
ar
X

iv
:2

50
6.

16
02

3v
1

 [
cs

.C
R

]
 1

9
Ju

n
20

25
1

Efficient Blockchain-based Steganography via
Backcalculating Generative Adversarial Network

Zhuo Chen, Jialing He, Jiacheng Wang, Zehui Xiong, Senior Member, IEEE, Tao Xiang, Senior Member, IEEE,
Liehuang Zhu, Senior Member, IEEE, and Dusit Niyato, Fellow, IEEE

Abstract—Blockchain-based steganography enables data hid-
ing via encoding the covert data into a specific blockchain trans-
action field. However, previous works focus on the specific field-
embedding methods while lacking a consideration on required
field-generation embedding. In this paper, we propose a generic
blockchain-based steganography framework (GBSF). The sender
generates the required fields such as amount and fees, where
the additional covert data is embedded to enhance the channel
capacity. Based on GBSF, we design a reversible generative adver-
sarial network (R-GAN) that utilizes the generative adversarial
network with a reversible generator to generate the required
fields and encode additional covert data into the input noise of
the reversible generator. We then explore the performance flaw
of R-GAN. To further improve the performance, we propose
R-GAN with Counter-intuitive data preprocessing and Custom
activation functions, namely CCR-GAN. The counter-intuitive
data preprocessing (CIDP) mechanism is used to reduce decoding
errors in covert data, while it incurs gradient explosion for model
convergence. The custom activation function named ClipSigmoid
is devised to overcome the problem. Theoretical justification for
CIDP and ClipSigmoid is also provided. We also develop a mech-
anism named T2C, which balances capacity and concealment.
We conduct experiments using the transaction amount of the
Bitcoin mainnet as the required field to verify the feasibility.
We then apply the proposed schemes to other transaction
fields and blockchains to demonstrate the scalability. Finally, we
evaluate capacity and concealment for various blockchains and
transaction fields and explore the trade-off between capacity and
concealment. The results demonstrate that R-GAN and CCR-
GAN are able to enhance the channel capacity effectively and
outperform state-of-the-art works.

Index Terms—Blockchain, steganography, covert transmission,
capacity enhancement, GAN

I. INTRODUCTION

Steganography enables both senders and receivers to trans-
mit data secretly over a public network channel [1–3]. It is
widely used in digital watermarking [4], censorship-resistant
systems [5] and digital forensics [6]. Due to concealing the
communication behavior between the sender and the receiver,
steganography ensures a secure transmission of confidential
military and commercial information [7, 8]. In the blockchain-
based steganography [9, 10], the sender and the receiver estab-

Zhuo Chen and Liehuang Zhu are with the School of Cyberspace Science
and Technology, Beijing Institute of Technology, Beijing 100081, China.

Jialing He and Tao Xiang are with the College of Computer Science,
Chongqing University, Chongqing 400044, China.

Jiacheng Wang and Dusit Niyato are with Nanyang Technological Univer-
sity, Singapore.

Zehui Xiong is with the School of Electronics, Electrical Engineering and
Computer Science (EEECS), Queen’s University Belfast, Belfast, BT7 1NN,
U.K..

Corresponding author: Jiacheng Wang.

lish a covert channel through the blockchain network [11, 12].
The sender hides the covert data into a specific transaction field
and broadcasts the covert transaction to the blockchain. The
receiver identifies the covert transaction from the blockchain
and decodes it to access the covert data.

Previous studies primarily focus on encoding the covert data
into specific transaction fields (i.e., embedding fields), while
rarely considering the proper generation of required fields that
used to complete a transaction [13, 14]. Wang et al. [15]
demonstrated that the improper generation of the required
fields can easily expose covert transactions, and proposed
a required-field-generation method by applying generative
adversarial networks (GANs) [16, 17]. This approach is able
to generate required fields that are indistinguishable from
normal transaction fields. However, it lacks a consideration of
embedding the covert data into the required fields’ generation
process, facing the following main challenges.

• Less redundancy. Blockchain fields contain less redun-
dant information than those of audio and image data [18,
19], making it more challenging to conceal data.

• No semantics. Unlike text, a blockchain field is simply
a number without semantic information. As a result,
typical text steganography methods [20–23], which rely
on semantic and state transfer probabilities, are unsuitable
for blockchain field steganography.

• Difficult to encode. Existing studies often employ deep
generative models to generate indistinguishable required
fields [15]. However, these models are often uninter-
pretable, making it difficult to encode data into the
generated fields.

In this paper, we propose a generic blockchain-based
steganography framework (GBSF) that improves the capacity
of blockchain-based covert channels. In GBSF, the sender
employs a GAN to generate required fields and encodes the
covert data as input to the GAN’s generator. This input consists
of random noise, which is similar to the random string nature
of covert data (often ciphertext). However, as deep learning
models are typically irreversible, it is difficult for the receiver
to restore the covert data. To address this challenge, we
therefore introduce the concept of a reversible GAN (R-GAN)
whose generator is reversible. With the reversible GAN, we
then introduce the R-GAN scheme. Our key insight is to
model the generator of GAN as an invertible multivariate
function by carefully configuring the network structure. We
accomplish this by constructing the generator using linear
neural networks (e.g., fully connected layers and convolutional

https://arxiv.org/abs/2506.16023v1

2

neural networks [24]) and reversible activation functions (e.g.,
Sigmoid and LeakyReLU [25]). The receiver backcalculates
the generator to retrieve the input noise and the covert data.

R-GAN is only capable of embedding and recovering a
small amount of covert data. This is because the generator
of R-GAN tends to produce fractional numbers, whereas the
transaction field requires integer values. Consequently, it in-
curs inaccuracy and rounding errors. To enhance performance,
we introduce R-GAN with a Counter-intuitive data preprocess-
ing (CIDP) method and a Custom activation function, namely
CCR-GAN. We propose CIDP to mitigate the rounding error.
We design a custom activation function called ClipSigmoid as
the output of the model to eliminate excessive gradient and to
improve model convergence. Additionally, we provide theoret-
ical justification for both CIDP and ClipSigmoid. Inspired by
CIDP, we also propose T2C, a mechanism for balancing data
embedding capacity and concealment. The core idea of T2C
is to improve the quality of the training dataset at the expense
of increasing the rounding error, thus trading data embedding
capacity for concealment.

Finally, we present an implementation of both R-GAN
and CCR-GAN and verify their scalability. We first use the
Bitcoin transaction amount as an example to evaluate the
feasibility of proposed schemes. We then employ Bitcoin fee,
Ethereum amount, and Ethereum fee as the dataset, and test
the data embedding ability and concealment of R-GAN/CCR-
GAN when generating these fields to evaluate the scalability.
Experimental results reveal that both R-GAN and CCR-GAN
are able to be applied to the above blockchains and transaction
fields. Furthermore, we explore the capacity and concealment
aspects of R-GAN and CCR-GAN. Compared to R-GAN,
CCR-GAN is able to embed a larger amount of covert data
at the expense of partial concealment since it has a lower
rounding error. When the rounding error of CCR-GAN is small
enough, the computational precision error becomes a decisive
factor in limiting the amount of embedded data. We further
explore the edges of the rounding error and the computational
precision error. The experimental results show that under
the IEEE 754 standard [26], a dual-layer generator network
supports embedding up to approximately 40 bits of data in
a transaction field due to the computational precision error.
The actual embedded data amount depends on the rounding
error, which is determined by the magnitude of the difference
between the maximum and minimum values in the training
dataset. A larger magnitude results in smaller rounding errors
and allows for more data to be embedded. When the magnitude
reaches 1017, the rounding error can be considered sufficiently
small, and the amount of embedded data reaches the upper
limit imposed by the computational precision error. Overall,
both the data embedding capacity and concealment of the
proposed schemes surpass those of baselines.

In summary, main contributions of this paper include:
• We propose a GBSF framework that enhances the ca-

pacity of blockchain-based covert channels. In GBSF,
the sender leverages the reversible GAN to generate the
required fields for creating transactions, while encoding
covert data as the input to the generator. In this way,
GBSF can effectively improve channel capacity.

• We propose two schemes, namely R-GAN and CCR-
GAN. The main concept behind R-GAN is to model
its generator as a reversible function that allows the
receiver to decode covert data by reversing the generator’s
computation. However, R-GAN has a capacity limitation
due to rounding errors. We further propose CCR-GAN
to improve capacity. In comparison to R-GAN, CCR-
GAN incorporates a counter-intuitive data preprocessing
method named CIDP and a custom activation function
called ClipSigmoid. These additions reduce rounding
errors and facilitate model convergence. We also present
analytical justifications for CIDP and ClipSigmoid.

• We utilize the Bitcoin transaction amount as the re-
quired field for implementing and evaluating GBSF on
the Bitcoin mainnet. We conduct tests to measure the
amount of covert data that R-GAN and CCR-GAN can
embed in each transaction amount, as well as their ca-
pacity to enhance existing blockchain-based steganogra-
phy schemes. Experimental results demonstrate that both
schemes exhibit a high level of capacity and concealment
enhancement capabilities.

• We evaluate the scalability of R-GAN and CCR-GAN.
We apply R-GAN and CCR-GAN to the transaction
fee field of Bitcoin. Experimental results show that the
Bitcoin fee is also applicable to the proposed schemes.
We also apply R-GAN and CCR-GAN to Ethereum. The
experimental results show that the proposed schemes can
also be extended to Ethereum amount and Ethereum fee.

• We devise T2C, a mechanism to support fine-grained
trading capacity for concealment. We also design exper-
iments to verify the effectiveness of T2C. The results
show that for every reduction/increase in capacity by 2-3
bits, concealment is simultaneously increased/decreased
by 3%-4%. We also find that there is a boundary in
the trade off between capacity and concealment. When
capacity reaches the upper limit, it is no longer possible
to increase capacity by sacrificing concealment. Under
the IEEE 754 standard, the capacity limit is about 40
bits per transaction field.

II. COVERT CHANNEL: R-GAN

A. GBSF Framework

We introduce a generic framework for enhancing the capac-
ity of blockchain-based steganography, as illustrated in Fig. 1.
The framework consists of an original covert channel and an
expanding covert channel.

The blue box illustrates the original covert channel, con-
sisting of a sender, a receiver, and a blockchain. The sender
encodes the covert data into a transaction field (i.e., the embed-
ding field) such as the address and the signature [27, 28]. Af-
terwards, the sender generates the remaining transaction fields
required for transaction creation (i.e., the required field), either
randomly or using deep generative models. These required
fields are utilized to create the covert transaction, which is then
broadcasted to the blockchain network. The receiver retrieves
the covert transaction from the blockchain and decodes the
covert data based on the embedding field.

3

Original covert channel

Expanding covert channel

Expansion
field

Covert data

Additional

covert data

Covert data

Additional

covert data

Sender Receiver

Covert

transaction

Covert

transaction
Embedding field

Blockchain

Required fields

randomly generated

Required fields

generated with GAN

Expansion
field

 Reversible GAN

Encoding

input

Encoding

output

Decoding

output

Decoding

input

Reversible generator

···

···

···

···

···

···

···

Discriminator

· ·

Fig. 1: Overview of GBSF framework. In GBSF, the sender uses the R-GAN to generate the required fields and complete a
transaction. The generator of R-GAN is reversible. It inputs additional covert data and outputs transaction fields which we
call expansion fields. Given the expansion field, the receiver can calculate the generator in reverse to extract covert data.

