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1

History and Development of
Human–Computer Interaction

1.1 The Evolution of Human–Computer Interaction

1.1.1 Definition of Human–Computer Interaction

Human-Computer Interaction (HCI) refers to the process of information exchange be-
tween people and computers using a certain dialogue language and a certain interactive
method to complete a certain task. It includes the design and optimization of hardware
equipment, the development and improvement of software interfaces, and the psycholog-
ical and behavioral characteristics of users to achieve an efficient, natural and friendly
interactive experience. Research in this field is an interdisciplinary field that explores the
information exchange process between people and computers. It not only focuses on the
design and implementation of computer systems, but also pays more attention to how
users communicate and operate computers effectively. With the rapid development of
information technology, human-computer interaction has become an indispensable and
important part of computer science. Its research content covers multiple disciplines such
as computer science, psychology, cognitive science, and design, and plays a vital role in
improving the usability, efficiency and user satisfaction of computer systems.

1.1.2 Importance of Human-Computer Interaction

• Improve work efficiency: Good human-computer interaction design can help users
complete tasks more quickly and accurately, reduce operational errors, and thus
improve overall work efficiency. For example, human-computer interaction tech-
nology can automate a variety of repetitive tasks, effectively reduce the number of
operating steps, and improve processing efficiency. Gmail’s smart mailbox func-
tion can not only automatically classify emails, but also provide intelligent reply
suggestions. Users can complete the reply with just one click. E-commerce plat-
forms such as Taobao and JD.com widely use intelligent customer service robots
to automatically handle common problems and only transfer complex matters to

3



4 1. HISTORY AND DEVELOPMENT OF HUMAN–COMPUTER INTERACTION

manual customer service, significantly improving response speed. Design software
has also introduced intelligent interaction mechanisms that can identify users’ op-
erating modes and actively recommend more efficient tools or shortcuts to speed
up the pace of task completion.

Figure 1.1: Gmail smart reply suggestion diagram

• Improve user experience: By optimizing the interactive interface and method, the
computer system can be made more in line with the user’s usage habits and psycho-
logical expectations, thereby enhancing user satisfaction and loyalty to the product.
For example, human-computer interaction technology supports personalized cus-
tomization of interfaces and functions, making system operations more in line with
individual needs. Taking the Windows operating system as an example, users can
set up multiple virtual desktops according to task types, and customize the order
and interface layout of programs in the taskbar to create a more comfortable and
efficient working environment, thereby improving user experience. The Windows
operating system allows users to set up multiple virtual desktops according to dif-
ferent tasks, and customize the order and interface layout of fixed programs in the
taskbar, thereby creating an efficient personal working environment.

Figure 1.2: Windows Virtual Desktop Diagram

• Promote technology popularization: Simple and easy-to-use interactive methods
can lower the threshold for using computer technology, allowing more people to eas-
ily access and use computers and related equipment, and promote the widespread
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application and popularization of information technology. For example, the "el-
derly mode" widely used in smart device systems significantly reduces the difficulty
of operation for middle-aged and elderly users by enlarging fonts, simplifying inter-
face structures, and enhancing voice interaction and navigation prompts, thereby
effectively promoting the popularization of information technology among the el-
derly.

Figure 1.3: Xiaomi Elder Mode Icon

• Promoting social development: The progress of human-computer interaction tech-
nology has not only changed people’s lives and working methods, but also brought
innovation and changes to various fields of society, such as education, medical care,
entertainment, transportation, etc., and promoted the information and intelligent
development of society. For example, the voice control system in smart cars helps
drivers concentrate on driving and complete multiple operations at the same time,
improving traffic safety and travel experience.

1.2 The Evolution of Human-Computer Interaction

The development of human-computer interaction reflects the leap from mechanical in-
structions to natural interaction. Its evolution process can be roughly divided into the
following stages:

Figure 1.4: BYD’s AI intelligent voice system
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Figure 1.5: Schematic diagram of the development of human-computer interaction re-
lated events

Figure 1.6: The world’s first general-purpose computer “ENIAC”

1.2.1 Early manual work stage

In the early stages of computer development, the way of human-computer interaction was
extremely primitive and clumsy. Computers at that time were large in size and limited
in performance. Operators needed to manually write binary codes and input them into
the computer before the computer could perform the corresponding operations. This
interactive method has extremely high technical requirements for operators. They need
to have deep computer expertise and programming skills to communicate effectively
with the computer. Due to the cumbersome and complicated operation process and the
slow processing speed of the computer, the efficiency of human-computer interaction is
low, which greatly limits the popularity and application scope of computers. Human-
computer interaction at this stage is mainly about people adapting to computers. Users
must operate according to the requirements and rules of the computer. The computer
can hardly provide users with any convenient and friendly interactive experience.
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Figure 1.7: GNOME Terminal3 (Fedora 15)Example inBashScreen capture of the session

1.2.2 Job Control Language and Interactive Command Language Stage

In the mid-1960s, with the gradual development of computer technology, job control
languages and interactive command languages emerged. Computer users at this stage
were mainly professional programmers who could interact with computers by writing
batch job languages or interactive command languages. Although it was still neces-
sary to memorize a large number of commands and master keyboard operations, the
interactive method had been significantly improved compared to the early manual oper-
ation stage. Programmers could debug programs and understand the execution of com-
puters more conveniently, thereby improving work efficiency. This interactive method
gradually expanded the scope of computer use, extending from professional scientific
research institutions and large enterprises to more fields and user groups. However, this
command-line-based interactive method still has certain limitations. It requires users
to have certain computer expertise and programming basics, and there is still a high
threshold for ordinary users.

1.2.3 Graphical User Interface (GUI) Stage

In the 1980s, the emergence of the Graphical User Interface (GUI) marked a major
breakthrough in human-computer interaction technology. The main features of GUI are
desktop metaphor, WIMP technology (windows, icons, menus, pointers), direct manip-
ulation and "What You See Is What You Get (WYSIWYG)". This interactive method,
with its simple and easy-to-learn, intuitive and convenient characteristics, greatly reduces
the difficulty of using computers, allowing ordinary users who do not understand com-
puter expertise to easily operate computers. The emergence of GUI not only changed
the way users interact with computers, but also promoted the rapid development of
computer software and applications, and promoted the popularization and widespread
application of computers. For example, the Macintosh computer launched by Apple in
1984 was the first personal computer to widely adopt a graphical user interface. It was
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Figure 1.8: The original Macintosh 128k

widely welcomed by users for its friendly user interface and convenient operation, and
became an important milestone in the history of human-computer interaction. Subse-
quently, Microsoft’s Windows operating system also gradually became popular, further
consolidating the dominant position of GUI in the field of human-computer interaction.

1.2.4 Web User Interface Stage

In the 1990s, with the rise and development of the Internet, the web user interface came
into being. Web browsers based on Hypertext Markup Language (HTML) and Hyper-
text Transfer Protocol (HTTP) became the representative of web user interfaces. The
emergence of web user interfaces enabled users to access information resources worldwide
through browsers, greatly enriching the content and form of human-computer interac-
tion. Human-computer interaction technology developed rapidly during this period, and
new technologies and applications continued to emerge, such as search engines, net-
work acceleration, multimedia animation, and chat tools. Web user interfaces not only
provided users with a more convenient way to obtain and communicate information,
but also promoted the rapid development of emerging fields such as e-commerce, online
education, and telecommuting. For example, the emergence of Google search engines
greatly improved the efficiency of users in obtaining information and became one of
the indispensable tools in people’s daily lives; and instant messaging tools such as QQ
and WeChat changed people’s communication methods, allowing people to communi-
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cate and exchange conveniently anytime and anywhere. The development of web user
interfaces has made human-computer interaction no longer limited to local computers,
but has expanded to the global cyberspace, bringing a broader development space for
human-computer interaction.

1.2.5 Multi-channel and multimedia intelligent human-computer in-
teraction stage

Entering the 21st century, with the continuous development and integration of com-
puter technology, communication technology, sensor technology, etc., human-computer
interaction technology has entered a new stage of development - the multi-channel, multi-
media intelligent human-computer interaction stage. The main feature of this stage is to
use multiple sensory channels and action channels (such as voice, handwriting, posture,
sight, expression, etc.) of people for input, and interact with the computer environment
in a parallel and imprecise way. This interaction method is more natural, efficient and
intelligent, and can better meet the diverse needs of users in different scenarios. For
example, the emergence of virtual reality (VR) and augmented reality (AR) technology
has brought a new immersive experience to human-computer interaction. Users can en-
ter the virtual three-dimensional space by wearing devices such as VR helmets or AR
glasses, and interact naturally with virtual objects, as if they were in a real virtual world.
This immersive interaction method not only enhances the user’s sense of participation
and interactivity, but also brings new application models and development opportunities
to games, education, training, design and other fields. At the same time, the contin-
uous advancement of speech recognition technology has also made voice interaction an
important interaction method. Users can communicate with computers through voice
commands without manually entering text, which greatly improves the efficiency and
convenience of interaction. For example, the emergence of intelligent voice assistants
such as Apple’s Siri, Microsoft’s Cortana, and Amazon’s Alexa allows users to query in-
formation, set reminders, control devices, and other operations through voice, which has
brought great convenience to users’ lives and work. In addition, interactive technologies
such as gesture recognition, expression recognition, and eye control are also constantly
developing and improving, providing richer and more diverse means of interaction for
human-computer interaction. The development of these technologies has promoted the
transformation of human-computer interaction from traditional two-dimensional plane
interaction to three-dimensional space interaction, and from single-modal interaction to
multi-modal fusion interaction, making human-computer interaction gradually develop
in a more natural, intelligent, and humanized direction.

1.3 Key technologies and equipment for human-computer
interaction

The development of human-computer interaction is inseparable from the support of
various key technologies and equipment. They have played an important role in different
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Figure 1.9: Using Zoom with Apple Vision Pro

stages of development and continuously promoted the advancement of human-computer
interaction technology.

1.3.1 Development of input devices

Input devices are an important part of human-computer interaction, and their develop-
ment history is closely related to the progress of human-computer interaction technol-
ogy. Early input devices were mainly keyboards and mice, which provided users with
basic input functions, but the operation was relatively cumbersome and not intuitive
enough. With the development of technology, the emergence of touch screen technology
has changed the traditional input method. Users can directly interact with the content
on the screen by clicking, sliding, zooming, etc. on the touch screen with their fingers,
which greatly improves the naturalness and convenience of interaction. For example, the
popularity of smartphones and tablets has made touch screens one of the most commonly
used input devices in people’s daily lives. In addition to touch screens, the progress of
voice recognition technology has also brought new changes to input devices. Voice input
devices can convert users’ voice signals into text or instructions that can be recognized
by computers. Users do not need to enter text manually, but can complete various op-
erations by voice, such as voice search, voice input text, voice control devices, etc. This
input method not only improves input efficiency, but also provides a more convenient
interaction method for users who are not convenient to use keyboards or touch screens.
In addition, new input devices such as gesture recognition devices, eye tracking devices,
and brain-computer interface devices are also emerging and developing. Gesture recog-
nition devices can capture user gestures through cameras or sensors and convert them
into corresponding operation instructions. Users can interact with computers through
simple gestures, such as waving, pointing, rotating, etc. Eye tracking devices can moni-
tor the user’s line of sight and gaze point in real time. Users can control the cursor or
select content on the screen through their eyes. This input method is of great signifi-
cance for some special user groups, such as people with disabilities or users who need to
operate with both hands. Brain-computer interface devices are more cutting-edge input
devices that can directly read the brain’s neural signals and convert them into instruc-
tions that the computer can understand, thereby realizing direct interaction between
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Figure 1.10: Typical BCI system components and their communication methods

users and computers. Although brain-computer interface technology is still in the de-
velopment stage, its future development prospects are broad and it is expected to bring
more revolutionary changes to human-computer interaction. communication methods.

1.3.2 Evolution of output devices

Output devices play a vital role in human-computer interaction, and their development
history also witnesses the continuous progress of human-computer interaction technology.
From the early simple display devices to today’s diversified output methods, the evolution
of output devices has not only improved the effect of information presentation, but also
greatly enriched the user’s interactive experience.

Development of display devices

Display devices are the core components of output devices, and their development history
is closely related to the progress of human-computer interaction technology.

Early display devices: In the early stages of computer development, display devices
were mainly simple cathode ray tube (CRT) displays. These displays had low resolution
and rough display effects, and could only present information to users in the form of text
or simple graphics. For example, the early DOS system interface only displayed content
in the form of characters, and users needed to enter instructions through the command
line to operate the computer, and the display effect was extremely limited.

Promotion of graphical user interface: With the emergence of graphical user inter-
face (GUI), display devices have ushered in major changes. The Macintosh computer
launched by Apple in 1984 was the first to widely adopt the graphical user interface. Its
supporting display can present information in the form of graphics, icons, windows, etc.,
which greatly improves the readability and ease of use of information. Subsequently,
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Figure 1.11: CRT display

Figure 1.12: LCD screen in the first generation iPhone

liquid crystal displays (LCDs) gradually replaced CRT monitors and became the main-
stream display device. LCD monitors have the advantages of small size, low power
consumption, and clear display effects. They can support higher resolution and richer
color expression, providing users with a more intuitive and beautiful visual experience.

Popularization of touch screens: Entering the 21st century, with the rise of mobile
devices, touch screen technology has been widely used. The touch screen is not only
an input device, but also an output device. It integrates display functions with input
functions. Users can operate by directly touching the content on the screen, realizing
a more natural and convenient way of interaction. For example, the touch screens of
smartphones and tablets can display images, videos and text content with high resolution
and high contrast, and support multi-touch gestures. Users can interact with the content
on the screen through operations such as clicking, sliding, and zooming, which greatly
enhances the user’s interactive experience.

Virtual reality and augmented reality display devices: In recent years, the rise of
virtual reality (VR) and augmented reality (AR) technologies has brought a new visual
experience to human-computer interaction. Devices such as VR helmets and AR glasses
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create immersive three-dimensional virtual environments or augmented reality scenes for
users through high-resolution displays and advanced optical technology. Users can move
and interact freely in the virtual environment, as if they were in a real virtual world.
For example, VR helmets can provide a 360-degree panoramic view, allowing users to
experience virtual scenes immersively; AR glasses can overlay virtual information such
as navigation instructions and virtual objects in the real world, providing users with
a richer and more intuitive way of presenting information. The development of these
display devices has not only promoted the advancement of human-computer interaction
technology, but also brought new application models and development opportunities to
games, education, training, design and other fields.

Development of audio output devices

Audio output devices also play an important role in human-computer interaction, and
their development history has also witnessed the continuous advancement of human-
computer interaction technology.

Early audio output devices: In the early stages of computer development, audio
output devices were mainly simple speakers and headphones. These devices were mainly
used to play system prompts or simple audio files. They had relatively simple functions
and relatively rough sound quality. For example, in the early DOS system, the computer
could only emit a simple beep to prompt the user that an operation was completed or
an error occurred.

Development of multimedia audio: With the rise of multimedia technology, audio
output devices have been significantly improved. Computers began to support high-
fidelity audio playback, and the sound quality of speakers and headphones has also
been greatly improved. Users can listen to music, watch movies, make voice calls, etc.
through audio output devices. Audio output devices have become an indispensable part
of human-computer interaction. For example, high-quality headphones can provide an
immersive audio experience, allowing users to better enjoy multimedia content; and
high-fidelity speakers can be used in home theater systems to bring users shocking audio
effects.

The promotion of voice interaction: In recent years, the rapid development of speech
recognition and speech synthesis technology has made voice interaction an important
way of interaction. The emergence of intelligent voice assistants such as Apple’s Siri,
Microsoft’s Cortana, Amazon’s Alexa, etc., allows users to have natural conversations
and interactions with devices through voice. Audio output devices play a key role in
voice interaction. They can not only clearly play the responses of voice assistants,
but also help users better understand and operate devices through voice prompts. For
example, users can query information, set reminders, control devices, etc. through voice
commands, and voice output devices can feedback the results to users in the form of
natural language, greatly improving the efficiency and convenience of interaction.

The rise of spatial audio technology: With the development of virtual reality and
augmented reality technologies, spatial audio technology has emerged. Spatial audio
technology can simulate the sound propagation effect in the real world, allowing users to
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Figure 1.13: Schematic diagram of speaker sound effects under Sony’s 360 Reality Audio
technology

feel the direction, distance and spatial sense of sound in a virtual environment, further
enhancing the user’s sense of immersion and interactive experience. For example, in VR
games, users can hear the sounds of virtual objects coming from different directions, so
that they can feel the game environment more realistically; in AR applications, spatial
audio technology can provide users with more intuitive navigation prompts and voice
interaction experience. The development of spatial audio technology not only brings
a richer auditory experience to human-computer interaction, but also provides a more
realistic immersive environment for virtual reality and augmented reality applications.

Innovation of other output devices

In addition to display devices and audio output devices, other types of output devices
also play an important role in human-computer interaction and are constantly being
innovated.

Haptic feedback devices: Haptic feedback devices provide users with a richer and
more intuitive interactive experience by simulating real tactile sensations. For example,
the vibration feedback function in a game controller allows users to feel the collision and
movement of virtual objects during the game, enhancing the immersion of the game;
the tactile feedback function in smart watches and mobile phones can remind users to
receive notifications or complete operations through vibrations or slight tactile prompts.
In recent years, tactile feedback technology has continued to develop, and more advanced
tactile feedback devices such as tactile feedback gloves and tactile feedback clothing have
emerged. These devices can simulate the touch, pressure, and texture of the real world
through precise tactile feedback, allowing users to experience real tactile experiences in
virtual environments. For example, tactile feedback gloves allow users to feel the shape
and texture of virtual objects when touching and grabbing them in virtual reality, as if
they were really touching the real thing.

Smell output device: Smell output device is an emerging output device that enhances
the user’s interactive experience by releasing different smells. Although the smell output
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Figure 1.14: Tactile feedback gloves TESLAGLOVE

Figure 1.15: Customized ink cartridge for Sony’s olfactory measurement system

device is still in the development stage, it has broad application prospects. For exam-
ple, in virtual reality and augmented reality applications, smell output devices can be
combined with visual and audio output devices to provide users with a more realistic
immersive experience. Users can not only see and hear the virtual scene in the vir-
tual environment, but also smell the smell associated with the scene.For example, Sony
launched the Scent Output Module, a programmable scent output device that releases
preset scent molecules through a micro-cartridge. The device can control the type, inten-
sity and release timing of the scent according to the scene, and achieve synchronization
with vision and hearing. In application scenarios such as immersive multimedia displays,
virtual reality experiences, and retail displays, the Scent Output Module significantly
enhances the user’s sensory immersion and situational awareness.Such as the fragrance
of flowers in the forest, the smell of sea breeze at the seaside, etc., further enhancing
the user’s sense of immersion and participation. In addition, odor output devices can
also be used in medical rehabilitation, psychotherapy and other fields, helping patients
relieve stress and improve mood by releasing specific odors.

Brain-computer interface output device: Brain-computer interface (BCI) technology
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Figure 1.16: Brain-computer interface device from Bitbrain

is a technology that directly reads brain neural signals and interacts with computers. Al-
though brain-computer interface technology is currently mainly focused on input devices,
its application in the field of output devices is gradually gaining attention. For example,
through brain-computer interface technology, computers can directly control external
devices or generate corresponding outputs based on the user’s brain signals, such as con-
trolling the movement of virtual objects, generating voice or text information, etc. This
output method can not only provide a more convenient means of interaction for people
with disabilities, but may also bring a more natural and efficient interactive experience
to future virtual reality and augmented reality applications. Although brain-computer
interface output devices still face many technical challenges, their future development
prospects are broad and are expected to bring more revolutionary changes to human-
computer interaction.

1.4 Overview of Modern Interaction Technologies

In today’s digital age, human-computer interaction technology is developing at an as-
tonishing speed, showing diversified and intelligent characteristics. These technologies
have not only greatly changed the way we interact with computer devices, but also pro-
foundly affected our daily life, work and entertainment. The following will elaborate on
modern interaction technology from four aspects: voice interaction, visual interaction,
brain-computer interface and tactile feedback.

1.4.1 Voice interaction: opening a new era of natural conversation

Technical principles and core architecture

The core of voice interaction technology lies in speech recognition and natural language
processing. Speech recognition is the process of converting the user’s voice signal into
text, while natural language processing is responsible for understanding the semantics
of these texts and generating corresponding responses. In recent years, the rapid devel-
opment of deep learning technology, especially the emergence of the Transformer model,
has brought a qualitative leap in voice interaction technology. Based on the attention
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Figure 1.17: Schematic diagram of voice-controlled smart furniture

mechanism, the Transformer model can efficiently process sequence data, thereby achiev-
ing high-precision command understanding. It is trained through a large amount of voice
data, learns the characteristics of speech and the laws of language, and greatly improves
the accuracy of speech recognition. It can accurately understand user commands even
in complex contexts and accents.

Application scenarios and advantages

The application scenarios of voice interaction technology are extremely wide, covering
smart home, smart office, smart driving and other fields. In the smart home environment,
users can control various devices in the home, such as lights, curtains, air conditioners,
etc., through voice commands to achieve intelligent home control. For example, the user
only needs to say "turn on the lights in the living room", and the smart speaker can
accurately recognize and execute the command, greatly improving the convenience of
life. In the field of smart office, voice interaction technology can help users quickly query
information, arrange meetings, send emails, etc., to improve work efficiency. In smart
driving, voice interaction technology allows drivers to perform navigation queries, make
phone calls and other operations without leaving the steering wheel, improving driving
safety.

The advantage of voice interaction lies in its naturalness and convenience. Users do
not need to learn complex operating procedures, they can complete various operations
by simply expressing their needs in natural language. This interactive method not only
saves time, but also lowers the user’s usage threshold, allowing more people to easily use
smart devices.
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Future development trends and challenges

In the future, voice interaction technology will continue to develop in a more intelligent,
personalized and emotional direction. With the continuous advancement of artificial
intelligence technology, voice assistants will be able to better understand users’ emotions
and intentions and provide more intimate and personalized services. For example, voice
assistants can adjust the tone and content of their responses based on the user’s emotional
state, providing users with a warmer and more humane interactive experience.

However, voice interaction technology also faces some challenges. First, the accuracy
of voice recognition still needs to be improved in some complex environments, such as in
noisy environments or when facing multiple accents. Secondly, the privacy and security
issues of voice interaction have also attracted people’s attention. The user’s voice data
contains a lot of personal information, and how to ensure the security and privacy of
this data is an urgent problem to be solved. In addition, the popularization of voice
interaction technology still needs to overcome some technical difficulties, such as multi-
language support, dialect recognition, etc., to meet the needs of different regions and
user groups.

1.4.2 Visual Interaction: Building an Immersive Visual Experience

Technical principles and core architecture

Visual interaction technology mainly relies on computer vision and image processing
technology. The user’s visual information is obtained through RGB-D sensors (color
cameras and depth sensors), and then the Convolutional Neural Network (CNN) is used
to process and analyze this information to achieve recognition of facial expressions, body
movements, etc. CNN is a deep learning model that can automatically learn features in
images and is trained with a large amount of image data to enable it to have powerful
image recognition capabilities. For example, in facial expression recognition, CNN can
identify the user’s emotional state such as happiness, anger, sadness, and joy; in body
movement recognition, it can capture the user’s gestures, body postures and other action
information.

