy
of the model across different k-fold splits. With k = 10,
the model achieved a good peak accuracy (0.97) when the
third split was used as the test set. On the other hand, the
last split consistently performed poorly, with an accuracy
between 0.65 and 0.7. The end of the dataset is dominated
by CRDs and other rarely used resources, which are not
well represented in the training set. This suggests that
the model is biased towards the majority classes and that
further work is needed to improve the model’s performance
on underrepresented classes.

6.5.2. Class weights
To further investigate the class imbalance problem, we

conducted another experiment with the goal of assessing
if and how the weight of each class was correlated with
the model’s accuracy on that class. Figure 9 shows a
scatterplot of the model’s accuracy on each class against
their weight, measured in appearances in all batches. The
weight is expressed in a logarithmic scale, as some classes
are extremely prevalent in the dataset, while others are
very rare.

15

Figure 10: Binned distribution of the number of log lines each label
clusters together. On the Y-axis, labels are sorted into discrete in-
tervals depending on how many log lines they cluster together. The
X-axis shows how many labels fall into each bin.

From the experiment, we discovered that the model has
a two-faced behavior: on one hand, several classes consis-
tently perform well, with an accuracy of 1.0, irrespective
of their weight. The other classes’ accuracy instead scales
linearly with their weight, with the most underrepresented
classes having an excellent accuracy of 0.95, then nearing
1.0 as their weight in the dataset increases.

Figure 9 also shows some exceptional cases, which are
shown in red. In the top right corner, the two top red
dots represent the patch action on Leases and the create
action on Pods. These classes are extremely verbose, with
the patch action on Leases accounting for ≈ 5 · 105 ap-
pearances in the dataset, and the create action on Pods
being one of the most common user actions. The model
performs exceptionally well on these classes, achieving an
accuracy of 1.0. Indeed, most control plane traffic, being
highly represented in the dataset, is always predicted with
high accuracy, as the model has enough data to learn from.

On the other hand, the bottom left corner of the plot
shows the worst performing classes, which are rare or hard-
to-detect behaviors. These include listing LimitRanges
and updating single ReplicaSets. Compared to other classes,
these actions seldom appear in the dataset and have a
worse accuracy. However, the model still achieves a very
good accuracy of 0.95 and 0.96 respectively, which is ac-
ceptable given the low number of appearances in the dataset.

7. Capability and usability evaluation

This section evaluates K8NTEXT’s performance in terms
of clustering rate, querying time, and storage space. These
metrics are important for assessing the model’s usability
and efficiency in real-world scenarios. All the experiments
were run under the same conditions as the previous ones,
using the same virtual machine and dataset.

7.1. Clustering rate
The end goal of K8NTEXT is to cut through the noise

of the logs, providing users with a manageable set of con-
textualized events that can be used to understand the sys-
tem’s behavior. To achieve this, K8NTEXT clusters log

ID Query Time (ms)
0 None 0.073 ± 0.008
1 username == u or stagetimestamp >= t0 51.072 ± 1.364
2 (username == u and exists(namespace))

or t0 <= stagetimestamp <= t1
92.800 ± 4.480

3
(username == u and exists(namespace))
or (username ==
regexp(".*controller.*")
and t0 <= stagetimestamp <= t1)

134.558 ± 4.309

Table 7: Queries used in the querying time experiment.

lines together based on the labels assigned by the model
and then further subdivided as described in Section 5.9.
The clustering rate is a measure of how well the model
can do this, thus reducing the overall number of events
that need to be inspected.

Figure 10 summarizes the results of this experiment.
45% of the labels cluster 1 to 4 log lines together, repre-
senting quick and simple actions, such as listing a resource.
On the other side of the spectrum, a handful of labels clus-
ter 100 or more lines together: for example, the update of
a Deployment. This action is a very complex one, which
involves updating the underlying ReplicaSets and its Pods.
Another mammoth-sized action is the deletion of a Names-
pace: this action is very complex and involves deleting all
the resources contained in the Namespace, which is usually
hundreds of log lines.

Overall, K8NTEXT shows a very good clustering rate:
more than 50% of the labels cluster 5 or more lines to-
gether, 16 labels cluster 50 or more lines together, and 4
labels cluster 100 or more lines together. This means that
K8NTEXT is able to reduce the number of log lines that
need to be inspected by a significant amount.