The expanding covert channel (depicted in the yellow box
in Fig. 1) enhances the channel capacity, which is achieved
by embedding additional covert data in required fields rather
than generating required fields randomly or using deep gen-
erative models. The key concept behind the expanding covert
channel is the utilization of a specialized GAN, i.e., R-GAN.
Similar to a typical GAN, the R-GAN consists of a generator
and a discriminator. The difference is that its generator is
reversible, allowing the function expression of the generator to
be backcalculated. This property enables the sender to encode
additional covert data using the generator in the forward
direction, while the receiver utilizes the generator in the back
direction to decode the additional covert data. With R-GAN,
the sender can encode additional covert data into transaction
fields that are indistinguishable from normal transaction fields.
These fields carrying the additional covert data are known
as expansion fields. By incorporating the expansion fields
alongside the original embedding fields, the sender constructs
the complete covert transactions, effectively increasing the
capacity of the blockchain-based covert channel. The receiver
retrieves the expansion field from the covert transaction and
inputs it into the R-GAN. The R-GAN then performs the
reverse process of encoding and outputs the additional covert
data. In this way, we establish an expanding covert channel
to transmit the additional covert data and boost the channel
capacity. In the following, we present the technical details of
the expanding covert channel with R-GAN.

B. Technical Overview

As depicted in Fig. 2, the expanding covert channel consists
of three main steps. Firstly, the sender and the receiver
train a model to generate expansion fields. Secondly, the
sender encodes covert data into the generated expansion fields.
Finally, the receiver decodes the expansion fields to recover
the covert data. Note that this paper focuses on details of the
encoding and decoding principle and does not consider the
model synchronization between the sender and the receiver.
Model synchronization method used in [29, 30] can also be
adopted in our schemes. More precisely, the sender and the
receiver can simply obtain an identical model by sharing the
rules for training the model. For example, every 3 days, they
select the expansion field from the last 100 blocks as a dataset
to train the model using a series of identical seeds. The training
process does not stop until the model loss falls below a certain
threshold.

C. Model Pre-training

This section outlines the process of model pre-training,
which encompasses data preprocessing, model structure, and
the loss function. We utilize the transaction output amount
of Bitcoin as the expansion field to illustrate the pre-training
process. We specifically choose this amount field since each
transaction must include a specified output amount, and the
transaction creator has full control over the output amount.

4

Sender Receiver
Expansion

field

2. Data encoding

3. Data decoding

Fig. 2: General workflow of the expanding covert channel.
The sender and the receiver first train a R-GAN model,
respectively. The sender uses the trained model to encode
covert into the expansion field, and the receiver uses the
trained model to decode covert data from the expansion field.

(a) Transaction amount.

3 4 5 6 7 8 9 10 11 12 13
Amount length

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

N
um

be
r o

f a
m

ou
nt

s

20996
24.84%

34693
41.05%

15286
18.09%

(b) Length of transaction amount.

Fig. 3: Example of Bitcoin transaction amount. The
transaction amount is a one-dimensional numerical value,

ranging in length from 3-13 and concentrated between 5-7.

1) Data preprocessing: The model takes the transaction
output amount as the input, which is represented as an
integer like “18105990”. Fig. 3(a) illustrates the distribution
of Bitcoin transaction output amounts for 25 blocks, from
block 727215 to block 727239. These amounts range from
296 to 2,874,993,345,277, with a dense distribution between
104 and 107. Fig. 3(b) displays the number and proportion
of amounts grouped by length. Amounts with lengths ranging
from 5 to 7 account for a significant portion, totaling 83.98%.
We select the most common data, specifically the data with
lengths ranging from 5 to 7, as the training dataset X , and
apply min-max normalization to normalize the training dataset
to the range from 0 to 1. Let us denote X = {x1, x2, · · · , xn},
then for i ∈ {1, 2, · · · , n}, we normalize

x′
i =

xi −min(X)

max(X)−min(X)
, (1)

where min(X) and max(X) represent the minimum and
maximum elements of X , respectively. We also reshape the
dataset and group adjacent 64 data points to form a new
training dataset. The formation process is represented as:

new xi = {x′
(i−1)∗64+1, x

′
(i−1)∗64+2, · · · , x

′
i∗64}, (2)

where i ∈ {1, 2, · · · , ⌈n/64⌉}. This formation process
helps the model capture the relationship between transaction

amounts and reduces the likelihood of encoding the same
covert data as the same transaction amount.

2) Model structure: Fig. 4 presents the overview of R-
GAN, comprising a generator and a discriminator. The gener-
ator takes a random noise sampled from U [−1, 1] (uniform
distribution) as the input and fake amounts as the output.
We use a uniform distribution to sample the input noise to
accommodate covert data within the noise. The reason we
choose the uniform distribution as the input is that it aligns
with the randomness nature of encrypted data. The covert data
(typically encrypted) encoded into the generator’s input can be
seen as a random string, which exhibits randomness as well
as uniform distribution [31]. The generator consists of two
fully connected layers to ensure reversibility. While the fully
connected layer is a simple neural network, it is sufficient
to handle one-dimensional numerical data like the transaction
amount. The first layer utilizes LeakyReLU as the activation
function due to its piecewise linearity property, which can
reduces decoding errors during covert data recovery. The last
layer employs Sigmoid as the activation function, as it is a
monotonic function that outputs values between 0 and 1. The
monotonicity of Sigmoid enables reversibility, and its output
range aligns with normalized training data.

The discriminator focuses on evaluating the concealment of
generated fake data and is unrelated to the recovery of the
covert data. Complex irreversible networks can be employed
to construct the discriminator. Due to the excellent feature
capture capabilities of convolutional neural networks (CNNs),
we use 6 CNNs with ReLU to form the discriminator. The
last layer of the discriminator is a fully connected layer with
Sigmoid, commonly utilized for binary classification tasks.

3) Loss function: We use the binary cross-entropy loss
(BCELoss) to calculate the loss function since BCELoss
is more suitable for handling values between 0 and 1 and
processing binary classification tasks. The loss function of the
model comprises two parts, including the discriminator’s loss
and the generator’s loss. The discriminator’s loss is defined
as the prediction error of the discriminator on real and fake
samples. Assume that the label for real samples is 1 and the
label for fake samples is 0, then the loss function of the
discriminator can be expressed as follows:

Jdiscriminator = −1

2

∑
(log(1−D(G(noise)))+logD(x′)),

(3)
where D represents the discriminator, G is the generator,
noise denotes the input noise of G, and x′ represents the
normalized element of the training dataset X .

The second part penalizes the generator for generating fake
samples that are recognized by the discriminator, which we
measure by:

Jgenerator = −
∑

logD(G(noise)). (4)

D. Data Encoding

In our schemes, the data encoding process consists of two
phases: embedding and verification. In the embedding phase,
covert data is embedded into the noise, while the verification

5

Real data from

blockchain

Fake data outputted

by generator

Generator
L

in
ea

r
B

×
H

L
e
a
k

y
R

e
L

U

L
in

ea
r

B
×

N

S
ig

m
o

id

Discriminator

C
o

n
v

1
d

 B
×

6
0
×

M

R
e
L

U

C
o

n
v

1
d

 B
×

6
0
×

M

R
e
L

U

C
o

n
v

1
d

B

×
5

0
×

M

R
e
L

U

C
o

n
v

1
d

 B
×

4
0
×

M

R
e
L

U

C
o

n
v

1
d

B

×
3

0
×

M

R
e
L

U

C
o

n
v

1
d

B

×
3

0
×

M

R
e
L

U

L
in

ea
r

B
×

N

S
ig

m
o

id

Real

Fake

BCELoss D

BCELoss G

Update

Update

Random noise

sampled from U[-1, 1]

Fig. 4: Overview of R-GAN. U refers to a uniform distribution; B is the batchsize; H represents the hidden dimension; M
denotes the input dimension; N is the output dimension. BCELoss refers to the binary cross entropy loss.

Noise element xi

n-bit

Covert data

m-bit

MSB

1-bit

Padding

(n-m-1)-bit

x1 x2 x3 xM

Noise vector X

Fig. 5: Noise structure. MSB is the most significant bit.

phase ensures that the receiver can correctly recover the covert
data in the presence of the rounding and computational errors.
Embedding phase. The sender incorporates the covert data
into the input of the generator, which is a noise vector. The
sender replaces certain bits of each noise element with covert
data. Fig. 5 illustrates the structure of the noise, which consists
of 1-bit most significant bit (MSB), m-bit covert data, and
(n−m−1)-bit Padding. Both MSB and Padding are uniformly
sampled, ensuring the noise spans a wide range of values.
Verification phase. The verification phase ensures that the bits
representing the covert data in the recovered noise match those
sent by the sender. This phase is necessary because the receiver
may not obtain the exact same noise as the sender during
the decoding process. The inconsistencies may arise due to
computational errors and rounding errors. The computational
errors refer to inaccuracies in decimal calculations on com-
puters, while the rounding errors occur when the generator’s
decimal amounts are rounded to on-chain integer amounts.

For simplicity and better understanding, consider that the
generator takes an M -dimensional noise vector X as input,
where each element consists of n bits. The covert data is
represented by an M -dimensional vector CD, with each
element consisting of m bits. We denote the generator as
G(·) and its inverse as G−1(·). The data encoding process
is illustrated in Algorithm 1. The sender starts by sampling
MSB and Padding for each covert data element cdi, and
concatenates them to form an n-bit noise element (lines 4-
8). Using the noise vector composed of these noise elements,

2FCLeakyReLU Sigmoid
(1)

1FC NA
(2)(4)(5)

Fig. 6: Data decoding. 1FC and 2FC refers to the first fully
connected layer and the second fully connected layer. NA
denotes normalization.

the sender obtains a decimal transaction amount vector A
based on G(·) (lines 9-10). Since on-chain transaction amounts
must be integers, decimal values are rounded to integer values
Â (line 12). The sender then computes the recovered noise
based on the rounded integer values (lines 13-14) and verifies
whether the covert data bits in the recovered noise match
those of the original noise (lines 15-26). The sender iteratively
performs the embedding phase and the verification phase until
a satisfying noise vector is obtained. Note that the infinite loop
(line 2) can be prevented by randomizing MSB and decreasing
the value of m. Directly setting the first m bits of the noise as
covert data without a randomizing MSB may incurs an infinite
loop since only modifying the lower bits has less influence on
the overall noise value. Increasing the value of m allows for
more covert data to be embedded in each transaction amount.
However, this also leads to a longer time overhead in finding
a satisfactory noise vector. The trade-off between m-value and
the time overhead is explored in the experimental section.

