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Abstract
Digital watermarking is a promising solution for mitigating some of the risks arising from the misuse

of automatically generated text. These approaches either embed non-specific watermarks to allow for
the detection of any text generated by a particular sampler, or embed specific keys that allow the
identification of the LLM user. However, simultaneously using the same embedding for both detection and
user identification leads to a false detection problem, whereby, as user capacity grows, unwatermarked text
is increasingly likely to be falsely detected as watermarked. Through theoretical analysis, we identify the
underlying causes of this phenomenon. Building on these insights, we propose Dual Watermarking which
jointly encodes detection and identification watermarks into generated text, significantly reducing false
positives while maintaining high detection accuracy. Our experimental results validate our theoretical
findings and demonstrate the effectiveness of our approach.

1 Introduction
Large Language Models (LLMs) [Radford et al., 2018, 2019, Brown et al., 2020, Achiam et al., 2023, Touvron
et al., 2023a,b] have emerged as the dominant technology across a wide range of natural language processing
tasks. While these models have significantly advanced the field, their misuse has raised numerous ethical
concerns. Of particular concern is the use of LLMs to impersonate human text, and to generate text that
appears to represent a sincere effort to engage, but is in fact automatically generated. Example use cases
include the automatic generation of homework; of scientific papers, grants, and reviews; and the automatic
generation of spam and astroturfing [Wachter et al., 2024, Yang et al., 2023, Nikiforovskaya et al., 2020].
The primary concern here is that such automatically generated text can flood the environment, making it
impossible to identify sincere texts that are worth reading and responding to.

In response to these harms, researchers proposed the use of digital watermarking. These watermarking
techniques can be used for the detection of LLM generated text, i.e., confirming that a text was automatically
generated by an LLM, or for identification, identifying a particular user id or key associated with the
generation of the text.

In detection, Aaronson and Kirchner [2023], Fernandez et al. [2023] proposed distribution-based water-
marking which alter token probabilities, while Kirchenbauer et al. [2023a], Yoo et al. [2023a] introduced
dictionary-based approaches that split the dictionary into parts. Then, these approaches detect the watermark
with statistical tests. In identification, Fernandez et al. [2023], Yoo et al. [2023a] demonstrated digital
watermarking can identify individual users.

Identification-based watermarking carries with it the risk of privacy violations. For example, if LLMs are
used as part of a pseudoanonymization process to rephrase text, it could allow the text to be traced back
to the account that rephrased the text. However, if appropriately disclosed, it could replace more intrusive
governance measures. Such watermarking would allow LLM service providers to identify and shut down
accounts used for generating spam without requiring the monitoring of every customer’s API call.

Detection watermarks can be formalized as binary labels that signal a text is watermarked, while
identification watermarks encode specific information, such as user identity, as an integer key. Both distribution
and dictionary-based watermarking can simultaneously incorporate both types of watermarks [Fernandez
et al., 2023, Yoo et al., 2023a]. This enables the detection of whether a given text is generated by an LLM
while simultaneously tracking user IDs.

All existing systems that simultaneously handle both the detection and identification use the same
information, and share the same shortcoming. As the key capacity (e.g. maximum supported user count)
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increases, unwatermarked text is increasingly likely to be wrongly detected as watermarked. We refer to this
as the false detection problem. This issue is evident in both widely used approaches: distribution-based and
dictionary-based watermarking methods Fernandez et al. [2023], Yoo et al. [2023a]. Both methods encode
the entire text using an identification watermark and compare the maximum score among all candidate IDs
against a threshold to get the detection watermark. However, as the number of candidates increases, this
maximum operation distorted the test statistic distribution, resulting in more unwatermarked text being
falsely detected as watermarked provided the False Negative Ratio (FNR) is held constant. As discussed
by Liu et al. [2023a], Giboulot and Teddy [2024], such false positives are considerably more critical than
false negatives, as erroneously identifying human-generated texts as watermarked can result in more severe
adverse consequences, including accusations of cheating in a scholarly context, and the wrongful suspension
or shutdown of user accounts. To understand why this problem occurs, we demonstrate, both theoretically
and empirically, that as the identity number increases, the false detection bound increases exponentially.
This rapid increase causes detection to fail, even within a relatively small key capacity, limiting our ability to
embed richer information while still using watermarks for the original purpose of confirming that a text was
LLM generated.

To address this issue, we propose a Dual Watermark (DW) scheme to mitigate the problem of false
detections. This scheme encodes the detection watermark and the identification watermark into distinct
parts of the generated text. A hash decision function determines if the current step encodes a detection
or identification watermark. When detecting the watermark, we reuse the same hash decision function in
conjunction with two statistics for the detection and the identification watermark respectively. This can be
seamlessly incorporated into both distribution-based and dictionary-based watermarking methods. We also
propose an extended Hybrid Dual Watermark (HDW) strategy, which simultaneously integrates the statistics
for the indicator and the identification watermark, and compare the two approaches.

We conduct a theoretical analysis of the false positive error bounds associated with the distribution-based
and dictionary-based watermarking methods, as well as our proposed DW method. Our analysis shows that
at a particular FNR, the False Positive Ratio (FPR) grows uncontrollably for the distribution-based method
(Section 4.1) and the dictionary-based method (Appendix A.8), when the key space – corresponding to the
number of user identities – is large or the text length is short. We also present theoretical analysis of our DW
method, demonstrating that it significantly outperforms methods that reutilize the same statistic for the
identification watermark to calculate the detection watermark (referred to as Full Key Encoding (FKE) in
our paper). Both our theoretical and empirical findings indicate that our approach substantially alleviates
the false detection problem at any FNR.

Our contributions are as follows: (1) We uncover the false detection problem in LLM watermarking and
conduct a theoretical and empirical analysis to investigate it; (2) We propose an analysis of the false detection
rate, and illustrate the potential severity of this problem under specific conditions, such as variations in text
length, key space size, and other factors; (3) We introduce two new methods DW, and HDW to reduce the
false detection rate, while preserving a high true positives rate.

2 Related Works
As mentioned, existing watermarking methods can be categorized into two types: detection watermarks
and identification watermarks. Detection watermarks are specific indicators within LLM-generated text,
that indicate whether the text is generated by a watermarked LLM or not. Aaronson and Kirchner [2023],
Fernandez et al. [2023], Fu et al. [2024] proposed to use the Gumbel trick to generate a corresponding random
variable with a distinct distribution for watermarked text. Kirchenbauer et al. [2023b,a] proposed dividing
the vocabulary into red and green lists based on preceding tokens. Christ et al. [2024] introduced the concept
of embedding undetectable watermarks in language model outputs using cryptographic techniques. Zhao
et al. [2023] proposed the Unigram-Watermark method to improve the detection accuracy and robustness of
watermarks.

Identification watermarks embed much richer information within the generated text. Most existing
methods embed an integer key into the generated text, which typically could be used to represent user ID.
Fernandez et al. [2023] proposed utilizing a hash key to represent essential information and iterating over
all possible keys to identify the key with the maximum score in detection. Yoo et al. [2023b,a], Wang et al.
[2023], Boroujeny et al. [2024], Qu et al. [2024] split the dictionary into several groups to represent the key
IDs. Abdelnabi and Fritz [2021] advocated for adversarially encoding information into the watermark.

It is straightforward to simultaneously encode both indicator and data information. For distribution-based
methods, we extend Fernandez et al. [2023]’s approach by comparing the maximum score across all candidate
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IDs with a threshold to determine the detection watermark. For dictionary-based methods, Yoo et al. [2023b,a]
proposed using the most frequent dictionary part in identification watermark as the indicator. However, to
the best of our knowledge, no existing work acknowledges that such a combination leads to the false detection
problem as the data capacity grows. We provide a thorough theoretical and empirical analysis of why this
problem occurs and methods to address it.

3 Method

3.1 False Detection Problem
Existing methods detect both the detection watermark and the identification watermark simultaneously
by inferring the detection watermark from the same statistics used for the identification watermark. For
distribution-based methods [Fernandez et al., 2023], this involves taking the maximum score among all
possible keys and comparing it with a threshold. This leads to an increased false positive rate as the key
capacity grows. We provide a quantitative theoretical analysis of this phenomenon in Section 4. Similarly,
dictionary-based methods [Yoo et al., 2023a] determine the dominant partition using a maximum operation.
In Appendix A.8, we show this transforms the original binomial distribution into a Gumbel distribution,
resulting in a higher false positive rate that grows with the number of keys.

3.2 Dual Watermark
The principal cause of false detections lies in reusing the identification watermark’s statistics for detection.
To address this, we propose a novel approach termed the Dual Watermark (DW). Instead of using all tokens
to encode the identification watermark, we selectively use certain tokens to encode the detection watermark.
Such a method avoids performing the maximum operation for both distribution-based method and the
dictionary-based method, thereby mitigating the false detection problem. Additionally, we propose a Hybrid
Dual Watermark (HDW) method that further leverages the identification watermark to assist in detecting
the watermark.

DW is adaptable to both distribution-based methods and dictionary-based methods. To provide a clearer
explanation without causing confusion, we focus on the distribution-based methods in this section and
defer the discussion of the adaptation for dictionary-based methods in Section 3.6 and Appendix A.8. For
distribution-based methods [Aaronson and Kirchner, 2023], they deliberately construct a statistic to guide
both the generation and detection strategies. Although the original paper does not explicitly identify this
method as the Gumbel-Max trick [Gumbel, 1954, Maddison et al., 2014, Jang et al., 2016], this method is
essentially a Gumbel-Max trick (Section 3.5). This formulation underpins our analysis in Section 4. In our
discussion, we refer to all back-bone methods introduced by Fernandez et al. [2023] and Yoo et al. [2023a] as
Full Key Encoding (FKE), where all tokens are used to encode the identification watermark.