Application scenarios and advantages

Visual interaction technology has been widely used in games, virtual reality, education
and other fields. In the field of games, visual interaction technology allows players to
interact with characters in the game through body movements, which enhances the im-
mersion and fun of the game. For example, in some somatosensory games, players can
control the actions of game characters by waving their arms, jumping and other ac-
tions, as if they were in the game world. For example, Kinect developed by Microsoft
uses depth cameras and computer vision technology to capture and recognize players’
full-body movements in real time. Players can interact naturally with the virtual game
environment without holding a controller, which reflects the typical application of visual
interaction in somatosensory games. In virtual reality applications, visual interaction
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Figure 1.18: Schematic diagram of somatosensory game interaction based on visual
recognition - screenshot of Kinect game scene

technology can capture users’ movements and expressions in real time, allowing users
to interact naturally with virtual objects in a virtual environment, such as grabbing
virtual objects with their hands and controlling virtual interfaces with their eyes. In
the field of education, visual interaction technology can create more vivid and intuitive
teaching scenes and improve students’ learning interest and effectiveness. For exam-
ple, through body movement recognition technology, students can interact with virtual
teaching models and understand complex knowledge concepts more intuitively.

The advantage of visual interaction lies in its intuitiveness and immersion. Users can
interact with devices through natural visual movements without complicated operation
procedures. This interaction method is more in line with human natural behavior habits.
At the same time, visual interaction technology can provide users with a richer visual
experience, enhance users’ sense of participation and immersion, and make users feel
more pleasant and real during use.

Future development trends and challenges

In the future, visual interaction technology will develop in the direction of being more
intelligent, natural, and multimodal. With the continuous advancement of computer
vision technology, visual interaction systems will be able to more accurately identify and
understand users’ visual information, and achieve more complex and natural interaction
scenarios. For example, future visual interaction systems will be able to identify sub-
tle visual information such as users’ eyes and micro-expressions, providing users with a
more accurate and personalized interaction experience. At the same time, visual inter-
action technology will be deeply integrated with other interaction technologies (such as
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voice interaction, tactile feedback, etc.) to build a richer and more natural multimodal
interaction environment.

However, visual interaction technology also faces some challenges. First, the accuracy
and robustness of visual interaction systems still need to be improved in some complex
environments, such as under poor lighting conditions or complex user movements. Sec-
ond, the privacy and security issues of visual interaction technology have also attracted
people’s attention. The user’s visual information contains a lot of personal privacy, and
how to ensure the security and privacy of this information is an important research di-
rection. In addition, the popularization of visual interaction technology also requires
solving some technical problems, such as equipment costs, computing resources, etc., in
order to lower its application threshold and enable it to be more widely used in various
scenarios.

1.4.3 Brain-computer interface: exploring direct dialogue between the
human brain and the machine

Technical principles and core architecture

Brain-Computer Interface (BCI) technology is a technology that directly reads brain
neural signals and interacts with computers. Its core principle is to collect neural elec-
trical activity signals from the cerebral cortex through electroencephalogram (EEG)
sensors, and then use signal processing and decoding algorithms to convert these signals
into instructions that the computer can understand. EEG signals are a non-invasive way
to collect brain signals. By placing multiple electrodes on the scalp, the brain’s neural
electrical activity can be monitored in real time. After these signals are pre-processed
by amplification and filtering, they are then feature extracted and classified by machine
learning algorithms to decode the user’s intentions. For example, users can imagine ac-
tions such as "moving forward" or "turning left" to make the computer or external device
operate according to the corresponding instructions.

Application scenarios and advantages

Brain-computer interface technology has important application value in the field of med-
ical rehabilitation. For disabled people and users with limited mobility, brain-computer
interface technology provides them with a new way of interaction, allowing them to di-
rectly control prosthetic limbs, wheelchairs and other equipment through brain signals,
and realize autonomous life and activities. For example, some brain-computer interface
systems can help paralyzed patients control mechanical arms to perform operations such
as grasping and moving through brain signals, greatly improving their quality of life
and self-care ability. In addition, brain-computer interface technology also has broad
application prospects in the fields of neuroscience research and psychotherapy. By mon-
itoring the brain’s neural activity in real time, researchers can better understand the
brain’s working mechanism and cognitive process, providing important support for the
development of neuroscience.
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Figure 1.19: A paralyzed person uses a brain-computer interface to control a robotic
arm

The advantages of brain-computer interface lie in its directness and efficiency. It can
directly read the brain’s neural signals without going through traditional intermediate
links such as muscle movement or speech, thus realizing direct dialogue between the
human brain and the machine. This interactive method not only improves the efficiency
of interaction, but also provides new possibilities for users who cannot interact with the
outside world through traditional methods, and has important social significance and
application value.

Future development trends and challenges

In the future, brain-computer interface technology will develop in a more accurate, stable
and convenient direction. With the continuous advancement of neuroscience and signal
processing technology, brain-computer interface systems will be able to decode brain
signals more accurately and achieve more complex and natural interaction scenarios.
For example, future brain-computer interface technology will be able to achieve real-time
decoding and feedback of brain signals, allowing users to interact with computers more
naturally, just like using their own limbs. At the same time, brain-computer interface
technology will be deeply integrated with other technologies (such as virtual reality,
augmented reality, etc.) to provide users with a richer and more immersive interactive
experience.

However, brain-computer interface technology also faces some challenges. First, the
accuracy and stability of the brain-computer interface system still need to be improved,
especially in complex environments and under long-term use. Secondly, the privacy
and security issues of brain-computer interface technology have also attracted people’s
attention. Brain signals contain a lot of personal privacy and sensitive information.
How to ensure the security and privacy of this information is an urgent problem to be
solved. In addition, the popularization of brain-computer interface technology also needs
to overcome some technical difficulties, such as equipment cost, wearing comfort, etc.,
in order to improve its application feasibility and user experience.
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1.4.4 Haptic feedback: giving machines delicate tactile expression ca-
pabilities

Technical principles and core architecture

Touch Tactile feedback technology is a technology that enhances the user’s interactive
experience by simulating real tactile sensations. Its core principle is to use piezoelectric
materials and force control algorithms to convert electrical signals into mechanical vibra-
tions or force feedback, thereby simulating different tactile effects. Piezoelectric materials
are materials that can convert electrical energy into mechanical energy. When an elec-
trical signal is applied, the piezoelectric material will produce corresponding mechanical
deformation, thereby generating vibration or force feedback. The force control algorithm
can accurately control the deformation degree and vibration mode of the piezoelectric
material according to different application scenarios and user needs, thereby achieving
a variety of tactile effects. For example, in virtual reality (VR) and augmented reality
(AR) applications, the force control algorithm can adjust the intensity, frequency and
duration of tactile feedback in real time according to the characteristics of objects in the
virtual scene and the user’s interactive actions, allowing users to feel the texture and
shape of virtual objects. In the field of robotics, force control algorithms can be used to
control the robot’s tactile perception and action response, allowing the robot to interact
with humans more naturally and flexibly.

Application scenarios and advantages

Haptic feedback technology plays an important role in many fields. In the field of
consumer electronics, such as smartphones, tablets and gaming devices, vibration and
force feedback are used to enhance the user’s sense of reality and immersion. In the
automotive field, haptic feedback technology is used to improve driving safety and user
experience, such as alerting drivers to potential dangers through tactile signals. In the
medical field, haptic feedback technology is used in surgical simulation and rehabilitation
training to help doctors gain a real operating experience and improve surgical accuracy.
In the field of education, haptic feedback technology helps students better understand
complex concepts and improve learning outcomes by simulating the touch of real objects.

Haptic feedback technology significantly enhances the user experience, making in-
teractions more realistic and immersive. It improves operational precision, especially in
scenarios that require delicate manipulation, such as medical surgery and industrial as-
sembly. In addition, haptic feedback technology enriches the interaction methods, adds
the dimension of touch, and makes the interaction more diverse and natural. In areas
such as automobiles, haptic feedback technology improves safety through timely tactile
signal reminders.

Future development trends and challenges

Haptic feedback technology is developing towards higher precision and realism, and will
provide a more delicate tactile experience in the future, such as more realistic tem-
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Figure 1.20: VR simulation provides tactile feedback to surgeons

perature and texture feedback. Multi-sensory integrated interactive design is another
important trend. Tactile feedback will be integrated with other sensory technologies
such as vision and hearing to form a more immersive multimodal interactive experience.
In addition, tactile feedback technology will be combined with artificial intelligence to
achieve intelligent and adaptive control, and adjust the parameters of tactile feedback
in real time according to user behavior and feedback to provide a more personalized
experience. Wearable and portable are also the future development direction. Tactile
feedback devices will be lighter and more comfortable, making them easier for users to
use in daily life.

Although tactile feedback technology has broad application prospects, it also faces
some challenges. Individual differences and adaptability issues in tactile perception are
one of them. Different users perceive and respond to tactile stimuli differently, which
requires tactile feedback devices to adapt to the preferences of different users. The
portability and cost issues of tactile feedback devices also need to be addressed. High-
precision tactile feedback devices are usually expensive, which limits their popularity.
In addition, tactile feedback technology still has limitations in simulating real tactile
sensations, and the accuracy and realism need to be further improved. Interdisciplinary
research and cooperation are also important aspects of promoting the development of
tactile feedback technology, involving multiple fields such as materials science, control
engineering, and computer science. Finally, with the widespread application of tactile
feedback technology, user privacy and security protection have become important issues,
and relevant technologies and management measures need to be strengthened.

1.5 Concept and goal of human-machine integration
In today’s era of rapid technological development, human-machine integration has be-
come an important area of concern. Human-machine integration emphasizes the deep
integration of robots and humans at multiple levels. This integration is not just a simple
interaction, but a full-scale, in-depth collaboration and cooperation, aiming to build a
more harmonious and efficient human-machine relationship and promote the progress
and development of human society.
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1.5.1 Definition of human-machine integration

Human-machine integration covers the integration of three key levels: physical, cognitive,
and emotional. From a physical perspective, robots share the same physical space with
humans. They need to be able to accurately perceive the surrounding environment and
the physical state and movements of humans, and be able to physically contact and
interact with humans in a safe and coordinated manner. For example, on an industrial
production line, collaborative robots need to work with human workers to complete
assembly tasks, which requires robots to accurately perceive the position and movements
of human workers to avoid collisions, and to cooperate according to the operating rhythm
of human workers to achieve efficient collaborative work.

At the cognitive level, human-machine collaboration requires robots to understand
human intentions, knowledge, and thinking processes. Robots need to have certain
cognitive abilities to accurately interpret and understand human instructions, and to
reason and make decisions based on actual conditions. At the same time, robots also
need to be able to convey their working status, intentions, and knowledge to humans,
so that humans can understand the robot’s behavior and decision-making basis, thereby
achieving cognitive synchronization and collaboration between the two parties. For
example, in the medical field, surgical robots need to be able to understand the doctor’s
surgical intentions and operating steps, and be able to make corresponding decisions and
adjustments based on the real-time situation during the operation. At the same time,
they need to promptly feedback the progress of the operation and possible problems
to the doctor, assisting the doctor in completing high-precision and difficult surgical
operations.

Emotional integration is an important part of human-machine integration. Robots
need to have the ability to perceive and express emotions, be able to perceive human
emotional states, and be able to respond to human emotional needs in an appropriate
manner. This emotional resonance can enhance the trust and affinity between humans
and machines, making humans more willing to cooperate and communicate with robots.
For example, in the field of education, educational robots can adjust teaching methods
and rhythms by sensing students’ emotional states, such as tension, anxiety, excitement,
etc., and give students appropriate emotional support and encouragement to improve
students’ learning effects and enthusiasm.

1.5.2 Core Goals of Human-Machine Integration

Dynamic adaptability

Dynamic adaptability is one of the important goals of human-machine integration.
Through multimodal perception technology, robots can obtain various information about
humans in real time, including vision, voice, physiological signals, etc., so as to accurately
understand human intentions and needs. Visual perception enables robots to observe
human movements, expressions and surroundings, voice perception enables robots to
understand human language instructions and communication content, and physiological
signal perception can reveal human physical state and emotional changes, such as heart
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Figure 1.21: Four common safe interaction modes used by collaborative robots (cobots)
when working with humans

rate, brain waves, etc. The fusion of these multimodal information enables robots to
fully and accurately grasp the state of humans, so as to better adapt to human behavior
and needs.

For example, in a smart home environment, robots can perceive the activities of
family members through vision, such as whether they are at home, in which room, and
what activities they are doing; perceive the needs of family members through voice, such
as the need to play music and adjust the indoor temperature; and perceive the physical
condition of family members through physiological signals, such as whether they are tired
or nervous. Based on this information, robots can dynamically adjust their behavior and
services to provide family members with a personalized comfort experience. If a family
member shows physiological signals of fatigue while working, the robot can automatically
adjust the indoor light and temperature and play soothing music to create a relaxing
working environment for family members; if a family member shows excitement while
entertaining, the robot can recommend corresponding entertainment content and adjust
the sound and lighting effects to enhance the entertainment atmosphere.

In the industrial field, dynamic adaptability is also crucial. Robots need to adjust
quickly according to the real-time situation on the production line and the operating
needs of workers. For example, when the product model on the production line changes
or the operating speed of workers changes, the robot can obtain this information in
time through multimodal perception, and adjust its working mode and operating speed
accordingly to ensure the smooth progress of the production process. In addition, collab-
orative robots (cobots) use different safety interaction modes, such as safety monitoring
stop, manual guidance, speed and distance monitoring, and force and power limitation.
These modes can ensure the safety and efficiency of human-machine cooperation in a dy-
namically changing working environment. This dynamic adaptability not only improves
production efficiency, but also ensures the stability of product quality. At the same time,
it also reduces the workload of workers, allowing them to focus more on the operation
of key links.
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Two-way learning mechanism

The two-way learning mechanism of human-machine integration promotes collaboration
and learning between humans and machines, and achieves common growth and progress
for both parties. Human guidance of robot task execution is an important aspect of
the two-way learning mechanism. With rich experience and professional knowledge,
humans can provide robots with clear task instructions and operating specifications
to help robots quickly learn and master new tasks. In this process, humans pass on
their skills and knowledge to robots through direct interaction with robots, such as
demonstration operations and verbal guidance. Robots learn and imitate by sensing
human actions and instructions, and continuously optimize their own behavior patterns.

For example, in the agricultural field, farmers can guide agricultural robots to per-
form operations such as sowing, fertilizing, and weeding. Farmers demonstrate the
correct operation methods and techniques to the robots, such as the depth and spacing
of sowing, the amount and location of fertilization, etc. The robots perceive the farm-
ers’ operation actions through vision and sensors, store and analyze this information,
and gradually learn and master these agricultural skills. As the learning progresses,
the robots can autonomously adjust the operation parameters according to different
farmland environments and crop growth conditions, thereby improving agricultural pro-
duction efficiency and quality.

At the same time, robots can also assist humans in optimizing their decision-making.
With their powerful computing and data analysis capabilities, robots can quickly process
and analyze large amounts of data and provide decision-making support for humans. For
example, in the financial field, intelligent robots can analyze massive amounts of financial
market data, including stock prices, trading volumes, macroeconomic indicators, etc.
Through machine learning algorithms and data analysis models, they can predict market
trends and risks and provide decision-making advice to financial analysts. Financial
analysts can combine the robot’s analysis results with their own professional knowledge
to make more scientific and reasonable investment decisions, reduce investment risks,
and increase investment returns.

In the medical field, robots can also provide doctors with auxiliary decision-making
support. For example, in terms of disease diagnosis, robots can analyze patients’ med-
ical records, examination reports, imaging data and other data, and combine medical
knowledge and clinical experience to provide doctors with possible disease diagnosis sug-
gestions and treatment plans. Doctors can refer to the robot’s suggestions and combine
their own clinical judgment to make more accurate diagnosis and treatment decisions,
thereby improving medical quality and efficiency.

Emotional resonance

Emotional resonance is one of the important goals of human-machine integration. Build-
ing an empathy model based on affective computing technology enables robots to per-
ceive and respond to human emotional states, enhancing emotional connection and trust
between humans and machines. Affective computing is an important branch of artifi-
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Figure 1.22: MIT Media Lab’s “emotional gloves” and their circuit boards

cial intelligence, which involves the recognition, understanding and expression of human
emotions. Through affective computing technology, robots can use various sensors and
algorithms to monitor and analyze human facial expressions, voice intonation, physio-
logical signals, etc. in real time, so as to accurately perceive human emotional states,
such as happiness, sadness, anger, fear, etc.

For example, the "Emotional Gloves" project of MIT Media Lab is a typical applica-
tion of emotional computing technology. This glove has multiple sensors built in, which
can monitor the wearer’s hand movements, pressure, temperature and other information
in real time, and identify the wearer’s emotional state through data analysis and machine
learning algorithms. When the wearer is in a negative emotional state such as tension
and anxiety, the gloves can give the wearer emotional feedback through vibration, light
and other means to help the wearer relieve emotional pressure. At the same time, the
gloves can also transmit emotional information to the robot that interacts with it, so that
the robot can perceive the wearer’s emotional state and make corresponding emotional
responses.

In the field of education, emotional resonance is also of great significance. Educa-
tional robots can sense students’ emotional states through emotional computing tech-
nology, such as whether they feel confused, frustrated, excited, etc. during the learning
process, and adjust teaching methods and content according to students’ emotional
states. When students encounter difficulties in learning and show frustrated emotions,
educational robots can give students encouragement and comfort, help students over-
come difficulties through more vivid and interesting teaching methods, and stimulate
students’ interest and enthusiasm in learning. This emotional resonance can enhance
the emotional connection between students and educational robots, making students
more willing to accept the help and guidance of educational robots and improve learning
effects.

In the service industry, emotional resonance can also improve service quality. For
example, in hotel services, service robots can perceive guests’ needs and emotional states
through emotional computing technology. When guests show tired emotions, robots can
take the initiative to provide services such as luggage handling and room guidance, and
communicate with guests in a warm and friendly language, making guests feel cared for
and comfortable. This kind of emotional resonance can enhance guests’ satisfaction and
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loyalty to hotel services and enhance the hotel’s brand image and competitiveness.
The concept and goal of human-machine integration have drawn a beautiful blueprint

for the harmonious coexistence and coordinated development of humans and machines
in the future. By achieving goals such as dynamic adaptability, two-way learning mecha-
nisms and emotional resonance, robots will be able to better integrate into human society,
become effective assistants and partners in human life and work, and jointly promote
the progress and development of human society. However, to achieve these goals, we still
need to conduct in-depth research and exploration in many aspects such as technology,
ethics, and society, and solve a series of challenges and problems, such as the improve-
ment of human-machine interaction technology, the ethical norms of robots, and the
social acceptance of human-machine integration. Only in this way can we truly realize
the beautiful vision of human-machine integration and create a new era of harmonious
coexistence between humans and machines.



2

Scientific Basis of Affective
Computing

2.1 Definition and Model of Affective Computing

Affective computing is an important concept proposed by Rosalind Picard in 1997. Its
core is to quantify and process emotional information through algorithms so that com-
puter systems can recognize, understand and express human emotions. Research in
this field aims to bridge the emotional gap between humans and machines, so that ma-
chines can interact with humans more naturally. With the continuous advancement of
science and technology, affective computing has shown great application potential in
many fields such as human-computer interaction, intelligent customer service, and men-
tal health monitoring, and has become an important research direction in the field of
artificial intelligence.

2.1.1 Definition of Affective Computing

The research content of affective computing covers many aspects of emotion, including
the recognition, understanding and expression of emotion. Emotion recognition refers
to the extraction of emotional features from human behavior and physiological data
through various technical means, such as facial expression recognition, voice emotion
recognition, physiological signal recognition, etc., to determine the individual’s current
emotional state. For example, by analyzing features such as the shape of eyebrows and
the curvature of the mouth in facial expressions, it is possible to identify whether the
individual is in an emotional state such as happiness, anger or sadness. Emotional un-
derstanding goes a step further and requires the computer system to understand the
meaning of emotions and the reasons behind them, that is, to be able to infer the events
or situations that trigger emotions based on the emotional state. For example, when
a person is identified as being in an angry state, the system can analyze that it may
be caused by frustration at work, interpersonal conflicts, etc. Emotional expression
refers to the ability of computer systems to express emotions in a natural and human-
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Figure 2.1: Classification results of emotion recognition based on facial key points
through directed graph neural network

understandable way, such as through voice intonation, facial expressions, body language,
etc., to convey emotional information to humans. For example, when communicating
with users, intelligent customer service systems can adjust their voice intonation ac-
cording to the user’s emotional state, express emotions such as sympathy, comfort or
happiness, and enhance the user’s emotional experience.

The realization of emotional computing requires the help of a variety of technical
means, including machine learning, deep learning, computer vision, speech processing,
physiological signal processing, etc. The development of these technologies provides
strong support for emotional computing, which continuously improves the performance of
emotional computing. For example, deep learning algorithms have achieved remarkable
results in emotion recognition tasks, and can automatically learn emotional features from
a large amount of data to improve the accuracy of emotion recognition. Computer vision
technology can realize real-time capture and analysis of facial expressions and capture
subtle changes in human emotional expression. Speech processing technology can extract
emotional features in speech, such as intonation, speech speed, volume, etc., to realize
speech emotion recognition. Physiological signal processing technology can monitor the
physiological signals of the human body, such as heart rate, skin conductance, etc.
These physiological signals are closely related to emotional state and provide important
physiological basis for emotional computing.

2.1.2 Development of Affective Computing

The development of affective computing can be traced back to the 1990s. With the con-
tinuous development of artificial intelligence and computer technology, affective com-
puting has gradually become a research hotspot. In the early days, the research on
affective computing focused on the recognition and expression of emotions, and realized
basic emotional interactions through simple rules and models. For example, some early
chatbots were able to judge the user’s emotional state based on the keywords entered
by the user and give corresponding emotional responses. However, these early affec-
tive computing systems were relatively simple in function, and the accuracy of emotion
recognition and the naturalness of expression needed to be improved.

With the development of machine learning and deep learning technologies, the per-
formance of emotional computing has been significantly improved. Machine learning
algorithms can learn emotional features from large amounts of data, build emotional
classification models, and improve the accuracy of emotion recognition. Deep learning
algorithms further improve the performance of emotional computing, and can automati-
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Figure 2.2: System framework of multimodal emotion recognition method (MEmoR)
based on emotion biomarkers

cally extract high-level features from data to achieve more accurate emotion recognition
and understanding. For example, convolutional neural networks (CNNs) have achieved
remarkable results in facial expression recognition tasks, and can automatically extract
features from facial images to achieve high-accuracy emotion recognition. Recurrent
neural networks (RNNs) and their variants, such as long short-term memory networks
(LSTMs), have performed well in speech emotion recognition and emotion sequence mod-
eling, and can handle long-term dependencies in sequence data and improve the effect
of emotion recognition.

In recent years, the research on affective computing has gradually developed towards
multimodal affective computing, that is, integrating data from multiple modalities, such
as facial expressions, voice, physiological signals, text, etc., to achieve more comprehen-
sive and accurate emotion recognition and understanding. Multimodal affective com-
puting can make full use of the advantages of different modal data to improve the
performance of affective computing. For example, facial expressions can provide intu-
itive emotional information, voice can convey emotional characteristics such as tone and
speech speed, physiological signals can reflect the physiological changes of emotions, and
text can express the content and semantics of emotions. By integrating these multimodal
data, affective computing systems can more accurately identify and understand human
emotional states and achieve more natural and efficient human-computer interaction.