E. Data Decoding
The main concept behind data decoding is to reverse

the computation of the generator. Let the first layer has
an M -dimensional input and an H-dimensional output, and
the second layer has an H-dimensional input and an N -
dimensional output. LeakyReLU has a slope of α. Sup-
pose the receiver obtains a transaction amount vector Â =
(â1, â2, · · · , âN) ∈ ZN

+ . The receiver can recover the covert
data ĈD = (ĉd1, ĉd2, · · · , ĉdM) ∈ {0, 1}m×M in the follow-
ing steps outlined in Fig. 6.
(1) Normalize the transaction amount to obtain the output of

Sigmoid. Given Â, compute

Ŷ =
Â−min(X)

max(X)−min(X)
, (5)

6

Algorithm 1: Data encoding.
Input: Covert data

CD = (cd1, cd2, · · · , cdM) ∈ {0, 1}m×M .
Output: Noise X = (x1, x2, · · · , xM) ∈ RM .

1 Initialize X = (x1, x2, · · · , xM);
2 while True do
3 // Begin embedding phase;
4 for i in range(M) do Randomize MSB and

Padding
5 Uniformly sample an MSBi ∈ {0, 1};
6 Uniformly sample a Paddingi ∈ {0, 1}n−m−1;
7 Set xi = MSBi||cdi||Paddingi;
8 end
9 Compute Y = G(X);

10 Denormalize
A = Y × (max(X)−min(X)) +min(X);

11 // Begin verification phase;
12 Round Â = [A];

13 Normalize Ŷ = Â−min(X)
max(X)−min(X) ;

14 Compute X̂ = G−1(Ŷ);
15 Initialize Result = [];
16 for x̂i ∈ X̂ do
17 if bits 2 to (m+ 1) of x̂i == bits 2 to (m+ 1)

of xi then
18 Result.append(True);
19 end
20 else
21 Result.append(False);
22 end
23 end
24 if All elemets of Result are True then
25 Break;
26 end
27 end
28 return X

where Ŷ = (ŷ1, ŷ2, · · · , ŷN) ∈ RN
+ .

(2) Calculate the output of the second fully connected layer.
Given the output of the generator Ŷ, compute

X̂(2) = Logistic(Ŷ), (6)

where Logistic(·) is the logistic function and X̂(2) =

(x̂
(2)
1 , x̂

(2)
2 , · · · , x̂(2)

N) ∈ RN .
(3) Calculate the output of LeakyReLU. Given the output of

the second fully connected layer X̂(2), compute

Ẑ(1) = W−1
2 X̂(2), (7)

where W−1
2 is the inverse matrix of the weight ma-

trix of the second fully connected layer and Ẑ(1) =

(ẑ
(1)
1 , ẑ

(1)
2 , · · · , ẑ(1)H) ∈ RH . Note that W2 is a matrix

with N rows and H columns , and W−1
2 exists only when

N = H and W2 is a full-rank matrix. We thus set N = H
in the model training process.

(4) Calculate the output of the first fully connected
layer. Given the output of LeakyReLU Ẑ(1) =

(ẑ
(1)
1 , ẑ

(1)
2 , · · · , ẑ(1)H) ∈ RH , for each ẑ

(1)
i where i ∈

[1, 2, · · · , H], compute

x̂
(1)
i =

ẑ
(1)
i , ẑ

(1)
i ≥ 0

1

α
ẑ
(1)
i , ẑ

(1)
i < 0,

(8)

and set X̂(1) = (x̂
(1)
1 , x̂

(1)
2 , · · · , x̂(1)

H) ∈ RH .
(5) Calculate the recovered noise X̂. Given X̂(1), compute

X̂ = W−1
1 X̂(1), (9)

where W−1
1 is the inverse matrix of the weight ma-

trix of the first fully connected layer and X̂ =
(x̂1, x̂2, · · · , x̂M) ∈ RM . W1 is a matrix with H rows
and M columns. We also set H = M such that W−1

1

exists.
(6) Intercept and concatenate the recovered noise’s covert data

bits. Given X̂ = (x̂1, x̂2, · · · , x̂M) ∈ RM , compute

ĈD = (x̂1[2 : m+1], · · · , x̂M [2 : m+1]) ∈ {0, 1}m×M ,
(10)

where x̂i[2 : m + 1] refers to the bit string formed by
concatenating the 2nd bit to the (m+ 1)th bit of x̂i.

In summary, data decoding leverages the reversible nature
of the generator to extract covert data from the transaction
amount. To ensure the feasibility of the inverse calculation,
both activation functions must be monotonic and continuous,
and the generator’s parameters M , H , and N are set to
be the same. The generator takes an M-dimensional noise
vector as input and produces an M-dimensional transaction
amount vector. Each element of the noise vector carries m-bit
covert data. It is worth noting that there exists a computation
error between the actual noise X and the recovered noise X̂.
The value of m is determined by the number of consecutive
identical bits at the beginning of X and X̂. Therefore, a smaller
computation error between X and X̂ allows for more bits
of covert data to be encoded per noise/transaction amount.
To enhance performance, we propose a counter-intuitive data
preprocessing method and a custom activation function to
increase the amount of covert data that can be embedded.

III. IMPROVED COVERT CHANNEL: CCR-GAN

In this section, we propose CCR-GAN to improve R-
GAN. The limited performance of R-GAN stems from the
discrepancy between the noise recovered by the receiver and
that sent by the sender, which arises from two errors [32].

• The first error is the precision error inherent to computers
when performing decimal calculations, as there exists a
built-in precision limit.

• The second error occurs when rounding transaction
amounts. The generator of R-GAN generates a decimal
value, while on-chain transaction amounts must be inte-
gers. The sender rounds the decimal number to an integer,
which introduces errors.

The first error can be reduced by utilizing data types
with higher precision. To reduce the second type of error,
we initially introduce a counter-intuitive data preprocessing
mechanism referred to as CIDP.

7

A. Counter-intuitive Data Preprocessing

Recall that the sender selects data with a higher occurrence
probability as the training dataset. This choice allows the
model to disregard extreme data and their influence on fea-
ture extraction, promoting generating data closely resembling
normal data. Additionally, it encourages a more balanced and
symmetrical distribution of the training data, which mitigates
model overfitting and facilitates faster model convergence.
However, we observe that this selection also leads to an in-
crease in rounding errors. The rationale behind this observation
is explained in the following.

For better clarity, we discuss the rounding error on a single
transaction amount element instead of a transaction amount
vector. To facilitate this discussion, we first propose the
concept of the number of perfectly identical digits (NPID)
between two real numbers ranging from 0 to 1.

Definition 1. (The number of perfectly identical digits,
NPID). Consider two decimal numbers, 0 < a = a0 ×
100 + a1 × 10−1 + · · · + am × 10−m < 1 and 0 < b =
b0 × 100 + b1 × 10−1 + · · · + bn × 10−n < 1. We define
NPID(a, b) as the count of consecutive identical digits in
a and b when counted from the integer digit backwards.
Specifically, NPID(a, b) = k + 1 if ak = bk holds for all
i ∈ [0, 1, · · · , k].

Note that this definition represents NPID as a decimal
form, denoted by NPID10. Alternatively, NPID can also
be expressed in binary form as NPID2, indicating the
number of consecutive unbroken identical bits. For clarity,
we default NPID to operate in decimal. In this context,
NPID represents the count of matching digits at each place
value, starting from the integer digit, until a mismatched digit
is encountered. For example, NPID(1.81, 1.85) = 2 and
NPID(0.1235, 0.1245) = 3. We utilize NPID as a measure
of the rounding error, as it directly reflects the maximum
amount of covert data recoverable by the receiver. A larger
NPID indicates a smaller rounding error. Next, we provide
a justification for our observation that not dropping maximum
and minimum extreme points of the training dataset, i.e.,
increasing the difference between the maximum and minimum
values of the training dataset, results in an increased NPID.

Theorem 1. Suppose the generator G outputs y (0 < y < 1),
and the receiver inputs ŷ to G−1 during the data decoding
process. When the minimum value of the training set is much
smaller than the maximum value, for every ten-fold increase in
the maximum value of the training dataset, then NPID(y, ŷ)
is increased by 1.

Proof. We begin by using y to represent ŷ. Let X be the
training dataset, max(X) (an integer) denote the maximum
element of X , and min(X) (also an integer) denote the
minimum element of X . The output y is a normalized value.
The sender denormalizes y to obtain a decimal transaction
amount a:

a = y × (max(X)−min(X)) +min(X). (11)

The sender then rounds a to an integer:

â = [a]. (12)

The receiver can only access â from the blockchain, which is
normalized to serve as the input to G−1:

ŷ =
â−min(X)

max(X)−min(X)
. (13)

Combining equations (11), (12), and (13) gives

ŷ =
[y × (max(X)−min(X)) +min(X)]−min(X)

max(X)−min(X)

=
[y × (max(X)−min(X))]

max(X)−min(X)
,

(14)
where max(X) − min(X) is fixed for a given X . Since
min(X) is much smaller than max(X), we have max(X)−
min(X) ≈ max(X). Let Q = max(X) for simplicity, then

ŷ =
[yQ]

Q
. (15)

Note that Q is an integer and y is a decimal in the range
0 to 1. Selecting transaction amounts with higher occurrence
likelihood leads to a larger Q.

Now we show that for every ten-fold increase in Q,
NPID(y, ŷ) increases by 1. Let y = y1 × 10−1 + · · ·+ yn ×
10−n, denoted as 0.y1y2 · · · yn. Let Q = 10m. We have

ŷ =
[y1y2 · · · ym.ym+1 · · · yn]

10m
, (16)

where m ≤ n. Without loss of generality, we consider ym+1 ≤
4 (ym+1 is rounded down when rounding). Then we have

ŷ =
y1y2 · · · ym

10m
= 0.y1y2 · · · ym00 · · · 0. (17)

Without loss of generality, assume ym+1 ̸= 0. In this case,
NPID(y, ŷ) = m+ 1. We complete the proof.

Motivated by the theoretical justification mentioned above,
we propose CIDP, which allows the sender to assign a larger
value to max(X) − min(X). In this approach, the sender
includes all transaction amounts as part of the training dataset,
without filtering out those with a higher likelihood of occur-
rence. By doing so, extremely large and small data points are
not excluded, resulting in an increased max(X) − min(X)
and, consequently, an increased number of bits each trans-
action amount carries according to Theorem. 1. However,
not selecting transaction amounts incurs an extremely un-
even distribution of normalized training data. About 83.98%
(24.84% + 41.05% + 18.09%, see Fig. 3(b) for detail) of the
data falls between 10−8 and 10−5, while the entire range is
from 0 to 1. This unevenness slows down the model’s conver-
gence speed, increases the risk of overfitting, and reduces the
diversity of generated data.

8

BCELossSigmoid

The second fully

connected layer

Backward Propagation

Fig. 7: Sigmoid-related weight update process. W represents
any of the weight parameters in the model before the second
fully connected layer, x denotes the output of the second
fully connected layer, y is the output of Sigmoid, and J
refers to the loss function.

B. ClipSigmoid

CIDP can reduce the rounding error, while presenting a
significant challenge in model convergence. In this section, we
present ClipSigmoid as a solution to overcome this challenge.
To improve readability, we first discuss the reasons behind this
challenge and then provide the solution.

The convergence of R-GAN with CIDP is extremely diffi-
cult since the weight update gradient during backpropagation
is too large relative to the input data. This leads to difficulties
in achieving fine-grained variations in the model’s output. In
other words, each step taken by the model in the search for
an optimal solution is too large to reach a better solution. The
following content explains the occurrence of the long step.