Algorithm 1 Watermarked Text Generation and Detection
Generation Process:
Require: Language model L, key ID ξ, indication ratio rd ∈ [0, 1],

token sequence [x1, . . . , xi−1]
Output: Generated token xi

1: Compute logits: ℓi = L([x1, . . . , xi−1])
2: Compute hash key: hi = H(xi−h, · · · , xi−1)
3: Determine indicator: di = 1 if (hi%100) < (100rd) else 0
4: Compute salt key: Ai = ξ · 1(di = 1)
5: Compute seed: hg = H(xi−h, · · · , xi−1, Ai)
6: Generate uniform random variables: ui ∼ U(0, 1, hg)
7: Transform to Gumbel variables: gi = − ln(− ln(ui))

8: Adjust logits: ℓ̃i = ℓi + gi
9: Next token: xi = argmaxj ℓ̃ij

10:
11: return xi

Detection Process:
Require: Language model L, token sequence [x1, . . . , xT ], se-

quence length T , candidate keys {ξ}, ratio rd ∈ [0, 1], thresh-
olds τd, τk

Output: Detection watermark Id, identification watermark Ik
1: Initialize indicator score: Sd = 0
2: Initialize key scores: Sk(ξ) = 0 for all ξ
3: for i = 1 to T do
4: Compute hash key: hi = H(xi−h, · · · , xi−1)
5: Determine indicator: di = 1((hi%100) < 100rd)
6: for each candidate key ξ in {ξ} do
7: Compute salt key: Ai(ξ, di) = ξ · 1(di = 1)
8: Compute seed: hg(ξ) = H(xi−2, · · · , xi−1, Ai)
9: Generate uniform random variables: ui(ξ) ∼

U(0, 1, hg(ξ))
10: Update key score: Sk(ξ) += di · (− ln(1 − uixi

(ξ)))
11: end for
12: Update indicator score: Sd += (1 − di) · (− ln(1 − uixi

(0)))
13: end for
14: Compute detection watermark: Id = 1(Sd > τd)
15: Identify identification watermark: Ik = argmaxξ Sk(ξ)
16:
17: return Id, Ik

* Green highlights represent newly added components in DW compared with FKE.
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3.3 Generating
During generation, we follow Aaronson and Kirchner [2023], Fernandez et al. [2023], using an LLM to generate
a text sequence while encoding specific information through a deliberately designed sampling strategy.
This strategy modifies standard stochastic sampling (simply sampling a token based on the corresponding
probability) by incorporating the Gumbel-Max trick, with the seed for the Gumbel random variable being
controlled by the previous tokens and the information to be encoded. We discuss the relationship between
the Gumbel-Max trick and the original method [Aaronson and Kirchner, 2023, Fernandez et al., 2023] in
Section 3.5. The algorithm outline is provided in Algorithm 1.

Given a key ID ξ and a token sequence [x1, . . . , xi−1], where each xj is a token ID within the range
[1, . . . , V ], with V representing the vocabulary size, an LLM L generates the subsequent token. This is done
by calculating the logit as ℓi = L([x1, . . . , xi−1]), where ℓi ∈ RV represents the logits for predicting the ith
token. It then samples the tokens based on their corresponding probabilities, with techniques such as Top-k
and Top-p sampling also being applicable [Fernandez et al., 2023].

To embed both the detection watermark and the identification watermark, we first calculate an indicator
hash key hi to determine if the current token encodes the detection watermark or identification watermark.
The hash key hi = H(xi−h, · · · , xi−1) is based on the previous h tokens, and a discriminative variable
di = 1((hi mod 100) < 100rd), where hi ∈ N is the hash key derived from tokens xi−h to xi−1. The indication
ratio parameter rd ∈ (0, 1) is a user-specified ratio that controls the proportion of tokens used for the detection
watermark. The value of di can be either 0 or 1: if di = 0, it indicates that the current token encodes
an indicator signifying that the text is watermarked; When di = 1, the token encodes the identification
watermark. The information salt key Ai is then computed as: Ai(ξ, di) = ξ · 1(di = 1) where ξ is the
user-specified identification watermark used to store keys such as a user ID. This encoding method is naturally
robust to deletion or insertion, as the hash key depends solely on the previous h tokens. If a small number of
tokens are removed or added, most of the remaining salt keys remain unaffected, thereby preventing any
significant change to the final detection score. We also empirically illustrate this claim using the insertion
and deletion attack experiments described in Appendix A.12.

Subsequently, a new seed is generated using the hash function as hg = H(xi−h, · · · , xi−1, Ai(ξ, di)), which
is then used to construct a standard uniform distribution ui ∼ U(0, 1, hg). Here, ui ∈ RV is a vector of
standard uniform random variables generated with the seed hg. This uniform variable is transformed into a
Gumbel variable vector gi = − ln(− ln(ui)), where gi ∈ RV is a vector of standard Gumbel variables with
parameters µ = 0 and β = 1. Adjusted logits are then calculated as ℓ̃i = ℓi + gi. By incorporating the
Gumbel variable gi, we alter the sampling process typically used in LLMs to directly select the token with
the maximum score of ℓ̃i. Consequently, the next token xi is determined as xi = argmaxj ℓ̃ij , where ℓ̃ij
is the jth element of the vector ℓ̃i. The Gumbel trick ensures that the probability of sampling the kth
token, P (k = argmaxj ℓ̃ij) = pik and thus form an unbiased estimator of original probability distribution pi
[Fernandez et al., 2023, Liu et al., 2023b]. Thus, the sampling of next token xi is now driven by a random
uniform vector ui, generated using the previous tokens and seed hg.

3.4 Detecting
When detecting watermarks (see Algorithm 1), we follow the same procedure; using the previous tokens
and the salt key to recover the random variable ui(ξ) ∈ RV corresponding to the current token ID xi and a
probing key ID ξ. Here uixi

(ξ) is the xi-th element of the vector ui(ξ). If the text is not generated by the
above procedure or if the salt does not match, the corresponding random variables will simply be uniformly
distributed. However, if the text is generated with the specified procedure and the correct salt key, the
corresponding random variable will follow a Beta distribution [Fernandez et al., 2023], as it is the maximum
element of a uniform vector. Then, we use a specific test variable Sd to differentiate between these two
distributions.

Given an LLM L and token sequence [x1, . . . , xT ], where each xi is a token ID within the range [1, . . . , V ]
and T ∈ N is the sequence length, we detect the detection watermark Id ∈ {0, 1} and identification watermark
Ik ∈ [1, . . . ,K] using deliberately designed score functions. As with the generating phase, we first calculate
the hash key hi based on previous tokens as hi = H(xi−h, · · · , xi−1) and di = 1((hi mod 100) < 100rd),
where hi ∈ N, di ∈ {0, 1}. Unlike the generating process, here, the identification watermark ξ is unknown
and is inferred. We denote Ai as a function of ξ and di, resulting in different values for Ai(ξ, di) defined as
Ai(ξ, di) = ξ · 1(di = 1).

For each ξ we calculate hg as a function of Ai(ξ, di), denoted as hg(ξ) = H(xi−h, · · · , xi−1, Ai(ξ, di)), and
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use it to generate a new seed ui(ξ) ∼ U(0, 1, hg(ξ)), where ui(ξ) ∈ RV is a vector of standard uniform random
variables generated with the seed hg(ξ). For unwatermarked text or when the salt key does not match the
generating key, the xi-th random variable in ui (denoted as uixi

) will simply follow a uniform distribution.
However, if the text is watermarked and the salt key is correct, the xi-th random variable in ui is sampled
as the maximum of the Gumbel-modified logits ℓi, leading to a Beta distribution [Fernandez et al., 2023].
Similar to the detection method [Aaronson and Kirchner, 2023, Fernandez et al., 2023], we calculate the
score as Sd = −

∑T
i (1 − di) ln(1 − uixi

(0)) and Sk(ξ) = −
∑T

i di ln(1 − uixi
(ξ)), where Sd is the indicator

score to decide if it is watermarked. Additionally, Sk(ξ) is the identification watermark score, indicating the
likelihood that key ξ is embedded. We calculate the detection watermark as Id = 1(Sd > τd) and the user
identification watermark Ik as the argument maximizing Sk(ξ) which denotes as Ik = argmaxξ Sk(ξ).

To perform detection, previous works [Fernandez et al., 2023, Yoo et al., 2023a] use all tokens to encode
the identification watermark and reuse the same statistics to infer the detection watermark. We refer to these
methods as Full Key Encoding (FKE), which may be either distribution-based or dictionary-based. They
introduce a threshold τk, where samples with the maximum score maxξ Sk(ξ) below τk are considered not
watermarked. We also explore extensions of the DW framework to search for potential improvements. All
method and models investigated are shown below:

Full Key Encoding (FKE). We refer all methods Fernandez et al. [2023], Yoo et al. [2023a] that utilize
all tokens to encode identification watermark as FKE. FKE utilizes the maximal score over all possible keys
and checking if it exceeds a specified threshold τk. The sum is calculated as Sk(ξ) = −

∑T
i ln(1−uixi

(ξ)) and
Id is determined as Id = 1(maxξ Sk(ξ) > τk), where the condition evaluates if the maximum score maxξ Sk(ξ)
surpasses τk.

Partial Key Encoding (PKE). To better compare the results of FKE with our proposed strategy, we
utilize only a portion of the tokens to encode detection watermark and use this information to determine if the
text is watermarked. The remaining tokens are left unused for encoding. In PKE, since only partial tokens are
used to encode the identification watermark, the score is calculated as S′

k(ξ) = −
∑T

i 1{Ai(ξ, di) ̸= 0} ln(1−
uixi

(ξ)). The indicator Id is then determined as Id = 1(maxξ S
′
k(ξ) > τk). This method serves as an ablation

study of the FKE method.
Hybrid Dual Watermark (HDW). This uses both the detection and the identification watermark

for detection, reducing detection errors. In HDW, Id is calculated as Id = 1(Sd > τd ∩maxξ Sk(ξ) > τk),
which evaluates if the score Sd exceeds a threshold τd and if the score maxξ Sk(ξ) surpasses the threshold τk
simultaneously.

Mean Rebalance (MR). MR is a natural variant of HDW designed to accommodate variations observed
across different sequences. Since the mean value of scores can vary for each sequence, using a fixed threshold
may lead to errors. To mitigate this, the MR method compares the maximum score Sk(ξ) with the mean value
of the scores and considers the sequence as unwatermarked if the difference is below a particular threshold.
The condition is adjusted as Id = 1(Sd > τd ∩maxξ Sk(ξ)− 1

K

∑K
ξ=1 Sk(ξ) > τk).

Second Rebalance (SR). Similarly, SR utilizes the difference between the highest score and the
second highest score in the sequence. The indicator Id is calculated as Id = 1(Sd > τd ∩ maxξ Sk(ξ) −
maxξ ̸=argmaxSk(ξ) Sk(ξ) > τk). This condition specifies that the gap between the maximum score and the
second largest score must exceed τk.