The "Emotion Engine" framework proposed by Huawei in 2022 is an important
progress in the field of emotional computing. The framework integrates multimodal
data, including facial expressions, voice, physiological signals, etc., and achieves an emo-
tional reasoning accuracy of 89.2% through advanced algorithms and models. This
achievement shows that through the integration of multimodal data and the application
of deep learning technology, the performance of emotional computing has been signif-
icantly improved, providing strong support for the practical application of emotional
computing.

The core of Huawei’s "Emotion Engine" framework is multimodal data fusion and
deep learning algorithms. Multimodal data fusion can fully utilize the advantages of
different modal data to improve the accuracy and robustness of emotion recognition.
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For example, facial expressions can provide intuitive emotional information, voice can
convey emotional characteristics such as tone and speed, and physiological signals can
reflect the physiological changes of emotions. By fusing these multimodal data, the
emotion engine can more comprehensively and accurately identify and understand the
emotional state of human beings.

Deep learning algorithms play a key role in Huawei’s "emotion engine" framework. By
building deep neural network models, such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), the emotion engine can automatically learn emotional
features from multimodal data to classify and predict emotional states. For example, in
facial expression recognition, CNN can automatically extract features from facial images
to achieve high-accuracy emotion recognition; in speech emotion recognition, RNN can
process sequence information in speech signals to classify and predict emotional states.

Huawei’s "emotion engine" framework has shown broad application prospects in mul-
tiple fields. In the field of intelligent customer service, the emotion engine can identify
the user’s emotional state in real time, adjust the customer service strategy according
to the user’s emotional state, provide more intimate and personalized services, and im-
prove user satisfaction. In the field of mental health monitoring, the emotion engine
can monitor the user’s facial expressions, voice, physiological signals and other data to
understand the user’s mental health state in real time, discover psychological problems
in a timely manner, and provide support for mental health intervention. In the field of
human-computer interaction, the emotion engine can realize emotional interaction be-
tween humans and machines, enabling machines to better understand human emotional
needs and provide a more natural and efficient human-computer interaction experience.

2.1.3 Integration and Innovation of Affective Computing Models

With the continuous development of affective computing technology, the integration and
innovation of affective computing models have become a hot topic of research. The inte-
gration of multimodal affective computing models can make full use of the advantages of
different modal data and improve the performance of affective computing. For example,
the integration of multiple modal data such as facial expressions, voice, and physiological
signals can achieve more accurate and comprehensive emotion recognition and under-
standing. The development of deep learning algorithms provides strong support for the
integration of multimodal affective computing models. By constructing a deep neural
network model, emotional features can be automatically learned from multimodal data
to achieve the classification and prediction of emotional states.

In addition to the integration of multimodal data, the innovation of emotional com-
puting models is also constantly advancing. For example, some studies have begun to
explore the integration of emotional computing and cognitive computing, trying to build
a more intelligent and more humane emotional computing model. Cognitive comput-
ing can simulate human cognitive processes, including perception, memory, thinking,
decision-making, etc. Combining cognitive computing with emotional computing can
enable emotional computing models to not only recognize and understand emotions,
but also perform emotional reasoning and emotional decision-making, achieving more
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Figure 2.3: Interaction model of emotion and cognition

intelligent and more humane emotional interactions.
In addition, the interpretability and transparency of affective computing models have

also become important research directions. With the deepening application of affective
computing in various fields, the interpretability and transparency of affective computing
models have become increasingly important. Interpretable affective computing models
can explain the results and processes of affective computing to users, enhancing users’
trust and acceptance of affective computing. For example, in the medical field, inter-
pretable affective computing models can explain the results of affective computing to
doctors, helping doctors better understand the emotional state of patients and make
more accurate diagnosis and treatment decisions.

As an important branch of artificial intelligence, the development of affective com-
puting is of great significance to the advancement and application of artificial intelligence
technology. Through affective computing, computer systems can better understand hu-
man emotional needs, provide a more natural and efficient human-computer interaction
experience, and bring more convenience and well-being to human life and work. In
the future, with the continuous development of affective computing technology, affective
computing will demonstrate its application value in more fields and become an important
driving force for the development of artificial intelligence technology.

2.2 Psychological Basis of Emotion

2.2.1 Discrete Emotion Theory

The discrete emotion theory was proposed by the famous psychologist Paul Ekman and
has a profound impact in the field of affective computing. Ekman believes that basic
emotions are common to all humans and are universal across cultures. He classifies basic
emotions into six categories: happiness, sadness, anger, surprise, disgust, and fear.

Happiness is a positive emotional experience, usually manifested by features such as
relaxed facial muscles and upturned corners of the mouth. In social interactions, happy
emotional expressions can promote connections and cooperation between people. For
example, when people are at a party or celebration, happy expressions and laughter can
create a relaxed and pleasant atmosphere and enhance the emotional bond between each
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Figure 2.4: Illustration of Ekman’s six basic emotion models

other.
Sadness is a negative emotional experience, and its facial expression features are

usually retracted eyebrows and downturned mouth corners. The emotional expression of
sadness helps individuals gain sympathy and support from others. For example, when a
person encounters setbacks or loses a loved one, sad expressions and crying can attract
the attention and comfort of people around them, helping the individual to overcome
difficulties.

Anger is a strong emotional response, and its facial expressions are characterized by
frowning, glaring, pursed lips or clenched teeth, etc. The emotional expression of anger
can, to a certain extent, protect the interests of individuals and maintain fairness and
justice. For example, when faced with unfair treatment or infringement, angry expres-
sions and words can convey dissatisfaction and warnings to the other party, prompting
the other party to change their behavior.

Surprise is a short and intense emotional experience, and its facial expression fea-
tures include wide eyes, raised eyebrows, and open mouth. The emotional expression of
surprise can attract the attention and interest of others and promote the exchange and
sharing of information. For example, when hearing surprising news, people will express
their feelings through surprised expressions and words, thus attracting the attention and
discussion of others.

Disgust is an emotional response to something unpleasant or offensive, with facial
features such as wrinkled nose, pursed lips or raised upper lip. The emotional expression
of disgust helps individuals avoid harmful or unpleasant things and protect their physical
and mental health. For example, when faced with disgusting food or smell, disgust
expressions and reactions can remind individuals to stay away from these things.

Fear is an emotional response to potential danger or threat, and its facial expression
features include wide eyes, raised eyebrows, and slightly open mouth. The emotional
expression of fear can arouse the vigilance and protection of others and help individuals
deal with potential dangers. For example, when encountering dangerous situations,
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Figure 2.5: Two-dimensional Valence-Arousal model

expressions of fear and screaming can attract the attention and help of others, increasing
the individual’s chance of survival.

These basic emotions are expressed in a variety of ways, such as facial expressions
and voice intonation, providing a clear classification basis for emotion recognition in
affective computing. By recognizing and understanding these basic emotions, computers
can better perceive and respond to human emotional states, achieving more natural and
efficient human-computer interaction.

2.2.2 Dimensional Model

The dimensional model was proposed by psychologist James Russell. Unlike discrete
emotion theory, the dimensional model regards emotion as a continuous, multi-dimensional
space. He constructed an emotion space coordinate system using valence and arousal.

Valence indicates the degree of positivity or negativity of an emotion, ranging from
very pleasant to very unpleasant. Emotions with positive valence are usually associated
with experiences such as pleasure, satisfaction, and happiness, while emotions with neg-
ative valence are associated with experiences such as pain, dissatisfaction, and anger.
For example, when a person achieves success or reward, he or she will be in an emotional
state with high positive valence; and when encountering failure or frustration, he or she
will be in an emotional state with low negative valence.

Arousal indicates the level of emotional activation, ranging from calm to excitement.
Low arousal emotional states are usually characterized by calmness, relaxation, sleepi-
ness, etc., while high arousal emotional states are characterized by excitement, tension,
excitement, etc. For example, a person would be in a low arousal emotional state when
resting in a quiet environment, and in a high arousal emotional state when participating
in intense sports or activities.

This model can describe and quantify emotional states in more detail, providing a
more flexible and comprehensive framework for affective computing. By measuring and
analyzing valence and arousal, computers can more accurately identify and understand
human emotional states, thereby achieving more personalized and precise emotional
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Figure 2.6: Amygdala function and response mechanism during threat perception

interactions. For example, in an intelligent customer service system, by analyzing the
user’s emotional dimensions, the system can provide more intimate and appropriate
services and improve user satisfaction.

2.3 Neuroscience Basis of Emotion

2.3.1 Amygdala and emotional response

In the field of neuroscience, studies have found that the amygdala plays a key role in
emotional processing. Located in the medial temporal lobe of the brain, the amyg-
dala is an almond-shaped neural nucleus that receives information from the senses and
quickly activates emotion-related physiological responses, such as accelerated heartbeat
and shortness of breath.

When an individual faces a potential threat or danger, the amygdala will react quickly
and activate the "fight or flight" response. For example, in the event of a sudden dan-
gerous situation, such as a wild animal attack or a traffic accident, the amygdala will
quickly activate the body’s stress response, causing the individual’s heart rate to speed
up, blood pressure to rise, and muscles to tense, so that the individual can quickly
respond, such as running away or defending himself.

In addition, the amygdala is also involved in learning and remembering emotional
stimuli. Through interactions with other areas of the brain, the amygdala is able to
associate emotional experiences with specific stimuli or situations to form emotional
memories. For example, when an individual experiences a traumatic event in childhood,
such as being bitten by a dog, the amygdala will associate this fear emotion with the
image of a dog, forming a fear memory. Later in life, when the individual sees a dog
again, the amygdala will quickly activate the fear response, causing the individual to
escape or avoid the dog.
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Figure 2.7: Location of the prefrontal cortex and amygdala in the brain

2.3.2 Prefrontal cortex and emotional cognition

The prefrontal cortex is the area of the brain responsible for higher cognitive functions,
including the evaluation, expression, and control of emotions. It is involved in the
analysis and processing of emotional information, helping individuals understand the
meaning and consequences of emotions and make appropriate emotional responses.

In terms of emotional assessment, the prefrontal cortex is able to perform complex
analysis and judgment of emotional stimuli. For example, when an individual faces
a complex social situation, such as a conflict with a colleague at work, the prefrontal
cortex will assess the nature, severity, and possible consequences of the conflict, helping
the individual to make appropriate emotional responses, such as anger, grievance, or
understanding.

In terms of emotional expression, the prefrontal cortex controls the way and degree of
emotional expression of an individual. It can regulate emotional expression signals such
as facial expressions and voice intonation, allowing individuals to express their emotions
appropriately according to different social situations and communication partners. For
example, in formal business situations, the prefrontal cortex will inhibit individuals from
expressing overly excited or emotional emotions, allowing individuals to maintain a calm
and professional image; while in communication with close friends, the prefrontal cortex
allows individuals to express their emotions more freely and authentically.

In terms of emotional control, the prefrontal cortex can help individuals regulate
and control their emotional responses and avoid excessive or inappropriate emotional
expression. For example, when an individual faces stress or frustration, the prefrontal
cortex will activate the self-regulation mechanism to help the individual calm down, stay
calm and rational, and thus better cope with the problem.

2.3.3 Synergistic effect of amygdala and prefrontal cortex

The interaction between the amygdala and the prefrontal cortex is crucial for human
emotional experience and behavioral responses. Working together, they enable humans
to have rich and diverse emotional experiences and to make appropriate emotional re-
sponses in different situations.

The amygdala plays a leading role in rapid emotional reactions. When an individual
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faces sudden danger or threat, the amygdala will quickly activate emotion-related phys-
iological reactions, enabling the individual to respond in a timely manner. For example,
when encountering a sudden dangerous situation, an individual may have a fear reaction
in an instant, with an accelerated heartbeat and rapid breathing, which is the result of
the amygdala’s rapid reaction.

The prefrontal cortex plays an important role in the processing and regulation of
complex emotions. It can deeply analyze and process emotional information, help indi-
viduals understand the meaning and consequences of emotions, and make appropriate
emotional responses. For example, when facing complex interpersonal relationships or
social situations, individuals need to use the cognitive ability of the prefrontal cortex to
evaluate the nature and impact of emotions, regulate their own emotional expression and
behavioral responses, and maintain good interpersonal relationships and social order.

This synergy provides important biological inspiration for the design of affective
computing models. The affective computing model can draw on the collaborative work-
ing mechanism of the amygdala and prefrontal cortex in the human brain to design
algorithms and models that can quickly respond to and complexly process emotional
information. For example, in intelligent security systems, a rapid response mechanism
similar to the amygdala can be used to monitor and warn potential dangerous situations
in real time; at the same time, combined with the cognitive and regulatory capabilities
of the prefrontal cortex, complex social situations and emotional information can be
analyzed and processed to improve the intelligence level and accuracy of the system.

The psychological and neuroscience foundations of emotion provide rich theoretical
support and practical guidance for affective computing. Through in-depth research and
application of these basic theories, affective computing can better simulate the human
emotion processing mechanism, achieve more natural and efficient human-computer emo-
tional interaction, and bring more convenience and well-being to human life and work.

2.4 Mechanisms of Emotion Recognition and Expression

Emotion recognition and expression are two important links in affective computing,
which together constitute the core mechanism of affective computing. Through emotion
recognition, computer systems can perceive and understand human emotional states;
through emotion expression, computer systems can convey emotional information in a
way that humans can understand, thus achieving emotional interaction between humans
and machines.

2.4.1 Emotion Recognition Mechanism

Facial Expression Recognition

Facial expression is one of the important ways for humans to express emotions. Through
the movement and changes of facial muscles, rich emotional information can be conveyed.
Facial expression recognition technology aims to identify the emotional state of an in-
dividual by analyzing facial images or video data.The changes in facial expressions not
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Figure 2.8: OpenFace detects key points of the face

only involve the basic recognition of emotions (such as anger, joy, sadness, etc.), but also
include the intensity and subtle changes of emotions (such as a slight smile or a tight
mouth corner). These subtle changes in expression can usually reveal the individual’s
psychological state in a specific situation and can more accurately understand the user’s
emotional response.

Facial key point extraction
Facial key point extraction is a basic step in facial expression recognition, and its

purpose is to locate the key feature points of the face, such as the position and shape
of the eyes, eyebrows, nose, mouth, etc. These key points contain rich facial expression
information, and by extracting and analyzing these key points, subtle changes in facial
expressions can be captured.

For example, when a person smiles, the corners of the mouth will rise and wrinkles
will appear at the corners of the eyes; when a person is angry, the eyebrows will be
wrinkled and the corners of the mouth will be closed. By extracting the position and
changes of these key points, the emotional state of the individual can be preliminarily
judged.

Modern facial expression recognition systems are not limited to 2D images, but also
use deep learning technology combined with 3D models to accurately recognize facial
expressions under complex lighting and angle conditions.The 3D-CNN (Convolutional
Neural Network) algorithm is a convolutional neural network algorithm suitable for pro-
cessing three-dimensional data. It can automatically extract features from facial images
or videos and perform emotion classification. Through structures such as convolutional
layers, pooling layers, and fully connected layers, the 3D-CNN algorithm can effectively
capture the temporal and spatial characteristics of facial expressions and improve the
accuracy of emotion recognition.

For example, the OpenFace toolkit detects key points of the face, such as the position
and movement of the eyes, eyebrows, and mouth, and analyzes and models these key
points using the 3D-CNN algorithm to identify different emotional expressions. This
method can accurately capture subtle changes in facial expressions and has a high degree
of accuracy in identifying emotions.

Facial expression recognition technology has broad application prospects in many
fields. In the field of human-computer interaction, through facial expression recognition,
the computer system can perceive the user’s emotional state in real time, and adjust the
interaction method according to the user’s emotional state, providing a more natural and
efficient human-computer interaction experience. For example, in an intelligent customer
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Figure 2.9: MFCC (Mel-Frequency Cepstral Coefficient) graph

service system, through facial expression recognition, the system can judge the user’s
emotional state, such as anger, dissatisfaction, etc., and adjust the service strategy in
time to improve user satisfaction.

In the field of mental health monitoring, facial expression recognition technology can
be used to monitor the mental health status of individuals. For example, by analyzing
changes in facial expressions, emotional abnormalities in patients with mental illnesses
such as depression and anxiety can be discovered in a timely manner, providing support
for mental health intervention.

Speech Emotion Recognition

Speech is another important way for humans to express emotions. Speech characteristics
such as intonation, speaking speed, and volume are closely related to emotional states.
Speech emotion recognition technology aims to identify an individual’s emotional state
by analyzing speech signals.

MFCC (Mel-Frequency Cepstral Coefficient) is a parameter that can better reflect the
spectral characteristics of speech signals and can capture the emotional information in
speech. MFCC features simulate the perceptual characteristics of the human auditory
system and convert speech signals into a series of characteristic coefficients. These
characteristic coefficients contain information such as the frequency and amplitude of
speech and can effectively reflect the emotional characteristics of speech.In addition to
MFCC, modern speech emotion recognition has also introduced more audio processing
technologies, such as linear predictive coding (LPC) and speech enhancement technology,
which can improve the recognition accuracy in noisy environments and thus improve the
robustness of emotion recognition.

For example, when a person is in a happy emotional state, the voice is usually higher
in pitch, faster in speed, and louder in volume; and when a person is in a sad emotional
state, the voice is usually lower in pitch, slower in speed, and lower in volume. By
extracting MFCC features, these emotional features can be captured, providing a basis
for speech emotion recognition.

LSTM (Long Short-Term Memory) network is a special neural network that can
process long-term dependencies in sequence data and is suitable for speech emotion clas-
sification tasks. By introducing memory units and gating mechanisms, LSTM network
can effectively solve the gradient vanishing and gradient exploding problems of tradi-
tional neural networks when processing sequence data, and improve the accuracy of
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Figure 2.10: LSTM architecture diagram

emotion classification.
For example, by inputting MFCC features into the LSTM network for training and

classification, accurate recognition of speech emotions can be achieved. The LSTM
network can automatically learn the emotional features in speech signals and classify
emotions based on these features, such as happiness, sadness, anger, etc.Furthermore,
LSTM networks can also be combined with other deep learning architectures such as
convolutional neural networks (CNNs) to form hybrid models to improve the perfor-
mance of speech emotion recognition, especially the recognition accuracy in complex
environments.

Speech emotion recognition technology has important application value in many
fields. In the field of intelligent customer service, through speech emotion recognition,
the system can perceive the user’s emotional state in real time, and adjust the service
strategy according to the user’s emotional state to provide more intimate and person-
alized services. For example, when the user shows anger or dissatisfaction, the system
can adjust the service attitude in time, appease the user’s emotions, and improve user
satisfaction.In addition, in applications such as smart homes and in-car voice assistants,
speech emotion recognition not only helps improve user experience, but also enhances
the system’s ability to respond to complex situations. For example, in an in-car voice
assistant, when the driver feels tired or anxious, the system can provide help, such as
playing relaxing music or suggesting a break.

In the field of human-computer interaction, speech emotion recognition technology
can realize emotional interaction between humans and machines, enabling machines to
better understand human emotional needs. For example, in voice assistant applications,
through speech emotion recognition, voice assistants can provide corresponding emo-
tional responses based on the user’s emotional state, such as comfort, encouragement or
congratulations, to enhance the user’s emotional experience.

Physiological Signal Recognition

hysiological signals are an objective reflection of human emotional states. For example,
there is a close mapping relationship between physiological signals such as electrocar-
diogram (ECG) and galvanic skin response (GSR) and emotional states. Physiological
signal recognition technology aims to identify an individual’s emotional state by collect-
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Figure 2.11: Physiological signal recognition process

ing and analyzing physiological signals.
ECG signals reflect the electrical activity of the heart and are closely related to

emotional states. When an individual is in different emotional states, the ECG signal
will show different characteristics. For example, when an individual is in an emotional
state such as tension or anxiety, the ECG signal will show characteristics such as faster
heart rate and reduced heart rate variability; while when an individual is in an emotional
state such as relaxation or calmness, the ECG signal will show characteristics such as
slower heart rate and increased heart rate variability.

The GSR signal reflects the change in skin conductivity and is closely related to the
emotional state. When an individual is in different emotional states, the GSR signal will
show different characteristics. For example, when an individual is in an emotional state
such as tension or anxiety, the GSR signal will show characteristics such as increased
skin conductivity; and when an individual is in an emotional state such as relaxation or
calmness, the GSR signal will show characteristics such as decreased skin conductivity.

Physiological signal recognition technology has important application prospects in
many fields. In the field of mental health monitoring, by collecting and analyzing ECG
and GSR signals, it is possible to monitor the mental health status of individuals in real
time, detect psychological problems in a timely manner, and provide support for mental
health intervention. For example, through physiological signal recognition technology,
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the emotional state of patients with mental illnesses such as depression and anxiety can
be monitored, providing important diagnostic basis for doctors.

In the field of human-computer interaction, physiological signal recognition technol-
ogy can realize emotional interaction between humans and machines, enabling machines
to better understand human emotional needs. For example, in intelligent security sys-
tems, through physiological signal recognition technology, the system can monitor the
emotional state of security personnel in real time. When security personnel are in an
emotional state such as tension or fatigue, the system can issue an alarm in time to
remind security personnel to pay attention to safety.

2.4.2 The Mechanism of Emotional Expression

The mechanism of emotion expression is an important part of affective computing, which
aims to express emotions through robots or computer systems and realize emotional in-
teraction between humans and machines. Emotional expression can make robots commu-
nicate with humans more naturally and vividly, and enhance the emotional connection
between humans and machines. The mechanism of emotion expression mainly includes
two aspects: robot expression simulation and emotional speech synthesis.

Robot Expression Simulation

Robot expression simulation technology conveys emotional information through the
robot’s facial expressions, realizing emotional interaction between humans and machines.
Pneumatic artificial muscle technology is an advanced robot expression simulation tech-
nology that realizes the changes in the robot’s facial expressions through pneumatic
artificial muscles. Pneumatic artificial muscles are soft and flexible, and can simulate
the movement of human facial muscles, allowing robots to produce rich and diverse ex-
pression changes. For example, the "Geminoid" robot of Hiroshi Ishiguro’s laboratory in
Japan realizes micro-expression simulation through pneumatic artificial muscles, which
can reproduce human facial expressions more realistically. This type of robot has broad
application prospects in the fields of human-computer interaction, emotional companion-
ship, etc. Through pneumatic artificial muscle technology, robots can realize a variety of
expressions such as smiling, frowning, and surprise, allowing robots to express emotions
more naturally and vividly.

Robot expression simulation technology has important application value in many
fields. In the field of human-computer interaction, through robot expression simulation,
robots can express emotions more naturally and vividly, and enhance the emotional
connection between humans and machines. For example, in the field of education, ed-
ucational robots can interact with students emotionally through expression simulation
to improve students’ interest and enthusiasm in learning. Educational robots can en-
courage students through expressions such as smiles and nods, and enhance students’
motivation to learn.

In the field of emotional companionship, robot expression simulation technology can
provide emotional companionship for groups such as the elderly and children. For exam-
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Figure 2.12: “Geminoid” robot

ple, emotional companion robots can interact with users through expression simulation,
alleviate users’ loneliness and anxiety, and improve their quality of life. Emotional com-
panion robots can interact with users through expressions such as smiling and blinking
to enhance users’ emotional experience.