7.2. Querying time
The querying time is an important metric that deter-

mines K8NTEXT’s usability. We evaluated the query-
ing time of K8NTEXT without any query and then three
increasingly complex queries, on all the log lines in the
dataset. Query intervals have been substituted with t0 and
t1 for brevity. The results of this experiment are shown in
Table 7.

Our experiment suggests the existence of a minimum
overhead, incurred when the querying tool is used, and a
linearly-scaling overhead, which increases with the com-
plexity of the query. Given our dataset’s size, we believe
the querying time is acceptable for real-world scenarios,
especially when programmatically polled by an external
system.

7.3. Storage space
The impact on storage is a critical metric that deter-

mines K8NTEXT’s usefulness in large-scale deployments.
While the model’s size on disk is relatively small, the logs
can be quite large, especially in large-scale deployments.
K8NTEXT gives users several options to store the logs.

16

The raw, unprocessed logs can be stored as-is, with link-
ing information embedded in them. Control plane infor-
mation can be optionally stripped from the logs, reducing
their size. Finally, the logs can be parsed and stored in
a more compact format, reducing their size even further.
Our dataset, amounting to 18478 lines, originally occupied
a total of 64 MB on disk. Choosing to strip down con-
trol plane information and retain the essential log details
shrunk the dataset to 186 KB, resulting in three orders of
magnitude reduction. This is a significant improvement in
storage efficiency, but must be carefully considered in the
context of data retrieval and analysis needs.

8. Conclusion

We presented an innovative approach for the analysis
of K8s audit logs, called K8NTEXT. K8NTEXT employs a
combination of heuristics and ML techniques to automati-
cally aggregate and contextualize audit logs, making them
more comprehensible and reducing both their complexity
and the volume of their analysis. K8NTEXT is efficient,
extensible, and scales well with the size of the cluster, en-
abling real-time inspection of K8s audit logs. The output
of K8NTEXT is space-efficient and is both human- and
machine-readable, allowing for further analysis and inte-
gration with other tools while preserving the context of
the actions performed in the cluster.

9. Acknowledgements

This work was partially supported by project SERICS
(PE00000014), MUR National Recovery and Resilience
Plan funded by the European Union - NextGenerationEU.

References

[1] Sysdig, Cloud-Native Security and Usage Report
2024, Tech. rep., Sysdig (2024).

[2] Kubernetes, Auditing in Kubernetes, section: docs
(2024).
URL https://kubernetes.io/docs/tasks/debug
/debug-cluster/audit/

[3] Falco, Kubernetes Audit Events, section: docs (2024).
URL https://falco.org/docs/event-sources/p
lugins/kubernetes-audit/

[4] Lacework, Kubernetes Audit Logs | Lacework Docu-
mentation (Jan. 2024).
URL https://docs.lacework.net/onboarding/k
ubernetes-audit-logs-overview

[5] Kubernetes, Kubernetes API Reference Docs (2024).
URL https://kubernetes.io/docs/reference/g
enerated/kubernetes-api/v1.30/

[6] CNCF, Kubernetes audit: making log auditing a vi-
able practice again (Dec. 2019).
URL https://www.cncf.io/blog/2019/12/03/ku
bernetes-audit-making-log-auditing-a-viabl
e-practice-again/

[7] S. Karagulmez, Kubernetes Audit Logs: The Unsung
Hero of the Kube-verse (Aug. 2023).
URL https://kubestory.substack.com/p/kuber
netes-audit-logs-the-unsung

[8] Elasticsearch, Elasticsearch: The Official Distributed
Search & Analytics Engine (2024).
URL https://www.elastic.co/elasticsearch

[9] Splunk, Splunk | The Key to Enterprise Resilience
(2024).
URL https://www.splunk.com

[10] Falco Authors, Falco: Detect security threats in real
time (2024).
URL https://falco.org/

[11] AWS, AWS CloudTrail (2024).
URL https://aws.amazon.com/it/cloudtrail/

[12] Google Cloud, Cloud Audit Logs overview | Cloud
Logging (2024).
URL https://cloud.google.com/logging/docs/
audit