3.5 Gumbel-Max Trick Equivalence
In Aaronson and Kirchner [2023]’s work, they do not explicitly generate the Gumbel variable and select the
maximal one. Instead, they perform an equivalent trick by sampling V random variables u = (u1, . . . , uV ),
where uv are i.i.d. with uv ∼ U(0, 1). Given the probability vector p = (p1, . . . , pV ), the current token is
selected as V ⋆ = argmaxv u

1/pv
v . This is known to be equivalent to the Gumbel-Max trick. However, as our

analysis depends on this equivalence, we reproduce the derivation in Proposition 1 and Appendix A.6.

3.6 Adapting Dictionary-Based Methods
Dictionary-based methods [Kirchenbauer et al., 2023b, Yoo et al., 2023a, Wang et al., 2024], such as the
multi-bit approach, divide the dictionary into multiple partitions based on the hash of the input information.
These methods recover messages by identifying the dominant partition for each bit and detect if a text is
watermarked by taking the maximum of multiple binomial statistics [Yoo et al., 2023a]. As we demonstrate in
Appendix A.8, these approaches suffer from a false detection problem. Our analysis reveals that the statistic
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is based on the maximal value of multiple binomial variables. Consequently, it no longer represents a binomial
distribution but approximates a Gumbel distribution [Kotz and Nadarajah, 2000, Haan and Ferreira, 2006],
which inherently preserves the false detection problem. To adapt our method to the multi-bit backbone,
we calculate the hash key hi and the indicator di to determine if the current token encodes an detection
watermark or a identification watermark. We then apply the multi-bit algorithm to encode the corresponding
information. The remaining procedure aligns with the distribution-based methods.

4 Theoretical Analysis
To provide a thorough understanding of the false detection problem inherent in the traditional Full Key
Encoding (FKE) method, and to demonstrate how our proposed DW and HDW approaches address this
issue, we derive the false positive bound for these methods. Similarly, we first conduct the theoretical analysis
for distribution-based methods and defer the analysis of the dictionary-based methods to Appendix A.8. We
denote capacity of identification watermark as K (which can be used to represent the total number of user
IDs), the generated sequence length as T . We compute three false positive bounds. The first bound, presented
in Theorem 1, provides a theoretical understanding of the baseline FKE method, which considers a document
as watermarked if it matches any one of the key ID ξ. Next, we conduct the second analysis in Theorem 2
to demonstrate how and why our proposed DW method effectively addresses the false detection problem.
Following this, we perform additional analysis in Theorem 3, illustrating how the HDW method can further
enhance performance. Then, we conduct a numerical experiment based on these bounds that empirically
demonstrates the differences between FKE and our proposed approach DW. We also present a theoretical
analysis of multi-bit methods [Yoo et al., 2023a, Wang et al., 2023, Kirchenbauer et al., 2023b] with Theorem 4
in Appendix A.8, showing that false recognition persists as key capacity increases in dictionary-based methods.

4.1 False Recognition Bound
For FKE, we consider a text sequence to be watermarked if the maximum score maxξ Sk(ξ) exceeds a certain
threshold τk. However, some unwatermarked text may also be mistakenly classified as watermarked. As
discussed in Section 3.4, if a text is unwatermarked, all elements in the random variable vector ui(ξ) ∈ RV ,
drawn during detection follow a uniform distribution. We denote uixi(ξ) as the xi-th element of ui(ξ), which
is the random variable corresponding to the generated token xi. We compute the probability that the statistic
Sk(ξ) exceeds a specified threshold τk, given all uixi

(ξ) are uniformly distributed. This corresponds to the
false positive rate, which lies at the core of the false detection problem. We first establish the following
theorem.

Theorem 1. Consider random variables uixi
(ξ) drawn from a uniform distribution over [0, 1], where

ξ = [1, . . . ,K] represents the key, and K denotes the total key capacity. ui ∈ RV , where V is the vocabulary
size, and uixi

corresponds to the xith token in ui. The index i = [1, . . . , T ] refers to the ith token in the
generated sequence. The score is calculated as: Sk(ξ) = − 1

T

∑T
i=1 ln(1 − uixi

(ξ)). We consider the sample
is watermarked if maxξ Sk(ξ) ≥ τk, where τk is a threshold parameter chosen to bound the FNR. The false
positive probability is bounded as:

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1−

(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

.

For details, please see Appendix A.3. In Theorem 1, we demonstrate the relationship between false
recognition and the parameters T , K, and τk for the traditional FKE method. Our theory shows that as the
number of tokens (T ) increases, false recognition rates decrease. However, as the number of keys K increases,
the false positive bound also increases, leading to the aforementioned false detection problem. This implies
that with a larger capacity, traditional FKE methods are more likely to mistakenly identify plain text as
watermarked text.

The key benefit of our proposed DW method is that we use a subset of tokens to indicate if the text is
watermarked, rather than using all of them to encode identification watermark. To analyze our method, we
assume that we use T ′ = ⌊rdT ⌋ tokens to encode an detection watermark, where rd ∈ (0, 1) represents the
ratio of such tokens, and ⌊·⌋ denotes the floor function. In Theorem 2, we prove the upper bound for false
recognition in the DW method.
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Theorem 2. Consider random variables uixi drawn from a uniform distribution on [0, 1]. The index
i = [1, . . . , T ′] represents the ith token of the generated text. We calculate the score Sd = − 1

T ′

∑T ′

i=1 ln(1−uixi).
We regard a sample as watermarked if Sd ≥ τd, where τd is some threshold. Then the false positive probability
is bounded by:

Pr (Sd ≥ τd) ≤ exp

(
T ′
(
τd

(
1

e
− 1

)
+ 1

))
.

For the proof, see Appendix A.4. Theorem 2 demonstrates the relationship between false recognition and
the parameters T ′ = ⌊rdT ⌋ and τd for the DW method. Similar to FKE, as T ′ increases, the false detection
problem can be alleviated. i.e. when T is fixed, increasing rd can help mitigate the false detection problem.
It should be noted that the bound is independent of the capacity K, which significantly helps reduce the
false detection problem when K is large.
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Figure 1: Numerical comparison of the probability
bounds for DW and FKE methods, presenting the
numerical bounds for Theorem 1 and Theorem 2.

To compare FKE and DW methods, we con-
ducted a numerical experiment by plotting the prob-
ability bound for Theorem 1 with K ranging from 50
to 500, and the probability bound for Theorem 2 with
rd ranging from 0.2 to 0.8, as shown in Figure 1. The
plot clearly shows that the bound for DW methods is
significantly lower than that of FKE, demonstrating
the effectiveness of our approach. As the tokens used
in the DW method is smaller than that used in FKE,
we calculated the minimal K value for which DW’s
bound outperforms FKE’s bound, given specific T
and rd in Appendix A.9.

It is a natural extension to combine the FKE and
DW methods to form the HDW method, as discussed
in Section 3.4. Here, we also establish a theoretical
analysis of the HDW method to demonstrate its
effectiveness. The bound is provided in Theorem 3.

Theorem 3. Using notation introduced in Theorem 1 and Theorem 2, we use ⌊rdT ⌋ tokens to calculate Sd

and ⌊(1− rd)T ⌋ tokens to calculate Sk(ξ). The hybrid probability Pr(Sd > τd ∩maxξ Sk(ξ) > τk) is bounded
as follows:

Pr

(
Sd ≥ τd ∩max

ξ
Sk(ξ) > τk

)
= Pr (Sd ≥ τd) · Pr

(
max

ξ
Sk(ξ) > τk

)
≤ exp

(
⌊rdT ⌋

(
τd

(
1

e
− 1

)
+ 1

))
·

(
1−

(
1− exp

(
⌊(1− rd)T ⌋

(
τk

(
1

e
− 1

)
+ 1

)))K
)

Theorem 3 is a straightforward combination of the results from Theorem 1 and Theorem 2. A proof can
be found in Appendix A.5. From Theorem 3, a similar conclusion can be observed: as T increases, the bound
decreases, indicating an improved ability to alleviate the false detection problem. The effect of rd depends
on which part is dominant. The bound for the hybrid strategy generally dominates those of method FKE
and DW. It strictly dominates strategy DW when rd < 1 and coincides with it when rd = 1. Likewise, it
coincides with strategy FKE when K = 1 and strictly dominates it when K > 1.

Theoretical Analysis of Dictionary-Based Method Dictionary-based methods [Kirchenbauer et al.,
2023b, Yoo et al., 2023a, Wang et al., 2024] use the binomial approximation for the dominant dictionary
partition, but in Appendix A.8, we show they follow a Gumbel distribution. As such, the false detection rate
grows with key capacity. We also provide numerical experiments to validate it.

5 Experiments
Our experiments follow the same setup as Fernandez et al. [2023], using the Guanaco-7b model [Dettmers
et al., 2024], an instruction fine-tuned LLaMA model [Touvron et al., 2023a], with the first 1,000 prompts
from the Alpaca dataset [Taori et al., 2023]. Our dataset consists of 1,000 samples, including a mix of
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Accu-I↑ Accu-O↑ FPR↓ Sim↑

FKE 0.857 0.754 0.231 0.685
PKE 0.794 0.646 0.25 0.690
DW 0.903 0.715 0.109 0.691
HDW 0.906 0.718 0.092 0.690
MR 0.907 0.719 0.0917 0.690
SR 0.901 0.723 0.0858 0.690

Table 1: Main Experiment. ↑

means higher is better, and ↓

means lower is better.

Accu-I↑ Accu-O↑ FPR↓

20 0.877 0.824 0.178
50 0.866 0.796 0.234
100 0.867 0.799 0.233
200 0.853 0.777 0.260
500 0.843 0.748 0.258
1000 0.832 0.735 0.289
2000 0.824 0.721 0.295

Accu-I↑ Accu-O↑ FPR↓

20 0.887 0.786 0.173
50 0.904 0.786 0.149
100 0.901 0.777 0.12
200 0.904 0.757 0.127
500 0.902 0.742 0.103
1000 0.899 0.717 0.141
2000 0.893 0.689 0.095

Table 2: Key capacity results for FKE (left)
and HDW (right) methods at varying key
capacities (20 to 2000).