In addition, robot expression simulation technology also has important applications
in the field of medical rehabilitation. For example, rehabilitation robots can interact with
patients through expression simulation, help patients relieve psychological pressure dur-
ing rehabilitation and improve rehabilitation effects. Rehabilitation robots can enhance
patients’ confidence in rehabilitation through encouraging expressions and language.

Avatar Expression Generation

Avatar expression generation technology aims to give virtual characters (Avatars) rich,
natural and infectious expressions through advanced computer graphics and artificial
intelligence algorithms. The core of this technology is to map the captured human ex-
pression data or expression parameters generated by the algorithm to the facial model
of the virtual character, so as to achieve real-time driving and generation of expressions.
Its key technologies include facial feature extraction, expression parameterization, ex-
pression animation generation, etc. Facial feature extraction technology can accurately
locate and track key points of the face from images or videos, such as the corners of
the eyes, the corners of the mouth, eyebrows, etc. The movement and changes of these
key points contain rich emotional information. Expression parameterization converts
the movement information of these key points into quantifiable parameters, such as the
degree of stretching of facial muscles, the upward angle of the corners of the mouth, etc.
These parameters can be recognized and processed by computer systems. Expression
animation generation technology uses these parameters to drive the facial model of the
virtual character and generate corresponding expression animations. For example, when
the parameter indicates that the corners of the mouth are raised, the corners of the mouth
of the virtual character will rise accordingly, showing a smiling expression. Through the
collaborative work of these technologies, Avatar expression generation technology can
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Figure 2.13: Avatar expression generation

Figure 2.14: Creating a virtual human using ZEGO Avatar SDK

make the expressions of virtual characters more realistic and vivid, and enhance their
interactivity and immersion in the virtual environment.

Currently, the most widely used Avatar expression generation technologies include
ZEGO Avatar SDK, PhotoCore SDK, and Avatarify:

ZEGO Avatar SDK is a powerful avatar expression generation tool that provides
two ways to drive the expression and mouth shape of virtual people in real time: voice
drive and expression follow-up. In terms of voice drive, ZEGO Avatar SDK captures and
analyzes the user’s voice information, and uses deep learning algorithms to convert voice
signals into virtual people’s mouth shape animation. For example, in online education
scenarios, virtual teachers can use voice drive to adjust their mouth shape and expression
in real time according to the content of the explanation, making the teaching process
more vivid and interesting, and improving students’ learning interest and attention. In
terms of expression follow-up, ZEGO Avatar SDK uses a camera to capture the user’s
facial expression, and uses face recognition and expression recognition technology to
map the user’s expression to the virtual character in real time. For example, in social
live broadcasts, the anchor can use expression follow-up to let the virtual image imitate
his or her own expression in real time, enhance the interactivity and affinity with the
audience, and improve the fun and viewing of the live broadcast.

Xiangxin SDK is another advanced Avatar expression generation tool, which provides
two ways to drive the expressions of virtual people: expression capture and voice drive.
In terms of expression capture, Xiangxin SDK uses the camera to capture the user’s
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Figure 2.15: Avatarify real-time facial animation generation tool

facial expressions, and generates corresponding expression animations by detecting and
analyzing the user’s facial feature points. For example, in the virtual makeup trial
application, users can use expression capture technology to see the effects of different
makeup attempts on the virtual image in real time, helping users to better choose the
makeup style that suits them. In terms of voice drive, Xiangxin SDK can generate
expressions and lip animations that match the voice content based on the user’s voice
input. For example, in the intelligent customer service system, the virtual customer
service can adjust the expression and lip shape in real time according to the user’s voice
problems to provide more intimate and personalized services.

Avatarify is a real-time facial animation generation tool based on deep learning, which
allows users to map their own or other people’s facial expressions to virtual characters,
static images or videos in real time. Users can capture their facial expressions through
the camera, and then select any static image or virtual character, and Avatarify will
synchronize the user’s facial expressions to the selected virtual avatar in real time. For
example, in a virtual meeting, users can use Avatarify to map their expressions to virtual
characters to increase the fun and interactivity of the meeting. In addition, Avatarify
also supports compatibility with common virtual meeting software and live broadcast
platforms. Users can use Avatarify on these platforms to convert their facial expressions
in real time and generate high-quality virtual image videos.

Emotional Speech Synthesis

Emotional speech synthesis technology generates emotional speech through speech syn-
thesis to achieve emotional interaction between humans and machines. The WaveNet
algorithm is a speech synthesis model based on deep learning, which can learn the tempo-
ral characteristics and emotional characteristics of speech signals and generate emotional
speech. The WaveNet algorithm can effectively improve the naturalness and emotional
expression ability of speech synthesis by introducing technologies such as attention mech-
anism and generative adversarial network. For example, using the WaveNet algorithm
to generate natural intonation is an advanced technology for emotional speech synthe-
sis. Through the WaveNet algorithm, speech with emotional colors, such as happiness,
sadness, anger, etc., can be generated, making the robot’s speech more natural and
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Figure 2.16: Avatarify real-time facial animation generation tool

vivid. The WaveNet algorithm can capture the emotional characteristics in speech and
generate speech intonation that matches the emotional state.

Emotional speech synthesis technology has important application value in many
fields. In the field of human-computer interaction, emotional speech synthesis can make
the robot’s voice more natural and vivid, and enhance the emotional connection between
humans and machines. For example, in the intelligent customer service system, through
emotional speech synthesis, the system can adjust the voice tone according to the user’s
emotional state and provide more intimate and personalized services. When the user
shows anger or dissatisfaction, the system can respond to the user with a soothing tone
to ease the user’s emotions. In the field of education, emotional speech synthesis tech-
nology can be used for speech synthesis of educational robots. For example, educational
robots can interact with students emotionally through emotional speech synthesis to
improve students’ learning interest and enthusiasm. Educational robots can praise stu-
dents’ progress with encouraging tones to enhance students’ learning motivation. In the
medical field, emotional speech synthesis technology can be used for speech synthesis
of medical robots. For example, medical robots can interact with patients emotionally
through emotional speech synthesis to relieve patients’ anxiety and tension and improve
patients’ treatment effects. Medical robots can comfort patients with gentle tones to
enhance patients’ confidence in treatment. In addition, emotional speech synthesis tech-
nology also has important applications in the entertainment field. For example, virtual
idols can interact with fans emotionally through emotional speech synthesis to enhance
fans’ emotional experience. Virtual idols can interact with fans in vivid tones, enhancing
fans’ sense of participation and loyalty.
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3

Visual Interaction Technology

3.1 Principles of visual perception

Vision is an extremely amazing ability that supports many behaviors and cognitive
activities of organisms. About a century ago, Ramon y Cajal used the Golgi method to
conduct the first in-depth study of the retina. Because the retina has a well-defined and
orderly structure and the direction of flow of nerve signals is easy to identify, Cajal was
able to come up with important conclusions about the basic organizational principles of
the nervous system. These discoveries directly promoted his establishment of the neuron
theory and the theory of "dynamic polarization" of nerve cells, laying the foundation for
our understanding of the modern neuronal information processing function.

Over the past century, the retina, as an extension of the brain, has remained a focus
of visual research. Scientists have conducted extensive research on its anatomical struc-
ture and functional properties, as well as its role in visual data processing. Most early
studies focused on the compound eyes of invertebrates because of technical challenges in
making similar measurements on vertebrate eyes. However, in recent years, important
progress has been made in the study of animals such as cats and monkeys, revealing
many information processing mechanisms that are common across species. A deep un-
derstanding of the basic operating principles of the nervous system is crucial for future
research in neurobionics and visual simulation.¬¬

In 1932, Hartline and Graham made a groundbreaking discovery in their study of the
photoreceptors of the horseshoe crab’s compound eyes. They observed that the output
signal of the photoreceptors was linearly related to the logarithm of the incident light
intensity. This logarithmic compression mechanism allows horseshoe crabs to perceive
visually when the input light intensity spans 6 to 7 orders of magnitude, while the
dynamic range of their neurons only covers 2 to 3 orders of magnitude. In addition,
the output activity of the photoreceptors gradually adapts from the initial peak of the
stimulus to a lower stable value, and the final output value of this process is also related
to the logarithm of the light intensity. Due to this property, slowly changing light in the
environment, such as the alternation of day and night, does not significantly affect visual
perception. Similar studies in 1956 further revealed the processing mechanism of spatial

49
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Figure 3.1: Structure of the human eye

information in the visual system. Scientists found that the retina can effectively ignore
slow spatial changes in light patterns. This function is mainly achieved by two neural
mechanisms: mutual lateral inhibition and self-inhibition. Lateral inhibition enhances
edges and contrast through spatial high-pass filtering, while self-inhibition suppresses
slow changes in light intensity in the environment through temporal high-pass filtering.
These mechanisms ensure that the visual system can prioritize attention to dynamic and
salient features in a scene.

Compared to the compound eyes of invertebrates, the arrangement of neurons in the
vertebrate retina is more complex. The retina is usually composed of three layers of
neural cell bodies, each separated by two layers of synaptic networks. The outermost
layer contains photoreceptor cells, including rods and cones. Rods are mainly responsible
for night vision in low light conditions, while cones provide color vision and detailed
vision in bright environments. The middle layer includes bipolar cells, horizontal cells,
and Aklin cells. Bipolar cells connect photoreceptors to the ganglion cells of the retina
and transmit light-sensitive information to the latter. Horizontal cells and Aklin cells
form lateral connections and are responsible for regulating and integrating local neural
activity. Ganglion cells are the output units of the retina. Their axons pass through
the inner surface of the retina and converge at the optic disc to form the optic nerve,
which transmits signals to the lateral geniculate body (LGN) of the brain for further
processing.

The number and distribution of visual receptors play a key role in visual perception.
The human eye has about 120 million rods and 6.5 million cones. Rods are extremely
sensitive to photons, allowing us to perceive the environment in low light conditions,
while cones provide the ability to recognize colors and details under normal lighting.
The high concentration of cones in the fovea gives the human eye extremely high visual
acuity at the point of fixation. Recent studies have further revealed the functional
differentiation between the fovea and the peripheral retina. The fovea focuses on high-
resolution color vision and fine vision, while the peripheral retina plays an important
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role in motion detection and visual perception in low light conditions. By combining
visual psychophysics experiments and neurophysiological studies, scientists continue to
deepen their understanding of the retina’s perception mechanism and the brain’s way
of processing visual information. Such research not only deepens the understanding of
the visual system, but also provides valuable inspiration for the design of artificial visual
systems.

Diffraction in the pupil and aberrations in the eye’s optics cause blurring of the
retinal image. In the foveal region, these blurred images are sampled by a set of cones
that form a precise triangular grid. The inner segments of the cones (i.e., the active
sensing elements) occupy most of the space between them, a property that has a dual
effect: on the one hand, it maximizes quantum capture and thus reduces photon noise;
on the other hand, the integration of light over the cone aperture reduces the spatial
frequency response. Under normal vision conditions, moiré fringes are not evident in the
foveal region, indicating that the eye’s optical system effectively filters out high spatial
frequencies in the retinal image to avoid image distortion. Diffraction and aberrations,
rather than receptor density, thus become the main limiting factors for spatial reso-
lution. The morphology of the eye strikes a balance between reducing diffraction but
increasing aberrations at larger pupil diameters, or reducing aberrations but being lim-
ited by diffraction at smaller pupil diameters. Interestingly, it is actually the size and
spacing of the cones that may ultimately determine the spatial resolution. The optical
system of the eye appears to have evolved to not significantly interfere with the resolu-
tion achievable with the smallest cone spacing. Even in very small eyes, cone spacings
less than 2 micrometers are rare. Cone diameters show remarkable consistency across
eye sizes, likely to prevent optical crosstalk between receptor outer segments. As short
optical waveguides, cone outer segments have limited photon retention capabilities, and
if cone spacing is too small, captured photons may trigger photopolymerization in ad-
jacent cones, affecting detection accuracy. Therefore, eye structures, including pupil
diameter and optical quality, may be more about ensuring optical isolation of cone outer
segments rather than limiting cone spacing due to poor optical quality. The matching
relationship between the resolution limit set by cone spacing and the highest frequency
passed by the eye’s optical system has long been verified. Recent studies have further
revealed which factor, between eye optics and cone separation, plays a more significant
role in determining actual spatial resolution. This finding provides a new perspective
for understanding the biological significance of spatial resolution.

Whatever the limiting factors of the eye’s resolution, it is certain that evolutionary
pressures have driven primates to develop a visual system that operates near physical
and biochemical limits. With the exception of some birds of prey such as eagles, few
organisms have eyes with higher resolution. Remarkably, the compound eyes of many
insects also show similar capabilities in terms of detection resolution. This suggests
that even organisms with relatively simple nervous systems can gain significant survival
advantages from the large amount of data and interactive information brought by high-
resolution visual systems. In addition, the optical quality of a single-chamber eye is
generally lower than that of a single-lens camera. In such an optical system, the dis-
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tance between receptors is pushed to its biochemical limit, requiring not only powerful
data processing capabilities of the retina and brain, but also the extraction of effective
information from images with limited optical and geometric quality. This highlights the
adaptability of the nervous system. Although the retina shows a high degree of special-
ization in visual processing, many information processing modules of the cerebral cortex
still show a high degree of flexibility and follow a few general information processing
principles. Existing neural architectures mainly determine the rough mapping between
different brain regions, but these mappings can be reshaped, thereby further revealing
the universal principles of neural information processing.

When exploring the impact of evolution on the visual system, we should be cautious in
using evolution as a theoretical basis. As Crick pointed out, we should not over-speculate
on the specific constraints imposed by evolution unless in a broad context. At the same
time, we should avoid assuming that evolution will always choose mathematically optimal
solutions. By directly experimentally verifying these hypotheses, researchers can more
accurately understand which mechanisms are possible and which are not. Finally, further
experiments have shown that the limitations of neural processing on visual resolution are
far less significant than optical blur. For example, by directly constructing interference
fringes on the retina to measure the contrast sensitivity of the fovea, the results showed
that under optimal conditions, the degree of neural blur is comparable to optical blur.
The experiment showed that observers only needed 8% contrast to detect interference
fringes with a spatial frequency of 60c/°. This result supports the ability of the retina
to perform complex data compression and lateral interactions, and also shows that the
retina has not yet reached the limit of its neural processing capabilities. This also further
verifies the hypothesis that the center of the receptive field of some ganglion cells may
be supplied by a single cone cell, providing a new perspective for understanding the fine
processing capabilities of the retina.

In the 1960s and 1970s, the study of vertebrate retinas was mainly focused on cats.
By the end of the 1970s, scientists had a relatively in-depth understanding of the overall
structure of the cat retina and began to apply these research results to computational
models of computer vision. The importance of this development stage lies in that it
provides a biological basis for visual computing, allowing the design of artificial visual
systems to benefit from the optimization mechanism of the natural visual system. The
study of the cat retina has revealed its unique structural and functional characteris-
tics. As the first information processing checkpoint of the visual system, the retina
undertakes the initial conversion from light signals to neural signals. The regulation of
light adaptation and dark adaptation capabilities enables the retina to work effectively in
different lighting environments. Rods and cones are responsible for night and daytime vi-
sual functions, respectively, and transmit information through three independent neural
pathways to adapt to changes from strong light to dim light. This information trans-
mission pathway can be described by the receptive field characteristics of bipolar cells.
In the dark-adapted retina, the receptive field of bipolar cells is mainly composed of an
excitatory center, while in the light-adapted environment, the receptive field presents a
concentric structure, including an excitatory center and an inhibitory surrounding area,
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Figure 3.2: Retinal structure

which enhances the detection ability of local contrast.
Studies have shown that cats’ B-type horizontal cells are mainly responsible for

the formation of the center of the bipolar cell receptive field, while the larger A-type
horizontal cells jointly determine the surrounding structure of the receptive field through
electronic interactions. This mechanism ensures that the retina can effectively process
light signals and optimize the transmission of visual information. Bipolar cells take
on the role of linear integration of light signals in this process, and as the information
enters the ganglion cell layer, the processing becomes more complicated. Studies on CB
bj bipolar cells have shown that they show opposite polarity responses to light and dark
stripes in the center of the receptive field, while showing the same polarity in response
to light and dark stripes around the receptive field. This characteristic indicates that
there are significant differences in the information processing mode of the retina under
light adaptation and dark adaptation conditions, and the visual system will adjust its
own operating mechanism under different lighting environments to optimize the effect
of information acquisition.

Ganglion cells are key nodes for retinal information transmission. In the cat retina,
ganglion cells can be divided into two major categories: Alpha cells and Beta cells. Alpha
cells have large cell bodies and sparsely branched dendrites, forming a wide receptive
field, while Beta cells have medium-sized cell bodies, small dendrites but dense branches,
and a relatively small receptive field range. The difference between X-type cells (Beta
cells) and Y-type cells (Alpha cells) lies in the way they integrate input signals. X/Beta
cells mainly collect synaptic inputs from a small number of cone bipolar cells, which have
large receptive field overlaps, while Y/Alpha cells receive inputs from a large number
of cone bipolar cells, but have less receptive field overlaps. These connection patterns
determine the differences in signal processing between the two types of ganglion cells.
The former is mainly responsible for fine visual processing, while the latter is good at
transmitting dynamic information.

The information processing of the retina is shaped by evolutionary pressures to max-
imize the dynamic range while minimizing the effects of noise. The gain regulation
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mechanism of the retina helps optimize the transmission of visual signals and improve
the adaptability of the visual system in complex environments. For example, the connec-
tion pattern between core bipolar cells and X/Beta cells constitutes a signal enhancement
mechanism similar to a "push-pull" amplifier, making the contrast of visual information
more prominent. In addition, "ON" cells and "OFF" cells synapse in different sublayers
of the inner plexiform layer of the retina and receive input from different types of bipo-
lar cells, thereby maintaining the stability of information transmission under different
lighting conditions.

These studies not only provide rich biological inspiration for modern visual sensor
technology and visual information processing, but also promote the innovative devel-
opment of computer vision. For example, bionic sensors based on retinal structure are
being widely studied to improve the adaptability of computer vision systems to changes
in lighting. In addition, researchers also draw on the information encoding mechanism
of biological retina to optimize image processing algorithms, so that artificial vision
systems can extract image features more efficiently. With the development of artificial
intelligence and computer vision, imitating the structure and function of biological visual
systems has become an important direction for improving machine vision capabilities.
We will explore in depth the development of visual sensor technology and its application
in visual information processing to further understand the nature of visual perception.

3.1.1 Visual Sensor Technology

From one or more light sources, light reflects off one or more surfaces in the world, passes
through the camera’s optics (lens), and eventually reaches an imaging sensor. How are
the photons that reach this sensor converted into the digital (R, G, B) values that we
observe when we view a digital image?

When light strikes an imaging sensor, it is typically received by an active sensing
area, accumulated for an exposure time (usually expressed as a fraction of a second, e.g.,
1/125, 1/60, 1/30), and then passed to a set of sensing amplifiers. There are two main
types of sensors used in digital still and video cameras today: charge-coupled devices
(CCDs) and complementary metal-oxide semiconductors (CMOS).

In a CCD, photons accumulate in each active light trap until the exposure ends.
Then, during the transfer phase, charges are transferred from one light trap to another
in a “bucket relay” fashion until they are passed to the sensor amplifier, which amplifies
the signal and feeds it into an analog-to-digital converter (ADC) [10]. Early CCD sensors
were prone to "blooming," where the charge from an overexposed pixel spills over into
adjacent pixels, but most newer CCDs have adopted anti-blooming techniques (“troughs”
are used to hold the excess charge).

In CMOS, photons striking the sensor directly affect the conductivity (or gain) of the
photodetector, which can be selectively gated to control exposure duration and amplified
locally using a multiplexing scheme when read out. Traditionally, CCD sensors have been
preferred over CMOS in high-quality sensitive applications such as DSLRs, while CMOS
is better suited for low-power applications, but most digital cameras today use CMOS.

The main factors affecting digital image sensor performance include shutter speed,
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Figure 3.3: Sensor Size Comparison

sampling pitch, fill factor, chip size, analog gain, sensor noise, and the resolution (and
quality) of the analog-to-digital converter. The actual values of many of these parameters
can be read from the EXIF tags embedded in the digital image, while others can be ob-
tained from camera manufacturers’ specification sheets or camera review and calibration
websites [11].

Shutter speed (exposure time) directly controls the amount of light that reaches
the sensor, thus determining whether the image is overexposed or underexposed. (For
bright scenes, photographers sometimes use neutral density filters to allow the use of
large apertures or slow shutter speeds to achieve shallow depth of field or motion blur.)
For dynamic scenes, shutter speed also determines the amount of motion blur in the final
image. In general, higher shutter speeds (less motion blur) make subsequent analysis
easier (see Section 10.3 for techniques to remove such blur). However, when capturing
and displaying video, some motion blur may be desirable to avoid flickering effects.

The sampling pitch is the physical spacing between adjacent sensing cells on an
imaging chip. Sensors with a smaller sampling pitch have a higher sampling density
and therefore provide higher resolution (measured in pixels) for a given active chip area.
However, a smaller pitch also means that each sensor has a smaller area to accumulate
as many photons; this makes it less photosensitive and more susceptible to noise.

The fill factor is the ratio of the active sensing area area to the theoretically available
sensing area area (i.e., the product of the horizontal and vertical sampling pitches).
Higher fill factors are generally preferred because they capture more light and reduce
aliasing (see Section 2.3.1). However, this must be balanced against the need to place
additional electronics between the active sensing areas. The fill factor of a camera can
be experimentally determined through a photometric camera calibration process.

Video and point-and-shoot cameras have traditionally used small chip areas (1/4-
inch to 1/2-inch sensors), while digital SLR cameras strive to approach the size of the
traditional 35mm film frame [13]. When overall device size is not important, larger chip
sizes are more desirable because each sensor cell can have a higher light sensitivity. (For
compact cameras, smaller chips mean that all optical components can be scaled down.)
However, larger chips are more expensive to produce, not only because fewer chips can be
cut from each wafer, but also because the probability of a chip defect increases linearly
with chip area.

Prior to analog-to-digital conversion, the sensed signal is typically amplified by a
sensor amplifier. In video cameras, the gain of these amplifiers has traditionally been
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controlled by automatic gain control (AGC) logic, which adjusts the gain value to achieve
a good overall exposure. In newer digital still cameras, users now have some additional
control over gain via the ISO setting, which is usually expressed in ISO standard units
such as 100, 200, or 400. Since the automatic exposure control of most cameras also
adjusts aperture and shutter speed, manually setting ISO is like manually specifying
aperture and shutter speed, removing a degree of freedom from the camera’s control. In
theory, higher gain allows the camera to perform better in low light conditions (since the
exposure time is already at a maximum, reducing motion blur). In practice, however,
higher ISO settings often amplify sensor noise.

Throughout the sensing process, noise can come from multiple sources, which may
include fixed pattern noise, dark current noise, photon noise, amplifier noise, and quan-
tization noise (Healey and Kondepudy 1994; Tsin, Ramesh, and Kanade 2001). The
final amount of noise in the sampled image depends on all of these factors, as well as
the incident light (controlled by scene radiance and aperture), exposure time, and sensor
gain. In addition, in low-light conditions, noise may be due to low photon counts, in
which case a Poisson noise model may be more appropriate than a Gaussian noise model.