[13] H. Kermabon-Bobinnec, S. Bagheri, M. Gholipour-
Choubeh, S. Majumdar, Y. Jarraya, L. Wang,
M. Pourzandi, PerfSPEC: Performance Profiling-
based Proactive Security Policy Enforcement for Con-
tainers, IEEE Transactions on Dependable and Se-
cure Computing (2024) 1–18doi:10.1109/TDSC.202
4.3420712.
URL https://ieeexplore.ieee.org/document/1
0577533/

[14] Sysdig, Security Tools for Containers, Kubernetes,
and Cloud (Cloud Native usage report) (2025).
URL https://sysdig.com/

[15] Sysdig, Kubernetes Audit Logging (2025).
URL https://docs.sysdig.com/en/docs/sysdig
-secure/threats/investigate/kubernetes-aud
it-logging/

[16] Linux contributors, auditd(8): Audit daemon - Linux
man page (2024).
URL https://linux.die.net/man/8/auditd

[17] P. He, J. Zhu, Z. Zheng, M. R. Lyu, Drain: An On-
line Log Parsing Approach with Fixed Depth Tree, in:
2017 IEEE International Conference on Web Services
(ICWS), IEEE, Honolulu, HI, USA, 2017, pp. 33–
40, 420 citations (Crossref/DOI) [2024-09-09]. doi:
10.1109/ICWS.2017.13.
URL http://ieeexplore.ieee.org/document/802
9742/

17

https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/
https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/
https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/
https://falco.org/docs/event-sources/plugins/kubernetes-audit/
https://falco.org/docs/event-sources/plugins/kubernetes-audit/
https://falco.org/docs/event-sources/plugins/kubernetes-audit/
https://docs.lacework.net/onboarding/kubernetes-audit-logs-overview
https://docs.lacework.net/onboarding/kubernetes-audit-logs-overview
https://docs.lacework.net/onboarding/kubernetes-audit-logs-overview
https://docs.lacework.net/onboarding/kubernetes-audit-logs-overview
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/
https://www.cncf.io/blog/2019/12/03/kubernetes-audit-making-log-auditing-a-viable-practice-again/
https://www.cncf.io/blog/2019/12/03/kubernetes-audit-making-log-auditing-a-viable-practice-again/
https://www.cncf.io/blog/2019/12/03/kubernetes-audit-making-log-auditing-a-viable-practice-again/
https://www.cncf.io/blog/2019/12/03/kubernetes-audit-making-log-auditing-a-viable-practice-again/
https://www.cncf.io/blog/2019/12/03/kubernetes-audit-making-log-auditing-a-viable-practice-again/
https://kubestory.substack.com/p/kubernetes-audit-logs-the-unsung
https://kubestory.substack.com/p/kubernetes-audit-logs-the-unsung
https://kubestory.substack.com/p/kubernetes-audit-logs-the-unsung
https://kubestory.substack.com/p/kubernetes-audit-logs-the-unsung
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://www.splunk.com
https://www.splunk.com
https://falco.org/
https://falco.org/
https://falco.org/
https://aws.amazon.com/it/cloudtrail/
https://aws.amazon.com/it/cloudtrail/
https://cloud.google.com/logging/docs/audit
https://cloud.google.com/logging/docs/audit
https://cloud.google.com/logging/docs/audit
https://cloud.google.com/logging/docs/audit
https://ieeexplore.ieee.org/document/10577533/
https://ieeexplore.ieee.org/document/10577533/
https://ieeexplore.ieee.org/document/10577533/
https://doi.org/10.1109/TDSC.2024.3420712
https://doi.org/10.1109/TDSC.2024.3420712
https://ieeexplore.ieee.org/document/10577533/
https://ieeexplore.ieee.org/document/10577533/
https://sysdig.com/
https://sysdig.com/
https://sysdig.com/
https://docs.sysdig.com/en/docs/sysdig-secure/threats/investigate/kubernetes-audit-logging/
https://docs.sysdig.com/en/docs/sysdig-secure/threats/investigate/kubernetes-audit-logging/
https://docs.sysdig.com/en/docs/sysdig-secure/threats/investigate/kubernetes-audit-logging/
https://docs.sysdig.com/en/docs/sysdig-secure/threats/investigate/kubernetes-audit-logging/
https://linux.die.net/man/8/auditd
https://linux.die.net/man/8/auditd
https://linux.die.net/man/8/auditd
http://ieeexplore.ieee.org/document/8029742/
http://ieeexplore.ieee.org/document/8029742/
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ICWS.2017.13
http://ieeexplore.ieee.org/document/8029742/
http://ieeexplore.ieee.org/document/8029742/