Accu-I↑ Accu-O↑ FPR↓ Sim↑

FKE 0.926 0.883 0.120 0.550
PKE 0.898 0.835 0.175 0.562
DW 0.959 0.910 0.0178 0.562
HDW 0.955 0.909 0.0142 0.562
MR 0.957 0.903 0.0243 0.556
SR 0.948 0.910 0.0174 0.562

Table 3: Results for dictionary-
based methods that utilize the
Multi-bit backbone.

watermarked and unwatermarked text. A salt key represents IDs ranging from 1 to 1,000. Our framework
returns either ‘None’—indicating that the text is unwatermarked—or an integer representing the key ID.
We use 1000 samples mixed with watermarked and unwatermarked text to test all the methods. To assess
the models’ capability across a range of proportions of watermarked text, we generated 11 datasets with
watermarked text ratios ranging from [0%, 10%, . . . , 90%, 100%]. We report the overall scores by averaging
over watermarked ratios. We use 500 samples as the development set for hyperparameter selection and
other 500 as a test set for evaluation with the chosen hyperparameters. For hyperparameter selection, we
performed a grid search on τd and τk, exploring values within the range [0.02, 0.04, . . . , 7.98, 8.0] for all
models on development set. We evaluate using three metrics: Accu-I measures the accuracy of determining if
the text is watermarked, irrespective of the correctness of the key prediction. It converts all results to binary
outcomes—1 for watermarked and 0 for non-watermarked—and compares these with the gold standard;
Accu-O represents the overall accuracy, assessing both the accuracy of watermark indicator predictions and
key predictions. and False Positive Ratio (FPR), which indicates the extent of the false detection problem.
We follow Fernandez et al. [2023] in using cosine similarity (Sim) between watermarked and unwatermarked
text to evaluate generation quality and information loss. A higher cosine similarity score indicates that the
generated watermarked text closely resembles the unwatermarked text, reflecting better quality and minimal
information loss. We run all models on an NVIDIA A100 GPU with 80GB of memory.

We compare DW, with the following baseline methods: Full Key Encoding (FKE), Partial Key Encoding
(PKE), Hybrid Dual Watermark (HDW), Mean Rebalance (MR), and Second Rebalance (SR). See Section 3.4
for details. For the distribution methods, we adopt Fernandez et al. [2023] as backbone. For the dictionary-
based method, we utilize Multi-bit [Yoo et al., 2023a, Wang et al., 2023] backbone.

5.1 Main Experiments
We compare DW and HDW methods with several baseline models. From the results shown in Table 1 we see:
(1) HDW and its variants outperform all other approaches in Accu-I and FPR, demonstrating the effectiveness
of our proposed methods in detecting watermarked text. The FPR of these models is consistent with our
analysis in Theorem 3, further showing the correctness of our theory. (2) Compared to the baseline model
FKE, DW shows a slight decrease in Accu-O. This because only half of the tokens are utilized to encode
the identification watermark. However, given that this approach significantly mitigates the false detection
problem, we found this compromise acceptable. (3) By comparing HDW, SR, and MR, we see that SR
and MR effectively improve performance, highlighting the effectiveness of these variant strategies. (4) The
performance of PKE lags significantly behind FKE. This discrepancy arises because PKE utilizes only half of
the tokens to encode the identification watermark and leaves the remaining tokens unused. This comparison
highlights the crucial role of the parameter T in influencing performance and further substantiates the validity
of our theory. These results also explain why HDW achieves only marginal improvements, as allocating only
half of the tokens to encode the identification watermark can lead to a performance decline. (5) Regarding
the FPR score, HDW outperforms both DW and FKE, demonstrating the correctness of our analysis in
Section 4.1. (6) The Sim scores across all models are closely clustered around 0.69, suggesting that the quality
of the generated text is similar for all models, and that all models maintain an adequate level of similarity to
the unwatermarked text.

5.2 Key Capacity Experiment
To demonstrate the false detection problem and the effectiveness of our models under different key capacities K,
we compare the FKE and HDW methods with the capacity K ranging in [20, 50, 100, 200, 500, 1000, 2000]. We
present the average scores for FKE and HDW in Table 2 (left) and Table 2 (right), respectively. Additionally,
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we provide a breakdown of scores relative to different watermarked text ratios in Appendix A.21, respectively.
It can be observed from the results that: (1) In the FKE model, since it relies entirely on the maximal score
of all keys in the key space, the performance decreases significantly as K increases. This is supported and
guaranteed by our analysis in Theorem 1. (2) The HDW results show no significant differences for different
key capacities in our HDW method. This is because the indicator is the dominant part and can ensure the
FPR avoids the influence of the total key count.

5.3 Dictionary-Based Method experiments
We adapt our DW to Multi-bit model introduced by Yoo et al. [2023a], which divides the word dictionary
into multiple partitions based on the keys. We report the scores for different models in Table 3 and provide
a breakdown of scores relative to varying watermarked text ratios in Appendix A.11. The results indicate
that (1) The results of the dictionary-based model are similar to those of the distribution-based model.
These findings demonstrate that our proposed method is generalizable to other watermarking approaches
and effectively mitigates the false detection problem. (2) Across different models, our methods consistently
outperform the FKE model significantly, even with the Multi-bit backbone. This demonstrates that our
approach is well-suited for dictionary-based models.

5.4 Additional Experiments
We conduct more extensive experiments to show the effectiveness and limitations of our models in various
settings. Due to the page limit, we defer the details to the appendix.

In Appendix A.10, we analyze the relationship between watermarked text ratios and metrics such as Accu-I,
Accu-O, and FPR, highlighting performance trends under different watermark ratios. In Appendix A.11, we
extend this analysis to the dictionary-based method, showcasing the adaptability of our models across different
backbones. In Appendix A.12, we evaluate robustness against insertion and deletion attacks, demonstrating
that our models maintain comparable performance to baseline methods despite token-level modifications.
Similarly, in Appendix A.13, we assess resilience to paraphrase attacks, showing that even with text rephrasing,
our models effectively recognize watermarked content. In Appendix A.14, we perform a runtime analysis
to compare computational costs of watermarking and detection processes across various models, revealing
that our approach is efficient and scalable. In Appendix A.15, we explore the impact of sequence length
on performance, finding that longer sequences enhance accuracy while introducing slight increases in FPR.
To validate the generalizability of our models, we evaluate performance on domain-specific datasets in
Appendix A.16, using BioASQ and LegalQA. The results confirm robust performance in specialized contexts
with minimal alteration to text similarity. In Appendix A.17, we study the effect of the indication ratio
parameter rd, demonstrating how varying token allocations for watermark detection impacts accuracy and
FPR. In Appendix A.18, we further investigate how different ratios of rd impact FPR, showing that employing
more tokens to encode the watermark indicator effectively mitigates FPR. This analysis also highlights the
effect of watermarked text ratios on threshold tuning and resulting FPR trends. In Appendix A.19, we
evaluate the sensitivity of our models to variations in sample size, confirming that our results are robust and
not significantly influenced by sample size. In Appendix A.20, we examine the influence of the window size
parameter h, finding that text quality remains stable across a wide range of values. In Appendix A.21, we
conduct a key capacity breakdown analysis to investigate how different watermark ratios affect detection
performance. Appendix A.22 extends this analysis to the dictionary-based method, emphasizing the flexibility
of our models in diverse settings. Lastly, in Appendix A.23, we conduct key capacity experiments for
dictionary-based methods using the Multi-bit as backbone. The results highlight that while traditional
dictionary-based methods show an increase in FPR as key capacity grows, our HDW method effectively
maintains a consistent FPR scale. These experiments provide deeper insights into the capabilities and
limitations of our proposed methods.

6 Conclusion
In this paper, we address the false detection problem in watermarking methods for text generated by
LLMs. We establish a theoretical bound demonstrating the inherent inevitability of false positive errors
in watermarking techniques like FKE. To mitigate this problem, we introduce a novel DW method that
jointly encodes indicator and identification watermark. Furthermore, we present a analysis of our proposed
method and validate it through extensive empirical experiments. Our results, both theoretical and empirical,
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indicate that the DW method and its variants effectively reduces the false positive ratio, thereby alleviating
the false detection problem. This enhancement in watermarking reliability can significantly promote the
trustworthiness of LLM-generated content.
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Appendix. Supplementary Material

A.1 Impact Statements
This work proposes the Dual Watermark (DW) scheme to address the false detection problem in watermarking
LLM outputs. By significantly reducing false positives while maintaining high detection accuracy, our method
enables reliable identification of watermarked text and user-specific tracking, even at large key capacities.
These advancements improve the scalability and robustness of watermarking techniques, making them more
effective for managing LLM-generated content across diverse applications.

The contributions of this work have several positive implications, such as enhancing content authenticity,
improving accountability, and enabling more reliable tracing of LLM outputs. However, the adoption of such
techniques is not without potential risks. For instance, the identification-based watermarking introduced in
our approach also raises privacy concerns if misused to track or de-anonymize users without their consent.
Additionally, improper disclosure or misuse of these tools may lead to unintended consequences, such as
penalizing legitimate users based on incorrect or biased watermark detection.

Therefore, while this work provides critical advancements in watermarking techniques, we urge careful
governance and transparent usage policies to mitigate potential harms and ensure that these tools are deployed
responsibly.

A.2 Notation
We denote the key ID by ξ ∈ [1,K], with K ∈ N representing the total number of keys i.e. the capacity. The
token sequence [x1, . . . , xT ] is generated by an LLM L, where each token xi is within the range [1, . . . , V ], V
being the vocabulary size. The probabilities for predicting the ith token are denoted as pi, with corresponding
logits ℓi, which are adjusted to ℓ̃i by incorporating the Gumbel variable gi. The indicator function 1(·)
returns 1 if the condition is true and 0 otherwise. The hash function H is used to calculate the hash key. A
uniform distribution U(0, 1, s) is used, where s is the seed used to generate the standard uniform random
variables. The scores Sd and Sk(ξ) are statistics used to detect the detection watermark and the identification
watermark for key ξ, respectively. The parameter rd determines the proportion of tokens used to encode the
detection watermark, while τd and τk serve as threshold variables for detecting the detection watermark and
the identification watermark, respectively.

