
ar
X

iv
:2

50
6.

16
22

4v
1

 [
cs

.C
R

]
 1

9
Ju

n
20

25

Malware Classification Leveraging NLP & Machine
Learning for Enhanced Accuracy

Bishwajit Prasad Gond1 , Rajneekant1, Pushkar Kishore1, and Durga Prasad
Mohapatra1

National Institute of Technology Rourkela, Odisha, India
bishwajitprasadgond@gmail.com, rajneekant200@gmail.com,

monumit46@gmail.com, and durga@nitrkl.ac.in

Abstract. This paper investigates the application of natural language process-
ing (NLP)-based 𝑛-gram analysis and machine learning techniques to enhance
malware classification. We explore how NLP can be used to extract and analyze
textual features from malware samples through 𝑛-grams, contiguous string or API
call sequences. This approach effectively captures distinctive linguistic patterns
among malware and benign families, enabling finer-grained classification. We
delve into 𝑛-gram size selection, feature representation, and classification algo-
rithms. While evaluating our proposed method on real-world malware samples, we
observe significantly improved accuracy compared to the traditional methods. By
implementing our 𝑛-gram approach, we achieved an accuracy of 99.02% across
various machine learning algorithms by using hybrid feature selection technique
to address high dimensionality. Hybrid feature selection technique reduces the
feature set to only 1.6% of the original features.

Keywords: API calls · Malware Classifier · 𝑛-grams · Portable executable

1 Introduction

In the relentless cat-and-mouse game of cybersecurity, where threats perpetually adapt
and multiply, it has become increasingly crucial to deploy innovative techniques for
malware detection and classification. Malwares, spanning a wide spectrum of categories
such as adware, viruses, worms, spyware, downloaders, trojans, and backdoors, pose an
escalating challenge to security experts worldwide. To combat this diverse landscape
of threats, the incorporation of Natural Language Processing (NLP)-based 𝑛-gram [1]
analysis, particularly 𝑛-grams based feature selection, has emerged as a promising avenue
for enhancing malware classification. This paper explores the application of 𝑛-grams
analysis, coupled with machine learning, to classify malwares into these above seven
distinct categories.

Beyond traditional signature-based [2] and heuristic-based approaches [3], which
often struggle to cope with polymorphic and obfuscated malware [4], our methodology
leverages the unique linguistic footprints exhibited by different malware categories.
Specifically, we focus on the text extracted from the Application Programming Interface
(API) calls of Portable Executable (PE) files in Windows environments [5].

Our research focuses on fine-grained malware classification by leveraging 𝑛-grams
and machine learning techniques to identify intricate patterns in API call sequences

https://orcid.org/0000-0003-3640-0463
https://arxiv.org/abs/2506.16224v1

2 B. P. Gond et al.

of different malware variants. This novel approach promises accurate and nuanced
classification, providing a robust defense against evolving threats.

Coupling 𝑛-grams with machine learning in malware classification is an inventive
approach enhancing our ability to discern subtle behavioral and structural differences.
Utilizing API call sequences in PE files broadens the scope beyond static analysis to
dynamic behavior monitoring.

As the cybersecurity community seeks more effective and adaptive defenses, this
research aims to contribute by exploring 𝑛-grams, machine learning techniques, and
API call sequences for improved malware categorization accuracy and efficiency.

Dynamic analysis based on API calls tends to be more effective than static analysis
[6]. This paper investigates using natural language processing (NLP) techniques for
dynamic malware analysis based on 𝑛-gram API calls, leveraging ensemble and machine
learning methods like boosting (XGBoost and LightGBM) and bagging (Random Forest)
to enhance malware classification accuracy.