Sigmoid has influence on the convergence rate of the model.
Fig. 7 illustrates the weight update process related to Sigmoid.
Let σ denote Sigmoid, which takes an input x and produces
an output y. The model updates its weights by:

∆W =
∂J

∂W

=
∂J

∂y
· ∂y
∂x

· ∂x

∂W

=
∂J

∂y
· σ′(x) · ∂x

∂W
,

(18)

where J represents the loss function, and W is the model’s
weight. The derivative value of σ is proportional to ∆W . A
larger value of σ′ results in a larger ∆W , causing the model
to take bigger steps in search of an appropriate solution. In R-
GAN with CIDP, the weight update is particularly sensitive to
the activation function. This is due to the fact that 83.98% of
the input data for R-GAN with CIDP falls within the range of
10−8 to 10−5, which is extremely tiny. Small weight changes
(e.g., changes at the 10−2 level) have a considerable impact
relative to the input data. Consequently, even small weight
adjustments can significantly affect the model’s outputs. Con-
sider a generator initially producing numbers around 0.5, while
an ideal generator tends to generate numbers between 10−8

and 10−5. The initial generator tends to shift towards out-
putting numbers within the range of 10−8 to 10−5. However,
due to the large step size, the model can easily generate
data smaller than 10−8. Furthermore, when generating very

54 52 50 48 46 44
X

0

1

2

3

4

5

6

7

8

Y

1e 20
Sigmoid
ClipSigmoid

Fig. 8: Different part of ClipSigmoid and Sigmoid.

small data, the generator mistakenly considers it to be of high
quality. The discriminator categorizes these small data as real
samples since the small data corresponds to the smallest value
in the training dataset. For example, if the model outputs a
y < 10−13, it is then denormalized to the transaction amount
[a] = [(max(X)−min(X))× y+min(X)] = min(X), i.e.,
the minimum value in the training dataset. The discriminator
always assigns a true label to the minimum value since it
is a genuine data point. As a result, the generator becomes
unable to update the weights at a fine-grained level and
tends to produce even smaller data. Eventually, the model is
constrained to generating data that corresponds solely to the
minimum value in the training dataset after denormalization.

An intuitive approach to address the challenges associated
with CIDP is to modify the learning rate to mitigate the in-
fluence of weight updates on the model’s outcomes. However,
this approach is challenging in practice because determining
when to decrease the learning rate and by how much is not
straightforward. Furthermore, a very low learning rate can
significantly prolong the training process.

To this end, we introduce a custom activation function called
ClipSigmoid. Its main concept is to suppress the gradient
during backpropagation when the model generates small data.
This is achieved by setting the gradient of a specific segment of
Sigmoid to zero. The definition of ClipSigmoid is as follows:

ClipSigmoid(x) =

{
1e−20, Sigmoid(x) ≤ 1e− 20

Sigmoid(x), Sigmoid(x) > 1e− 20.
(19)

Fig. 8 illustrates the distinction between ClipSigmoid and
Sigmoid. ClipSigmoid sets the lowest threshold for Sigmoid.
When the value of Sigmoid falls below this threshold, ClipSig-
moid enforces the value to this threshold. In our case, we set
this threshold to 10−20, which is a hyperparameter established
during the model training process. The threshold is set based
on experience and is usually the square of the quotient of the
minimum and maximum values in the dataset. Whenever the
model generates a number below this threshold, the gradient of
the weight update in the backpropagation step becomes zero.

9

This effectively prevents the model from pursuing an incorrect
solution by eliminating further exploration in that direction.

Note that the activation function is an integral part of R-
GAN. It is thus necessary for ClipSigmoid to be reversible,
allowing the receiver to compute the corresponding input x
from the model’s output y. Although the zero-segment of
ClipSigmoid is an irreversible straight line parallel to the
x-axis, it does not impact the reversibility of R-GAN. The
sender can intentionally train the generator to yield data
outside the zero-segment to avoid the irreversible segment.
The effectiveness of ClipSigmoid is presented in Section V-E.

IV. T2C: TRADE CAPACITY FOR CONCEALMENT

In CCR-GAN, CIDP essentially reduces rounding error and
increases capacity by increasing the magnitude of the dataset,
which is defined as the logarithmic value of the largest element
in the dataset with a base of 10. However, larger capacity typ-
ically results in lower concealment, as confirmed by Table III.
The insight behind is embedding more covert data requires
more transaction bits, reducing the number of bits available to
resemble normal data. Technically, a larger magnitude means
a more uneven dataset and a poorer quality of the trained
models, which ultimately leads to a poorer concealment of
the generated data. As a result, (CC)R-GAN trained on larger
magnitude datasets may lead to very low concealment. For
example, suppose that the communicating parties can accept
up to 80% of the recognized accuracy, i.e., the lower bound
is 80%. A particular transaction field supports embedding 40
bits of data in (CC)R-GAN and is recognized with only 90%
accuracy. The recognized accuracy exceeds the upper limit
acceptable to the communicating parties. Hence, the question
is, is it possible to balance capacity and concealment at a
fine-grained level so that as much data as possible can be
embedded within a given recognized accuracy?

In this section, we propose T2C, a fine-grained approach
to balance capacity and concealment. The core idea of T2C,
which is inspired by CIDP, is to customize the magnitude
of the dataset. When the dataset’s magnitude is too large
and leads to low concealment, the communicating parties
can manually reduce the dataset’s magnitude and increase
the rounding error. In this way, the capacity is sacrificed to
enhance the quality of the trainied model, which ultimately
improves the concealment. Next, we show the technical details
of T2C, which is implemented by decreasing- and recovering-
magnitude algorithms.

Algorithm 2: Decreasing magnitude.
Input: Dataset X = (x1, x2, · · · , xn).

Reduced magnitude 10λ.
Output: Reduced dataset DX = (dx1, dx2, · · · , dxn).

1 Initialize DX = (dx1, dx2, · · · , dxn);
2 for dxi ∈ DX do
3 dxi =

xi

10λ
;

4 end
5 return DX

Algorithm 2 demonstrates the process of decreasing magni-
tude. Its essence is to reduce each element in the dataset by the

same magnitude. In Algorithm 2, we assume that the reduced
magnitude is 10λ, which is consistent with the expression of
Q in Theorem 1. This makes it more intuitive for the reader to
understand the justification of Theorem 1 for T2C. In practice,
the communicating parties can use 2 as the base number
and use NPID2 to measure the rounding error in order to
sacrifice the magnitude and increase concealment on a bit-
by-bit basis. After decreasing the magnitude, the normalized
dataset used for training is more homogeneous compared to
before decreasing the magnitude. Therefore, the trained model
is of higher quality, and the generated data also possesses a
higher degree of concealment.

Algorithm 3: Recovering magnitude.
Input: Dataset X = (x1, x2, · · · , xn).

Reduced magnitude 10λ.
Generated data A = (a1, a2, · · · , an).

Output: On-chain data Â = (â1, â2, · · · , ân).
1 Initialize Â = (â1, â2, · · · , ân);
2 Initialize a Key-Value dictionary D = {};
3 // Count the frequency of the last λ digits of each

element xi in the original dataset X;
4 for xi ∈ X do
5 Suppose the last λ digits of xi are ti;
6 if ti already exists in the Key of the dictionary D

then
7 The corresponding Value D[ti] = D[ti] + 1;
8 end
9 else ti never appears in the Key of dictionary D

10 Create a new Key D[ti] and assign D[ti] = 1;
11 end
12 end
13 for ai ∈ A do
14 Sample from D to get a number t with length λ;
15 Set âi = [ai] ∗ 10λ + t;
16 end
17 return Â

Since the magnitude of the dataset used for training is
reduced, the model will only output data with smaller magni-
tude. For example, if the original dataset X is of magnitude
1014 − 1018, the dataset used for training becomes of magni-
tude 1012 − 1016 after the magnitude is reduced by 102. The
trained model will also output data of magnitude 1012−1016.
The sender needs to recover the data to 1014−1018 again. Oth-
erwise, the obviously smaller data (between 1012 − 1014) can
be easily detected by the adversary. Algorithm 2 describes the
process of revovering magnitude. For a given original dataset
X , the sender needs to count the last λ digits of all elements
in X to form a distribution D. For an arbitrarily generated
data ai, the sender first rounds ai (to get [ai]), then samples a
digit with λ-length from the distribution D and concatenates
it to [ai] to obtain a recovering magnitude number âi. This
âi is the final on-chain data. Note that T2C does not have an
impact on the accuracy of the receiver’s obtaining on-chain
data. This is because the reduced magnitude data generated
by the model is not lost, but instead λ-length redundant digits

10

are added. The receiver only needs to negotiate λ with the
sender and truncate the last λ digits of the on-chain data to
get the data generated by the trained model.

In summary, the sender trains the model by first decreasing
the magnitude of the dataset, thus increasing the dataset
and the quality of the trained model (i.e., increasing the
concealment) at the cost of increasing the rounding error (i.e.,
decreasing the capacity). At this point, the model generates
reduced magnitude data. The sender then recovers the magni-
tude by sampling from the last λ digits of the original data.
Moreover, when λ is negative, T2C can increase the capacity
at the expense of concealment. At this point, Algorithm 2
functions to increase the magnitude. The model generates data
with larger magnitude. The sender then needs to calculate
âi = [ai × 10λ] to recover the magnitude.

V. EXPERIMENTS

In this section, we first evaluate R-GAN and CCR-GAN
using the Bitcoin transaction amount as an example. Then, we
apply the proposed method to the Bitcoin transaction fee field
as well as to Ethereum to verify the scalability. We further
evaluate the capacity and concealment aspects of proposed
schemes. Finally, we compare R-GAN and CCR-GAN in
terms of capacity and concealment with baselines. This section
aims to address the following research questions:

• RQ1: How much data can R-GAN and CCR-GAN embed
in Bitcoin transaction amounts?

• RQ2: Can R-GAN and CCR-GAN be applied to other
transaction fields and can they be extended to other
blockchains?

• RQ3: Since CCR-GAN and T2C can reduce the rounding
error by increasing the magnitude of the dataset, is it
possible to increase the magnitude infinitely to embed
more data?

• RQ4: How about the concealment of R-GAN and CCR-
GAN?

• RQ5: How about the effect of T2C?
• RQ6: How to demonstrate the effectiveness of ClipSig-

moid?
• RQ7: What is the performance of R-GAN and CCR-

GAN compared to existing schemes?

A. Setup

Both R-GAN and CCR-GAN are implemented using Python
and PyTorch 1.13.1 [33], and trained on machines with an
Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz and
8.00 GB RAM. The training process is very fast and can be
completed in a few minutes on the CPU.

1) Dataset: We collect a dataset including 84,515 output
amounts from Bitcoin transactions downloaded from block
727215 to block 727239 in the Bitcoin mainnet. These
amounts are measured in satoshi and are represented as
integers ranging from 296 to 2, 874, 993, 345, 277. In CCR-
GAN, we discard amounts that cannot form a complete batch
of input data based on the batch size and the input dimension.
In the case of R-GAN, we include amounts between 105 and
108−1 as the training set, and also discard redundant amounts.