A.3 Proof of Theorem 1
Theorem 1. Consider random variables uixi(ξ) drawn from a uniform distribution over [0, 1], where
ξ = [1, . . . ,K] represents the key, and K denotes the total key capacity. ui ∈ RV , where V is the vocabulary
size, and uixi corresponds to the xith token in ui. The index i = [1, . . . , T ] refers to the ith token in the
generated sequence. The score is calculated as: Sk(ξ) = − 1

T

∑T
i=1 ln(1 − uixi

(ξ)). We consider the sample
is watermarked if maxξ Sk(ξ) ≥ τk, where τk is a threshold parameter chosen to bound the FNR. The false
positive probability is bounded as:

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1 −

(
1 − exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

. (1)

Proof Sketch. From Lemma 1, we know that if r is uniformly distributed over [0, 1], then X = − ln(1−r) follows
an exponential distribution with parameter 1. According to Lemma 2, if uixi

(ξ) are independent and uniformly
distributed over [0, 1], then Sk(ξ) = − 1

T

∑T
i=1 ln(1− uixi

(ξ)) ∼ Gamma(T, 1
T ). Using Lemma 3, given X ∼

Gamma(T, 1
T ), with probability 1−δ, X ≤

log δ
T −1

1/e−1 . Therefore, for Sk(ξ) ∼ Gamma(T, 1
T ), with probability 1−

δ, Sk(ξ) ≤
log δ
T −1

1/e−1 . Given this bound for each Sk(ξ), we use Lemma 4 to bound the probability of the maximum

Sk(ξ) over ξ. Specifically, Lemma 4 states that Pr (maxξ Sk(ξ) ≤ τk) ≥
(
1− exp

(
T
(
τk
(
1
e − 1

)
+ 1
)))K .

Taking the complement, we get Pr (maxξ Sk(ξ) ≥ τk) ≤ 1−
(
1− exp

(
T
(
τk
(
1
e − 1

)
+ 1
)))K . This completes

the proof of the theorem.

Proof. We will prove the theorem step-by-step using the provided lemmas.
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Step 1: Showing the Transformation is Exponential
From Lemma 1, we know that if r is uniformly distributed over [0, 1], then X = − ln(1− r) follows an

exponential distribution with parameter 1, i.e., X ∼ Exp(1).
Step 2: Distribution of Sk(ξ)
From Lemma 2, we know that if uixi

(ξ) are independent and uniformly distributed over [0, 1], then

Sk(ξ) = − 1

T

T∑
i=1

ln(1− uixi
(ξ)) ∼ Gamma

(
T,

1

T

)
.

Step 3: Bounding Sk(ξ)
Using Lemma 3, given X ∼ Gamma(T, 1

T ), with probability 1− δ,

X ≤
log δ
T − 1

1/e− 1
.

Therefore, for Sk(ξ) ∼ Gamma(T, 1
T ), with probability 1− δ,

Sk(ξ) ≤
log δ
T − 1

1/e− 1
.

Step 4: Probability Bound on Maximum Sk(ξ)

Given Sk(ξ) ≤
log δ
T −1

1/e−1 with probability 1− δ for each i, we use Lemma 4 to bound the probability of the
maximum Sk(ξ).

From Lemma 4, we have:

Pr

(
max

ξ
Sk(ξ) ≤ τk

)
≥
(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

.

Step 5: Complement of Maximum Bound
To find the probability that the maximum of Sk(ξ) exceeds τk, we take the complement of the bound

derived above:

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1−

(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

.

Conclusion
We have shown that the probability of the maximum score maxξ Sk(ξ) being greater than or equal to τk

is bounded by

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1−

(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

.

This completes the proof of the theorem. With probability 1− δ,

Pr

(
max

ξ
Sk(ξ) ≥ τk

)
≤ 1−

(
1− exp

(
T

(
τk

(
1

e
− 1

)
+ 1

)))K

.

A.4 Proof of Theorem 2
Theorem 2. Consider random variables uixi drawn from a uniform distribution on [0, 1]. The index i =

[1, . . . , T ′] represents the ith token of the generated text. We calculate the score as Sd = − 1
T ′

∑T ′

i=1 ln(1−uixi).
We regard the sample as watermarked if Sd ≥ τd, where τd is a threshold parameter. Then the false positive
probability is bounded as follows:

Pr (Sd ≥ τd) ≤ exp

(
T ′
(
τd

(
1

e
− 1

)
+ 1

))
. (2)
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Proof Sketch. Given uixi drawn from a uniform distribution on [0, 1], we transform uixi using − ln(1− uixi),
which follows an exponential distribution with parameter 1, as shown in Lemma 1. The score Sd is then the
average of T ′ such transformed variables, scaled by − 1

T ′ , which, by Lemma 2, follows a Gamma distribution
with shape parameter T ′ and scale parameter 1

T ′ . Using the bound from Lemma 3, with probability 1− δ, Sd

is less than or equal to a certain function of log δ. By expressing δ in terms of τd and solving, we derive that
the false positive probability Pr(Sd ≥ τd) is bounded by an exponential function exp

(
T ′ (τd ( 1e − 1

)
+ 1
))

.
Thus, the false positive probability is bounded as claimed in the theorem.

Proof. We will prove this theorem using the following lemmas.
From Lemma 1, we know that if uixi ∼ Uniform(0, 1), then − ln(1− uixi) ∼ Exp(1).
Using Lemma 2, the sum of T ′ independent exponential random variables follows a Gamma distribution

with shape parameter T ′ and scale parameter 1
T ′ :

Sd = − 1

T ′

T ′∑
i=1

ln(1− uixi) ∼ Gamma(T ′,
1

T ′ ).

From Lemma 3, we know that for X ∼ Gamma(T ′, 1
T ′ ), with shape parameter T ′ and scale parameter 1

T ′ ,
with probability 1− δ:

X ≤
log δ
T ′ − 1

1/e− 1
.

Adapting this for our case where the shape parameter is T ′, with probability 1− δ:

Sd ≤
log δ
T ′ − 1

1/e− 1
.

Let’s express δ as a function of τd. We set:

τd =
log δ
T ′ − 1

1/e− 1
.

Solving for log δ:

τd(1/e− 1) =
log δ

T ′ − 1,

log δ = T ′(τd(1/e− 1) + 1).

Thus, we have:
δ = exp (T ′(τd(1/e− 1) + 1)) .

The false positive probability Pr(Sd ≥ τk) is given by δ:

Pr(Sd ≥ τk) = exp (T ′(τd(1/e− 1) + 1)) .

Thus, we have shown that the false positive probability is bounded as follows: with probability 1− δ,

Pr (Sd ≥ τk) ≤ exp

(
T ′
(
τd

(
1

e
− 1

)
+ 1

))
.

A.5 Proof of Theorem 3
Theorem 3. Using notation introduced in Theorem 1 and Theorem 2, we use ⌊rdT ⌋ tokens to calculate Sd

and ⌊(1− rd)T ⌋ tokens to calculate Sk(ξ). The hybrid probability Pr(Sd > τd ∩maxξ Sk(ξ) > τk) is bounded
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as follows:

Pr

(
Sd ≥ τd ∩max

ξ
Sk(ξ) > τk

)
= Pr (Sd ≥ τd) · Pr

(
max

ξ
Sk(ξ) > τk

)
(3)

≤ exp

(
⌊rdT ⌋

(
τd

(
1

e
− 1

)
+ 1

))(
1−

(
1− exp

(
⌊(1− rd)T ⌋

(
τk

(
1

e
− 1

)
+ 1

)))K
)

(4)

Proof. We start by considering the two probabilities involved in the hybrid probability Pr(Sd ≥ τd ∩
maxξ Sk(ξ) > τk). By the definition of joint probability for independent events, we can express the hybrid
probability as the product of the individual probabilities:

Pr

(
Sd ≥ τd ∩max

ξ
Sk(ξ) > τk

)
= Pr (Sd ≥ τd) · Pr

(
max

ξ
Sk(ξ) > τk

)
.

Given that Sd is calculated using ⌊rdT ⌋ tokens and Sk(ξ) is calculated using ⌊(1− rd)T ⌋ tokens, we can
apply the bounds from Theorem 2 and Theorem 1 respectively.

First, by applying the bound from Theorem 2 to the probability Pr(Sd ≥ τd), we have:

Pr (Sd ≥ τd) ≤ exp

(
⌊rdT ⌋

(
τd

(
1

e
− 1

)
+ 1

))
.

Next, by applying the bound from Theorem 1 to the probability Pr(maxξ Sk(ξ) > τk), we obtain:

Pr

(
max

ξ
Sk(ξ) > τk

)
≤ 1−

(
1− exp

(
⌊(1− rd)T ⌋

(
τk

(
1

e
− 1

)
+ 1

)))K

.

Thus, combining these two results, the hybrid probability can be bounded as follows:

Pr

(
Sd ≥ τd ∩max

ξ
Sk(ξ) > τk

)
≤ exp

(
⌊rdT ⌋

(
τd

(
1

e
− 1

)
+ 1

))
· (5)(

1−
(
1− exp

(
⌊(1− rd)T ⌋

(
τk

(
1

e
− 1

)
+ 1

)))K
)
. (6)

This completes the proof.

A.6 Proof of the Equivalence of Gumbel-Max Trick
Proposition 1. Consider a discrete distribution p = (p1, . . . , pV ) and V random variables u = (u1, . . . , uV )

such that uv are i.i.d. with uv ∼ U[0,1]. Let V ⋆ = argmaxv u
1/pv
v . Define Gv = log(pv) + gv, where

gv = − log(− log(uv)). Then
V ⋆ = G⋆
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Proof.
argmax

v
Gv = argmax

v
(log(pv) + gv)

= argmax
v

(log(pv)− log(− log(uv)))

= argmax
v

exp (log(pv)− log(− log(uv)))

= argmax
v

(exp(log(pv)) · exp(− log(− log(uv))))

= argmax
v

(
pv ·

1

− log(uv)

)
= argmin

v

(
− log(uv)

pv

)
= argmax

v

(
log(uv)

pv

)
= argmax

v

(
log(u1/pv

v )
)

= argmax
v

(
u1/pv
v

)
Therefore,

V ⋆ = argmax
v

u1/pv
v

Thus, the theorem is proved:
V ⋆ = G⋆

A.7 Lemmas
Lemma 1. Let r be a random variable uniformly distributed over the interval [0, 1]. Define X = − ln(1− r).
Then X follows an exponential distribution with parameter 1, i.e., X ∼ Exp(1).

Proof. To show that X = − ln(1− r) follows an exponential distribution with parameter 1, we first find the
cumulative distribution function (CDF) of X.