The rest of the paper is organized as follows: in Section 2 we covered the basic
concepts. In Section 3, we review recent literature using API sequence and NLP in
malware classification and detection. Section 4 outlines our NLP-based framework for
malware detection, focusing on preprocessing and the NLP process. Section 6 details
our experimental setup, including obtaining an API key, data extraction and malware
classification. Section 7 covers the detail result analysis. In Section 8, we compare our
work with state-of-the-art techniques in malware detection and classification. Finally,
Section 9 concludes our work and outlines some future research directions.

2 Basic Concepts

In this section, we first discuss the static analysis of malware, followed by dynamic
analysis. We also address the challenges associated with these approaches. Furthermore,
we delve into sandbox environments and explore current trends in malware analysis.

2.1 Static Analysis

Static analysis dissects malware’s binary code, file structure, strings, and metadata
without execution. It identifies functions, suspicious code, attack vectors, and indicators
of compromise (IOCs), aiding rapid threat detection and classification. However, it
has limitations in uncovering behavior details, especially with obfuscation techniques
like code encryption, packing, anti-analysis measures, polymorphism, and control flow
obfuscation. Security experts often combine static analysis with dynamic analysis and
reverse engineering for comprehensive understanding.

2.2 Dynamic Analysis

Dynamic analysis involves executing malware in a controlled sandbox environment
to observe real-time behavior, crucial for understanding capabilities and developing
countermeasures. As malware sophistication grows with polymorphic and metamorphic
coding, dynamic analysis gains prominence. Sandboxes simulate real environments,
capturing behaviors like file system, registry, network activities, enabling comprehensive
monitoring.

3. RELATED WORKS 3

Current trends focus on automation and machine learning for efficient large-scale
analysis and accurate pattern recognition. Automated tools rapidly process vast samples,
identifying common malicious behaviors. Machine learning techniques enhance threat
detection accuracy, adapting to evolving tactics.

3 Related Works

. This section discusses research on malware detection and classification related to
Natural Language Processing (NLP) and API Call.

Nakazato et al. [7] proposed an approach to detect and classify malware in their
malwares using API sequence. They conducted dynamic analysis to automatically obtain
the execution traces of malware and then classified malwares into clusters based on their
behavior characteristics derived from Windows API calls in parallel threads. The authors
utilized two NLP techniques, namely 𝑛-gram and TF-IDF, to infer the characteristics
of malware samples. This proposed methodology successfully classified 90% of 2312
malware samples into maximum of 20 different clusters.

Another research on malware related to API sequences and machine learning was
proposed by Chandrasekar et al. [8], who used a 3𝑟𝑑 order Markov chain to model
Windows API call sequences. Their proposed malware detection system tested on a
dataset containing 94 benign and 179 malware executables, achieved an accuracy of
90%.

Windows API calls are highly deterministic features for behavior-based malware
detection, accurately reflecting program behavior during execution and effectively dis-
tinguishing malware from benign programs [9, 10]. API call information can identify
evasive malware. Hence, many malware detection techniques utilize methods for ex-
tracting and leveraging API call information.

Ye et al. [10] developed an intelligent malware detection system, IMDS, using API
features. They extracted API calls accessed by PE files through static analysis and used
these features as input for classification algorithms, achieving a detection accuracy of
93.07%. Additionally, authors proposed a layered classification framework to determine
malicious operations performed by malware samples using API call features. They
applied various feature selection methods to obtain discriminative features, resulting in
an accuracy of 98.6%.

Dabas et al. [11] introduced a malware detection method for Windows based on API
calls, using three feature sets: (a) API calls usage, (b) frequency, and (c) sequences,
enriched with TF-IDF to create the API integrated feature set. Malware samples are
retrieved from the VirusShare data repository having 2500 malware and 2500 benign
samples from freshly installed Windows 10 OS. It achieves 99.6% accuracy across
ML algorithms, addressing high-dimensionality with hybrid feature selection, reducing
feature set to 9% .