[18] M. Du, F. Li, Spell: Online Streaming Parsing of
Large Unstructured System Logs, IEEE Transactions
on Knowledge and Data Engineering 31 (11) (2019)
2213–2227, 58 citations (Crossref/DOI) [2024-09-09]
Conference Name: IEEE Transactions on Knowledge
and Data Engineering. doi:10.1109/TKDE.2018.28
75442.
URL https://ieeexplore.ieee.org/document/8
489912

[19] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, X. Chen,
Log clustering based problem identification for online
service systems, in: Proceedings of the 38th Interna-
tional Conference on Software Engineering Compan-
ion, ICSE ’16, Association for Computing Machinery,
New York, NY, USA, 2016, pp. 102–111, 184 citations
(Crossref/DOI) [2024-09-09] 363 citations (Semantic
Scholar/DOI) [2024-08-13] 173 citations (Crossref/-
DOI) [2024-08-13]. doi:10.1145/2889160.2889232.
URL https://dl.acm.org/doi/10.1145/2889160
.2889232

[20] H. Zhang, L. Cai, L. Zhao, A. Yu, J. Ma, D. Meng,
LogMiner: A System Audit Log Reduction Strategy
Based on Behavior Pattern Mining, in: MILCOM
2022 - 2022 IEEE Military Communications Confer-
ence (MILCOM), IEEE, Rockville, MD, USA, 2022,
pp. 292–297, 0 citations (Crossref/DOI) [2024-09-09].
doi:10.1109/MILCOM55135.2022.10017626.
URL https://ieeexplore.ieee.org/document/1
0017626/

[21] A. Goel, K. Farhadi, K. Po, W.-c. Feng, Recon-
structing system state for intrusion analysis, ACM
SIGOPS Operating Systems Review 42 (3) (2008)
21–28, 9 citations (Crossref/DOI) [2024-09-09]. doi:
10.1145/1368506.1368511.
URL https://dl.acm.org/doi/10.1145/1368506
.1368511

[22] P. Datta, I. Polinsky, M. A. Inam, A. Bates, W. Enck,
ALASTOR: Reconstructing the provenance of server-
less intrusions, in: 31st USENIX security symposium
(USENIX security 22), USENIX Association, Boston,
MA, 2022, pp. 2443–2460.
URL https://www.usenix.org/conference/usen
ixsecurity22/presentation/datta

[23] X. Chen, H. Irshad, Y. Chen, A. Gehani, V. Yeg-
neswaran, CLARION: Sound and clear provenance
tracking for microservice deployments, in: 30th
USENIX security symposium (USENIX security 21),
USENIX Association, 2021, pp. 3989–4006.
URL https://www.usenix.org/conference/usen
ixsecurity21/presentation/chen-xutong

[24] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li,
A. Bates, NoDoze: Combatting Threat Alert Fatigue
with Automated Provenance Triage, Internet Society,

San Diego, CA, 2019, 127 citations (Crossref/DOI)
[2024-09-09]. doi:10.14722/ndss.2019.23349.
URL https://www.ndss-symposium.org/wp-conte
nt/uploads/2019/02/ndss2019_03B-1-3_UlHassa
n_paper.pdf

[25] J. Li, R. Zhang, J. Liu, ProvGRP: A Context-
Aware Provenance Graph Reduction and Partition
Approach for Facilitating Attack Investigation, Elec-
tronics 13 (1) (2023) 100, 0 citations (Crossref/DOI)
[2024-09-09]. doi:10.3390/electronics13010100.
URL https://www.mdpi.com/2079-9292/13/1/100

[26] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang,
Z. Zhang, L. Si, X. Zhang, D. Xu, HERCULE: attack
story reconstruction via community discovery on cor-
related log graph, in: Proceedings of the 32nd An-
nual Conference on Computer Security Applications,
ACSAC ’16, Association for Computing Machinery,
New York, NY, USA, 2016, pp. 583–595, 89 citations
(Crossref/DOI) [2024-09-09]. doi:10.1145/299107
9.2991122.
URL https://doi.org/10.1145/2991079.2991122