For any x ≥ 0,

FX(x) = P (X ≤ x)

= P (− ln(1− r) ≤ x)

= P (ln(1− r) ≥ −x)

= P (1− r ≥ e−x)

= P (r ≤ 1− e−x).

Since r is uniformly distributed over [0, 1], its CDF is Fr(r) = r. Therefore,

FX(x) = 1− e−x, for x ≥ 0.

Next, we differentiate the CDF to obtain the probability density function (PDF):

fX(x) =
d

dx
FX(x) =

d

dx
(1− e−x) = e−x, for x ≥ 0.

The PDF fX(x) = e−x is the PDF of an exponential distribution with parameter 1. Therefore, X ∼
Exp(1).

Lemma 2. Let ri be independent and uniformly distributed over the interval [0, 1] for i = 1, 2, . . . , T . Define
S = − 1

T

∑T
i=1 ln(1− ri). Then S follows a Gamma distribution with shape parameter T and scale parameter

1
T , i.e., S ∼ Gamma(T, 1

T ).
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Proof. From Lemma 1, we know that if r is uniformly distributed over [0, 1], then X = − ln(1− r) ∼ Exp(1).
Given that ri ∼ Uniform(0, 1), it follows that ui = − ln(1− ri) ∼ Exp(1) for each i.
Now, consider the sum of T such independent exponential random variables:

Y =

T∑
i=1

ui

Since the sum of T independent Exp(1) random variables follows a Gamma distribution with shape
parameter T and scale parameter 1, we have:

Y ∼ Gamma(T, 1)

Next, consider the scaled variable:

S =
Y

T

Since Y ∼ Gamma(T, 1), scaling Y by 1/T (which is equivalent to dividing by T ) gives us a new Gamma
distributed random variable with the same shape parameter T and a scale parameter of 1/T . Therefore:

S ∼ Gamma
(
T,

1

T

)
Thus, we have shown that S = − 1

T

∑T
i=1 ln(1− ri) follows a Gamma distribution with shape parameter

T and scale parameter 1
T .

Lemma 3. Given X ∼ Gamma(T, 1
T ), with shape parameter T and scale parameter 1

T , we can state:
With probability 1− δ,

X ≤
log δ
T − 1

1/e− 1
.

Proof. We use the Chernoff bound to derive this result.
First, recall the moment generating function (MGF) of X ∼ Gamma(T, 1

T ):

MX(t) = E[etX ] =

(
1− t

T

)−T

,

for t < T .
Using the Chernoff bound, for any t > 0, we have:

P(X ≥ a) = P(etX ≥ eta) ≤ E[etX ]

eta
=

MX(t)

eta
.

Substituting the MGF, we get:

P(X ≥ a) ≤
(
1− t

T

)−T

eta
.

To optimize this bound, we need to minimize the right-hand side with respect to t. Therefore, we have:

log

((
1− t

T

)−T

eta

)
= −T log

(
1− t

T

)
− ta.

Differentiate with respect to t and set the derivative to zero to find the optimal t:
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d

dt

(
−T log

(
1− t

T

)
− ta

)
= 0

−T ·
(
− 1

T
· 1

1− t
T

)
− a = 0

1

1− t
T

− a = 0

1− 1

a
=

t

T

t = T

(
1− 1

a

)
.

Substituting t = T
(
1− 1

a

)
back into the Chernoff bound, we have:

P(X ≥ a) ≤ exp

(
−T log

(
1−

(
1− 1

a

))
− T

(
1− 1

a

)
a

)
.

Simplifying further:

P(X ≥ a) ≤ exp

(
−T log

(
1

a

)
− T (a− 1)

)
.

For a > 0, we can simplify the expression:

P(X ≥ a) ≤ exp (T log(a)− T (a− 1))

≤ exp
(
T
a

e
− T (a− 1)

)
= exp

(
T (

a

e
− a+ 1)

)
Setting this bound to δ, we get:

exp
(
T (

a

e
− a+ 1)

)
= δ.

Taking the natural logarithm:

T (
a

e
− a+ 1) = log δ,

a =
log δ
T − 1

1/e− 1
,

Therefore, with probability 1− δ:

X ≤
log δ
T − 1

1/e− 1
.

Lemma 4. Given random variables u1, u2, . . . , uK where K > 0, such that with probability 1− δ:

ui ≤
log δ
T − 1

1/e− 1
,

it follows that:

Pr
(
max

i
ui ≤ s

)
≥
(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))K

.
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Proof. Given the condition:

Pr

(
ui ≤

log δ
T − 1

1/e− 1

)
≥ 1− δ,

we denote:

b =
log δ
T − 1

1/e− 1
.

We aim to express this condition in terms of s and derive a bound for:

Pr
(
max

i
ui ≤ s

)
.

First, consider:
Pr (ui ≤ b) ≥ 1− δ.

We need to find a function of s that relates δ to s. Suppose s ≥ b. Then:

Pr (ui ≤ s) ≥ Pr (ui ≤ b) ≥ 1− δ.

We aim to find the probability that all ui are less than or equal to s:

Pr
(
max

i
ui ≤ s

)
= Pr (u1 ≤ s, u2 ≤ s, . . . , uK ≤ s) .

Assuming the ui are independent, we can write:

Pr (u1 ≤ s, u2 ≤ s, . . . , uK ≤ s) =

K∏
i=1

Pr (ui ≤ s) .

Since:
Pr (ui ≤ s) ≥ 1− δ,

we have:
Pr
(
max

i
ui ≤ s

)
≥ (1− δ)K .

Now, we need to express δ in terms of s. Recall the expression for b:

b =
log δ
T − 1

1/e− 1
.

Solving for log δ, we get:

b(1/e− 1) =
log δ

T
− 1,

b(1/e− 1) + 1 =
log δ

T
,

T (b(1/e− 1) + 1) = log δ,

δ = exp (T (b(1/e− 1) + 1)) .

Now, substitute b = s:

δ = exp

(
T

(
s

(
1

e
− 1

)
+ 1

))
.

Hence:

Pr
(
max

i
ui ≤ s

)
≥
(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))K

.

This completes the proof of the lemma.
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Lemma 5. Given a random variable X, such that with probability 1− δ:

X ≤
log δ
rdT

− 1

1/e− 1
,

it follows that:

Pr (X ≤ s) ≥ 1− exp

(
rdT

(
s

(
1

e
− 1

)
+ 1

))
.

Proof. Given the condition:

Pr

(
X ≤

log δ
rdT

− 1

1/e− 1

)
≥ 1− δ,

we denote:

b =

log δ
rdT

− 1

1/e− 1
.

We aim to express δ as a function of s and find the probability bound for X ≤ s.
Rearranging the expression for b:

b =

log δ
rdT

− 1

1/e− 1
,

we solve for log δ:

b

(
1

e
− 1

)
=

log δ

rdT
− 1,

b

(
1

e
− 1

)
+ 1 =

log δ

rdT
,

rdT

(
b

(
1

e
− 1

)
+ 1

)
= log δ,

δ = exp

(
rdT

(
b

(
1

e
− 1

)
+ 1

))
.

Next, we relate b to s. Suppose s ≥ b, then:

Pr (X ≤ s) ≥ Pr (X ≤ b) ≥ 1− δ.

Substitute b with s:
b = s.

Now we have:
δ = exp

(
rdT

(
s

(
1

e
− 1

)
+ 1

))
.

Thus:
Pr (X ≤ s) ≥ 1− δ,

where δ = exp
(
rdT

(
s
(
1
e − 1

)
+ 1
))

.
Therefore:

Pr (X ≤ s) ≥ 1− exp

(
rdT

(
s

(
1

e
− 1

)
+ 1

))
.

This completes the proof of the lemma.

Lemma 6. When K ≥ ln(1−exp(rdT (s( 1
e−1)+1)))

ln(1−exp(T (s( 1
e−1)+1)))

, it follows that:

1− exp

(
rdT

(
s

(
1

e
− 1

)
+ 1

))
≥
(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))K

.
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Proof.

1− exp

(
rdT

(
s

(
1

e
− 1

)
+ 1

))
≥
(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))K

ln

(
1− exp

(
rdT

(
s

(
1

e
− 1

)
+ 1

)))
≥ K ln

(
1− exp

(
T

(
s

(
1

e
− 1

)
+ 1

)))
K ≥

ln
(
1− exp

(
rdT

(
s
(
1
e − 1

)
+ 1
)))

ln
(
1− exp

(
T
(
s
(
1
e − 1

)
+ 1
)))

This completes the proof.

A.8 Multi-bit Error Bound Analysis
The dictionary-based methods [Kirchenbauer et al., 2023b, Yoo et al., 2023a, Wang et al., 2024], such as the
multi-bit approach, partition the vocabulary into multiple blocks and identify watermarked text by determining
the dominant partition using the maximum of several binomial variables. While prior work approximates
this variable with a binomial distribution, our theoretical and numerical analysis in Appendix A.8 reveals
that it instead follows a Gumbel distribution. As a result, the variable’s mean shifts with increasing capacity,
exhibiting behavior akin to distribution-based methods. Our findings highlight that larger key capacities
amplify the false detection problem. Numerical experiments further validate that as the message length
grows, the detection statistic’s distribution shifts, making unwatermarked text increasingly indistinguishable
from watermarked text. These insights emphasize the limitations of existing dictionary-based watermarking
methods and the necessity of DW.

Yoo et al. [2023a], Wang et al. [2024] extended Kirchenbauer et al. [2023b]’s method to support multi-bit
encoding. Their approach detects if a text is watermarked by use of a binomial statistic [Yoo et al., 2023a].
However, since the statistic is based on the maximal value of multiple binomial variables, it should no longer
be considered a measure of a binomial distribution, but instead an approximate Gumbel distribution [Kotz
and Nadarajah, 2000, Haan and Ferreira, 2006].

As the parameter for the Gumbel distribution is challenging to compute, we directly derive a novel bound
for the composed extreme variable. Our analysis reveals that this method continues to suffer from the false
detection problem.