Dabas et al. [12] presented MalAnalyser, a lightweight Windows malware detection
system based on frequent API call subsequences. The authors collected malwares from
VirusShare platform having 2500 malware and 2500 benign samples from freshly in-
stalled Windows 10 OS. It uses GLBPSO and GA for feature selection, achieving up
to 99.7% accuracy with 30% features, and 100% accuracy on GA-enriched features.

4 B. P. Gond et al.

MalAnalyser outperforms similar approaches on a benchmark dataset with 99.72%
accuracy.

Sharma et al. [13] proposed an approch which paper focuses on Windows malware
detection using TF-IDF enriched API call information. They combined API call feature
sets into an integrated set and applied TF-IDF for feature importance and the dataset
was obtained from Virusshare. The TF-IDF enriched integrated API calls feature set
achieves up to 99.91% accuracy for SVM and Logistic Regression algorithms.

4 Proposed Framework

In this section, we present out proposed framework for malware classification using NLP
and machine learning techniques. Our proposed architecture (Fig. 1) involves:

Fig. 1: Proposed Architecture for Malware Classification
1) acquiring malware hash from VirusShare1, 2) querying VirusTotal2 for JSON file with
antivirus scans to determine malware class, 3) downloading distinct malware categories,
4) dynamic analysis in Cuckoo sandbox3 to extract API call sequences in JSON format,
5) partitioning JSON report into API name, argument, return, and category text files, 6)
applying 𝑛-gram methods combining API names and arguments, 7) calculating TF-IDF
using unique 𝑛-grams from all categories, 8) applying hybrid feature selection techniques
to get refine feature set, 9) applying machine learning techniques and adjusting evaluation
criterion on refine feature set. The four phases are:
1 Preprocessing Phase: Steps 4 and 5.
2 NLP Phase: Step 6 and 7.
3 Feature Selection Phase: Step 8.
4 Malware Classification Phase: Step 9.

Phase 1: Preprocessing Phase
In preprocessing phase, we perform the following (Fig. 2) activities:

1. Preprocess the Data: After obtaining the data for each class, we performed be-
havioral analysis using Cuckoo Sandbox, resulting in a behavioral report in JSON

1 https://virusshare.com
2 https://www.virustotal.com
3 https://cuckoosandbox.org

https://virusshare.com
https://www.virustotal.com
https://cuckoosandbox.org

4. PROPOSED FRAMEWORK 5

Fig. 2: Data Preprocessing and Feature Engineering

format. We then split the file into four parts: API category, API name, API argu-
ment, and API return. From this, we selected the API name and argument to create
n-grams, where the API name is the first part and the API call argument is added
using underscores. Finally, we obtained a CSV file containing n-grams for each
category.

2. API Dataset & Cuckoo Sandbox Analysis: The process starts with taking a dataset
that undergoes Cuckoo Snadbox Analysis which results the behavioural report of
Portable Executable in JSON format.

3. Data Division: The data is divided into training and testing sets in 80% and 20%,
both processed through JSON format.

4. API Elements Extraction: Various API elements like APICategory, APIName,
APIArgument, and APIreturn are extracted.

Phase 2: NLP Phase
In NLP phase, we perform the following activities:

1. 𝑛-grams and Unique 𝑛-grams: We extract 𝑛-grams and select Unique 𝑛-grams
from the JSON.

2. 𝑛-grams after Processing: The followings are the examples of unigram, bigrams
and trigrams that we have used in this paper.
• Unigram: LdrLoadDll_urlmon_urlmon.dll
• Bigram: NtAllocateVirtualMemory_na,

LdrLoadDll_ole32_ole32.dll
• Trigram: LdrUnloadDll_SHELL32,

LdrLoadDll_SETUPAPI_SETUPAPI.dll,
LdrGetProcedureAddress_ole32_OleUninitialize

6 B. P. Gond et al.

3. Vectorization with TF-IDF: It tokenizes text, counts occurrences of each token,
and computes TF-IDF weights, which reflects the importance of each token in a
document relative to the entire corpus. Optional L2 normalization ensures consistent
feature vector lengths. TF-IDF is applied on each csv files of unigram, bigram and
trigram with Unique 𝑛-gram csv file to transform the text data.