2) Baselines: We compare our schemes and four baselines
that use fields other than the output amount as the embedding
field to evaluate the channel expansion capacity: (1) HC-
CDE [34] encodes covert data using the computational rela-
tionship between transaction addresses. (2) DSA [35] includes
schemes that replace random factors in the signing process
with covert data. (3) Un-UTXO [36] encodes covert data
as an output address. (4) DLchain [37] utilizes the private
key as the carrier of covert data. These baselines are widely
recognized for high concealment, which makes them suitable
for comparison. In addition, we compare Bitcoin amount
with (CC)R-GAN to three baselines that also utilize Bitcoin
amount as the embedding field, including CCMBBT [38],
STCBC [39], and AMASC [40].

3) Performance metrics: We adopt the following three
metrics as performance metrics.

• Absolute capacity (AC) indicates the amount of data that
can be embedded in each expansion field. It is defined as:

AC =
n

Nf
bit, (20)

where Nf is the number of expansion fields, and n is the
number of bits of covert data carried by these expansion
fields.

• Capacity expansion rate (CER) refers to the capacity by
which the expansion covert channel enhances the original
covert channel. It is computed by:

CER =
ACecc

ACocc
× 100%, (21)

where ACecc represents AC of the expansion covert
channel, and ACocc represents AC of the original covert
channel.

• Concealment. Concealment refers to the ability of em-
bedding/expansion fields to remain undetected. We evalu-
ate the concealment using the accuracy, precision, recall,
and F1 score of CTR model [15], which is a steganalysis
model used to detect the presence of covert data within
a transaction field. A concealment score closer to 0.5
indicates a higher level of concealment.

4) Parameter setting: The batch size is set to 10, and
the input/hidden/output dimensions are set to 64. LeakyReLU
are with α = 0.3. The learning rate of both R-GAN and
CCR-GAN is set to 0.001, while the learning rate of CCR-
GAN decreases to 0.9 times the original value after every
two epochs. CCR-GAN stops training when the loss does
not decrease in 10 consecutive epochs, while R-GAN stops
training when that does not decrease in 5 consecutive epochs.
The amount values are normalized using the maximum-
minimum normalization method. All parameters, including
weights, biases, and input/output data, are of type float64 to
minimize the computational precision error.

B. Capacity on Bitcoin Amount

We begin by evaluating AC in terms of Bitcoin transac-
tion amount, with the first step being to determine a rough
value for m. We calculate m = min(NPID2(x̂i, xi)) − 1,
where i ∈ {1, 2, · · · ,M} where NPID2 denotes the binary

11

0 2 4 6 8 10 12
The number of recovery bits

0

200

400

600

800

1000

1200

1400

1600
Oc

cu
rr

en
ce

 t
im

es

1

(a) Recovery bits for R-GAN.

0 5 10 15 20 25
The number of recovery bits

0

100

200

300

400

500

600

700

800

900

Oc
cu

rr
en

ce
 t

im
es

6

(b) Recovery bits for CCR-GAN.

Fig. 9: Experiments on recovery bits (including 1-bit MSB).

10 2 10 1 100 101 102

Time overhead (s)

8

9

10

11

m
-V

al
ue

(a) Test m for R-GAN.

10 1 100 101 102 103 104

Time overhead (s)

21

22

23

24

25

m
-V

al
ue

(b) Test m for CCR-GAN.

Fig. 10: Time overhead to find a satisfying noise vector.

form of NPID and M denotes the input dimension. The first
m + 1 bits of each element in X̂ and the corresponding bits
in X should be identical to ensure accurate recovery of the
m-bit covert data by the receiver. When obtaining a trained
model, we need to measure the approximate m in the following
manner.

Given a trained model, we input a completely random noise
X, calculate the reduced noise X̂ obtained by the receiver, and
compute the minimum recovery bit as min(NPID2(x̂i, xi)).
To determine the appropriate range of m, we repeat the
above steps 10,000 times. Experimental results are presented
in Fig. 9. We focus on the highest number of recovered
bits. For R-GAN, 1 out of 10,000 experiments is able to
recover 12 bits of noise. For CCR-GAN, 6 out of 10,000
experiments can recover 25 bits of noise. The results indicate
that R-GAN and CCR-GAN have the potential to allow the
receiver to recover approximately 11 and 25 bits of covert
data, respectively. Meanwhile, the sender must consider the
computational resources and time required during the data
encoding’s verification phase.

The second step is to determine the accurate value of m
for R-GAN and CCR-GAN based on the time consumption.
When embedding certain covert data, the variability of the
noise is reduced compared to the experiments in the last step.
The covert data is embedded in bits 2 to m+ 1 of the noise,
meaning these m bits are fixed and cannot be randomized.
Furthermore, these m bits occupy the more significant posi-
tions which have a greater influence on the overall noise value.
When significant bits are fixed, it may take more time (or may
not even be possible) to find a satisfactory noise vector. We
select “The Little Prince” as transmitted data to align with
CCMBBT, and the covert data is encrypted using AES-CBC.

In the case of R-GAN, we assess the time overhead of

finding 100 noise vectors for different covert data where the
values of m ranging from 8 to 11. Fig. 10(a) illustrates the
results. The time overhead of finding a satisfactory noise vec-
tor increases exponentially as m increases. When m reaches
11, it takes approximately 100 seconds on average to find a
suitable noise vector (including 64 noises). For CCR-GAN,
we adopt the same evaluation criteria as CCR-GAN, while m
varies from 21 to 25. Results are presented in Fig. 10(b). When
m is within the range of 21 to 23, the time overhead remains
relatively consistent. When m exceeds 24, the time overhead
begins to increase significantly. The majority of boxes in Fig.
10 are positioned close to the maximum point, indicating that
most results fall within the range near the maximum.

Table I provides more detailed time consumption for finding
a satisfying noise vector and noise. All the means are higher
than the medians, verifying that a majority of the results are
close to the maximum. If the time consumption of the upper
quartile is deemed acceptable, we consider the scheme to be
feasible. For R-GAN with m = 11, the sender typically spends
165.125 and 2.580 seconds to find a satisfying noise vector and
noise, which is deemed acceptable. In the case of CCR-GAN,
the sender can accept the time overhead at m = 24. When
m = 25, it may take 594.831 seconds and 9.134 seconds to
find a noise vector and noise, which is unacceptable.

Answer to RQ1: R-GAN and CCR-GAN allow for
11-bit and 24-bit covert data to be embedded in each
Bitcoin transaction amount and are capable of gener-
ating a data-carrying amount in less than 3 seconds.

C. Scalability

Then, we verify the scalability. Specifically, we apply
R-GAN and CCR-GAN to the Bitcoin fee, the Ethereum
amount, and the Ethereum fee, and use the same experi-
mental approach to determine the value of m. We chose
the amount and fee for evaluation because the values of these
fields are completely specified by the sender. Futhermore, most
schemes do not use the amount and fee as the embedding
field, which means that R-GAN and CCR-GAN can effectively
boost the capacity of most existing schemes. We capture
80,000 amounts and 80,000 fees from the real Bitcoin and
Ethereum networks to construct the dataset, and Table I shows
the experimental results.

For Bitcoin fee, R-GAN and CCR-GAN only support
embedding 2-bit and 4-bit data. R-GAN’s dataset is in the
range of 100 to 9999, and the amount of data that can be
embedded is consequently small according to Theorem 1.
CCR-GAN’s dataset has a maximum of 107 magnitude, and
is able to embed a slightly larger amount of data.

For Ethereum amount, R-GAN and CCR-GAN are ca-
pable of embedding 41 and 40 bits of data. Despite the
significant increase in the magnitude of the CCR-GAN dataset,
the amount of data that can be embedded does not improve.
This does not mean that CCR-GAN fails, but rather because
the precision error of the computer determines the upper limit
of the amount of data embedded. In our experiments, we use

12

TABLE I: Time overhead required to find a satisfying noise and noise vector for R-GAN and CCR-GAN.

Field Scheme Dataset magnitude m
Time overhead for a vector (s) Time overhead for an amount (s)

1st Quartile 2nd Quartile 3rd Quartile Average 1st Quartile 2nd Quartile 3rd Quartile Average

Bitcoin
amount

R-GAN 104 ∼ 107

8 0.216 0.552 0.959 0.736 0.003 0.003 0.015 0.011
9 1.033 2.215 4.748 3.405 0.016 0.035 0.074 0.053
10 3.160 8.934 18.430 13.215 0.049 0.140 0.288 0.206
11 24.365 72.127 165.125 119.866 0.381 1.127 2.580 1.873

CCR-GAN 102 ∼ 1013

21 1.038 3.419 5.852 4.385 0.016 0.053 0.091 0.068
22 2.527 7.677 17.155 13.766 0.039 0.120 0.268 0.215
23 8.170 17.055 35.379 31.931 0.128 0.266 0.553 0.499
24 14.022 41.502 113.695 100.168 0.219 0.648 1.776 1.565
25 65.929 188.369 594.831 584.567 1.030 2.943 9.294 9.134

Bitcoin
fee

R-GAN 102 ∼ 104
1 0.135 0.451 0.893 0.943 0.002 0.007 0.014 0.015
2 30.306 74.233 199.201 183.078 0.474 1.160 3.113 2.861

CCR-GAN 102 ∼ 107

1 0.224 0.524 1.737 1.777 0.004 0.008 0.027 0.028
2 1.669 4.670 9.271 6.251 0.026 0.073 0.145 0.098
3 4.126 11.812 28.032 26.553 0.064 0.185 0.438 0.415
4 25.869 65.478 156.477 136.903 0.404 1.023 2.445 2.139

Ethereum
amount

R-GAN 1014 ∼ 1018

38 0.094 0.196 0.351 0.259 0.001 0.003 0.005 0.004
39 0.906 2.139 4.988 3.457 0.014 0.033 0.078 0.054
40 5.493 11.997 19.949 16.385 0.086 0.187 0.312 0.256
41 18.853 46.033 89.295 72.827 0.295 0.719 1.395 1.138

CCR-GAN 103 ∼ 1023

37 0.154 0.271 0.531 0.427 0.002 0.004 0.008 0.007
38 0.452 1.110 2.209 1.450 0.007 0.017 0.035 0.023
39 2.818 5.669 11.687 7.874 0.044 0.089 0.183 0.123
40 47.736 93.226 163.406 113.912 0.745 1.457 2.553 1.780

Ethereum
fee

R-GAN 109 ∼ 1011

19 0.167 0.382 0.887 0.687 0.003 0.006 0.014 0.011
20 0.583 1.287 2.671 2.029 0.009 0.020 0.042 0.032
21 2.505 6.327 12.003 10.380 0.039 0.099 0.188 0.162
22 11.803 32.450 71.229 48.917 0.184 0.507 1.113 0.764

CCR-GAN 109 ∼ 1013

22 0.408 0.740 1.467 1.018 0.006 0.012 0.023 0.016
23 0.984 2.338 4.396 4.096 0.015 0.037 0.069 0.064
24 5.095 16.498 33.353 27.780 0.080 0.258 0.521 0.434
25 27.642 53.189 136.863 97.454 0.432 0.831 2.138 1.523

the highest precision floating-point type in pytorch, float64,
which follows the IEEE 754 double-precision floating-point
standard and is accurate to approximately 17 decimal places.
Thus, when the magnitude of the largest value in the dataset
reaches 1017, continuing to increase the magnitude will not
increase the amount of data embedded, as the computer’s
precision error limits the accuracy of the data recovered by
the receiver. To verify the conclusion, we divide all the data
in the dataset by a certain power of 10 to reduce the magnitude
and train the R-GAN with the reduced magnitude data, and
then determine the value of m. The results are shown in
Table II. When the magnitude of the dataset is reduced by
101, the magnitude of the dataset’s maximum value is 1017.
According to Theorem 1, at this point the rounding step
can accurately retain 17 digits after the decimal point, and
this precision is consistent with the maximum precision of
pytorch’s float64-types numbers. Therefore, the amount of data
that can be embedded theoretically will not decrease. The
experimental results in Table II show that 40 bits of data can
still be embedded. The experimental results are consistent with
Theorem 1. As the magnitude of the largest data in the dataset
continues to decrease to 1016, even though the computer is
able to accurately compute numbers to 17 decimal places, the
rounding step is only able to ensure that the first 16 places
are accurate, thus reducing the amount of data that can be
embedded to 38 bits. Continuing to reduce the magnitude
of the dataset, the precision of rounding gradually decreases,
and the amount of data that can be embedded also gradually
decreases, which also confirms our conclusion.