[27] Z. Xu, P. Fang, C. Liu, X. Xiao, Y. Wen, D. Meng,
DEPCOMM: Graph Summarization on System Audit
Logs for Attack Investigation, in: 2022 IEEE Sympo-
sium on Security and Privacy (SP), 2022, pp. 540–557,
19 citations (Crossref/DOI) [2024-09-09] ISSN: 2375-
1207. doi:10.1109/SP46214.2022.9833632.
URL https://ieeexplore.ieee.org/document/9
833632

[28] W. U. Hassan, M. Lemay, N. Aguse, A. Bates,
T. Moyer, Towards Scalable Cluster Auditing through
Grammatical Inference over Provenance Graphs, in:
Proceedings 2018 Network and Distributed System
Security Symposium, Internet Society, San Diego,
CA, 2018, 70 citations (Crossref/DOI) [2024-09-09].
doi:10.14722/ndss.2018.23141.
URL https://www.ndss-symposium.org/wp-conte
nt/uploads/2018/02/ndss2018_07B-1_Hassan_pa
per.pdf

[29] E. Altinisik, F. Deniz, H. T. Sencar, ProvG-Searcher:
A Graph Representation Learning Approach for Ef-
ficient Provenance Graph Search, in: Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23, Association for
Computing Machinery, New York, NY, USA, 2023,
pp. 2247–2261, 3 citations (Crossref/DOI) [2024-09-
09]. doi:10.1145/3576915.3623187.
URL https://doi.org/10.1145/3576915.3623187

[30] N. Michael, J. Mink, J. Liu, S. Gaur, W. U. Has-
san, A. Bates, On the Forensic Validity of Approx-
imated Audit Logs, in: Annual Computer Security
Applications Conference, ACM, Austin USA, 2020,

18

https://ieeexplore.ieee.org/document/8489912
https://ieeexplore.ieee.org/document/8489912
https://doi.org/10.1109/TKDE.2018.2875442
https://doi.org/10.1109/TKDE.2018.2875442
https://ieeexplore.ieee.org/document/8489912
https://ieeexplore.ieee.org/document/8489912
https://dl.acm.org/doi/10.1145/2889160.2889232
https://dl.acm.org/doi/10.1145/2889160.2889232
https://doi.org/10.1145/2889160.2889232
https://dl.acm.org/doi/10.1145/2889160.2889232
https://dl.acm.org/doi/10.1145/2889160.2889232
https://ieeexplore.ieee.org/document/10017626/
https://ieeexplore.ieee.org/document/10017626/
https://doi.org/10.1109/MILCOM55135.2022.10017626
https://ieeexplore.ieee.org/document/10017626/
https://ieeexplore.ieee.org/document/10017626/
https://dl.acm.org/doi/10.1145/1368506.1368511
https://dl.acm.org/doi/10.1145/1368506.1368511
https://doi.org/10.1145/1368506.1368511
https://doi.org/10.1145/1368506.1368511
https://dl.acm.org/doi/10.1145/1368506.1368511
https://dl.acm.org/doi/10.1145/1368506.1368511
https://www.usenix.org/conference/usenixsecurity22/presentation/datta
https://www.usenix.org/conference/usenixsecurity22/presentation/datta
https://www.usenix.org/conference/usenixsecurity22/presentation/datta
https://www.usenix.org/conference/usenixsecurity22/presentation/datta
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-xutong
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-xutong
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-xutong
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-xutong
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://doi.org/10.14722/ndss.2019.23349
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://www.mdpi.com/2079-9292/13/1/100
https://www.mdpi.com/2079-9292/13/1/100
https://www.mdpi.com/2079-9292/13/1/100
https://doi.org/10.3390/electronics13010100
https://www.mdpi.com/2079-9292/13/1/100
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://ieeexplore.ieee.org/document/9833632
https://ieeexplore.ieee.org/document/9833632
https://doi.org/10.1109/SP46214.2022.9833632
https://ieeexplore.ieee.org/document/9833632
https://ieeexplore.ieee.org/document/9833632
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-1_Hassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-1_Hassan_paper.pdf
https://doi.org/10.14722/ndss.2018.23141
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-1_Hassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-1_Hassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-1_Hassan_paper.pdf
https://doi.org/10.1145/3576915.3623187
https://doi.org/10.1145/3576915.3623187
https://doi.org/10.1145/3576915.3623187
https://doi.org/10.1145/3576915.3623187
https://doi.org/10.1145/3576915.3623187
https://dl.acm.org/doi/10.1145/3427228.3427272
https://dl.acm.org/doi/10.1145/3427228.3427272

pp. 189–202, 26 citations (Crossref/DOI) [2024-09-
09]. doi:10.1145/3427228.3427272.
URL https://dl.acm.org/doi/10.1145/3427228
.3427272