We follow the notation in Yoo et al. [2023a], and use [r] to denote the sequence of length r, [r] = [1, 2, · · · , r].
Given a generated sequence [x1, · · · , xT ], Yoo et al. [2023a] first uses a hash key to compute the position pt of
the message m for the t-th token, denoted as ρt = m[pt], where pt ∈ [b] and ρt ∈ [r]. Here, b is the message
length, and r indicates the number of bits each position encodes. Finally, the vocabulary V is divided into r
blocks [V1, · · · , Vr], and δ is added to the logits of all tokens in the ρt-th partition Vρt

.
When determining if a text is watermarked, the method calculates the maximal count in each vocabulary

block for each position pt normalized by the total count allocated to that position. For the pt-th position, the
random variable Cpt ∈ [0, 1] can be denoted as:

Cpt
= max

ρ∈[r]

{∑T
t=1 1(xt ∈ Vρ) · 1(pt = ρ)∑T

t=1 1(pt = ρ)

}
.

Following Yoo et al. [2023a], we approximate the distribution for each block ρ using a binomial distribution.
The total count for each block is approximated as T

b . Therefore, we have:

Cpt
= max

(
X1

T/b
, · · · , Xr

T/b

)
, where Xρ ∼ Binomial

(
T

b
,
1

r

)
.

Yoo et al. [2023a] claims that if the text is unwatermarked, Cpt
≈ 1

r . Based on this, the detection method
tests if Cpt exceeds a predefined threshold, classifying the text as watermarked if this is the case. However,
Yoo et al. [2023a]’s approach approximates the distribution of Cpt with a binomial distribution. Since Cpt is
the maximum of i.i.d. distributions, it is, in fact, a Gumbel distribution. As a result, even when the text is
not watermarked, Cpt

is still likely to exceed 1
r , leading to excess false positives.

To further demonstrate this issue, we provide a theoretical analysis of how the random variable Cpt
grows
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as the key capacity increases. Given the difficulty of computing the parameters of the Gumbel distribution,
we further analyze its tail bounds to examine how the parameter b affects Cpt . We first present the following
theorem:

Theorem 4. Let Cpt
= max

(
X1

T/b ,
X2

T/b , · · · ,
Xr

T/b

)
, where Xρ ∼ Binomial

(
T
b ,

1
r

)
for all ρ ∈ [r]. Then, the

probability that Cpt exceeds a threshold y is bounded by:

Pr(Cpt
≥ y) ≤ r · exp

(
−
2T
(
y − 1

r

)2
b

)
.

Proof. For each block ρ ∈ [r], the normalized count is Xρ

T/b , where Xρ ∼ Binomial
(
T
b ,

1
r

)
. The expectation of

Xρ

T/b is:

E
[
Xρ

T/b

]
=

E[Xρ]

T/b
=

1

r
.

We aim to bound the probability Pr
(

Xρ

T/b ≥ y
)
. This is equivalent to:

Pr

(
Xρ

T/b
≥ y

)
= Pr

(
Xρ ≥ y · T

b

)
.

Using Hoeffding’s inequality for Xρ, we have:

Pr

(
Xρ ≥ y · T

b

)
≤ exp

(
−
2
(
y · T

b − µ
)2

T/b

)
,

where µ = E[Xρ] =
T
b · 1

r .
Substitute µ into the inequality:

Pr

(
Xρ ≥ y · T

b

)
≤ exp

(
−
2
(
y · T

b − T
b · 1

r

)2
T/b

)
.

Simplify the argument of the exponential:

Pr

(
Xρ

T/b
≥ y

)
≤ exp

(
−
2T
(
y − 1

r

)2
b

)
.

Now, for the maximum Cpt = max
(

X1

T/b ,
X2

T/b , · · · ,
Xr

T/b

)
, we use the union bound:

Pr(Cpt ≥ y) ≤
r∑

ρ=1

Pr

(
Xρ

T/b
≥ y

)
.

Since the bound for each ρ is identical, we multiply the single block bound by r:

Pr(Cpt
≥ y) ≤ r · exp

(
−
2T
(
y − 1

r

)2
b

)
.

This completes the proof.

It can be observed from Theorem 4 that as the message length b increases, the probability that Cpt

exceeds a certain threshold, Pr(Cpt
≥ y), also increases. This implies that as the key capacity grows, the

method becomes more prone to false detection problems. One might argue that increasing r can also increase
the key capacity. However, it should be noted that as r increases significantly, the vocabulary will be divided
into r blocks, causing the "green list" to become smaller and smaller. This reduction in the green list size
makes it increasingly difficult to contain feasible next tokens, further complicating the watermarking process.
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We further conducted a numerical experiment to demonstrate how the distribution shifts as b increases.
The results are presented in Figure 2. We fix r = 10, indicating that each position contains 10 bits of
information, and vary the message length b ∈ [2, 20]. Additionally, we plot the desired binomial distribution
for r = 10 using the red line, as expected in the original paper. The results demonstrate that (1) as the
message length b increases, the expectation of the random variable Cpt

also rises. For the origional Multibit
method, the expected value is 0.1, but it continues to grow as b increases, further validating the correctness of
our theoretical analysis. This shift causes the unwatermarked text to resemble watermarked text, making it
more challenging to distinguish them using a threshold. (2) Compared with the original binomial distribution,
applying the max operation shifts the distribution to the right, resulting in a narrower distribution with
reduced variance.
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Figure 2: Distribution of Cpt with respect to different walues of b.

A.9 Numerical Bound Analysis
Since the number of tokens used in the DW method is smaller than that used in FKE, we numerically
calculated the minimal K value for which DW’s bound outperforms FKE’s bound, given specific T and r. As
shown in Table 4, if K is larger than 114.7, the DW method’s bound is superior for all settings we test. This
capacity is relatively small, indicating that, our DW method outperforms the FKE method for almost any
capacity K. This conclusion is also supported by our analysis in Lemma 6.

T r = 0.2 r = 0.5 r = 0.8
200 9.3 3.6 1.6
300 21.1 6.0 2.0
400 48.7 10.2 2.5
500 114.7 17.7 3.1

Table 4: Lower bounds for K that DW is better than FKE with τd = τk = 1.6 and varying T and r.

A.10 Watermarked Text Ratio
The thresholds τk and τd are critical in determining whether a text is watermarked, with their optimal values
varying according to the watermarked text ratio. The metrics presented in the main experiment are averaged
across datasets with differing ratios of watermarked text. To provide a comprehensive analysis of performance
across various watermarked text ratios, we examine the relationship between the watermarked text ratio and
the metrics Accu-I, Accu-O, and FPR. As illustrated in Figure 3, the following observations are made: (1)
As the watermarked text ratio increases from 0% to 100%, Accu-I initially decreases and then rises after
the 50% mark. This trend occurs because, when the watermark ratio is 0%, tuning the threshold on the
development set to a very high value results in classifying all samples as unwatermarked, thereby leading to
optimal performance. A similar situation arises when the watermark ratio nears 100%, tuning the threshold
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to classify all samples as watermarked yields the best performance on both the development set and the test
set. (2) Accu-O decreases as the watermark ratio increases, due to models “overfitting” to predict all samples
as unwatermarked when the ratio is 0%. As the ratio increases, predicting the exact key ID becomes more
challenging than merely predicting whether the text is watermarked. However, Accu-O slightly increases as
the watermark ratio approaches 100% for FKE and PKE. This improvement occurs because the models are
tuned to avoid predicting any samples as unwatermarked. (3) With an increasing watermarked text ratio,
FPR also increases. This is because, at low watermark ratios, the tuned thresholds are set very high, making
it unlikely for any sample to be classified as watermarked, thus eliminating false positive inferences. (4) It is
evident that our proposed DW and HDW models outperform the FKE model across nearly all watermarked
text ratios, demonstrating the effectiveness of our approach in various scenarios.
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Figure 3: Watermarked text ratio results. The figures illustrate the relationship between the watermarked
text ratio r and the corresponding metrics. Each plot represents a specific metric, with metrics calculated by
varying the thresholds τk and τd according to the watermark ratio r.

A.11 Watermarked Text Ratio for Dictionary-based method
Similar to Appendix A.10, we conduct a watermarked text ratio analysis for the dictionary-based method using
Multi-bit as the backbone. The results are presented in Figure 4. From the results, it can be observed that
the trends for Accu-I, Accu-O, and FPR are similar to those observed in the experiments in Appendix A.10,
demonstrating that our method performs effectively in the dictionary-based approach. This observation
further highlights the extensibility of our method across different backbones.

0 20 40 60 80 100
watermarked text ratio.

0.85

0.90

0.95

1.00

Ac
cu

-I

0 20 40 60 80 100
watermarked text ratio.

0.8

0.9

1.0

Ac
cu

-O

0 20 40 60 80
watermarked text ratio.

0.0

0.1

0.2

0.3

0.4

FP
R

FKE
PKE
DWI
HDWI
MR
SR

Figure 4: Dictionary-based watermarked text ratio results. All models are based on Multi-bit. The figures
illustrate the relationship between the watermarked text ratio r and the corresponding metrics. Each plot
represents a specific metric, with metrics calculated by varying the thresholds τk and τd according to the
watermark ratio r.

A.12 Insertion and Deletion Attack
Following Fernandez et al. [2023], we also perform insertion and deletion attacks, randomly inserting or
deleting tokens from the generated text to assess whether such modifications can effectively remove the
watermark. We vary the insertion/deletion ratios in the range [10%, · · · , 90%]. For instance, if the insertion
ratio is 10%, this indicates that we insert tokens amounting to 10% of the total sequence length. Similarly, a
deletion ratio of 10% means removing 10% of the tokens from the generated sequence. The experimental
results are presented in Figure 5 and Figure 6 respectively. The results indicate the following observations:
(1) As the insertion/deletion ratio increases, all scores decrease. This is expected, as modifying more tokens
introduces additional noise, making it increasingly difficult to classify the tokens. (2) Our proposed DW and
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HDW methods perform nearly identically to the original FKE method, demonstrating that our approach
retains the same robustness capabilities as the original methods.
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Figure 5: Insertion attack results. The figure shows the impact of varying insertion ratios (10% to 90%) on
the metrics Accu-I, Accu-O, and FPR for different watermarking methods (FKE, DW, HDW).
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Figure 6: Deletion attack results. The figure illustrates the effect of varying deletion ratios (10% to 90%) on
the metrics Accu-I, Accu-O, and FPR for different watermarking methods (FKE, DW, HDW).