The Ethereum fee can also be applied to R-GAN and CCR-
GAN, and CCR-GAN is able to embed more data.R-GAN is

able to embed 22 bits of data in the Ethereum fee, and CCR-
GAN is able to embed 25 bits of data in the Ethernet fee.

Answer to RQ2: R-GAN and CCR-GAN are scalable
and able to be applied in numerical transaction fields
of various blockchains.

A finding that further supports Theorem 1 is that the amount
of embedded data (m-value) is determined by the magnitude of
the dataset’s maximum data. For Bitcoin amount and Ethereum
fee, the larger the dataset magnitude, the larger the amount
of data that can be embedded, and when the magnitude is
the same (CCR-GAN for Bitcoin amount and CCR-GAN for
Ethereum fee), the amount of data that can be embedded is
also the same (24 bits). One exception is that CCR-GAN for
Bitcoin fee and R-GAN for Bitcoin amount have the same
maximum magnitude (107), but the data embedding for Bitcoin
fee is very small. This is due to the fact that more than 95%
of the Bitcoin fees are clustered between 103 and 105, with no
more than 105 non-repeating values. The size of the dataset
is 80,000, which already covers all non-repeating values. All
possible fetches had been fed into the discriminator during the
training process, so the discriminator can easily distinguish
between real and fake data. Once the amount of embedded
data is slightly larger (even 1 bit), the samples carrying data
are easily recognized by the discriminator. The ability of the
trained generator to embed data is thus poor.

Another phenomenon is that there is almost no difference
between R-GAN and CCR-GAN in Ethereum amount in terms
of data embedding ability. This is because when the magnitude
of the largest data in the dataset reaches 1017, the computer

13

TABLE II: Time overhead required to find a satisfying noise and noise vector for R-GAN mode-Ethereum amount when
reducing magnitude at different m.

Reduced magnitude Dataset magnitude m
Time overhead for a vector (s) Time overhead for an amount (s)

1st Quartile 2nd Quartile 3rd Quartile Average 1st Quartile 2nd Quartile 3rd Quartile Average

101 1013 ∼ 1017

37 0.417 1.103 1.931 1.441 0.007 0.017 0.030 0.023
38 0.491 1.237 2.212 1.641 0.008 0.019 0.035 0.026
39 10.133 24.769 47.629 35.372 0.158 0.387 0.744 0.553
40 23.043 62.644 156.099 101.800 0.360 0.979 2.439 1.591

102 1012 ∼ 1016

35 1.275 2.774 7.195 4.516 0.020 0.043 0.112 0.071
36 1.014 3.907 8.287 5.822 0.016 0.061 0.129 0.091
37 5.857 13.144 28.562 20.760 0.092 0.205 0.446 0.324
38 27.076 79.351 197.818 131.941 0.423 1.240 3.091 2.062

103 1011 ∼ 1015

32 1.878 6.480 11.285 8.221 0.029 0.101 0.176 0.128
33 4.160 13.286 27.916 19.867 0.065 0.208 0.436 0.310
34 10.483 39.158 65.814 52.042 0.164 0.612 1.028 0.813
35 71.394 174.085 354.424 248.024 1.116 2.720 5.538 3.875

precision error becomes the main error in the data decoding
process. The essence of increasing the magnitude is to increase
the precision of the rounding process, but it is limited by the
precision of the computer floating-point numbers, which can
only be accurately calculated to 17 decimal places at most.

Answer to RQ3: It is only able to increase the
magnitude of the dataset in a limited range (within
1017) to enhance the capacity. When the magnitude
reaches 1017, the computational accuracy of the com-
puter limits the accuracy of data decoding.

D. Concealment

We evaluate the concealment using CTR. The conceal-
ment experiments follow the same settings as [15], except
for the dataset size. We use larger datasets to ensure reliable
results. We generate 80,000 transaction fileds using R-GAN
and CCR-GAN, respectively. These data-carrying fields, along
with an equal number of normal transaction fields, form
the CTR dataset. For each configuration, we perform 10
experiments and averaged the results. Experiment results are
summarized in Table III.

For the same transaction field, the samples generated by
CCR-GAN are more easily recognized than those generated
by R-GAN. Technically, the fact that CCR-GAN does not
eliminate very large and very small outliers results in an
extremely uneven distribution of the normalized dataset used
to train CCR-GAN. This in turn reduces the quality of the
trained CCR-GAN model and hence the generated data is
more easily recognized. In particular, in the R-GAN scheme
for Ethereum amount, simply changing the distribution of the
training dataset is also able to reduce the accuracy with which
the generated samples are recognized (from 0.853 to 0.785).
Intuitively, as more bits are used to store covert data, fewer
bits are available to match the features of normal amounts,
resulting in a higher accuracy of being recognized.

For different transaction fields, the accuracy of being recog-
nized varies even if the amount of embedded data is the same.
For example, R-GAN for Bitcoin amount and CCR-GAN for
Ethereum fee are both capable of embedding 24-bit data,
while CCR-GAN for Ethereum fee is recognized with lower
accuracy. This difference is caused by the distribution of the

normalized training dataset. The more evenly the normalized
dataset is distributed between 0 and 1, the higher the quality of
the dataset, the better the R-GAN (or CCR-GAN) is trained,
and the less accurate it is detected. In the CCR-GAN for
Bitcoin amount, most of the amounts are between 104 and
107, and the normalized data is between 10−9 and 10−6. In the
CCR-GAN for Ethereum fee, most of the fees are between 109

and 1011, and the normalized data is between 10−4 and 10−2.
The normalized Ethereum fee are more evenly distributed than
the Bitcoin amount, so the less accuracy the generated samples
is to be recognized. In particular, experiments with the R-GAN
for Ethereum amount illustrate that when the distributions
of the two normalized datasets are close to each other, the
smaller the amount of data embedded, the lower the accuracy
of being recognized. This is also consistent with the intuition
that the more amount of embedded data the more likely it is
to expose potential features. Furthermore, the Bitcoin fee is
an exception because its number of possible values (10, 000)
is much smaller than the size of the training dataset of R-
GAN (or CCR-GAN) (80, 000), and the discriminator can label
almost every sample in an enumerative manner.

Answer to RQ4: Both R-GAN and CCR-GAN pos-
sess acceptable concealment. R-GAN provides higher
concealment than CCR-GAN. Specifically, Bitcoin
amount, Bitcoin fee, and Ethereum fee are recognized
with accuracy of less than 0.8, possessing a high degree
of concealment.

Answer to RQ5: T2C can effectively enhance conceal-
ment at the expense of capacity. Excluding computer
accuracy limitations, for every 10-fold reduction in
dataset magnitude, the capacity is reduced by 2-3 bits
and the concealment is enhanced by 3%-4%.

E. Effectiveness of ClipSigmoid

We verify the effect of ClipSigmoid by plotting the loss
function during training. We take the Bitcoin amount as
an example to verify the effectiveness of ClipSigmod. We
keep all other parameters consistent except for the activation
function and compare the change in model loss when using

14

TABLE III: Recognition results of CTR. The dataset is
composed of positive and negative samples with a ratio of
1:1, and is divided into a training set and a test set with a
ratio of 7:3. Each set consists of half the normal field and
the data-carrying field. The closer the result is to 0.5, the
more concealment the scheme possesses.

Field Scheme Reduced
magnitude

Dataset
magnitude m Accuracy

Bitcoin
amount

R-GAN / 104 ∼ 107 11 0.667

CCR-GAN / 102 ∼ 1013 24 0.732

Bitcoin
fee

R-GAN / 102 ∼ 104 2 0.795

CCR-GAN / 102 ∼ 107 4 0.796

Ethereum
amount

R-GAN

/ 1014 ∼ 1018 41 0.853

101 1013 ∼ 1017 40 0.851

102 1012 ∼ 1016 38 0.813

103 1011 ∼ 1015 35 0.785

CCR-GAN / 103 ∼ 1023 40 0.968

Ethereum
fee

R-GAN / 109 ∼ 1011 21 0.577

CCR-GAN / 109 ∼ 1013 24 0.607

0 5 10 15 20 25 30
Epoch

0

20

40

60

80

100

Lo
ss

Generator-ClipSigmoid
Discriminator-ClipSigmoid
Generator-Sigmoid
Discriminator-Sigmoid

Fig. 11: The effect of ClipSigmoid.

Sigmoid and ClipSigmoid as the activation function during the
training. Fig. 11 illustrates the impact of ClipSigmoid. At the
8th epoch, the model without ClipSigmoid (including both the
generator and the discriminator) experiences a sudden spike
and is difficult to converge again during subsequent training,
while the model loss with ClipSigmoid begins to decrease until
the model converges.

Answer to RQ6: By setting up the above comparison
experiments, it can be noticed that the training loss of
the model is reduced after using CilpSigmoid, while
the model with Sigmoid does not converge.

F. Comparison

We use CER (see Equation (21)) to evaluate the capac-
ity expansion capability of the proposed schemes against
blockchain-based covert channels that do not utilize the trans-
action amount or the transaction fee as the embedding field.
For covert channels that utilize the Bitcoin transaction amount
as the embedding field, we compare AC and concealment to
demonstrate the superiority of our schemes. We only compare

schemes using Bitcoin amount as the embedding field, as there
is little research employing Ethereum amount and transaction
fee as the embedding field.