4. Refined Feature Set: A refined feature set is obtained after filtering the unnecessary
feature of each 𝑛-grams CSV file.

Phase 3: Feature Selection Phase
Out of the millions of features available, we have applied several hybrid feature selection
and reduction methods to eliminate redundant features. These methods eliminate features
containing numbers, special characters, or underscores, which are prevalent in both
malware and benign classes within our feature set. The goal is to identify and retain only
the most relevant features for classification. This process helps reduce the dimensionality
of the dataset, which can improve the efficiency and effectiveness of machine learning
algorithms. By selecting the most informative features and discarding irrelevant or
redundant ones, we aim at enhancing the performance of the classification model. In
feature selection phase, we perform the following activities:

1. API Call Frequency Feature Set:We explore the features derived from API call
frequency to understand the system behavior and usage patterns.

2. Filter Based Feature Selection: We apply filter-based techniques (e.g., mutual
information, correlation analysis) to select the most informative features.

3. Refine Feature Set: We eliminate the redundant or irrelevant features to ensure that
the final set is discriminative and predictive.

Phase 4: Malware Classification Phase
In malware classification phase, we perform the following activities:
1. Applying Machine Learning Algorithms: Algorithms such as Decision Tree [14],

SVM with Kernal: linear, sigmoid, polynomial 3◦, polynomial 4◦ and RBF, KNN,
Random Forest [15], XGBoost, LightGBM are applied to the refined feature set
obtained from phase three.

2. Use Evaluation Criteria: We use the evaluation criteria such as accuracy, precison,
recall and 𝐹1 score, etc. to determine the effectiveness of these ML algorithms.

3. Classify the Malwares : This phase involves distinguishing between benign and
malware entities based on the features selected and evaluated in the previous phases.

To gain an in-depth understanding of the architecture, one can refer to the source code
of our malware detector available on GitHub4

Our research utilizes malware samples collected from VirusShare. We obtained an
API key to download over 200,000 JSON files (each corresponding to a unique hash),
but were limited to four files per minute due to API constraints. From these JSON files,
we extracted essential information, including scan results from 70 antivirus programs,
which served as the basis for subsequent malware classification. We then performed
malware classification, a crucial step to identify and categorize the samples for further
analysis.

4 https://github.com/bishwajitprasadgond/MalwareClassification

https://github.com/bishwajitprasadgond/MalwareClassification

5. WORKING EXAMPLE 7

5 Working Example

Example Documents:

• A: "This is a sample text document."
• B: "Here is another text document."

TF-IDF Calculation

1. Term Frequency (TF): 𝑇𝐹 (𝑡, 𝑑) =
𝑓𝑡 ,𝑑∑

𝑡 ′∈𝑑 𝑓𝑡 ′ ,𝑑
𝑓𝑡 ,𝑑 is the term frequency,

∑
𝑡 ′∈𝑑 𝑓𝑡 ′ ,𝑑 is total terms in 𝑑.

2. Inverse Document Frequency (IDF): 𝐼𝐷𝐹 (𝑡, 𝐷) = log
(

𝑁

|{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}|

)
𝑁 is total docs, |{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}| is docs containing 𝑡.