[31] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar,
V. Venkatakrishnan, HOLMES: Real-Time APT De-
tection through Correlation of Suspicious Informa-
tion Flows, in: 2019 IEEE Symposium on Security
and Privacy (SP), 2019, pp. 1137–1152, 208 cita-
tions (Crossref/DOI) [2024-09-09] ISSN: 2375-1207.
doi:10.1109/SP.2019.00026.
URL https://ieeexplore.ieee.org/document/8
835390

[32] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete,
R. Gjomemo, R. Sekar, S. Stoller, V. N. Venkatakr-
ishnan, {SLEUTH}: Real-time Attack Scenario Re-
construction from {COTS} Audit Data, in: 26th
USENIX Security Symposium (USENIX Security 17),
2017, pp. 487–504.
URL https://www.usenix.org/conference/usen
ixsecurity17/technical-sessions/presentation
/hossain

[33] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao,
Z. Wu, J. Rhee, F. Xu, Q. Li, NodeMerge: Tem-
plate Based Efficient Data Reduction For Big-Data
Causality Analysis, in: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communi-
cations Security, ACM, Toronto Canada, 2018, pp.
1324–1337, 46 citations (Crossref/DOI) [2024-09-09].
doi:10.1145/3243734.3243763.
URL https://dl.acm.org/doi/10.1145/3243734
.3243763

[34] J. Shen, H. Zhang, Y. Xiang, X. Shi, X. Li, Y. Shen,
Z. Zhang, Y. Wu, X. Yin, J. Wang, M. Xu, Y. Li,
J. Yin, J. Song, Z. Li, R. Nie, Network-Centric Dis-
tributed Tracing with DeepFlow: Troubleshooting
Your Microservices in Zero Code, in: Proceedings of
the ACM SIGCOMM 2023 Conference, ACM SIG-
COMM ’23, Association for Computing Machinery,
New York, NY, USA, 2023, pp. 420–437. doi:
10.1145/3603269.3604823.
URL https://dl.acm.org/doi/10.1145/3603269
.3604823

[35] S. Ashok, V. Harsh, B. Godfrey, R. Mittal,
S. Parthasarathy, L. Shwartz, TraceWeaver: Dis-
tributed Request Tracing for Microservices With-
out Application Modification, in: Proceedings of the
ACM SIGCOMM 2024 Conference, ACM SIGCOMM
’24, Association for Computing Machinery, New York,
NY, USA, 2024, pp. 828–842. doi:10.1145/365189
0.3672254.
URL https://dl.acm.org/doi/10.1145/3651890
.3672254

[36] Z. Wang, Y. Hu, S. Li, W. Wang, L. Zhang, B. Zhang,
Y. Wen, D. Meng, DyCom: A Dynamic Community
Partitioning Technique for System Audit Logs, in:
2024 IEEE 23rd International Conference on Trust,
Security and Privacy in Computing and Communi-
cations (TrustCom), IEEE, Sanya, China, 2024, pp.
1486–1493. doi:10.1109/TrustCom63139.2024.002
05.
URL https://ieeexplore.ieee.org/document/1
0945094/

[37] J. Li, H. He, S. Chen, D. Jin, LogGraph: Log
Event Graph Learning Aided Robust Fine-Grained
Anomaly Diagnosis, IEEE Transactions on Depend-
able and Secure Computing (2023) 1–151 citations
(Crossref/DOI) [2024-09-09] Conference Name: IEEE
Transactions on Dependable and Secure Computing.
doi:10.1109/TDSC.2023.3293111.