1) Comparison of the capacity expansion capability: In
Bitcoin, we consider that the transaction is a P2PKH1 trans-
action with one input and two outputs by default, as this
type of transaction accounts for the largest number [42].
In Ethereum, we consider that the transaction is a transfer
transaction with one input and one output. The AC of both
the proposed schemes and baselines is calculated using the
above setting. We discard the CCR-GAN scheme for Ethereum
amount and choose a reduced magnitude of 103 as the criterion
in the R-GAN scheme for Ethereum amount. The reason is
that schemes with recognized accuracy greater than 0.8 are
too low in concealment. Table IV presents CER of proposed
schemes. It can be observed that R-GAN can boost capacity
up to 291.67% of baselines and CCR-GAN up to 200% of
baselines. Although the transaction fields generated by R-GAN
and CCR-GAN may slightly increase the identification risk,
the huge capacity increase makes the risk worthwhile.

TABLE IV: CER of proposed schemes.

Field Scheme HC-CDE DSA Un-UTXO DLchain

Bitcoin
amount

R-GAN 91.67% 4.30% 6.88% 8.59%

CCR-GAN 200.00% 9.38% 15.00% 18.75%

Bitcoin
fee

R-GAN 16.67% 0.78% 1.25% 1.56%

CCR-GAN 33.33% 1.56% 2.50% 3.13%

Ethereum
amount

R-GAN 291.67% 13.67% 21.88% 27.34%

CCR-GAN / / / /

Ethereum
fee

R-GAN 175.00% 8.20% 13.13% 16.41%

CCR-GAN 200.00% 9.38% 15.00% 18.75%

TABLE V: Comparison of Bitcoin amount embedding.

Scheme AC Accuracy Precision Recall F1-score
CCMBBT 23 0.909 0.912 0.909 0.909

STCBC ∼ 27 0.911 0.913 0.911 0.911
AMASC 8 0.975 0.976 0.975 0.975
R-GAN 11 0.667 0.676 0.667 0.663

CCR-GAN 24 0.732 0.733 0.732 0.732

2) Comparison of Bitcoin amount embedding: We also
assume that Bitcoin transactions are P2PKH transactions with
one input and two outputs. We perform the concealment
experiments with the dataset size of 16,000. Comparison
results are shown in Table V. Compared to CCMBBT, R-GAN
has a smaller capacity and exhibits higher concealment. CCR-
GAN has a larger capacity to CCMBBT, while its concealment
surpasses that of CCMBBT. This is because CCMBBT simply
encodes covert data as a number using the ASCII encoding,
making their amounts easily distinguishable. R-GAN trades
capacity for higher concealment and outperforms CCMBBT
in concealment, while CCR-GAN outperforms CCMBBT in
both capacity and concealment. The recognized accuracy of
STCBC is more than 0.9. Although R-GAN and CCR-GAN
have slightly smaller capacity than STCBC, they possess far

1Pay-to-Public-Key-Hash, a type of ScriptPubKey which locks Bitcoin to
the hash of a public key [41].

15

stronger concealment than STCBC. Both R-GAN and CCR-
GAN outperform AMASC in capacity and concealment.

Answer to RQ7: In terms of capacity expansion, R-
GAN can boost capacity up to 291.67% of baselines
and CCR-GAN up to 200% of baselines. In terms
of capacity and concealment, R-GAN and CCR-GAN
are able to achieve higher capacity with guaranteed
concealment, whereas the existing schemes are difficult
to satisfy both high capacity and concealment.

VI. RELATED WORK

Blockchain-based covert channels. In addition to base-
lines, several works are relevant to blockchain-based covert
channels. Partala [43] first builds a covert channel in the
blockchain. They propose BLOCCE and demonstrate its secu-
rity. BLOCCE stores 1-bit covert data into the least significant
bit of the address. Gao et al. [44] and Zhang et al. [14] utilize
OP RETURN to encode covert data. Zhang et al. [45] con-
struct a covert channel based on the parameters of Ethereum
smart contracts. Luo et al. [38] represent bits 0 and 1 by the
presence or absence of transactions between addresses, and
also encode covert data into the transaction amount. Zhang et
al. [46] employ the Ethereum Whisper protocol to establish a
covert channe. Alsalami et al. [47] explore randomness in the
blockchain to build covert channels. None of them consider
generating required transaction fields, whereas our approaches
specifically focus on generating these other fields.
Transaction generation via AI. Wang et al. [15] propose
a PCTC model for generating transaction fields. They aim
to generate indistinguishable transaction fields and provide
a reference for creating covert transactions. Liu et al. [48]
employ GAN to generate the Ethereum transaction fields and
embed covert data. However, the receiver may not be unable
to obtain decoded data consistent with the original covert data.
Researchers also explore automating smart contract generation
using AI [49–53], while none of them consider embedding
covert data during the generation process. There is currently
no research on embedding data while generating transaction
fields via AI, whereas our approaches address this problem.
AI-based text steganography. The proposed schemes can
also be considered as a form of text steganography. Existing
research on text steganography focuses on linguistic steganog-
raphy, where covert data is hidden within language semantics.
Yang et al. [54] utilize variational auto-encoders to hide covert
data into word selection. Their subsequent work enhances the
concealment of generated sentences [55]. Li et al. [56] achieve
steganographic long text generation by encoding covert data
into entities and relationships within a knowledge graph.
Zhou et al. [57] propose an adaptive embedding algorithm with
a similarity function to implement linguistic steganography,
ensuring that the embedded distribution remains consistent
with the actual distribution. These methods do not apply to
embedding covert data into purely numerical transaction fields.

VII. CONCLUSION

In this paper, we have introduced GBSF, a generic frame-
work for expanding the channel capacity of blockchain-based
steganography. GBSF involves the sender generating indistin-
guishable required fields while embedding covert data. We
have presented the R-GAN scheme, which utilizes GAN with a
reversible generator to generate the required fields and encodes
covert data as input noise to the GAN generator. Additionally,
we have proposed CCR-GAN as an enhancement to R-GAN,
and develop T2C to balance capacity and concealment. Exper-
imental results have demonstrated that our proposed schemes
outperform baselines.

REFERENCES

[1] P. C. Mandal, I. Mukherjee, G. Paul, and B. Chatterji,
“Digital image steganography: A literature survey,” In-
formation Sciences, 2022.

[2] Q. Liu, J. Yang, H. Jiang, J. Wu, T. Peng, T. Wang,
and G. Wang, “When deep learning meets steganogra-
phy: Protecting inference privacy in the dark,” in IEEE
INFOCOM 2022-IEEE Conference on Computer Com-
munications. IEEE, 2022, pp. 590–599.

[3] X. Zheng, Q. Dong, and A. Fu, “Wmdefense: Using
watermark to defense byzantine attacks in federated
learning,” in IEEE INFOCOM 2022-IEEE Conference
on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2022, pp. 1–6.

[4] J. Qiang, S. Zhu, Y. Li, Y. Zhu, Y. Yuan, and X. Wu,
“Natural language watermarking via paraphraser-based
lexical substitution,” Artificial Intelligence, vol. 317, p.
103859, 2023.

[5] M. B. Rosen, J. Parker, and A. J. Malozemoff, “Balboa:
Bobbing and weaving around network censorship,” in
30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 3399–3413.

[6] Z. Zhou, X. Dong, R. Meng, M. Wang, H. Yan, K. Yu,
and K.-K. R. Choo, “Generative steganography via auto-
generation of semantic object contours,” IEEE Transac-
tions on Information Forensics and Security, 2023.

[7] Y. Xu, C. Mou, Y. Hu, J. Xie, and J. Zhang, “Robust
invertible image steganography,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 7875–7884.

[8] J. Wang, H. Du, D. Niyato, J. Kang, S. Cui, X. S.
Shen, and P. Zhang, “Generative ai for integrated sensing
and communication: Insights from the physical layer
perspective,” IEEE Wireless Communications, 2024.

[9] T. Zhang, B. Li, Y. Zhu, T. Han, and Q. Wu, “Covert
channels in blockchain and blockchain based covert
communication: Overview, state-of-the-art, and future
directions,” Computer Communications, 2023.

[10] Y. Miao, Z. Liu, H. Li, K.-K. R. Choo, and R. H. Deng,
“Privacy-preserving byzantine-robust federated learning
via blockchain systems,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 17, pp. 2848–2861,
2022.

16

[11] Z. Chen, L. Zhu, P. Jiang, C. Zhang, F. Gao, J. He, D. Xu,
and Y. Zhang, “Blockchain meets covert communication:
A survey,” IEEE Communications Surveys & Tutorials,
2022.

[12] B. Du, D. He, M. Luo, C. Peng, and Q. Feng, “The
applications of blockchain in the covert communication,”
Wireless Communications and Mobile Computing, vol.
2022, 2022.

[13] Z. Wang, L. Zhang, R. Guo, G. Wang, J. Qiu, S. Su,
Y. Liu, G. Xu, and Z. Tian, “A covert channel over
blockchain based on label tree without long waiting
times,” Computer Networks, p. 109843, 2023.

[14] C. Zhang, L. Zhu, C. Xu, Z. Zhang, and R. Lu, “Ebdl:
Effective blockchain-based covert storage channel with
dynamic labels,” Journal of Network and Computer Ap-
plications, vol. 210, p. 103541, 2023.

[15] M. Wang, Z. Zhang, J. He, F. Gao, M. Li, S. Xu, and
L. Zhu, “Practical blockchain-based steganographic com-
munication via adversarial ai: A case study in bitcoin,”
The Computer Journal, vol. 65, no. 11, pp. 2926–2938,
2022.

[16] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran,
B. Sengupta, and A. A. Bharath, “Generative adversarial
networks: An overview,” IEEE signal processing maga-
zine, vol. 35, no. 1, pp. 53–65, 2018.

[17] J. Wang, H. Du, Y. Liu, G. Sun, D. Niyato, S. Mao,
D. I. Kim, and X. Shen, “Generative ai based se-
cure wireless sensing for isac networks,” arXiv preprint
arXiv:2408.11398, 2024.

[18] K. Koptyra and M. R. Ogiela, “An extension of
imagechain concept that allows multiple images per
block,” in IEEE INFOCOM 2022-IEEE Conference on
Computer Communications Workshops (INFOCOM WK-
SHPS). IEEE, 2022, pp. 1–2.

[19] J. Zhang, X. Ji, W. Xu, Y.-C. Chen, Y. Tang, and
G. Qu, “Magview: A distributed magnetic covert channel
via video encoding and decoding,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 357–366.

[20] T. Yang, H. Wu, B. Yi, G. Feng, and X. Zhang,
“Semantic-preserving linguistic steganography by pivot
translation and semantic-aware bins coding,” IEEE
Transactions on Dependable and Secure Computing,
2023.

[21] J. Yang, Z. Yang, J. Zou, H. Tu, and Y. Huang, “Lin-
guistic steganalysis toward social network,” IEEE Trans-
actions on Information Forensics and Security, vol. 18,
pp. 859–871, 2022.

[22] J. Li, Y. Liu, W. Xu, and Z. Li, “Gasla: Enhancing
the applicability of sign language translation,” in IEEE
INFOCOM 2022-IEEE Conference on Computer Com-
munications. IEEE, 2022, pp. 1249–1258.

[23] H. Cui, H. Bian, W. Zhang, and N. Yu, “Unseencode: In-
visible on-screen barcode with image-based extraction,”
in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1315–1323.