As discussed in more detail in Section 10.1.1, Liu, Szeliski, Kang, et al. (2008) use
this model, combined with an empirical database of camera response functions (CRFs)
obtained from Grossberg and Nayar (2004), to estimate the noise level function (NLF) for
a given image, which predicts the variance of the noise at a given pixel as a function of its
brightness (a separate NLF is estimated for each color channel). An alternative approach
is to precalibrate the NLF (McCamy, Marcus, and Davidson 1976) by photographing
a scene containing a variety of colors and brightnesses before taking the picture (e.g.,
the McCamy-White card shown in Figure 10.3b). When estimating the variance, be
sure to discard or downweight pixels with large gradients, since small changes between
exposures will affect the sensed values of these pixels. Unfortunately, due to the complex
interactions occurring within the sensing system, the precalibration process may need
to be repeated at different exposure times and gain settings.

In practice, most computer vision algorithms (such as image denoising, edge detec-
tion, and stereo matching) can benefit from a preliminary estimate of the noise level. If
it is not possible to pre-calibrate the camera or take multiple photos of the same scene,
the simplest approach is to find areas with nearly constant brightness and estimate the
noise variance in these areas (Liu, Szeliski, Kang et al. 2008).

The final step in the analog processing chain in an imaging sensor is the analog-to-
digital conversion (ADC). While a variety of techniques can be used to implement this
process, two important quantities are the resolution of the process (how many bits it
produces) and its noise level (how many of those bits are useful in practice). For most
cameras, the number of bits typically stated (8 bits for compressed JPEG images, a
nominal 16 bits for the RAW format offered by some DSLRs) exceeds the number of
bits actually available. The way to tell is by calibrating the noise of a given sensor, for
example, by taking multiple photos of the same scene and plotting the estimated noise
versus brightness.

Once the irradiance values received by the sensor are converted into digital bits,
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most cameras perform various digital signal processing (DSP) operations to enhance the
image and then compress and store the pixel values. These operations include color filter
array (CFA) demosaicing, white point setting, and mapping brightness values through
a gamma function to increase the perceived dynamic range of the signal.

3.1.2 Visual information processing

Now that we have delved into how images are formed through the complex interaction
of 3D scene elements, lighting conditions, and camera optics and sensors, it is time to
turn our attention to a core part of visual information processing: image preprocessing.
This stage plays a vital role in the vast majority of computer vision applications, and its
purpose is to transform raw images into a form suitable for subsequent analysis through
a series of image processing techniques. Whether it is adjusting exposure and color
balance to optimize visual effects, reducing image noise, enhancing sharpness, or even
correcting image orientation through rotation, these operations are intended to lay a
solid foundation for further processing. Although some may question whether image
processing belongs to the core of computer vision, it is undeniable that many practical
applications - from computational photography to object recognition - are inseparable
from carefully designed image preprocessing steps. Only through these steps can we
ensure that the subsequent analysis can obtain satisfactory results.

The core of image processing is to use a series of operators to map the pixel values of
one image to another image, so as to achieve specific visual adjustments or enhancements.
These techniques are usually taught as an extension of the basic signal processing course
in the field of electrical engineering, and their importance is self-evident. There are many
classic image processing textbooks on the market, covering a wide range of content from
basic theory to advanced applications, providing learners with rich resources. This article
will start with the most basic image transformation and gradually explore more complex
processing methods in depth, striving to provide readers with a comprehensive and clear
perspective.

g(x, y) = T (f(x, y)) (3.1)

We first focus on the simplest image transformations, namely point operators. These
operators act on each pixel independently and do not rely on its neighborhood informa-
tion, so they are also called point processes. As shown in Formula 3-1, f(x,y) represents
the pixel value of the input image at the coordinate (x,y), g(x,y) represents the pixel
value of the output image at the same coordinate (x,y), and T() represents a point op-
erator. Typical examples include brightness and contrast adjustment, color correction,
and simple image synthesis operations. Imagine that by slightly adjusting the brightness
scaling or performing image addition, we can significantly improve the visibility of an
image; or by color transformation, make the image present a more natural tone. These
operations seem simple, but they play an indispensable role in computational photogra-
phy and graphics applications. In addition, image matting and synthesis techniques also
rely on such point operators to achieve background separation or foreground fusion by
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manipulating pixel values. To further optimize the appearance of the image, we will also
introduce a more global method called histogram equalization. By analyzing the tonal
distribution of the image and remapping the pixel values, histogram equalization can
significantly improve the contrast and visual appeal of the image without introducing
too many artificial traces. For example, in underexposed photos, this technology can
effectively brighten dark details and make the picture look brand new.

However, relying solely on point operators is often not enough to cope with more
complex image processing needs. Therefore, we turn to neighborhood-based operators,
also known as local operators. The characteristic of these operators is that the value of
each output pixel depends not only on itself, but also on the values of its neighboring
pixels. Local adaptive histogram equalization is a typical example, which dynamically
adjusts the hue by analyzing the area around the pixel to optimize image details under
different lighting conditions. In addition to hue adjustment, neighborhood operators
are also widely used in image filtering tasks, such as smoothing images through soft
blur, sharpening details to highlight features, emphasizing edges to enhance contours,
or removing noise to improve clarity. Among them, linear filters are the most common
type of neighborhood operators, whose output pixel values are the weighted sum of the
input pixel values, and the weights are determined by the filter function. This process is
usually called a convolution operation, which is favored for its mathematical simplicity
and practicality.

Let’s take a look at some specific linear filters to better understand how they work.
The simplest is the moving average filter, also known as the box filter. It smoothes an
image by averaging the pixel values within a fixed-size window (e.g., a K×K region).
This operation is essentially equivalent to convolving the image with a convolution ker-
nel of all 1s and scaling the result appropriately. For larger convolution kernels, direct
calculations can be resource-intensive, and separable filters provide an efficient alterna-
tive. This approach significantly reduces the computational complexity by sliding the
window horizontally and vertically, respectively, and gradually updating the running
sum. This technique is also similar to the concept of a cumulative area table, which will
be discussed further in the following content.

To achieve a smoother filter, we can convolve the image with a piecewise linear
"tent" function, also known as a Bartlett filter. The two-dimensional form of this filter,
such as a 3×3 bilinear kernel, is formed by the outer product of two first-order spline
functions, and its smoothing effect is more natural than that of a simple box filter. If the
linear tent function is convolved with itself, a cubic approximation spline is obtained,
which is often regarded as an approximation of the Gaussian kernel. This kernel is
particularly important in the construction of image pyramids because it can effectively
smooth images in multi-scale analysis while preserving key features. By repeatedly
convolving with a box filter, we can also approximate the effect of a Gaussian kernel,
although in applications that require strict rotational symmetry, a carefully designed
sampled Gaussian filter is still a better choice. Linear filtering has uses far beyond
smoothing. It is also a good preprocessing tool for tasks such as edge extraction and
interest point detection. For example, the Sobel operator combines horizontal central
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difference and vertical tent filtering to emphasize horizontal edges while smoothing noise,
showing the powerful flexibility of linear filtering.

In addition to linear filtering, nonlinear filters can also play a unique role in certain
scenarios. For example, edge-preserving median filters and bilateral filters can effectively
remove noise while preserving image edge details as much as possible. Morphological
operators are very useful in binary image processing, and are used to perform operations
such as dilation and erosion; while semi-global operators, such as distance transforms and
connected component analysis, further expand the scope of application of neighborhood
operators. Together, these tools form a rich ecosystem of image processing technology,
providing diverse solutions for different needs.

In more complex scenarios, neighborhood operators can also be cascaded to form
image pyramids and wavelet transforms. These structures not only improve processing
efficiency by analyzing images at multiple resolutions, but also provide the possibility
of accelerating certain operations. For example, in target detection or image compres-
sion, the pyramid structure can quickly capture multi-scale features. In addition, Fourier
transform, as a powerful analysis tool, can help us understand the frequency characteris-
tics of neighborhood operators and implement efficient large-kernel convolution through
fast Fourier transform (FFT). This method decouples computational complexity from
the size of the convolution kernel, making it possible to process large filters.

Geometric transformations are another important class of global operators, including
operations such as rotation, shearing, and perspective deformation. These transforma-
tions are particularly critical when registering images, correcting distortions, or building
panoramas. For example, with perspective transformation, we can correct an obliquely
shot document image to a frontal view, greatly improving its readability. Finally, we
will explore global optimization methods, such as minimizing energy functionals or us-
ing Bayesian Markov random field models for optimal estimation. These methods take
image processing to a new level and can integrate global information to solve complex
visual problems.

From simple point operators to complex global optimization, image processing tech-
niques provide a solid foundation for visual information processing. By flexibly applying
these tools, we can not only improve image quality, but also pave the way for subsequent
computer vision tasks. Whether it is smoothing noise, extracting edges, or adjusting
geometric structures, each step adds value to the final analysis and understanding. As
technology continues to advance, the application prospects of these methods will be
broader, opening a door for us to the deeper mysteries of the visual world.

3.2 Facial Expression Recognition

Facial expressions are the dynamic changes in facial muscles driven by inner emo-
tional states, intentions or social communication. This phenomenon has become a long-
standing research topic in the field of behavioral science since Darwin first systematically
expounded its importance in 1872. As early as 1978, scholars tried to automatically an-
alyze facial expressions by tracking the movement of specific calibration points in image
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Figure 3.4: Expression analysis

sequences. This pioneering work marked the beginning of the technicalization of facial
expression research. Since then, with the rapid development of computer technology,
many systems have been designed and applied to understand and interpret this natural
form of human communication. These efforts not only reveal the complex mechanisms
behind facial expressions, but also provide us with valuable tools for applications in
psychology, computer science, and human-computer interaction.

The core of facial expression analysis is to automatically detect and identify facial
movements and their characteristic changes through visual information. This process is
usually completed by a computer system, aiming to capture the subtle movements of
facial muscles and the meaning they convey. However, facial expression analysis and
emotion analysis are often confused in the field of computer vision, although there are
significant differences between the two. Emotion analysis requires a deeper understand-
ing. It not only involves facial expressions, but also requires a comprehensive judgment
based on multiple factors such as context, body posture, voice intonation, individual
differences, and cultural background. For example, the same facial movement may ex-
press completely different meanings in different situations: it may be an expression of
emotion, a manifestation of intention, or even closely related to cognitive processes or
physical states. In contrast, computerized facial expression analysis systems focus more
on the measurement and recognition of facial movements themselves, and usually do not
directly consider these external factors. Nevertheless, advances in psychological research,
face detection technology, face tracking methods, and human motion analysis have laid
a solid foundation for automatic facial expression analysis, which has shown broad ap-
plication prospects in many fields such as emotional communication, clinical psychology,
pain assessment, intelligent environment design, and multimodal human-computer in-
teraction.

The implementation of automatic facial expression analysis usually relies on a clear
workflow. The first is the face acquisition stage, which aims to automatically locate the
face area from the input image or video sequence. In order to cope with large head
movements, the system may need to integrate head detection, tracking, and pose esti-
mation techniques. For example, in video analysis, the accuracy of the analysis can be
ensured by detecting the face in each frame or continuously tracking after locating the
first frame. Next is the facial data extraction and representation stage, which focuses on
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capturing the changes in facial features caused by changes in expression. There are two
main types of extraction methods: geometric feature-based methods and appearance
feature-based methods. The former constructs feature vectors to characterize the geo-
metric morphology of the face by analyzing the shape and position of facial components
(such as mouth, eyes, eyebrows, and nose); the latter uses image filtering techniques
(such as Gabor wavelets) to process the entire face or specific areas to extract appear-
ance features. In order to improve the robustness of the analysis, facial normalization
is usually performed before feature extraction or expression recognition to eliminate the
influence of head rotation or facial scale differences.

Finally, facial expression recognition, as the core of the entire system, converts the
extracted facial changes into understandable expressions. These changes may be identi-
fied as specific facial action units, or further classified as typical emotional expressions,
such as happiness, surprise, or sadness. Depending on whether the time dimension is
introduced in the analysis, the recognition methods can be divided into static analy-
sis based on a single frame and dynamic analysis based on a sequence. The former is
suitable for static images, while the latter is more suitable for capturing the evolution
of expressions in videos. It is worth noting that the recognition of facial expressions
not only relies on technical means, but is also closely related to the understanding of
the classification and coding of expressions themselves. Research in this field provides
a theoretical basis for the subsequent classification and coding of facial expressions, and
also promotes the continuous optimization of related algorithms.

As an important part of human behavior, the importance of facial expressions has
been fully verified in behavioral science. Studies have shown that in information trans-
mission, language content accounts for only 7%, voice and tone contribute 38%, and facial
expressions have an impact on communication effectiveness of up to 55%. This finding
highlights the key role of facial expression analysis in understanding human behavior
and emotional communication. Since Darwin, this topic has attracted the attention of
many psychologists and computer scientists and has developed into a vibrant research
direction in the field of pattern recognition. The rise of automatic facial expression
analysis is due to the pioneering contributions of many scholars, who gradually built
a framework for analyzing basic emotional expressions through visual clues in images
and videos. These efforts have not only enriched academic research, but also opened
up new possibilities for application scenarios such as cross-language communication and
human-computer interaction.

Before delving into the technical details of facial expression analysis, it is necessary
to briefly introduce the classification and encoding of facial expressions. Research in
this field is largely inspired by the basic emotion theory, which holds that humans have
six universally recognizable emotional expressions: happiness, surprise, disgust, fear,
anger, and sadness. These expressions can be systematically described by facial action
units, each of which corresponds to a specific combination of muscle movements. This
encoding system provides a standardized reference framework for subsequent recognition
algorithms. However, the impact of cultural factors on expression encoding cannot be
ignored. In different cultural backgrounds, the same action unit may carry different
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Figure 3.5: Human information transmission

emotional meanings, which brings new challenges to algorithm design.
Based on the above background, the design and optimization of facial expression

recognition algorithms have become the focus of research. Common algorithms are usu-
ally based on basic emotion theory, and identify the corresponding expression categories
by analyzing facial features in static images or video sequences. For example, algo-
rithms based on geometric features may focus on the displacement of facial key points,
while algorithms based on appearance pay more attention to the extraction of texture
changes. In addition, in order to improve the adaptability of the algorithm, researchers
have begun to explore dynamic sequence analysis methods to capture the evolution of
expressions using time information. The continuous development of these algorithms
has not only improved the recognition accuracy, but also provided technical support for
cross-cultural expression analysis. For example, by extracting facial muscle movement
areas through optical flow method and mapping them to action units, the differences in
expression patterns in different cultures can be further analyzed. This method, combined
with machine learning techniques such as decision trees, can generate classification rules
for specific cultures, thereby significantly improving the performance of the algorithm.

Facial expression analysis has undergone a profound evolution from early theoretical
exploration to today’s technical application. Its core lies in capturing and interpreting
subtle changes in human faces through computer systems, and the realization of this
process is inseparable from the in-depth understanding of expression classification and
encoding and the continuous innovation of recognition algorithms. In the following con-
tent, we will further explore the specific implementation methods of these key elements
and their application potential in practical scenarios.

3.2.1 Classification and encoding of facial expressions

Facial expression is one of the important ways to express emotions. It transmits emo-
tional information through the movement of different facial muscles. In the classification
and coding research of facial expressions, the Facial Action Coding System (FACS) is
one of the most widely used frameworks. The system was proposed by Ekman and aims
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to provide human observers with a set of standardized tools to describe and analyze
facial activities.

FACS characterizes facial expressions by identifying visual action units (AUs) of fa-
cial muscles. It is a comprehensive coding system based on anatomy that can effectively
describe six basic emotional expressions, including joy, sadness, anger, surprise, fear,
and disgust. Ekman et al. established a set of AUs containing 44 basic action units and
numbered them according to a standardized list. Among these AUs, the researchers se-
lected the 18 most distinctive action units to accurately describe the characteristics of the
six basic emotional expressions. The FACS coding system not only allows researchers to
record facial expressions in a systematic way, but also describes more complex emotional
states through AU combinations.

In the field of facial expression recognition, the FACS encoding program provides a
method based on language description to make the encoding of facial expressions more
standardized and systematic. Each facial expression is composed of one or more AUs,
which may show different degrees of emotional intensity. For example, the classic Emo-
tion Facial Action System (Emotion FACS, EMFACS) maps facial expressions to specific
emotion categories through AU combinations based on FACS rules. This method has
made facial expression analysis widely used in many fields such as psychology, computer
vision, and human-computer interaction.

Most Automatic Facial Expression Analysis (AFEA) systems focus on recognizing a
small set of typical emotional expressions, such as disgust, fear, joy, surprise, sadness,
and anger. This classification method is influenced by Darwin’s theory of emotional
expression and is supported by the research of Ekman and Friesen and Izard et al., who
believe that each emotion has a corresponding typical facial expression. However, in
daily life, facial expressions are often more subtle, and the expression of emotions relies
more on subtle changes in specific areas of the face. For example, the lips may be closed
in anger, the corners of the mouth may droop slightly in sadness, and the eyebrows
may be raised in surprise. Small movements of the eyebrows, eyelids, or mouth play an
important role in emotional expression and paralinguistic communication. For example,
a slight raise of the eyebrows may indicate doubt or concern.

In order to capture these subtle emotional changes more accurately, researchers have
proposed more fine-grained facial expression recognition methods. FACS, as a system
based on manual observation, can detect and encode these subtle changes in facial move-
ments. Professionally trained observers can manually encode various facial expression
features by analyzing video images in slow motion. The FACS system consists of 44
action units, 30 of which are related to the contraction anatomy of specific facial mus-
cles, and the remaining 14 action units are classified as miscellaneous actions. These
AUs can appear symmetrically or asymmetrically. During the FACS encoding process,
researchers usually use a five-level scale to assess the intensity of muscle contraction to
more finely portray changes in facial expressions.

Although Ekman and Friesen pointed out that certain AU combinations can represent
typical expressions of emotions, FACS itself is not an emotion classification system, but a
purely descriptive coding system. In order to convert facial expression codes into specific
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emotion categories, researchers have developed derivative systems such as EMFACS,
which allow facial expressions to be mapped to specific emotion categories (such as joy
or anger), or even further summarized into broader emotion categories (such as positive
or negative emotions).

The shape, texture, color, and hair distribution of the face vary significantly depend-
ing on the individual’s gender, ethnic background, and age. For example, infants’ skin is
usually smoother and less textured, and their eyebrows and hair are relatively sparse or
even absent. At the same time, different ethnic groups also differ significantly in facial
features. For example, Asians and Northern Europeans differ significantly in the shape
of the eye opening and the contrast between the iris and sclera. These differences may af-
fect the robustness of eye tracking and facial feature analysis. In addition, items such as
beards, glasses, or jewelry may obscure facial features, further complicating facial anal-
ysis. However, despite the important impact these individual differences in appearance
may have on facial analysis, research on their impact is still relatively limited.

Facial analysis studies on people of different ages have shown that many traditional
algorithms perform poorly when applied to infants. For example, the optical flow and
high gradient component detection algorithms optimized for young adults are signifi-
cantly less applicable to infants. This difference mainly comes from the lack of skin
texture on infants’ faces, more fat tissue, underdeveloped facial structures, and the lack
of transient wrinkles. All of these factors lead to significant differences in the performance
of infants and adults in facial analysis tasks. Therefore, establishing robust algorithms
that can adapt to different ages, genders, and ethnic backgrounds is a key challenge in
facial expression research.

In addition to individual differences in appearance, facial expressions also have in-
dividual characteristics. These differences are manifested in facial plasticity, specific
morphology, intensity of expression, and frequency and rate of overall expression. Stud-
ies have shown that these individual characteristics can not only be used for identity
recognition, but also as biometric features to enhance the accuracy of facial recogni-
tion algorithms. These expressive differences are particularly evident in individuals with
damage to the facial nerves or central nervous system. Therefore, when developing facial
expression analysis algorithms, it is necessary to cover a wide range of sample groups,
including people of different nationalities, ages, and genders, while also considering the
presence or absence of facial hair, the wearing of jewelry or glasses, and the expression
characteristics of normal people and clinically impaired individuals.

Traditional facial expression analysis usually assumes that expressions are unitary
and start and end in a neutral state. However, in reality, the dynamic changes of facial
expressions are much more complicated than this assumption, especially at the level of
action units (AUs). Action units often appear in combinations and may show serial
dependencies. The transition from one action unit or action combination to another
action unit does not necessarily go through a neutral state. Therefore, in order to
build a robust facial analysis system, it is necessary to parse the behavioral flow of
expressions and include enough training data of dynamically combined action units.
The combinations of these action units may be additive or non-additive.
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Figure 3.6: Action unit AU12

A typical example of an additive combination is a smile (AU 12) with an open
mouth. With different degrees of lip separation and jaw lowering, this combination can
be encoded as AU 12 + 25, AU 12 + 26, or AU 12 + 27. For example, in the case of AU
12 + 27, the facial analysis system needs to be able to detect different levels of mouth
opening and continue to recognize AU 12 despite different intensity changes. Detection
of such dynamic changes is critical to improving the accuracy of facial analysis.

In contrast, non-additive combinations are more complex and often involve co-articulation
effects. A typical example is the combination of AU 12+15, which often appears in em-
barrassing situations. Although AU 12 acts to lift the cheeks and corners of the mouth,
the downward pressure of AU 15 affects the movement of the corners of the mouth,
resulting in the final facial appearance change being highly dependent on the timing
relationship. If the actions of AU 12 and AU 15 occur simultaneously, the visual ef-
fect will be different from when they occur sequentially, which is usually more common.
Therefore, in order to improve the accuracy of facial expression analysis, the database
should include separate action units, as well as cover additive and non-additive action
combinations, especially those involving co-articulation effects.

The intensity variation of facial movements is also an important dimension of expres-
sion analysis. Manual FACS coding systems usually use a 3-point or 5-point intensity
scale to describe the intensity variation of action units. For example, in the eye region,
AU 41 (slightly droopy eyelids), AU 42 (moderate droopy eyelids), AU 43 (completely
closed eyelids), and AU 45 (blinking) together constitute a series of different degrees of
eye closure. Computer vision researchers have also explored automated intensity repre-
sentation methods, such as Essa and Pentland using optical flow to analyze the intensity
variation of smiles, and Kimura and Yachida quantifying the intensity variation of spe-
cific emotional expressions. In addition, Lien et al. proposed an intensity quantification
method for action units, while Tian et al. successfully distinguished different intensi-
ties of eye closure through Gabor features and artificial neural networks, with reliability
comparable to that of human coders. Further studies, such as the work of Bartlett and
colleagues, clarified the relationship between marginal changes in classifier output and
expression intensity by analyzing expression dynamics, while Yang et al. transformed
the intensity estimation problem into a ranking problem and used the RankBoost model
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for intensity grading. These research results show that it is feasible to automatically
identify the intensity of facial movements using computer vision technology and can
help improve the accuracy of facial expression analysis.