[38] M. Boffa, I. Drago, M. Mellia, L. Vassio, D. Giordano,
R. Valentim, Z. B. Houidi, LogPrécis: Unleashing lan-
guage models for automated malicious log analysis,
Computers & Security 141 (2024) 103805, 2 citations
(Crossref/DOI) [2024-09-09]. doi:10.1016/j.cose
.2024.103805.
URL https://linkinghub.elsevier.com/retrie
ve/pii/S0167404824001068

[39] Keras authors, Keras: Deep Learning for humans
(2024).
URL https://keras.io/

[40] Lark, lark-parser/lark, original-date: 2017-02-
04T20:38:59Z (Oct. 2024).
URL https://github.com/lark-parser/lark

[41] M. Franzil, V. Armani, L. A. Dias Knob, D. Siracusa,
Sharpening K8s Audit Logs, original-date: 2024-10-
16T12:37:09Z (Oct. 2024).
URL https://github.com/daisyfbk/k8ntext

19

https://doi.org/10.1145/3427228.3427272
https://dl.acm.org/doi/10.1145/3427228.3427272
https://dl.acm.org/doi/10.1145/3427228.3427272
https://ieeexplore.ieee.org/document/8835390
https://ieeexplore.ieee.org/document/8835390
https://ieeexplore.ieee.org/document/8835390
https://doi.org/10.1109/SP.2019.00026
https://ieeexplore.ieee.org/document/8835390
https://ieeexplore.ieee.org/document/8835390
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://dl.acm.org/doi/10.1145/3243734.3243763
https://dl.acm.org/doi/10.1145/3243734.3243763
https://dl.acm.org/doi/10.1145/3243734.3243763
https://doi.org/10.1145/3243734.3243763
https://dl.acm.org/doi/10.1145/3243734.3243763
https://dl.acm.org/doi/10.1145/3243734.3243763
https://dl.acm.org/doi/10.1145/3603269.3604823
https://dl.acm.org/doi/10.1145/3603269.3604823
https://dl.acm.org/doi/10.1145/3603269.3604823
https://doi.org/10.1145/3603269.3604823
https://doi.org/10.1145/3603269.3604823
https://dl.acm.org/doi/10.1145/3603269.3604823
https://dl.acm.org/doi/10.1145/3603269.3604823
https://dl.acm.org/doi/10.1145/3651890.3672254
https://dl.acm.org/doi/10.1145/3651890.3672254
https://dl.acm.org/doi/10.1145/3651890.3672254
https://doi.org/10.1145/3651890.3672254
https://doi.org/10.1145/3651890.3672254
https://dl.acm.org/doi/10.1145/3651890.3672254
https://dl.acm.org/doi/10.1145/3651890.3672254
https://ieeexplore.ieee.org/document/10945094/
https://ieeexplore.ieee.org/document/10945094/
https://doi.org/10.1109/TrustCom63139.2024.00205
https://doi.org/10.1109/TrustCom63139.2024.00205
https://ieeexplore.ieee.org/document/10945094/
https://ieeexplore.ieee.org/document/10945094/
https://doi.org/10.1109/TDSC.2023.3293111
https://linkinghub.elsevier.com/retrieve/pii/S0167404824001068
https://linkinghub.elsevier.com/retrieve/pii/S0167404824001068
https://doi.org/10.1016/j.cose.2024.103805
https://doi.org/10.1016/j.cose.2024.103805
https://linkinghub.elsevier.com/retrieve/pii/S0167404824001068
https://linkinghub.elsevier.com/retrieve/pii/S0167404824001068
https://keras.io/
https://keras.io/
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://github.com/daisyfbk/k8ntext
https://github.com/daisyfbk/k8ntext

	Introduction
	Background
	Kubernetes
	Audit logging

	Motivation
	Contextualization
	Verbosity and complexity
	Motivating examples
	Malfunctioning components
	False alarms
	Evading detection

	Related Work
	Cloud and Kubernetes audit logging
	Unstructured log analysis
	Provenance
	Machine learning and log analysis
	Summary

	K8NTEXT
	System architecture
	Contextualization
	Log parser
	Fields and features
	Labels
	Dataset
	Label encoding
	Deep Learning model
	Input and output shapes
	Model architecture
	Batching

	Clustering
	Matching objectRef
	Matching involvedObject, claimRef, ownerReferences
	Uniform distribution

	Querying

	Deep Learning model evaluation
	Metrics
	Storage space
	Time
	Accuracy

	Window size
	Features
	Train-test-validation split
	Class balance
	Dataset splits
	Class weights

	Capability and usability evaluation
	Clustering rate
	Querying time
	Storage space

	Conclusion
	Acknowledgements