3. TF-IDF: TF-IDF(𝑡, 𝑑, 𝐷) = 𝑇𝐹 (𝑡, 𝑑) × 𝐼𝐷𝐹 (𝑡, 𝐷)

Example:

• IDF("sample") = IDF("another") = IDF("text") = IDF("document") = 0.3
• TF("sample", A) = TF("sample", B) = 1/5 = 0.2
• TF("another", A) = 0, TF("another", B) = 1/5 = 0.2
• TF("text", A) = TF("text", B) = 1/5 = 0.2
• TF("document", A) = TF("document", B) = 2/5 = 0.4

TF-IDF Vectors:

• Document A: [0.06, 0, 0.06, 0.12]
• Document B: [0.06, 0.06, 0.06, 0.12]

6 Experimental Setup

Our experimental setup aims at evaluating the effectiveness of NLP and machine learning
techniques in malware classification. It consisted of the follows:

• Host OS: We used Ubuntu 18.04 LTS on a machine with an Intel i7 processor,
8GB RAM, and a 10TB HDD. Cuckoo Sandbox 2.0.7 was employed for malware
analysis on the Ubuntu host.

• We collected two lakhs diverse set of malware samples from VirusShare representing
seven categories.

• A separate Windows 10 environment was used with an Intel i7 processor, 128GB
RAM, and 5TB storage to collect and analyze the dynamic analysis reports obtained
from Cuckoo Sandbox.

• Unigram, bigram and trigram analysis was conducted on Windows 10 host to trans-
form API call sequences into 𝑛-grams of each categories.

This setup allowed controlled experimentation to assess the potential of 𝑛-gram and
machine learning techniques in enhancing the performance of malware classification.

Our proposed approach was implemented using Python 3.10.9 programming lan-
guage. Comprehensive information about our malware detector’s experimental setup,
our dataset, and source code can be accessed on GitHub4.

8 B. P. Gond et al.

7 Results Analysis

Table 1: Datasets used

S.No Types Test Sample Train Sample Total Sample
1 Adware 406 1580 1986
2 Backdoor 123 551 674
3 Downloader 495 2002 2497
4 Spyware 190 756 946
5 Trojan 695 2873 3568
6 Worm 277 1080 1357
7 Virus 500 1892 2392
8 Benign 1724 6910 8634

Total 4410 17644 22054

The dataset in Table 1 comprises of 22,054 malware samples categorized into 7 types
(Adware, Backdoor, Downloader, Spyware, Trojan, Worm, Virus), alongside a Benign
class. Training and testing samples are split in an 80:20 ratio per malware type, totaling
17,644 training samples and 4,410 testing samples. The Benign class has the most sam-
ples. This distribution ensures a balanced representation, facilitating thorough training
and evaluation of machine learning models. The dataset for this research shown in Table
1 consists of malware samples categorized into 7 types: Adware, Backdoor, Downloader,
Spyware, Trojan, Worm, and Virus, along with a class for Benign samples. The dataset
is divided into training and testing samples, with varying ratios 80:20 for each malware
type. The total number of samples in the dataset is 22,054, with 17,644 samples used
for training and 4,410 samples used for testing. Each malware type has a different dis-
tribution of samples between the training and testing sets, with the Benign class having
the highest number of samples. The dataset’s distribution suggests a relatively balanced
representation of malware types, allowing for comprehensive training and evaluation of
machine learning models.

(a) Decision Tree (b) Random Forest

7. RESULTS ANALYSIS 9

(c) k-Nearest Neighbors (d) Naive Bayes

(e) SVM Linear (f) SVM Polynomial 3◦

(g) SVM Polynomial 4◦ (h) SVM Sigmoid

Based on the evaluation metrics in Table 2, it can be observed that the XGBoost
classifier stands out as the best performer, achieving the highest accuracy, precision,

10 B. P. Gond et al.

(i) SVM RBF (j) LightGBM

(k) XGBoost

Fig. 3: Confusion Matrices for Malware Classification Using ML Techniques

recall, and 𝐹1 score among all classifiers (99.02%, 98.35%, 97.74%, and 98.04%,
respectively). Conversely, SVM Polynomial (degree 3 and 4) and SVM Sigmoid perform
poorly, with accuracy rates around 40% and very low precision, recall, and 𝐹1 scores,
making them unsuitable for this task.