In the study of facial expression recognition, the distinction between deliberate and
spontaneous expressions is also crucial. Most facial expression databases are collected
by asking subjects to perform specific expression tasks, and the facial movements under
these controlled conditions may differ significantly in appearance and timing from spon-
taneous expressions in daily life. Neurophysiological studies have shown that deliberate
facial movements are mainly controlled by pyramidal motor pathways, while sponta-
neous expressions involve extrapyramidal motor pathways. This difference in control
mechanism leads to the fact that deliberate expressions are usually inferior to spon-
taneous expressions in terms of motor refinement and symmetry. For example, most
people are able to spontaneously raise their outer eyebrows while keeping their inner
eyebrows still, but few people can consciously complete this action. Similarly, sponta-
neous drooping of the corners of the mouth (AU 15) and the lifting and narrowing of the
inner eyebrows (AU 1 + 4) are typical characteristics of sadness, but it is difficult for
untrained individuals to actively make these expressions. Therefore, the lack of sponta-
neous expression data in the training data of facial expression analysis systems may lead
to reduced robustness of the model in practical applications. Furthermore, since many
pattern recognition methods (e.g., hidden Markov models) rely on the temporal dynam-
ics of expressions, expression databases need to cover both spontaneous and intentional
expressions to ensure that the algorithms can adapt to different modes of expression.

In addition to the changes in action units and intensity, facial expression analysis is
also affected by external environmental factors. Among them, facial orientation, head
posture, scene complexity and interactive environment are all important factors affecting
facial recognition and expression analysis. In the field of facial recognition, a lot of
research has been done on facial postures at different angles. For example, the FERET
database covers frontal and oblique angles to develop recognition methods that are robust
to posture changes. However, in the field of facial expression analysis, multi-view research
is relatively rare. Most existing methods assume that the face only rotates slightly
within the plane, and do not fully consider the large three-dimensional rotation of the
head. In fact, many facial expressions are usually accompanied by changes in head
posture. For example, Kraut and Johnson’s research found that smiles often appear
when people turn their heads to face others, while Camras et al.’s research shows that
babies’ surprised expressions are usually accompanied by the movement of tilting their
heads back. Therefore, to build a posture-invariant facial expression analysis system,
it is necessary to introduce image data containing significant head posture changes and
combine it with a three-dimensional model or deep learning method to improve the
system’s adaptability to different perspectives.

In addition, the complexity of the background in the real environment is also a
major challenge for facial expression analysis. Many current databases have images with
a single background and usually only one individual, while in real application scenarios,
the interaction between people is a factor that cannot be ignored. For example, in
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social scenarios, facial expressions may be affected by other individuals, and may even
present different visual characteristics due to environmental factors (such as lighting
changes, occlusion, etc.). Therefore, in order to improve the practicality of the automatic
expression recognition system, it is necessary to cover a variety of environmental variables
in the database construction process, including different lighting conditions, background
complexity, and multi-person interaction scenarios, to ensure that the model can adapt
to the diverse needs of real-world applications.

3.2.2 Facial expression recognition algorithm

In the facial expression recognition algorithm, the preprocessing algorithm undertakes
many basic tasks such as data cleaning, image enhancement and feature highlighting.
Its role in the entire system is like a cornerstone, which directly determines the effect of
subsequent feature extraction and pattern recognition. Facial image acquisition is often
affected by various factors such as illumination, noise, posture change and occlusion.
Therefore, a series of preprocessing operations must be performed on the original image
at the data input stage to improve the image quality and the robustness of the system.
The preprocessing algorithm must first denoise the input image. Since various noises
such as salt and pepper noise and Gaussian noise are easily introduced during camera
equipment, ambient lighting and image transmission, it is necessary to use filtering
algorithms to smooth and reduce noise on the image. Commonly used median filtering,
mean filtering and Gaussian filtering play an important role in balancing noise removal
and detail retention. After denoising, there may still be local brightness imbalance
problems in the image due to uneven ambient lighting or overexposure. At this time,
histogram equalization or adaptive histogram equalization technology is needed to adjust
the contrast of the image, so that facial features are more obvious and reduce recognition
errors caused by different lighting conditions.

After image denoising and enhancement, the next step is to locate and correct the
facial area. Facial detection technology plays a key role here. The facial area in the
image is located through the detection algorithm, eliminating background interference
and providing clear area information for subsequent processing. The detection method
can use traditional cascade classifiers based on template matching or Haar features,
or modern deep learning techniques such as convolutional neural networks to quickly
and accurately locate the facial area. After the face is detected, correction operations
are essential due to the diversity of different shooting angles and facial postures. By
performing geometric transformations on the facial image, such as affine transformation
or perspective transformation, the facial image is rotated, scaled and normalized, so
that each facial organ (eyes, nose, mouth, etc.) is in a standardized position, so that the
subsequent feature extraction process can more effectively capture the subtle differences
in expression changes.

Iresized = Resize(Ioriginal, W, H) (3.2)

Normalization is an important part of the preprocessing stage. Since there are large
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differences in factors such as size, resolution, and shooting distance of different images,
unifying the images to a standard size helps improve the robustness of the system. The
commonly used normalization method not only includes the unification of geometric di-
mensions such as formula (3-2), but also covers the standardization of grayscale values
and color channels. Grayscale normalization technology can reduce grayscale fluctu-
ations caused by lighting conditions, while color space conversion can convert image
information from RGB space to a color space that is more suitable for describing fa-
cial details, such as HSV or YCbCr, which has obvious advantages for the subsequent
extraction of expression features.

In addition to the above basic preprocessing operations, in recent years, more and
more studies have introduced deep learning-based preprocessing modules to address the
special challenges in facial expression recognition. Such modules can not only achieve
more sophisticated processing based on traditional image enhancement and correction,
but also adaptively learn the optimal preprocessing parameters from the data. Through
end-to-end training, the preprocessing network and the subsequent feature extraction
network can be jointly optimized, so that the entire system can effectively suppress noise
and environmental interference while retaining key information. Such a joint training
strategy greatly improves the system’s adaptability in complex scenes, especially under
low illumination and background clutter, and can significantly improve the accuracy and
robustness of facial expression recognition.

In practical applications, the preprocessing algorithm must also consider the issue
of real-time performance. Facial expression recognition systems are often used in fields
such as human-computer interaction, intelligent monitoring, and emotional computing,
and have high requirements for response speed. Therefore, under the premise of en-
suring the preprocessing effect, the algorithm designer needs to optimize the algorithm
to reduce the computational complexity. For example, on an embedded platform with
limited hardware resources, a lightweight filtering algorithm and a simple and efficient
facial detection model can be used, combined with region cropping and multi-threaded
processing strategies to achieve real-time processing requirements. This type of opti-
mization requires not only theoretical proof of the effectiveness of the algorithm, but
also a large number of experimental verifications to ensure that the system can work
stably in different scenarios.

In addition, the preprocessing algorithm also plays an important role in data en-
hancement. Facial expression recognition datasets often have problems with insufficient
sample numbers or uneven sample distribution. In the preprocessing stage, data can
be augmented through operations such as image rotation, scaling, translation, and flip-
ping, thereby enriching the training data and improving the generalization ability of the
model. Data enhancement can not only alleviate the overfitting problem, but also make
the model more robust when facing various angles, postures, and expression changes. It
is worth mentioning that in the process of data enhancement, it is very important to
maintain the authenticity and coherence of the facial structure, otherwise it may intro-
duce noise that does not conform to the actual situation and affect the training effect of
the model.
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In response to different scenarios and application requirements, the preprocessing al-
gorithm may also fuse multiple information for collaborative optimization. For example,
in a video sequence, changes in facial expressions are often continuous and sequential.
Therefore, based on the preprocessing of a single-frame image, fusing time domain in-
formation to jointly process consecutive frames can effectively reduce the information
loss caused by single-frame processing. At the same time, combined with motion es-
timation and optical flow analysis technology, facial micro-expression changes can be
captured more accurately, thereby improving the sensitivity and accuracy of recogni-
tion. This preprocessing method based on spatiotemporal information provides a new
idea and technical path for solving the problem that static images cannot reflect the true
emotional state.

Although the preprocessing module is at the forefront, its complexity and diversity
make it an indispensable part of the entire facial expression recognition system. From
image acquisition, noise suppression, illumination correction, area positioning, geomet-
ric transformation, normalization processing to data enhancement, each step directly
affects the final recognition effect. Researchers are constantly exploring new algorithms
and technical means to cope with increasingly complex application scenarios. With the
continuous development of deep learning and computer vision technology, the prepro-
cessing algorithm will develop in a more intelligent, automated and efficient direction in
the future. It will not only play a role in traditional image processing, but also form a
seamless connection with subsequent feature extraction and classification modules, and
jointly promote the widespread application of facial expression recognition technology
in intelligent interaction, emotional computing and other fields.

In the facial expression recognition system, feature extraction algorithm plays a core
role. Its task is to extract the most discriminative facial information from the pre-
processed image and provide a reliable basis for subsequent classification and decision-
making. With the continuous development of computer vision and machine learning
technology, traditional manual feature extraction methods and modern automatic fea-
ture extraction methods based on deep learning have achieved remarkable results in their
respective fields. Traditional methods mainly rely on well-designed feature descriptors
to characterize facial expression changes by capturing local texture, shape, edge and
other information. For example, Local Binary Pattern (LBP) is widely used in facial
expression recognition as an effective texture feature descriptor. This method converts
subtle grayscale changes in the image into digital symbols by binary encoding the local
area, thereby capturing subtle expression changes. At the same time, Gabor wavelet
transform has also become an important means of feature extraction due to its sensi-
tivity to local spatial frequency and directional information. Using Gabor filter groups
to decompose facial images in multiple scales and directions can obtain rich texture and
edge information, providing strong support for expression classification. Another widely
studied method is the Histogram of Oriented Gradients (HOG), which captures the ge-
ometric structure and edge features of the face by counting the distribution information
of the gradient direction in the image. Although traditional feature extraction methods
perform well under certain conditions, they usually rely on expert knowledge and man-
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Figure 3.7: VGG neural network

ual design, have poor adaptability to environmental changes, lighting fluctuations, and
posture changes, and have certain limitations when processing large-scale data.

With the rapid development of deep learning technology, feature extraction methods
based on convolutional neural networks have gradually become mainstream. Deep learn-
ing methods can be trained end-to-end on large-scale data sets, and automatically learn
feature representations suitable for facial expression recognition through a multi-layer
network structure. Each layer in the network can abstract and transform the input image
at different levels, thereby capturing the gradual features from low-level texture infor-
mation to high-level semantic information. Using a large amount of annotated data for
training, deep learning models can not only automatically adapt to changes in lighting
and posture, but also optimize the synergy between feature extraction and classification
modules through joint training to improve the overall recognition accuracy. In recent
years, many researchers have begun to focus on the fusion method of deep features and
traditional manual features, and achieve better recognition results by complementing
the advantages of the two. This method utilizes the ability of deep networks to learn
big data to a certain extent, while retaining the advantages of traditional methods in
capturing local details, making the system more robust and generalizable when dealing
with complex emotional expressions and micro-expression recognition.

In practical applications, the features of facial expressions are not limited to the
features of static images, but also include dynamic information and temporal features.
Since the changes in facial expressions are often continuous and dynamic, how to ex-
tract effective spatiotemporal features from continuous frames has become an important
direction of current research. Researchers have tried to build a hybrid network model
that can capture the characteristics of time evolution by combining the methods of con-
volutional neural networks and recurrent neural networks. This type of model can not
only extract spatial features in a single frame image, but also reveal the dynamic process
of expression changes through time series modeling, thereby more accurately reflecting
the subtle changes in emotions. At the same time, optical flow analysis technology has
also been introduced into dynamic feature extraction. By calculating the pixel motion
information between continuous frames, it helps to reveal the subtle motion changes in
facial micro-expressions and provide richer information support for subsequent emotion
recognition. The extraction of dynamic features not only improves the system’s abil-
ity to respond to rapid changes in expression, but also provides a new perspective for
capturing complex emotional states.
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On the other hand, the research on feature extraction algorithms also needs to con-
sider the problem of feature dimensionality reduction and selection. In high-dimensional
data, there is a lot of redundant information and noise. Directly using high-dimensional
features for classification often leads to increased computational complexity and even
causes the dimensionality disaster. In order to solve this problem, dimensionality re-
duction methods such as principal component analysis and linear discriminant analysis
are widely used in facial expression recognition. By transforming and screening high-
dimensional features, the most discriminative low-dimensional feature representation can
be extracted, thereby reducing computational complexity and improving the generaliza-
tion ability of the classifier. In recent years, with the development of kernel methods
and sparse coding technology, some nonlinear dimensionality reduction methods have
also been proposed. These methods can better capture the nonlinear relationship be-
tween features and provide more refined feature descriptions for complex expression
recognition. Feature selection plays a vital role in the entire recognition system. Only
by retaining the features that are most sensitive to emotional states can high-precision
recognition effects be achieved in practical applications.

In addition, in order to deal with the sample imbalance problem in facial expression
recognition, the feature extraction algorithm also needs to combine data enhancement
technology to expand the training data. Data enhancement is not limited to geometric
transformations such as image rotation, scaling, and translation, but also involves the
adjustment of color, contrast, and lighting conditions, so that the model can maintain
a high recognition accuracy in a variety of environments. Using data enhancement to
generate diverse training samples can effectively alleviate the overfitting problem caused
by insufficient samples or uneven category distribution, thereby improving the robust-
ness of the entire system. In the feature extraction stage, combining data enhancement
technology with feature extraction algorithms not only helps to improve the generaliza-
tion ability of the model, but also provides more solid data support for the subsequent
recognition of complex emotional expressions.

In facial expression analysis systems, the final step is to recognize facial expressions
based on the extracted features. To accomplish this task, researchers have explored and
applied a variety of classification algorithms, including neural networks, support vector
machines, linear discriminant analysis, K-nearest neighbors, multinomial logistic regres-
sion, hidden Markov models, tree-enhanced naive Bayes, and RankBoost. In addition,
some systems rely solely on rule-based classification methods, which make inferences
based on the definition of facial action units. Depending on how the data is processed,
expression recognition methods can be roughly divided into frame-based recognition
methods and sequence-based recognition methods.

Frame-based recognition methods only use the information of the current frame for
classification. They can analyze a single frame independently or with the help of a
reference image (such as a neutral facial image) for comparison. This method does not
rely on time information, so the computational complexity is low and it is suitable for
real-time applications. In contrast, sequence-based recognition methods use time series
information to analyze the evolution of expressions across multiple frames, which can
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Figure 3.8: Facial expression classification algorithm

more accurately capture the dynamic characteristics of facial expression changes. This
type of method is usually combined with time series processing techniques such as hidden
Markov models and recurrent neural networks to improve recognition accuracy.

Frame-based expression recognition methods do not consider temporal information,
only use the information of the current input image, and independently process a single
frame or a frame in the entire sequence. This method has been widely used in facial
expression recognition tasks and has been extensively studied in the literature. Several
research teams have used different classification algorithms for expression recognition, in-
cluding neural networks, support vector machines, linear discriminant analysis, Bayesian
networks, and rule-based classifiers.

For example, Tian et al. used a neural network-based approach to recognize facial
action units. They used a three-layer neural network with one hidden layer and trained
it using a standard back-propagation method. The system is able to process expressions
in the upper and lower parts of the face, and can simultaneously process normalized
geometric features, appearance features, or a combination of both. The recognition
results are output in the form of facial action units, and multiple facial action unit com-
binations can be recognized simultaneously, which gives it an advantage over traditional
methods. In experiments, the system achieved an overall recognition rate of 95.5% when
recognizing neutral expressions and 16 facial action unit combinations.

Support vector machines have also been applied to facial expression recognition. For
example, a study used a two-stage classifier to identify neutral expressions and six basic
emotions. First, they trained a set of pairwise classifiers so that each support vector
machine could distinguish between two different emotions. Subsequently, the researchers
tested different methods, such as nearest neighbor classification, simple voting, and
multinomial logistic regression, to convert the representations produced in the first stage
into probability distributions to ultimately determine the expression category. Among
them, the multinomial logistic regression method achieved the best recognition rate
of 91.5% in independent tests. In addition, Wen and Huang used another two-stage
classification method. They first used a neural network to classify expressions into
neutral and non-neutral categories, and then used a Gaussian mixture model to further
subdivide non-neutral expressions. Experiments showed that the average recognition
rate of this method in independent tests of people was 71%. At the same time, Yang et
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al. used the RankBoost method for expression recognition and used L1 regularization
technology to optimize model performance. On the Cohn-Kanade database, this method
achieved a recognition rate of 88

Unlike frame-based methods, sequence-based expression recognition methods use the
temporal dynamic information of facial expressions for classification. Since the natural
change of expression is often a continuous process, sequence-based methods can more
accurately characterize the evolution of expression and reduce errors caused by single-
frame misjudgment. To this end, researchers have adopted technologies such as hidden
Markov models and recurrent neural networks to improve the accuracy of recognition.
For example, some studies use hidden Markov models for facial expression recognition,
which can effectively model the temporal changes of expression and show high accuracy
in facial action unit recognition tasks. Especially in datasets involving spontaneous
expressions, hidden Markov models can better cope with the challenges caused by head
movement, illumination changes, and different speeds of expression changes due to their
powerful temporal modeling capabilities. In addition to hidden Markov models, recurrent
neural networks are also widely used in sequence-based expression recognition tasks. For
example, variants such as long short-term memory networks can effectively model long-
term dependencies. Experimental results on multiple datasets show that this method
can achieve high accuracy when dealing with expression recognition tasks.

In addition, rule-based classifiers are also used for sequence-based expression recog-
nition tasks. This method combines the definition of facial action units, analyzes time
series data, and infers expression categories based on established rules. Although this
method performs well in some cases, it is gradually replaced by data-driven methods
in recent years because the formulation of rules is complex and difficult to adapt to
the changing actual application scenarios. The researchers’ rule-based method achieved
high-precision recognition of blinks, blink tremors, and non-blinks, with an overall ac-
curacy of 98%. Among them, blink tremors are defined as two or more rapidly repeated
blinking behaviors, during which the eyes are only partially open. In the classification
task of blinking and non-blinking, the system achieved 100% accuracy.

However, the classification task of the eyebrow region is quite challenging. For the
recognition of the three cases of eyebrow raising, eyebrow lowering and no eyebrow
movement, the system’s accuracy is only 57%. This low accuracy is mainly attributed
to the small number of samples of eyebrow lowering, which makes it impossible to make
reliable point estimates. If the eyebrow lowering category is removed from the analysis,
the recognition accuracy can be improved to 80%. It is worth noting that human FACS
coders also show similar difficulties in the same task, with only about 50% consistency in
the recognition of eyebrow lowering. Factors such as low frequency of eyebrow lowering,
occlusion of glasses, and forward head movement together increase the complexity of
coding and recognition.

Among machine learning methods, support vector machines combined with Gabor
feature representation are widely used for facial expression recognition. Gabor features
can effectively capture the changes in local facial texture and provide rich information
for expression classification. A system first uses SVM for preliminary classification,
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and then uses hidden Markov model (HMM) to further model the dynamic changes
of AU (action unit). There are two main ways to apply HMM: one is to directly use
Gabor features as input, and the other is to use the output of SVM as input. After using
principal component analysis (PCA) to reduce the Gabor features to 100 dimensions, the
system trained two HMMs for the classification of blinking and non-blinking, and used
leave-one-out cross-validation. Under the configuration of five states and three Gaussian
models, the HMM directly based on Gabor features achieved a recognition rate of 95.7%.
When using SVM output as input, the recognition rate is further improved to 98.1%.

For the recognition task of the eyebrow region, HMM combined with Gabor fea-
tures after PCA dimension reduction and HMM combined with SVM output achieved
accuracies of 70.1% and 66.9% respectively. When the category of eyebrow descent
was excluded, the recognition accuracies increased to 90.9% and 89.5% respectively.
This shows that in the classification of eyebrow movement, the performance of existing
methods still has room for further improvement, especially the optimization of sample
imbalance and feature extraction.

In addition to rule-based and SVM-based methods, Bayesian network classifier is also
an important facial expression recognition method. This method provides probabilistic
inference capabilities for different expressions by modeling the dependencies between
features. A study evaluated multiple Bayesian network classifiers for the first time, in-
cluding Gaussian Naive Bayes, Cauchy Naive Bayes (NB-Cauchy), and Tree-augmented
Naive Bayes (TAN). These classifiers performed differently in frame-based expression
recognition. In particular, the TAN classifier performed best in the classification of neu-
tral expressions and six emotion-specific expressions due to its ability to model feature
dependency structures. In an individual-independent test on the Cohn-Kanade database,
the TAN classifier achieved a recognition rate of 73.2%.

3.3 Body language recognition

Humans interact with others and the surrounding environment through multiple senses
such as vision, hearing and touch. Among these perception modes, the visual modality
is particularly important in modern human-computer interaction and has become the
core input and output channel of the next generation of intelligent systems. With the
development of technology, the recognition and understanding of human body language
has gradually received attention. Body language, as a natural non-verbal communication
method, is widely present in human daily life. From gestures when talking, postures
when thinking, to movements when working, body language is not only an important
medium for information transmission, but also carries rich emotions and intentions.

In recent years, the gaming and entertainment industry has become one of the main
driving forces for the advancement of human-computer interaction technology. Many in-
novative interaction methods abandon traditional physical controllers and rely on natural
human movements to achieve interaction. For example, the Kinect project allows users
to interact with game consoles through gestures and voice commands. This method not
only provides an immersive entertainment experience, but also provides an important
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Figure 3.9: Action recognition

application scenario for the development of body language recognition technology.
In addition to the field of games, body language also plays a key role in emotional

expression and social communication. Psychological research shows that human emo-
tional states are often conveyed through multiple modalities such as facial expressions,
voice intonation, and body movements. Among these modalities, body movements are
an important clue for identifying emotions because of their intuitiveness and authen-
ticity. Researchers have found that body movements are often accompanied by specific
emotional changes, such as exaggerated gestures when excited and drooping postures
when sad. By analyzing these body clues, the emotional state of an individual can be
effectively inferred.

However, despite the rich research results accumulated in the field of emotion recog-
nition in the field of psychology, automated body language recognition technology still
faces many challenges. Past research has focused on emotion recognition of facial ex-
pressions and voice, but relatively less attention has been paid to body movements. In
addition, most existing automatic emotion analysis systems are mainly based on static
features, ignoring the dynamic characteristics of emotional expression. The expression of
emotions usually goes through stages such as onset, peak, and decay, and each stage con-
tains rich information. How to accurately capture these temporal dynamics has become
a major problem in automated body language recognition.

In order to solve these problems, computer scientists and human-computer interac-
tion researchers have proposed a variety of methods in recent years to try to achieve
automatic analysis of body language. The recognition of body language includes key
links such as action detection, feature extraction and semantic parsing. In the action de-
tection stage, the system captures the movement trajectory of the human body through
sensors such as cameras to generate raw data. In the feature extraction stage, repre-
sentative motion features are extracted from the raw data using technologies such as
spatiotemporal interest points and skeleton tracking. Finally, these features are ana-
lyzed and modeled through methods such as deep learning to achieve semantic parsing
of the action.



76 3. VISUAL INTERACTION TECHNOLOGY

Semantic parsing of body movements is the core of body language recognition. It
involves mapping low-level motion data to high-level semantic labels, such as identifying
whether an action is waving, pointing, or hugging. In addition, the semantics of actions
are often affected by the environment and context. The same gesture may have com-
pletely different meanings in different scenarios, so accurate semantic parsing requires
comprehensive judgment in combination with contextual information. In the applica-
tion of automated body language recognition, emotion recognition is a typical scenario.
For example, by analyzing a person’s body movements, their current emotional state
can be inferred. In practical applications, such technologies have been widely used in
mental health monitoring, human-computer interaction optimization and other fields.
For example, by building a multimodal emotion recognition system and integrating the
emotional features of facial expressions, sounds and body movements, the accuracy of
emotion recognition can be significantly improved.