A.13 Paraphrase Attack
We conduct a paraphrase attack to evaluate the robustness of the proposed methods. We set a watermarked
ratio r = 0.5 to test whether the models can differentiate watermarked text. We use Parrot_Paraphraser1, a
toolkit designed to rephrase sentences generated with watermarks, and we use the same detection tool to
detect the watermark and key information. The results are shown in Figure 7. We can observe that (1) our
proposed DW and HDW models outperform the FKE method, (2) although accuracy decreases after the
paraphrase attack, it remains above 0.5, indicating that the methods can still recognize watermarked text
and associated keys, and (3) the FPR decreases after the attack because the models are more likely to classify
text as unwatermarked. This outcome is expected because, after the paraphrase attack, some previously
watermarked text can no longer be detected.

A.14 Runtime Analysis
To evaluate the computational cost of the watermarking models, we conducted a runtime analysis experiment
by testing the runtime for the same 100 samples across different models, including the “NoWatermark”
generation. The results, shown in Appendix A.14, reveal that (1) in the generation phase, the runtime for
watermarking models is slightly higher than for non-watermarked generation, as additional time is required
for hashing and key encoding, (2) the runtime for all models during the generation phase is independent of
the key capacity, since the watermark encoding process only runs once and does not depend on the size of
the key capacity, and (3) in the detection phase, the runtime for all watermarking models increases linearly
with the key capacity, as the detection process involves multiple iterations over possible keys to identify the
best matching key.

1https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
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Figure 7: Paraphrase attack results. The figure compares the performance of watermarking methods (FKE,
DW, HDW) on original and paraphrased text, showing metrics Accu-I, Accu-O, and FPR for a watermarked
ratio r = 0.5 .
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Figure 8: Runtime analysis. The left plot shows the generation time, while the right plot shows the detection
time for various watermarking models (NoWatermark, FKE, DW, HDW) as a function of key capacity ( K
ranging from 0 to 2000).

A.15 Sequence Length Analysis
To evaluate how performance is influenced by the length of generated sequences, we conducted a sequence
length analysis experiment using the HDW model with a watermark ratio r = 0.5. The experiment tested
sequence lengths ranging from 20 to 1000, and the results are presented in Figure 9. The following observations
can be made: (1) as the sequence length increases, the accuracy scores improve, as longer sequences allow
for clearer embedding of the watermark into the generated text, (2) as the sequence length grows, the FPR
metric also increases; however, this does not necessarily indicate worsening false detection problems. When
the text length is short, the model rarely recognizes any sequence as watermarked, leading to accuracy scores
close to 0.5 and FPR close to 0. As the sequence length increases, the predicted positive rate rises, resulting
in more false positives, and (3) based on the experiment, the models begin to recognize watermarked text
effectively when the token length exceeds 50, and they achieve good performance when the token length
exceeds 200.

A.16 Experiments with More Datasets
To demonstrate the applicability of our model across different scenarios, we conducted experiments on two
domain-specific datasets: a biomedical question dataset, BioASQ [Krithara et al., 2023], and a legal dataset,
LegalQA2. We evaluated our models on these datasets, and the results are presented in Table 5 and Table 6.
The findings show that (1) the performance trends on these domain-specific datasets are generally consistent
with those in the main experiment, with our proposed methods achieving superior results compared to other

2https://huggingface.co/datasets/dzunggg/legal-qa-v1
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Figure 9: Sequence Length Analysis. The figure presents the impact of sequence length (ranging from 20 to
1000) on metrics (Accu-I, Accu-O, FPR, and Predicted Positive Rate) for the HDW model with a watermark
ratio r = 0.5.

models, and (2) the similarity scores in both datasets are as high as 0.9, indicating that the watermarking
method minimally alters the output text, even in highly specific domains.

Accu-I↑ Accu-O↑ FPR↓ Sim↑

FKE 0.883 0.834 0.175 0.934
PKE 0.797 0.679 0.20 0.931
MultiBit 0.893 0.655 0.0825 0.922
DW 0.963 0.744 0.0459 0.932
HDW 0.923 0.73 0.0517 0.923
MR 0.902 0.739 0.0769 0.923
SR 0.963 0.773 0.0428 0.923

Table 5: BioASQ dataset results.

Accu-I↑ Accu-O↑ FPR↓ Sim↑

FKE 0.955 0.95 0.0877 0.901
PKE 0.873 0.80 0.0657 0.905
MultiBit 0.941 0.732 0.175 0.89
DW 0.955 0.831 0.118 0.905
HDW 0.973 0.863 0.00952 0.892
MR 0.946 0.846 0.0275 0.892
SR 0.943 0.832 0.0906 0.892

Table 6: LegalQA dataset results.

A.17 Experiments with Indication Ratio rd

The indication ratio parameter rd controls the ratio between tokens used to encode the indicator variable and
those used to encode key information. We conduct an experiment to evaluate how different values of rd affect
the results, as shown in Figure 10. The findings are summarized as follows:

(1) As rd increases, both DW and HDW exhibit an improvement in the Accu-I score. This demonstrates
that using more tokens to encode the indicator variable enhances the accuracy of detecting whether the text
is watermarked, thereby validating the correctness of our proposed method and theoretical analysis. (2)
With an increase in rd, the Accu-O score initially increases and then decreases. At smaller values of rd, the
performance improves as more tokens are available to detect whether the text is watermarked. However, when
rd becomes too large, it impairs the detection of key information, leading to a decline in overall performance.
(3) DW performs worse in both Accu-I and Accu-O when rd is small. This occurs because DW does not reuse
key information to detect whether the text is watermarked, giving HDW an advantage at smaller rd values.
This further underscores the effectiveness of the HDW method. (4) As rd increases, the FPR decreases.
Allocating more tokens to encode the indicator variable helps alleviate the false positive problem, improving
overall robustness.
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Figure 10: Experiment results with varying indication ratio parameter rd. Higher rd corresponds to more
tokens allocated for encoding the indicator variable.

A.18 Experiments with Indication Ratio rd for Different Water-
marked Text Ratio

In the main experiment, we set rd = 50%, thereby utilizing half of the tokens to encode whether the text is
watermarked, while the remaining tokens encode the identification watermark. In this subsequent experiment,
we evaluate the ratios rd in [10%, 30%, 50%, 70%, 90%] to assess the impact of employing more tokens to
encode the watermark indicator. The results, depicted in Figure 11, indicate that (1) employing more
tokens for encoding the indicator can substantially mitigate the FPR. (2) It can be observed that as the
watermarked text ratio increases, the FPR also rises. This phenomenon occurs because, during threshold
tuning on development set, when the ratio of watermarked text approaches zero, the model tends to select a
threshold that directly classifies all samples as unwatermarked and thus make less false positive error. When
the watermarked text ratio is high, the threshold is adjusted to classify more samples as watermarked. This
setting leads to an increase in false positive errors.
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Figure 11: Relationship between FPR and r.
Each curve represents a specific r value.
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Figure 12: Relationship between FPR and sample
size. Each curve represents a size.

A.19 Sample Size Experiment
To demonstrate that our experiments used a reasonable sample size and that our results are not sensi-
tive to sample size, we performed an experiment by varying the total sample size within the range of
[100, 200, 500, 1000, 2000]. As observed in Figure 12, the results did not differ significantly with changes in
sample size. This indicates that the sample size we chose is suitable for our current experiment and that
our proposed method has good generalizability, not relying heavily on the number of samples. It can be
observed that as the ratio of watermarked text increases, the FPR also rises. The underlying reason for this
phenomenon is the same as discussed in Appendix A.18.
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A.20 Window Size Parameter h

We evaluate whether the window size parameter significantly impacts the generation quality, and the results
are presented in Figure 13. It can be observed that as the window size h increases, the text quality scores
remain in the range of 69 to 71. In this experiment, no substantial changes in text quality were observed as
the window size h varied.
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Figure 13: Text quality with respect to different window sizes h.

A.21 Key Capacity Breakdown Results
We conduct the key capacity breakdown analysis for our method, with the results presented in Figure 14,
providing additional insights into Section 5.2. The scores are plotted for various watermarked text ratios,
illustrating the performance across diverse scenarios. These plots demonstrate the effectiveness of our proposed
method under different watermarked text ratios. For a more detailed discussion, please refer to Section 5.2.
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Figure 14: Key capacity results for FKE (left) and HDW (right). The figures illustrate the relationship
between the watermarked text ratio and FPR for varying key capacities ( K ranges from 20 to 2000).

A.22 Key Capacity Breakdown Results for Dictionary-Based Method
We further conduct the key capacity breakdown analysis for the dictionary-based method. Similar to
Appendix A.21, the results for this method are presented in Figure 15, offering additional insights into
Section 5.3. The scores are plotted for various watermarked text ratios, illustrating the performance across
different scenarios. These findings highlight the behavior and adaptability of the dictionary-based method
under varying conditions. For further discussion, refer to Section 5.3.
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Figure 15: Dictionary-based model’s key capacity results for FKE (left) and HDW (right). All models based
on Multi-bit backbone. The figures illustrate the relationship between the watermarked text ratio and FPR
for varying key capacities ( K ranges from 20 to 2000).

A.23 Key Capacity Experiments for Dictionary-Based Method
Similar to the experiments in Section 5.2, we conduct key capacity experiments for dictionary-based methods
using the Multi-bit approach as our backbone model. The results, presented in Table 7, reveal the following:
(1) For traditional dictionary-based methods, the FPR increases as the key capacity grows. This trend aligns
with observations from distribution-based methods, further validating the theoretical analysis provided in
Appendix A.8. (2) Our proposed HDW method effectively addresses this issue, maintaining a consistent
FPR scale even as the key capacity increases, thereby demonstrating the robustness and effectiveness of our
approach.

Accu-I↑ Accu-O↑ FPR↓
20 0.958 0.937 0.0647
50 0.948 0.916 0.096
100 0.939 0.907 0.121
200 0.936 0.898 0.0928
500 0.932 0.889 0.13
1000 0.926 0.884 0.147
2000 0.915 0.874 0.141

Accu-I↑ Accu-O↑ FPR↓
20 0.946 0.923 0.0426
50 0.953 0.925 0.0277
100 0.942 0.905 0.0293
200 0.948 0.918 0.0189
500 0.947 0.909 0.036
1000 0.956 0.897 0.0391
2000 0.954 0.903 0.0367

Table 7: Key capacity results for FKE (left) and HDW (right) methods at varying key capacities (20 to 2000).
All models use Multi-bit method as backbone.
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