[24] J. He, J. Wang, N. Wang, S. Guo, L. Zhu, D. Niy-
ato, and T. Xiang, “Preventing non-intrusive load mon-

itoring privacy invasion: A precise adversarial attack
scheme for networked smart meters,” arXiv preprint
arXiv:2412.16893, 2024.

[25] J. He, J. Feng, S. Guo, Z. Chen, Y. Liu, T. Xiang, and
L. Zhu, “Advancing non-intrusive load monitoring: Pre-
dicting appliance-level power consumption with indirect
supervision,” IEEE Transactions on Network Science and
Engineering, 2025.

[26] C. Guo, Z. Jia, Y. Lin, and H. Yang, “Single-precision
floating-point adder based on ieee 754 standard through
verilog,” in International Conference on Artificial Intelli-
gence and Communication Technology. Springer, 2024,
pp. 141–150.

[27] X. Yuan, P. Jiang, Z. Chen, C. Zhang, F. Gao, and L. Zhu,
“Blockchain-based group covert communication for iot
network,” IEEE Internet of Things Journal, 2025.

[28] Z. Chen, L. Zhu, P. Jiang, J. He, and Z. Zhang, “Tackling
data mining risks: A tripartite covert channel merging
blockchain and ipfs,” IEEE Transactions on Network
Science and Engineering, 2025.

[29] Z. Zhou, Y. Su, J. Li, K. Yu, Q. J. Wu, Z. Fu, and Y. Shi,
“Secret-to-image reversible transformation for generative
steganography,” IEEE Transactions on Dependable and
Secure Computing, vol. 20, no. 5, pp. 4118–4134, 2022.

[30] Y. Qi, K. Chen, K. Zeng, W. Zhang, and N. Yu, “Provably
secure disambiguating neural linguistic steganography,”
IEEE Transactions on Dependable and Secure Comput-
ing, 2024.

[31] J. Katz and Y. Lindell, Introduction to modern cryptogra-
phy: principles and protocols. Chapman and hall/CRC,
2007.

[32] J. Butora, P. Puteaux, and P. Bas, “Errorless robust
jpeg steganography using outputs of jpeg coders,” IEEE
Transactions on Dependable and Secure Computing,
vol. 21, no. 4, pp. 2394–2406, 2023.

[33] Pytorch versions installation. Accessed: June 8,
2025. [Online]. Available: https://pytorch.org/get-
started/previous-versions/

[34] H. Cao, H. Yin, F. Gao, Z. Zhang, B. Khoussainov,
S. Xu, and L. Zhu, “Chain-based covert data embedding
schemes in blockchain,” IEEE Internet of Things Journal,
vol. 9, no. 16, pp. 14 699–14 707, 2020.

[35] A. Fionov, “Exploring covert channels in bitcoin trans-
actions,” in 2019 International Multi-Conference on En-
gineering, Computer and Information Sciences (SIBIR-
CON). IEEE, 2019, pp. 0059–0064.

[36] M. Gregoriadis, R. Muth, and M. Florian, “Analysis
of arbitrary content on blockchain-based systems using
bigquery,” in Companion Proceedings of the Web Con-
ference 2022, 2022, pp. 478–487.

[37] J. Tian, G. Gou, C. Liu, Y. Chen, G. Xiong, and Z. Li,
“Dlchain: A covert channel over blockchain based on
dynamic labels,” in Information and Communications
Security: 21st International Conference, ICICS 2019,
Beijing, China, December 15–17, 2019, Revised Selected
Papers 21. Springer, 2020, pp. 814–830.

[38] X. Luo, P. Zhang, M. Zhang, H. Li, and Q. Cheng, “A
novel covert communication method based on bitcoin

17

transaction,” IEEE Transactions on Industrial Informat-
ics, vol. 18, no. 4, pp. 2830–2839, 2021.

[39] P. Zhang, Q. Cheng, M. Zhang, and X. Luo, “A
blockchain-based secure covert communication method
via shamir threshold and stc mapping,” IEEE Transac-
tions on Dependable and Secure Computing, 2024.

[40] Y. Tian, X. Liao, L. Dong, Y. Xu, and H. Jiang,
“Amount-based covert communication over blockchain,”
IEEE Transactions on Network and Service Management,
2024.

[41] Pay-to-pubkey hash. Accessed: June 8, 2025.
[Online]. Available: http://bitcoinwiki.org/wiki/pay-to-
pubkey-hash/

[42] Bitcoin protocol layer statistics. Accessed: June 1, 2023.
[Online]. Available: https://transactionfee.info/

[43] J. Partala, “Provably secure covert communication on
blockchain,” Cryptography, vol. 2, no. 3, p. 18, 2018.

[44] F. Gao, L. Zhu, K. Gai, C. Zhang, and S. Liu, “Achieving
a covert channel over an open blockchain network,” IEEE
Network, vol. 34, no. 2, pp. 6–13, 2020.

[45] L. Zhang, Z. Zhang, W. Wang, Z. Jin, Y. Su, and H. Chen,
“Research on a covert communication model realized by
using smart contracts in blockchain environment,” IEEE
Systems Journal, vol. 16, no. 2, pp. 2822–2833, 2021.

[46] L. Zhang, Z. Zhang, Z. Jin, Y. Su, and Z. Wang, “An
approach of covert communication based on the ethereum
whisper protocol in blockchain,” International Journal of
Intelligent Systems, vol. 36, no. 2, pp. 962–996, 2021.

[47] N. Alsalami and B. Zhang, “Uncontrolled randomness
in blockchains: Covert bulletin board for illicit activity,”
in 2020 IEEE/ACM 28th International Symposium on
Quality of Service (IWQoS). IEEE, 2020, pp. 1–10.

[48] J. Liu, “Research on information hiding methods based
on blockchain technology,” Master’s thesis, Nanjing Uni-
versity of Information Science and Technology, 2020.

[49] W. Shao, Z. Wang, X. Wang, K. Qiu, C. Jia, and C. Jiang,
“Lsc: Online auto-update smart contracts for fortifying
blockchain-based log systems,” Information Sciences,
vol. 512, pp. 506–517, 2020.

[50] V. Dwivedi and A. Norta, “Auto-generation of smart
contracts from a domain-specific xml-based language,” in
Intelligent Data Engineering and Analytics: Proceedings
of the 9th International Conference on Frontiers in
Intelligent Computing: Theory and Applications (FICTA
2021). Springer, 2022, pp. 549–564.

[51] A. Mavridou and A. Laszka, “Designing secure ethereum
smart contracts: A finite state machine based approach,”
in Financial Cryptography and Data Security: 22nd In-
ternational Conference, FC 2018, Nieuwpoort, Curaçao,
February 26–March 2, 2018, Revised Selected Papers 22.
Springer, 2018, pp. 523–540.

[52] H. Hu, Q. Bai, and Y. Xu, “Scsguard: Deep scam detec-
tion for ethereum smart contracts,” in IEEE INFOCOM
2022-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2022, pp.
1–6.

[53] J. He, J. Liu, Z. Zhang, Y. Chen, Y. Liu, B. Khous-
sainov, and L. Zhu, “Msdc: Exploiting multi-state power

consumption in non-intrusive load monitoring based on
a dual-cnn model,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 4, pp. 5078–5086,
2023.

[54] Z. Yang, S. Zhang, Y. Hu, Z. Hu, and Y. Huang,
“Vae-stega: Linguistic steganography based on varia-
tional auto-encoder,” IEEE Transactions on Information
Forensics and Security, vol. 16, 2021.

[55] Z. Yang, L. Xiang, S. Zhang, X. Sun, and Y. Huang,
“Linguistic generative steganography with enhanced
cognitive-imperceptibility,” IEEE Signal Processing Let-
ters, vol. 28, pp. 409–413, 2021.

[56] Y. Li, J. Zhang, Z. Yang, and R. Zhang, “Topic-aware
neural linguistic steganography based on knowledge
graphs,” ACM/IMS Transactions on Data Science, vol. 2,
no. 2, pp. 1–13, 2021.

[57] X. Zhou, W. Peng, B. Yang, J. Wen, Y. Xue, and
P. Zhong, “Linguistic steganography based on adaptive
probability distribution,” IEEE Transactions on Depend-
able and Secure Computing, vol. 19, no. 5, pp. 2982–
2997, 2021.

Zhuo Chen received the B.E. degree in informa-
tion security from the North China Electric Power
University, Beijing, China, in 2019. He is currently
pursuing the Ph.D. degree with the School of Cy-
berspace Science and Technology, Beijing Institute
of Technology. His current research interests include
blockchain technology and covert communication.

Jialing He (Member, IEEE) received the M.S. and
Ph.D. degrees from the Beijing Institute of Technol-
ogy, Beijing, China, in 2018 and 2022, respectively,
where she is currently an assistant research scientist
in college of computer science, Chongqing Univer-
sity, Chongqing, China. Her current research inter-
ests include differential privacy and user behavior
mining.

Jiacheng Wang received the Ph.D. degree from
the School of Communication and Information
Engineering, Chongqing University of Posts and
Telecommunications, Chongqing, China. He is cur-
rently a Research Associate in computer science and
engineering with Nanyang Technological University,
Singapore. His research interests include wireless
sensing, semantic communications, and metaverse.

18

Zehui Xiong received the B.Eng. degree in telecom-
munications engineering from the Huazhong Uni-
versity of Science and Technology (HUST), Wuhan,
China, and the Ph.D. degree in computer science and
engineering from Nanyang Technological University
(NTU), Singapore. He is currently an Assistant Pro-
fessor with the Singapore University of Technology
and Design (SUTD), and also an Honorary Adjunct
Senior Research Scientist with the Alibaba-NTU
Singapore Joint Research Institute, Singapore. His
research interests include wireless communications,

the Internet of Things, blockchain, edge intelligence, and metaverse.

Tao Xiang received the BEng, MS and PhD degrees
in computer science from Chongqing University,
China, in 2003, 2005, and 2008, respectively. He
is currently a Professor of the College of Computer
Science at Chongqing University. Prof. Xiang’s re-
search interests include multimedia security, cloud
security, data privacy and cryptography. He has
published over 100 papers on international journals
and conferences. He also served as a referee for
numerous international journals and conferences.

Liehuang Zhu (Senior Member, IEEE) is a Full
Professor with the School of Cyberspace Science
and Technology, Beijing Institute of Technology.
He is selected into the Program for New Century
Excellent Talents in University from Ministry of
Education, China. He has published over 60 SCI-
indexed research papers in these areas, as well as
a book published by Springer. His research interests
include Internet of Things, cloud computing security,
Internet, and mobile security. He serves on the edito-
rial boards of three international journals, including

IEEE Internet of Things Journal, IEEE Network, and IEEE Transactions on
Vehicular Technology. He won the Best Paper Award at IEEE/ACM IWQoS
2017 and IEEE TrustCom 2018.

Dusit Niyato (Fellow, IEEE) is a professor in the
College of Computing and Data Science, at Nanyang
Technological University, Singapore. He received
B.Eng. from King Mongkuts Institute of Technology
Ladkrabang (KMITL), Thailand and Ph.D. in Elec-
trical and Computer Engineering from the University
of Manitoba, Canada. His research interests are in
the areas of sustainability, edge intelligence, decen-
tralized machine learning, and incentive mechanism
design.