This chapter will discuss the core issues of body language recognition. First, it
will explore the importance of body language in emotional expression and review the
relevant research progress. Then, it will deeply analyze the semantic parsing methods
of body movements, including key technologies such as action feature extraction, model
training and context fusion. Finally, this chapter will introduce the technical progress
and application cases in the field of body language recognition in recent years, and further
demonstrate the wide application of body language recognition in emotion analysis and
its future development direction.

3.3.1 Semantic parsing of body movements

Body language is an important part of human communication, covering a variety of
non-verbal behaviors such as facial expressions, body posture, gestures, eye movements,
touch, and the use of personal space. Through these subtle movements and gestures, a
person’s inner state is revealed. From the dilation of the iris and the direction of the
gaze to the position of the hands and feet, the way you sit, walk, stand or lie, all of these
can convey emotions and psychological states.

Hands play a particularly prominent role in body language. The posture and position
of the hands often reflect a person’s honesty. For example, when the palms are facing the
other person, it usually conveys honesty and openness; on the contrary, hiding the hands
behind the back may indicate concealment or insincerity. In the communication process,
using open gestures often increases credibility, which is a communication strategy often
used by speakers, debaters and politicians. Research shows that people who use open
gestures are more likely to be seen as friendly and reliable by the audience.

Head posture can also reveal a wealth of emotional information. Listeners nod to
encourage speakers to continue speaking, and this simple action can significantly enhance
the fluency of communication. The frequency and amplitude of nodding can also convey
different messages: gentle nodding usually indicates patience and understanding, while
quick or mechanical nodding may indicate impatience. When the head is kept in a
neutral position, eye contact between people is more natural; when the chin is raised, it
may show confidence, superiority or even arrogance. On the other hand, exposing the
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neck may be a signal of submissiveness, especially in social situations. Women often
tilt their heads unconsciously when expressing interest, and this posture often conveys
gentleness and affinity. A lowered chin may indicate negative emotions or an aggressive
attitude.

In contrast, the torso contains less information in body language, but its direction
and angle are equally important. Facing others directly is often seen as a direct and
confident gesture, but in some cases it can also appear aggressive. Slightly tilting the
body and maintaining a certain angle is often interpreted as a sign of friendliness and
relaxation. Especially when combined with positive signals such as nodding and smiling,
a forward-leaning posture often represents curiosity and interest. To accurately interpret
body language, it is necessary to consider all parts of the body comprehensively. The
body language recognition system is based on this principle, and infers the emotional
state of an individual by analyzing different body signals. This system is widely used in
psychological research, behavioral analysis, intelligent human-computer interaction and
other fields.

It is worth noting that the meaning of gestures often has strong cultural differences.
With the development of globalization and the widespread dissemination of mass media,
certain gestures have gradually shown cross-cultural commonality, especially among the
younger generation. However, the meaning of many traditional gestures still has sig-
nificant cultural differences. For example, the thumbs-up gesture is commonly used to
represent the number "1" in Europe, "5" in Japan, and may be regarded as an offensive
insult in Australia and Greece. Nevertheless, with the mutual influence of global cul-
tures, this gesture has become a universal symbol of approval and recognition in many
regions.

Facial expressions are a common way for humans to express emotions, and their cul-
tural differences are relatively small. Studies have found that American and Japanese
babies show striking similarities in expressing emotions, indicating that facial expressions
of certain emotions may have a biological basis. This phenomenon also applies to many
basic postures and body movements. Nevertheless, further research is still needed to
deeply understand the specific impact of culture and context on body language. Schol-
ars usually focus on body language in a specific activity or scene in order to more clearly
identify behavioral differences in different cultural backgrounds. For example, shaking
hands symbolizes respect and friendliness in many cultures, but in some cultures, phys-
ical contact is not common, and people may choose to nod or put their hands together
to greet. Understanding these cultural differences not only helps cross-cultural commu-
nication, but also provides an important reference for the design of human-computer
interaction systems.

3.3.2 Body language recognition technology

In this section, we will introduce the core components of a system called emotional body
gesture recognition. This system is designed to recognize and infer emotional states by
analyzing human gestures. To show the overall architecture of the system more clearly,
we can refer to the relevant diagram.
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Figure 3.10: Emotional body posture recognition system

The first step of the system is to perform input modeling, that is, to reasonably
characterize human posture and emotional targets. This link is crucial because it directly
determines the design direction of the subsequent automated pipeline. Depending on
different application scenarios and needs, you can choose to use a public database for
training, or you can collect a dedicated data set to improve the pertinence of the model.
The choice of model type affects the performance, accuracy, and real-time performance of
the system, so multiple factors need to be weighed. In addition, the various components
in the system should be compatible with each other, and they need to work together
from data preprocessing to final emotion recognition to ensure the optimization of the
overall performance.

Although different emotional body gesture recognition systems vary in their specific
implementations, they generally follow the same basic steps. First, people need to be
detected from images or videos. The goal of human detection is to segment the hu-
man region from the background, which is the basis for subsequent posture analysis and
emotion recognition. Usually, this task is accomplished by determining the bounding
box of the human body in the image. However, this task is very challenging due to the
non-rigid nature of the human body and the significant differences in posture, clothing,
and body shape. In natural environments, illumination changes and occlusion issues
further increase the difficulty of detection. Human detection usually follows a standard
object detection pipeline, including candidate region extraction, feature representation,
classification, and post-processing steps. The feature extraction stage aims to capture
the key features of the human body so that the model can accurately distinguish be-
tween the human body and the background. With depth information, the search space
can be effectively narrowed down and the process of background segmentation can be
significantly simplified.

In the early human detection methods, Viola and Jones proposed a detection method
based on a cascade structure. This method was originally used for face detection and
achieved efficient detection performance through cascade classifiers. It uses an adaptive
enhancement algorithm to automatically select the best features to reduce the amount
of calculation. Although this method performs well in simple scenes, it has certain
limitations when facing complex backgrounds and occlusions. Subsequently, gradient-
based features became an important development in the field of human detection. The
introduction of the oriented gradient histogram feature provides a robust feature repre-
sentation for object detection tasks. By capturing the distribution of gradient directions
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in the image, this feature effectively overcomes the impact of illumination changes. Since
then, variants of the oriented gradient histogram feature have been widely used in various
detection algorithms and have become an important cornerstone of human detection.

Modeling of human body structure is also an important direction of detection meth-
ods. The deformable component model is a widely used technology that solves the
problem of human posture diversity by modeling local parts of the human body and
their relative positions. In this model, the appearance of local parts is easier to model
than the global appearance, and the training efficiency is improved by sharing com-
ponent features. Although the deformable component model performs well in dealing
with occlusion problems, its complexity may lead to performance bottlenecks in some
scenarios.

In recent years, with the development of deep neural networks, human detection
technology has made significant progress. Through training on large-scale datasets,
deep learning models have shown excellent performance in image feature extraction and
pattern recognition. In some tasks, the detection accuracy of deep neural networks
has surpassed traditional methods. However, deep learning methods usually have high
computational complexity, especially in sliding window detection, which will lead to a
decrease in detection speed. To solve this problem, a common optimization strategy is to
adopt a cascade detection architecture. First, a shallow network is used to preliminarily
screen the candidate regions, thereby greatly reducing the number of candidate regions.
Then, the deeper network only performs further fine detection on high-confidence regions.
This method greatly improves the detection speed while ensuring detection accuracy. In
addition, some studies have proposed a way to introduce complexity penalties in the
optimization objectives to achieve a balance between detection accuracy and computa-
tional cost. By considering complexity loss in the learning process, the system can select
lower-cost features in the early stages and postpone more expensive features to later
stages. This strategy has achieved significant performance improvements in applications
such as pedestrian detection.

Research has shown that head and hand trajectories play a significant role in emotion
recognition. This trajectory representation can divide the emotional valence and arousal
space into four quadrants, namely high valence and high arousal (such as entertainment,
pride), high valence and low arousal (such as pleasure, relief, interest), low valence and
high arousal (such as anger, fear, despair), and low valence and low arousal (such as cold
anger, anxiety, sadness). The accuracy of emotion classification can be further improved
by clustering the trajectory representation into compact emotion groups.

In the study of emotion classification based on body posture, some scholars used
a simple representation of the upper body and divided body postures into six main
emotion categories. These categories are often combinations of emotional states, such
as anger-disgust, anger-fear, anger-happiness, fear-sadness-surprise, uncertainty-fear-
surprise, and uncertainty-surprise. Although the amount of data and the number of
participants in this type of research are limited, by training multiple classifiers, the
results show that the Bayesian network classifier performs best in terms of accuracy.

In addition, for the recognition of dynamic body postures, researchers have compared
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the performance of multiple classification algorithms, including dynamic time warping,
decision trees, and hidden naive Bayes. These algorithms effectively identify emotional
states such as anger, happiness, pleasure, and sadness by modeling and classifying the
time series of body postures. Among them, the combination of the dynamic time warping
algorithm and the nearest neighbor classifier showed a higher accuracy.

Other studies have identified five basic emotional states, including anger, fear, happi-
ness, sadness, and relaxation, through skeletal geometric features. In the comparison of
different classifiers, the ensemble tree algorithm performed well in terms of accuracy. The
use of skeletal features reduces the interference of environmental noise and enhances the
robustness of the model. In some studies, independent modeling methods of body parts
are also widely used in motion analysis. By decomposing and modeling the movements
of parts such as arms, head, and torso, specific emotional expressions can be captured
more accurately. In contrast, the structured body model describes human activities as
a tree structure based on body parts, with each node representing a specific activity.
This method has good interpretability and accuracy in identifying complex emotional
states. At the same time, some researchers have further introduced background infor-
mation and contextual features to enhance the effect of emotion recognition. By using
convolutional neural networks to extract features from the body and background and
fuse them, a variety of emotional states including calmness, affection, fatigue, and pain
can be identified. In addition, this type of method can also output the intensity values
of valence, arousal, and dominance, thereby providing more delicate emotion analysis.

Although body posture plays an important role in emotion recognition, it usually
serves as a complementary signal to facial expression, voice, or context. Psychological
research shows that humans are affected by body posture and situational factors when
recognizing facial expressions. Therefore, combining language and non-verbal commu-
nication channels can form a more complete emotion recognition system. Multimodal
fusion is one of the important development directions in the field of body language recog-
nition in recent years. In some studies, researchers have explored the interaction between
voice and body posture, revealing the impact of emotional state on these two communica-
tion channels. By extracting speech features such as prosody and Mel-frequency cepstral
coefficients and combining them with the movement features of the head, lower body,
and upper body, the interactive dynamics of speech and posture can be effectively mod-
eled. Experimental results show that the multimodal recognition system significantly
outperforms the single-modal system in the accuracy of emotion classification.

Another type of research uses the fusion of gesture and speech for emotion recogni-
tion. In this method, the gesture recognition module uses video and three-dimensional
accelerometers to obtain motion data, while the speech recognition module uses open
source speech recognition software for analysis. The advantages of the multimodal
method are experimentally verified by using weighted criteria and majority voting to
fuse the recognition results of the two modalities. In the study of fusing gesture and
facial expression, the dual-modal emotion recognition method also achieved good results.
The researchers extracted features from the dual video streams of the body and face and
fused them at the feature level and decision level to achieve better recognition perfor-
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mance than a single modality. Further research also combined facial, body and speech
data, adopted early and late fusion strategies, and used statistical classification methods
for recognition, which significantly improved the recognition accuracy. In addition, some
multimodal late fusion structures have also been proposed to cope with the challenge of
emotion recognition in noisy environments. This method combines facial action units
and high-dimensional body posture features through stacked generalization technology
to recognize emotional states such as surprise, happiness, anger, sadness and fear. The
results show that the multimodal method can still maintain high accuracy under noisy
conditions.
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4

Voice Interaction Technology

4.1 Speech Recognition and Synthesis

Speech is not just about words, it also carries a wealth of emotional information. Re-
search shows that when expressing emotions and attitudes, speech itself conveys only
a small part of the information, while non-verbal sound attributes and facial expres-
sions together undertake a larger task of information transmission. Non-verbal sound
attributes, including intonation, pitch, speaking speed, and timbre, can effectively re-
flect the speaker’s emotional state. This feature makes speech play a vital role in daily
communication. In the context of the continuous development of speech technology,
emotional speech conversion has become a research field that has attracted much at-
tention. The goal of emotional speech conversion is to convert the emotional state of
speech from one emotion to another while maintaining the language content and the
speaker’s identity. This technology has a wide range of application scenarios, including
film and television dubbing, virtual assistants, robot interaction, and emotional healing.
By injecting emotions into synthesized speech, the system can present a more natural
and human voice experience.

In recent years, speech synthesis technology has made significant progress in generat-

Figure 4.1: Emotional speech conversion technology
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ing natural and fluent speech. However, many existing systems still have shortcomings
in terms of emotional expression. Although some speech synthesis systems can gen-
erate speech with simple emotion annotations, the emotional dimension and subtlety
expressed in real scenes are far less than that of humans. To solve this problem, emo-
tional speech conversion technology has emerged, which achieves accurate conversion
of emotions by fine-tuning the spectral and prosodic features of speech. At the same
time, speaker voice conversion technology has also made important progress. The core
goal of speaker voice conversion is to convert the speaker identity of the source speech
into the sound characteristics of the target speaker while keeping the semantic content
unchanged. Early studies used statistical methods such as Gaussian mixture models and
partial least squares regression to establish a mapping relationship between source fea-
tures and target features. With the rise of deep learning, neural network-based methods
have gradually become mainstream, including deep neural networks, recurrent neural
networks, generative adversarial networks, and sequence-to-sequence models with at-
tention mechanisms. These methods not only improve the conversion quality, but also
achieve excellent performance in cross-speaker and cross-emotion tasks.

It is worth noting that both emotional speech conversion and speaker speech conver-
sion involve the core technology of speech signal processing. Speech signal processing
includes steps such as speech feature extraction, noise reduction, and signal enhance-
ment, which provide a basis for subsequent speech modeling and conversion. In emotional
speech conversion, in addition to the conversion of spectral features, the adjustment of
prosodic features is particularly important. Prosodic features include pitch curve, speech
rate change, and energy distribution, which directly affect the emotional expression of
speech. In contrast, speaker speech conversion pays more attention to the personalized
characteristics of sound, such as formant frequency and vocal tract length. In recent
years, research on emotional speech conversion based on non-parallel training data has
also made significant progress. Non-parallel data refers to data sets where the source
emotion and the target emotion do not have a direct correspondence. Researchers have
solved the problem of traditional methods’ dependence on parallel data through methods
such as domain translation, multi-task learning, and speaker disentanglement. In addi-
tion, the introduction of deep generative models such as generative adversarial networks
and autoencoders also provides powerful modeling capabilities for emotional speech con-
version.

In practical applications, emotional speech conversion not only needs to make break-
throughs in the accuracy of emotion conversion, but also needs to meet application
requirements in terms of naturalness and real-time performance. For example, in human-
computer interaction scenarios, the system needs to quickly respond to the user’s emo-
tional changes and achieve an emotion-driven conversation experience. In the future,
with the further development of speech recognition and synthesis technology, emotional
speech conversion systems that combine multimodal emotion recognition and natural
language understanding will gradually become a reality. The following content will fur-
ther explore the basics of speech signal processing and the latest progress in speech
recognition technology in recent years. By gaining a deep understanding of these key
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Figure 4.2: Feature extraction in speech processing

technologies, we can more comprehensively grasp the core principles and application
prospects of speech emotion conversion and speaker voice conversion.

4.1.1 Basics of Speech Signal Processing

Speech recognition is a technology that integrates knowledge from multiple fields such
as linguistics, computer science, and electrical engineering. Its core goal is to convert
human speech into text or instructions, and it is widely used in scenarios such as voice
assistants, smart homes, healthcare, and customer service systems. The implementation
of speech recognition involves a series of complex signal processing and machine learning
technologies, including speech acquisition, preprocessing, feature extraction, acoustic
modeling, language modeling, and ultimately speech-to-text conversion.

The processing of speech signals usually starts with the conversion of analog signals
to digital signals. Speech is a continuous analog signal that needs to be converted into
digital form through sampling and quantization techniques. The sampling rate deter-
mines the time resolution of the signal, while the number of quantization bits affects
the amplitude resolution of the signal. Generally, the sampling rate of speech signals is
16kHz or 44.1kHz, and the quantization accuracy is usually 16 bits. After signal conver-
sion, speech preprocessing is an indispensable link. The main goal of preprocessing is to
improve the quality of the signal and reduce the interference of noise. Common prepro-
cessing steps include noise suppression, silence detection, endpoint detection, and signal
enhancement. Noise suppression technology can remove background noise through fre-
quency domain or time domain methods, while silence detection and endpoint detection
are used to locate the start and end positions of speech to ensure the effectiveness of
subsequent processing.

Feature extraction of speech signals is a key step in speech recognition systems. The
purpose of feature extraction is to convert the original speech waveform into a com-
pact and representative feature vector. The most commonly used feature extraction
methods include Mel-frequency cepstral coefficients (MFCC) and Mel-frequency cep-
stral coefficients. These methods extract spectral features by simulating the auditory
characteristics of the human ear and provide a speech representation that is more in line
with human auditory perception.

After the feature vectors are generated, the acoustic model maps these features to
the corresponding speech units. The task of the acoustic model is to capture the re-
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lationship between phonemes and features. Traditional acoustic models mainly rely on
hidden Markov models to model time series data, describing the dynamic changes of
speech signals through state transition probabilities and observation probabilities. With
the development of deep learning, deep neural networks have gradually become the
mainstream method for acoustic modeling. Deep neural networks learn complex speech
feature representations through multi-layer nonlinear mapping, significantly improving
the recognition accuracy of the model.

Language model also plays a vital role in speech recognition. It uses grammatical
rules and contextual information to predict the possibility of specific words or sentences.
Language models based on statistical methods, such as n-gram models, were once widely
used, while neural network language models in recent years have performed well in
accuracy and robustness by learning language features from large-scale corpora. With
the rapid development of deep learning and big data, speech recognition technology has
made great progress. Traditional hybrid models, such as the combination of Gaussian
mixture models and hidden Markov models, have gradually been replaced by deep neural
network models. End-to-end deep neural network models no longer rely on manually
designed features, but directly learn the mapping relationship between input speech and
target text, which simplifies the system architecture and improves recognition accuracy.

As speech recognition technology matures and becomes more popular, voice assistants
and voice interaction devices have become an important part of people’s daily lives.
From Apple’s Siri to Amazon’s Alexa, these intelligent voice assistants understand and
respond to voice commands by integrating speech recognition and natural language
processing technologies. In addition, open source tools such as Kaldi and LibriSpeech
provide researchers and developers with a powerful speech recognition research platform,
promoting the continued development of this field.

4.1.2 Advances in speech recognition technology

In the past decade, significant progress has been made in the neural network architecture
in the field of speech recognition. From early basic models to current advanced deep
learning networks, researchers are constantly exploring new methods to improve the ac-
curacy and efficiency of speech recognition. Different types of neural network models
have been applied, including recurrent neural networks, convolutional neural networks,
and the Transformer network, which has received much attention in recent years. The
introduction and improvement of these architectures have brought revolutionary im-
provements to speech recognition systems.

Early speech recognition research was limited by computing power and storage re-
sources, and the lack of large-scale multilingual datasets was also a major obstacle.
Researchers mainly relied on traditional statistical models, such as hidden Markov mod-
els based on Gaussian mixture models. Although these models modeled acoustic signals
through mathematical reasoning and achieved certain results at the time, their perfor-
mance in complex environments was still greatly limited. In 2010, the launch of the
Google Voice Search application marked a major breakthrough in the field of speech
recognition. Millions of users interacted with speech recognition technology through
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this application, generating a huge amount of speech data. This data was not only used
to optimize the speech recognition model, but also laid the foundation for the launch of
subsequent voice assistants such as Siri. At that time, the Google Voice Search system
had stored more than 230 billion words from user searches. This data-driven approach
greatly promoted the performance of the model.

In 2011, a study on large-vocabulary continuous speech recognition further promoted
the progress of speech recognition technology. The researchers proposed a hybrid system
that combines hidden Markov models and deep belief networks. This model replaced the
traditional Gaussian mixture model and significantly reduced the recognition error rate.
In tests, the accuracy of the system was significantly higher than that of the system
based on the Gaussian mixture model. The success of this study has led researchers
to pay extensive attention to the combination of neural networks and hidden Markov
models, promoting the widespread application of neural networks in speech recognition.
Soon after, another study published in 2012 further demonstrated the great potential of
deep neural networks in speech recognition. By replacing the Gaussian mixture model
with a deep neural network, the researchers successfully reduced the word error rate of
the speech recognition system significantly. In multiple speech recognition tasks, the
deep neural network model showed performance far superior to traditional methods.
Even with limited training time and computing resources, deep neural networks still
showed excellent performance. This discovery quickly sparked widespread interest in
the application of deep learning in speech recognition in the research community.

With the continuous development of deep learning technology, researchers continue
to explore ways to optimize the training of deep neural networks. The performance of
deep neural networks has been significantly improved by properly initializing weights,
using faster hardware devices, and adopting more efficient training algorithms. In addi-
tion, the increase in network depth and the use of context-dependent output units have
further improved the accuracy of the model. At the same time, researchers have also
developed a variety of methods to optimize the hyperparameters of neural networks,
improve speech preprocessing processes, and achieve multi-dialect and multi-language
speech recognition. The advantages of deep neural networks are not only reflected in the
field of speech recognition, but have also achieved great success in tasks such as image
classification and natural language processing. One of its key features is its powerful fea-
ture learning ability, which can autonomously extract relevant features from raw data,
reducing reliance on manual feature engineering. With the development of hardware and
deep learning frameworks, the training and deployment of deep neural networks have
become more efficient, making this technology widely used.

However, deep neural networks also have certain limitations. Training large-scale
deep neural networks usually requires a large amount of labeled data and computing re-
sources, which poses a considerable challenge to small and medium-sized research teams.
In addition, the overfitting problem is particularly prominent when data is insufficient,
resulting in a decrease in the generalization performance of the model on unseen data.
To address these problems, researchers have introduced new architectures such as re-
current neural networks and convolutional neural networks. Recurrent neural networks
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Figure 4.3: Transformer and Conformer network architecture

perform well in processing sequence data and are particularly suitable for capturing time-
dependent information. They use a cyclic connection structure to associate the current
output with the previous state, thereby effectively modeling the temporal characteristics
of speech signals in speech recognition tasks. Subsequently, convolutional neural net-
works have also been widely used in speech recognition tasks due to their advantages in
extracting local features. Convolutional neural networks can extract the time-frequency
characteristics of audio signals through convolution operations, further improving the
accuracy of speech recognition.

In recent years, the emergence of Transformer and Conformer networks has further
promoted the development of speech recognition technology. Transformer networks have
attracted attention for their excellent performance in capturing long-distance dependen-
cies with their self-attention mechanism. They can process sequence data in parallel,
greatly improving training speed and model performance. Conformer networks combine
the local feature extraction capabilities of convolutional neural networks with Trans-
former, taking into account the capture of long-distance dependencies and local features,
bringing significant performance improvements to speech recognition.