The poor performance of SVM Polynomial (degree 3 and 4) suggests potential over-
fitting due to complexity, while SVM Sigmoid struggles with capturing relationships
in multi-class problems like malware classification. Naive Bayes exhibits lower per-
formance due to underfitting from its simplicity. In contrast, XGBoost and LightGBM
perform best, followed by Random Forest, Decision Tree, and SVM Linear, each demon-
strating strengths in handling complex datasets and capturing important patterns. KNN
performs decently but lags behind due to limitations in capturing complex data patterns
as Confusion Matrices shown in Figure 3.

8. COMPARISON OF OUR WORK WITH PRESENT STATE-OF-THE-ART TECHNIQUES 11

Table 2: Evaluation Metrics for malware classification using ML Techniques

Performance Parameters
S.No Classifiers Acc 𝐹1 Rec Pre

1 Decision Tree 98.50 97.16 97.30 97.23
2 k-Nearest Neighbors 94.40 93.16 92.16 92.65
3 Naive Bayes 56.26 65.49 69.98 57.70
4 SVM Linear 97.01 94.77 95.93 95.32
5 SVM Polynomial 3◦ 40.21 27.12 13.73 9.45
6 SVM Polynomial 4◦ 40.19 39.19 13.78 9.57
7 SVM RBF 66.91 73.10 55.03 55.17
8 SVM Sigmoid 54.33 36.96 33.48 31.32
9 Random Forest 98.37 97.75 96.35 97.03
10 XGBoost 99.02 98.35 97.74 98.04
11 LightGBM 99.02 98.31 97.60 97.95

8 Comparison of our work with present state-of-the-art techniques

Our work focuses on improving malware classification using NLP-based 𝑛-gram analy-
sis. Since we utilize a unique dataset, we lack direct comparisons with existing state-of-
the-art techniques. Our approach harnesses the power of Natural Language Processing
(NLP) and 𝑛-gram analysis, offering a distinctive perspective on malware detection. In
the absence of any directly related work, we compare our work with some closely related
work

Dabas et al. [11] achieved 99.6% accuracy in Windows malware detection using
TF-IDF enriched API calls, reducing the feature set to 9%, but they used 2500 malware
and 2500 benign samples. Dabas et al. [12] achieved up to 99.7% accuracy with 30%
features and 100% accuracy on GA-enriched features, but they used 2500 malware and
2500 benign samples. Sharma et al. [13] achieved up to 99.91% accuracy for SVM and
Logistic Regression algorithms by combining API call feature sets into an integrated
set and applying TF-IDF, but they didn’t disclose the percentage of features used. The
detailed comparison of our work with some available related work is given in Table 3.

Table 3: Quantitative comparison of some malware detection techniques

No Author 𝑛-gram IF-TDF Feat. Red𝑛 ML Tech Datasets Class𝑛 Dect𝑛 Acc
1 Dabas et al. [11] ✗ ✓ 9% ✓ VirusShare ✗ ✓ 99.6
2 Dabas et al. [12] ✗ ✓ 30% ✓ VirusShare ✗ ✓ 99.7
3 Sharma et al. [13] ✗ ✓ n.d. ✓ VirusShare ✗ ✓ 99.9
4 Proposed Work ✓ ✓ 1.6% ✓ VirusShare ✓ ✗ 99.02

12 B. P. Gond et al.

9 Conclusions and Future Work

In conclusion, the evaluation of machine learning algorithms identify XGBoost and
LightGBM classifiers as the most proficient options among those considered. Both clas-
sifiers demonstrate exceptional performance across key metrics, achieving the highest
accuracy, precision, recall and 𝐹1 score values. XGBoost achieves remarkable results
with an accuracy of 99.02%, precision of 98.35%, recall of 97.74%, and 𝐹1 score of
98.04%, closely followed by LightGBM with comparable scores of 99.02% accuracy,
98.31% precision, 97.60% recall, and 97.95% 𝐹1 score. These findings show the effec-
tiveness and reliability of both XGBoost and LightGBM for classification tasks, making
them the optimal choices for achieving high predictive performance and robustness in
similar scenarios.

We outline the following possible extensions to enhance our work: 1) Exploring
diverse feature selection approaches to enhance analysis versatility. 2) Applying various
deep learning approaches to broaden the research scope and uncover new insights.
3) Utilizing genetic algorithm approaches for feature selection and creation to further
expand potential insights from our investigation.

References

1. Robert Moskovitch, Dima Stopel, Clint Feher, Nir Nissim, and Yuval Elovici. Unknown mal-
code detection via text categorization and the imbalance problem. In 2008 IEEE international
conference on intelligence and security informatics, pages 156–161. IEEE, 2008.

2. Jean Bergeron, Mourad Debbabi, Jules Desharnais, Mourad M Erhioui, Yvan Lavoie, and
Nadia Tawbi. Static detection of malicious code in executable programs. Int. J. of Req. Eng,
2001(184-189):79, 2001.

3. Zahra Bazrafshan, Hashem Hashemi, Seyed Mehdi Hazrati Fard, and Ali Hamzeh. A survey
on heuristic malware detection techniques. In The 5th Conference on Information and
Knowledge Technology, pages 113–120. IEEE, 2013.

4. Joma Rajab Salim Alrzini and Diane Pennington. A review of polymorphic malware detection
techniques. International Journal of Advanced Research in Engineering and Technology,
11(12):1238–1247, 2020.

5. Ce Li, Zĳun Cheng, He Zhu, Leiqi Wang, Qiujian Lv, Yan Wang, Ning Li, and Degang Sun.
Dmalnet: Dynamic malware analysis based on api feature engineering and graph learning.
Computers & Security, 122:102872, 2022.

6. Edward Raff and Charles Nicholas. A survey of machine learning methods and challenges
for windows malware classification. arXiv preprint arXiv:2006.09271, 2020.

7. Junji Nakazato, Jungsuk Song, Masashi Eto, Daisuke Inoue, and Koji Nakao. A novel
malware clustering method using frequency of function call traces in parallel threads. IEICE
transactions on information and systems, 94(11):2150–2158, 2011.

8. Chandrasekar Ravi and R Manoharan. Malware detection using windows api sequence and
machine learning. International Journal of Computer Applications, 43(17):12–16, 2012.

9. Weĳie Han, Jingfeng Xue, Yong Wang, Lu Huang, Zixiao Kong, and Limin Mao. Maldae:
Detecting and explaining malware based on correlation and fusion of static and dynamic
characteristics. Computers & Security, 83:208–233, 2019.

10. Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and Min Zhao. Sbmds:
an interpretable string based malware detection system using svm ensemble with bagging.
Journal in computer virology, 5:283–293, 2009.

9. CONCLUSIONS AND FUTURE WORK 13

11. Namita Dabas, Prachi Ahlawat, and Prabha Sharma. An effective malware detection method
using hybrid feature selection and machine learning algorithms. Arabian Journal for Science
and Engineering, 48(8):9749–9767, 2023.

12. Prachi., Namita Dabas, and Prabha Sharma. Malanalyser: An effective and efficient windows
malware detection method based on api call sequences. Expert Systems with Applications,
230:120756, 2023.

13. Sharma, Prabha, and Nimita. Windows malware detection using machine learning and tf-
idf enriched api calls information. In 2022 Second International Conference on Computer
Science, Engineering and Applications (ICCSEA), pages 1–6. IEEE, 2022.

14. Gerard T LaVarnway. An introduction to cart: Classification and regression trees. In Computer
Science and Statistics: Proceedings of the 20th Symposium on the Interface. Alexandria, VA:
American Statistical Association, pages 298–301, 1988.

15. Leo Breiman. Random forest, vol. 45. Mach Learn, 1, 2001.

	Malware Classification Leveraging NLP & Machine Learning for Enhanced Accuracy