4.2 Emotional Speech Analysis

As an important research direction in the field of speech signal processing and pattern
recognition, emotional speech analysis has received extensive attention in recent years.
With the continuous development of artificial intelligence technology, the acquisition
and understanding of emotional information in human-computer interaction scenarios
is particularly important. Emotional speech not only carries the speaker’s language
information, but more importantly, it conveys rich emotions and psychological states.
By deeply exploring the emotional components contained in speech signals, we can bet-
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ter understand the expression mechanism of human emotions, thereby improving the
performance of intelligent systems in application fields such as speech recognition, emo-
tional computing, and human-computer interaction. In the research process of emotional
speech analysis, there is both the construction of theoretical models and experimental
verification based on actual data. This requires researchers to have interdisciplinary
knowledge reserves, master the basic principles of acoustic signals, and understand the
laws of emotional expression in psychology and linguistics. When faced with complex
and changeable emotional information, researchers need to consider how to extract effec-
tive emotional features and associate these features with emotional categories through
reasonable algorithms. This involves both traditional signal processing technology and
the support of modern machine learning methods.

In the overall framework of emotional speech analysis, data preprocessing, feature
extraction and emotion classification constitute the basic process. Among them, data
preprocessing mainly involves noise reduction, framing, windowing and other processing
of the original speech signal to ensure that the subsequent feature extraction process can
be carried out on the basis of relatively clean data. In fact, as a non-stationary signal,
the inherent information content of the speech signal is often interfered by various factors
such as the recording environment and individual differences of the speaker. Therefore,
in the preprocessing stage, how to balance the retention of information and the removal
of noise has become a problem that must be faced in emotional speech analysis. At
the same time, the emotional information in the speech signal is usually manifested as
changes in multiple levels such as spectrum, time domain and energy distribution. A
single feature is often difficult to fully characterize the complexity of the emotional state,
which requires researchers to conduct a comprehensive analysis of the speech signal from
multiple dimensions.

In order to solve this problem, academia and industry have proposed a variety of
feature extraction methods for emotional speech. By extracting a variety of acoustic
features including fundamental frequency, resonance peaks, spectral envelopes, energy
curves, and speech speed, a multidimensional feature space describing emotional changes
is constructed. These features can not only reflect the physical characteristics of speech
signals, but also reveal the emotional tendencies of speakers to a certain extent. For
example, in emotional states such as excitement or anger, the energy and fundamental
frequency of speech signals are often higher, while in calm or depressed emotions, they
may show relatively low frequency and energy levels. Based on this, different emotional
states will show their own unique distribution characteristics in the feature space, thus
providing a basis for subsequent emotional classification. In this context, how to effi-
ciently and accurately extract and utilize these features has become a core issue in the
study of emotional speech analysis.

On the other hand, the analysis methods of emotional speech are also constantly
evolving, from the initial rule-based methods to the deep learning models that have
emerged in recent years, and the technical means are constantly enriched. Traditional
methods mainly rely on expert knowledge to build emotional models and achieve emo-
tion recognition through statistical methods or pattern matching; the development of
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deep neural networks in recent years has brought revolutionary changes to emotional
speech analysis, especially the advantages of convolutional neural networks and recur-
rent neural networks in processing time series data, making automatic feature extraction
and emotion classification possible. In practical applications, these methods can often
overcome the limitations of traditional algorithms that rely too much on feature design,
directly learn high-level emotional representations from raw speech signals, and signif-
icantly improve the accuracy and robustness of emotion recognition. However, deep
learning methods also pose new challenges to the demand for large amounts of labeled
data and computing resources. In scenarios where data is insufficient or the labels are
inconsistent, their generalization ability still needs to be further improved.

Emotional speech analysis not only involves the technical implementation of signal
processing and pattern recognition, but also involves the cross-integration of multiple
disciplines such as psychology and cognitive science. From theory to practice, every step
needs to fully consider the complexity of the speech signal itself and the diversity of
emotional expression. Current research results have verified the effectiveness of the solu-
tion based on the combination of acoustic features and data-driven methods in emotion
recognition to a certain extent, and also laid a solid foundation for subsequent system
optimization and application expansion. In actual engineering applications, whether it
is intelligent customer service, voice assistant or emotional computing system, higher
requirements are put forward for emotional speech analysis, which promotes the contin-
uous development of this field.

In the following content of this chapter, the feature extraction method and analysis
method of emotional speech will be further discussed in detail. First, the theoretical
basis, extraction algorithm and practical application effect of various acoustic features
will be deeply analyzed to explore how to separate feature information that is sensitive
to emotions from complex speech signals; secondly, various emotional speech analysis
methods that have emerged in recent years will be introduced in detail, including the
latest progress based on traditional machine learning models and deep learning mod-
els, and their advantages and disadvantages in practical applications will be discussed.
Through the analysis of these key technologies, we hope to provide readers with a com-
prehensive and systematic emotional speech analysis framework that can not only reflect
the latest progress of current research, but also provide theoretical support and prac-
tical guidance for future development directions. The entire chapter strives to build a
bridge between theory and practice, so that the field of emotional speech analysis is not
only forward-looking in academia, but also shows strong vitality and broad prospects in
practical applications.

4.2.1 Feature extraction of emotional speech

Speech features are the most critical part of emotional speech recognition. Researchers
have explored and used many features for emotional speech recognition. However, a
universally applicable standard solution for speech feature extraction and specific clas-
sifiers has not yet been formed. In order to achieve better results in emotional speech
recognition, some studies have introduced discriminant information to retain local in-
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formation. The extraction method of speech features depends on actual needs and is
mainly divided into local features, global features, or both. Local features reflect the
dynamic changes of speech signals in a short period of time, also known as short-term
features or segmental features; while global features characterize the overall characteris-
tics of the entire speech segment through statistical methods, including parameters such
as minimum, maximum, mean, and standard deviation. Such features are also called
long-term features or suprasegmental features.

In emotional speech recognition, local and global features are mainly divided into
four categories: spectral features, prosodic features, Teager energy operator features,
and speech quality features. Spectral features are determined by the characteristics of
the vocal tract and can well characterize speech signals in the frequency domain. The
time domain signal can be converted into a frequency domain signal through Fourier
transform, thereby extracting spectral features. One of the most commonly used spectral
features is the Mel frequency cepstral coefficient. The conversion relationship between
the Mel frequency and the actual frequency can be expressed by the following formula:

m = 2595 log10

(
f

700 + 1
)

(4.1)

Before converting to the frequency domain, speech signals are usually divided into sev-
eral frames. Mel-frequency cepstral coefficient features can then be extracted through
inverse Fourier transform. In addition, linear prediction cepstral coefficients are also
an important spectral feature that can effectively capture the resonance characteristics
of the vocal tract and thus obtain emotional information in speech. Similarly, gamma-
tone frequency cepstral coefficients are also widely used in emotion recognition. Studies
have shown that different combinations of spectral features such as linear prediction cep-
stral coefficients, Mel-frequency cepstral coefficients, cepstral features, etc. can further
improve recognition performance.

Prosodic features are another important type of features in emotion recognition,
which usually include parameters such as pitch, duration and energy. The maximum,
minimum, variance, range, mean and standard deviation of pitch can all be used as
powerful features to extract emotional information. The changes in prosodic features
are directly affected by the vibration of the vocal cords and the air flow, so these fea-
tures carry a lot of emotion-related information. Researchers generally divide prosodic
features into pitch features, intensity features and intonation features. Statistical pa-
rameters such as mean, standard deviation, skewness, kurtosis, etc. further enrich the
representation of emotional features. Since humans are highly dependent on prosodic
features when perceiving emotions, these features have shown significant advantages in
emotion recognition tasks.

The Teager energy operator feature is also widely used in emotional speech recog-
nition. It is based on the principle of energy detection and simulates the perception
of speech energy by the human auditory system. The nonlinear formula of the Teager
energy operator is as follows:
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U [f(n)] = f2(n) − f(n − 1)f(n + 1) (4.2)

Where u is the Teager energy operator and f(n) represents the speech signal. The
Teager energy operator feature is particularly effective under stress conditions because
it can capture key frequency bands and frequency changes in the speech production
process. Under stress conditions, changes in harmonic distribution lead to significant
differences in speech energy distribution, and the Teager energy operator feature can
identify emotional states through these changes.

Finally, speech quality features are an important class of parameters used to describe
the characteristics of individual voices. Speech quality features play a vital role in many
speech processing fields, such as speaker identification and emotion recognition. Glot-
tal source characteristics determine speech quality features, including parameters such
as formant frequency, bandwidth, glottal parameters, harmonic noise ratio, jitter, and
shimmer. These features have shown excellent ability in capturing the emotional content
in speech. Speech quality features not only reflect the physiological characteristics of
speech, but also reflect the emotional state of individuals.

4.2.2 Emotional speech analysis methods

The application of traditional machine learning methods in the field of speech signal pro-
cessing mainly focuses on the combination of feature extraction and classification models.
Researchers have extensively evaluated a variety of classifiers to improve the accuracy of
speech emotion recognition. Common traditional classifiers include support vector ma-
chines, Gaussian mixture models, hidden Markov models, artificial neural networks, and
k-nearest neighbor algorithms. In order to optimize feature selection, some studies have
introduced methods based on Fisher’s criterion and correlation analysis, and conducted
in-depth tests on different data sets. For example, in one study, researchers used extreme
learning machines, support vector machines, back propagation neural networks, and k-
nearest neighbor classifiers, and achieved average accuracies of 89.9%, 87.2%, 82.3%,
and 80.7% on the CASIA data set, respectively. In addition, the application of support
vector machines and hidden Markov models on the SUSAS database has also achieved
considerable recognition results.

Many studies have further explored the impact of different feature extraction meth-
ods on emotion recognition. For example, linear prediction analysis and Mel-frequency
cepstral coefficients were used for feature extraction, combined with generalized fuzzy
neural networks and support vector machines for classification, achieving 98% and 82%
accuracy on the EMODB database, respectively. In addition, some studies have used
hybrid methods to conduct experiments on multiple databases, using support vector
machine classifiers to identify four emotions: anger, neutrality, sadness, and happiness,
achieving an average accuracy of 73%. Some researchers have also proposed a method
based on Fourier parameters and tested it on multiple databases, achieving the best
accuracy of 71%. Overall, traditional methods mainly rely on manually designed feature
extraction and classification models, and their performance is limited to a certain extent
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Figure 4.4: Main types of deep learning

by feature selection.
With the rapid development of deep learning technology, the field of speech emotion

recognition has ushered in new breakthroughs. Deep learning is considered a subset
of machine learning. It realizes the automatic learning of complex features through
multi-layer neural networks. Compared with traditional methods, deep learning has
stronger feature expression ability and can automatically learn more comprehensive fea-
tures, thereby improving the accuracy of emotion recognition. In recent years, emotion
recognition models based on deep learning have achieved remarkable results, showing
excellent flexibility, scalability and high recognition accuracy.

Current deep learning methods are mainly divided into three categories: methods
based on automatically learned features, methods based on manual features, and meth-
ods based on spectrograms. Among them, convolutional neural networks are widely used
in emotion recognition research. For example, a study proposed a spatiotemporal and
frequency cascade network, which achieved an average accuracy of 71.98%, 82.1%, 75.6%,
and 54.75% on the IEMOCAP, EMODB, eNTERFACE, and SAVEE databases, respec-
tively. In addition, a deep emotion classification network for emotion recognition was
proposed to correct the errors of traditional methods and improve the recognition effect.
Long short-term memory networks, as a deep learning model suitable for sequence data,
have also been widely used in emotion recognition. For example, some researchers eval-
uated models based on long short-term memory networks on the RAVDESS database
and achieved an improvement in recognition accuracy. In addition, one-dimensional
convolutional neural networks have also been used for emotion classification, further
improving the generalization ability of the model. Many studies have also converted
speech signals into spectrograms and applied convolutional neural networks for emotion
recognition. This method has achieved good results on multiple databases. For example,
on the SAVEE database, the spectrogram feature extraction method combined with a
deep neural network achieved the best accuracy of 81.7

Hybrid deep learning models show high robustness in emotion recognition. For ex-
ample, researchers have proposed a method of combining convolutional neural networks
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with other classifiers to improve the accuracy of emotion recognition. In addition, models
such as GoogleNet, three-dimensional convolutional neural networks, restricted Boltz-
mann machines, and deep belief networks have also been used for emotion recognition
and tested on multiple databases. The introduction of models such as autoencoders,
recurrent neural networks, and bidirectional long short-term memory networks has fur-
ther enhanced the performance of deep learning methods in the field of speech emotion
recognition. For example, a study used a bidirectional long short-term memory network
and achieved a high accuracy of 93.97% on multiple databases.

In addition, some researchers have combined manual features with deep neural net-
works for emotion recognition and tested them on multiple databases. For example, a
classifier based on a deep belief network combined with the eGEMAPS feature extrac-
tion method improves the accuracy of emotion recognition. Another study used the
openSMILE tool to extract features and combined recurrent neural networks with long
short-term memory networks to achieve a high recognition rate. The method of auto-
matically learning features through convolutional neural networks is also widely used in
emotion recognition, such as extracting Mel frequency cepstral coefficient features and
combining them with recurrent neural networks for classification, which achieved good
recognition results on the EMODB database. .

From the overall research trend, few researchers adopted deep learning methods in
the field of emotional speech recognition until 2013. Most researchers tended to use deep
belief networks as classifiers. In 2014, convolutional neural networks gradually became a
research hotspot, especially the convolutional neural network method based on spectro-
grams received widespread attention. By 2015, with the application of recursive neural
networks, researchers achieved a best recognition accuracy of 81% on the RECOLA
database. In 2016, researchers further explored the performance of multiple classifiers
such as recursive neural networks, deep belief networks, convolutional neural networks,
and deep neural networks. In 2017, the performance of deep belief networks on the
CASEC database was particularly outstanding, achieving a best accuracy of 94.60%. In
2018, the accuracy of the model based on deep convolutional neural networks on the
EMODB dataset increased to 92.71%.

In 2019, the research direction showed a diversified trend, and researchers began
to try to integrate different models to improve the accuracy of emotion recognition.
For example, the combination of a two-dimensional convolutional neural network and
a long short-term memory network achieved the best accuracy of 95.89% and 89.16%
on the EMODB dataset and IEMOCAP dataset, respectively. In 2020, convolutional
neural networks remained the mainstream method of research, especially on the EMODB
dataset, where the best recognition accuracy of 95% was achieved. In 2021, researchers
continued to explore convolutional neural networks and hybrid methods in depth, further
improving the performance of the model.

In terms of the use of research databases, most researchers chose IEMOCAP, EMODB,
RAVDESS, and SAVEE databases for model evaluation. Among them, the IEMOCAP
database is the most commonly used, accounting for 48%; followed by the EMODB
database, accounting for 38%; RAVDESS and SAVEE databases account for 17% and
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10% respectively. These databases cover a variety of emotion categories and scenarios,
providing rich speech samples.

In terms of method selection, convolutional neural networks are the most commonly
used deep learning method by researchers, followed by long short-term memory networks
and recurrent neural networks. According to the application method, there are three
typical ways to use deep learning methods in emotional speech recognition: the first
way is to extract speech features and then input them into a deep learning model for
emotion recognition. This method relies on a manually designed feature set, such as
Mel-frequency cepstral coefficients and prosodic features. The second way is to convert
speech signals into spectrograms and then use deep learning models for recognition.
Convolutional neural networks are particularly outstanding in this field. The third way
is to automatically learn speech features through deep learning models, eliminating the
process of feature engineering and greatly simplifying model training and optimization.
For example, a study used a hybrid model of convolutional neural networks and long
short-term memory networks to extract features from spectrograms, achieving the best
accuracy of 89.16% and 95.89% on the IEMOCAP and EMODB databases, respectively.
In another study, long short-term memory networks were used to automatically learn
speech features, achieving the best accuracy of 84.30% on the RAVDESS database.
Additionally, in a study on the SAVEE database, researchers used convolutional neural
networks to extract features from spectrograms and reported a best accuracy of 81.05%.

Although convolutional neural networks and long short-term memory networks dom-
inate, some researchers have also explored methods such as autoencoders, deep belief
networks, and deep Boltzmann machines. Although these methods are relatively less
used, they also show certain advantages in specific scenarios. From the research trends,
it can be seen that the application of deep learning methods in the field of emotional
speech recognition has increased year by year since 2013. Currently, most of the pro-
posed models use deep learning methods and have achieved significant improvements in
recognition accuracy and computational cost.
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5

Brain-Computer Interface
Technology

5.1 Working principle of brain-computer interface

Brain-computer interface is a revolutionary communication technology that enables peo-
ple to interact with external devices by thinking alone by directly capturing and analyz-
ing brain signals, without relying on traditional neuromuscular output pathways such as
peripheral nerves or muscle activity. Its core working principle is to use high-precision
sensors to monitor various physiological changes in the brain when performing specific
mental activities. These activities may include imagining hand movements, trying to
express language, or focusing on a task. During these processes, the brain generates
electrical signals, blood flow changes, or other measurable indicators. Then, through
advanced signal processing algorithms and machine learning models, these complex and
changing signals are converted into clear and actionable instructions. These instructions
can drive a variety of external devices, such as spelling tools, mobile robots, exoskeleton
systems, prostheses, and even virtual reality systems and smart home devices, thus re-
alizing an amazing vision of "mind control". This technology is unique because it breaks
through the traditional human-computer interaction dependence on physical actions and
establishes an unprecedented way for humans to connect with the digital world. It not
only expands the boundaries of technology applications, but also redefines the relation-
ship between humans and machines.

The origin and development of brain-computer interface technology are deeply driven
by medical needs, especially for patients with severe movement disorders caused by dis-
eases or accidents. For example, individuals with amyotrophic lateral sclerosis (ALS),
brainstem stroke, spinal cord injury or quadriplegia often lose the ability to communi-
cate with the outside world through body movements. Brain-computer interface provides
them with an alternative means of interaction. Imagine that a patient can gradually se-
lect letters, spell out complete words, and communicate with family members or medical
staff by focusing on the picture of hand movements in his mind or staring at the flashing
signals on the screen. This "alternative" function makes brain-computer interface an
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Figure 5.1: Schematic diagram of the working principle of brain-computer interface

important tool to compensate for the loss of physical function. Its typical applications
include controlling the precise movement of prostheses, manipulating the direction of
movement of wheelchairs, or interacting with computer interfaces through brain signals.
These functions not only help patients regain a certain degree of independence, but
also significantly improve their quality of life. At the same time, another great value
of brain-computer interface lies in the "restoration" function. With the help of the nat-
ural plasticity of the brain and combined with systematic rehabilitation training, this
technology can help patients gradually activate damaged neural pathways. For example,
stroke patients may gradually recover the basic ability to grasp objects, stand, and even
walk after receiving brain-computer interface-assisted training several times a week for
several weeks under the guidance of professional therapists. These successful practices
in the medical field not only verify the great potential of brain-computer interfaces in
the intersection of neuroscience and engineering, but also lay a solid foundation for its
expansion into a wider range of application scenarios.

With the rapid progress of cognitive neuroscience, brain imaging technology, micro-
electronics technology and artificial intelligence, the performance of brain-computer in-
terface systems has been significantly improved in the past decade. Early systems mainly
relied on simpler EEG signal acquisition methods, with low signal resolution and slow
processing speed. For example, it may take a patient several seconds to select a letter
through brain signals, and the function seems to be single and the efficiency is limited.
Today, thanks to the promotion of technological innovation, modern brain-computer
interface systems are able to capture brain activity through more precise equipment.
For example, some invasive technologies can directly record the activity of neurons by
implanting microelectrodes in the brain; while non-invasive devices can achieve more
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accurate monitoring of brain signals through improved electroencephalography technol-
ogy or near-infrared spectroscopy technology. These advances enable signal decoding to
be carried out in near real time. For example, the latest research shows that patients
can directly generate text output by imagining themselves writing specific words. This
"mental spelling" technology greatly improves the efficiency of communication. At the
same time, the reduction of hardware costs, the miniaturization of equipment size and
the optimization of software algorithms have also significantly enhanced the flexibility
and practicality of brain-computer interfaces in practical applications. These techno-
logical breakthroughs not only push brain-computer interfaces from the laboratory to
reality, but also provide more possibilities for us to deeply understand their working
mechanisms.

From the perspective of technological evolution, the development of brain-computer
interfaces has roughly gone through three stages. Initially, it was the proof-of-concept
stage, where researchers demonstrated the basic ability to extract signals from the brain
and drive devices. Although the functions were limited, they were enough to inspire
people’s imagination of the future. Next came the simulation stage, during which the
technology began to simulate the functions of traditional input devices, such as using
brain signals to replace the mouse or keyboard to complete the selection, but the overall
experience has not yet brought about a disruptive change. Today, brain-computer in-
terfaces are moving towards maturity, and researchers are beginning to tap their unique
potential and design new experiences that go beyond traditional interaction modes. For
example, future systems may dynamically adjust the difficulty of games or work envi-
ronments by monitoring emotional states in real time; or adaptively optimize interface
design based on the user’s cognitive load. These innovations have expanded the applica-
tion of brain-computer interfaces from simple functional replacement or restoration to a
new dimension of enhancing human capabilities and optimizing daily life.

To fully understand the working principle of brain-computer interface, we need to
analyze from the source of the signal. First of all, the acquisition of EEG signals is
the cornerstone of the entire system, which determines whether brain activity can be
accurately captured and converted into usable data. Then, the transmission link of EEG
signals efficiently transmits these weak signals to the processing unit to ensure the real-
time and integrity of the information. On this basis, the classification and application of
brain-computer interfaces show the diversified development direction of technology, from
medical rehabilitation to consumer entertainment, presenting a broad prospect. Below,
we will explore these key parts one by one to reveal how brain-computer interfaces
transform from subtle fluctuations in the brain into a powerful force to change lives.

5.1.1 EEG signal acquisition

EEG signals are an important part of biological signals. By recording the electrical
activity of neurons in the cerebral cortex, they can reflect the functional state of the
brain and have a wide range of applications in the biomedical field. EEG signals are not
only of great value in brain-computer interfaces, diagnosis of neurological diseases (such
as epilepsy, sleep disorders), cognitive research, etc., but are also used for daily health
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Figure 5.2: EEG signal acquisition process

monitoring. As a voltage-type biological signal, its typical amplitude ranges from a few
microvolts to hundreds of microvolts, and its frequency is mainly distributed between
0.5 Hz and 100 Hz. The signal amplitude is low and is susceptible to noise interference,
especially 1/f noise (flicker noise) and environmental noise (such as 50/60 Hz power
frequency noise). Therefore, the EEG signal acquisition system needs to have high
precision, low noise and strong anti-interference capabilities to ensure that the signal
quality can meet the needs of subsequent analysis and application.

EEG signal acquisition mainly relies on analog front-end circuits and system technol-
ogy, and its design goals include improving signal fidelity, reducing power consumption,
reducing chip area, and enhancing system integration. A typical EEG signal acquisition
system consists of electrodes, amplifiers, multiplexers, and analog-to-digital converters.
The electrodes are used to capture weak electrical signals on the surface of the scalp or
cortex, and then the signals are amplified, filtered, and digitized by the analog front-end
circuit to form data that can be analyzed by the digital signal processing unit. The
performance of the acquisition system directly determines the signal quality, and the
key indicators include input reference noise (usually less than 5 microvolts root mean
square value), common mode rejection ratio (usually required to exceed 100 decibels),
input impedance (needed to be greater than 1 gigahertz to reduce the impact of the
electrode-skin interface), and electrode offset tolerance (ranging from ±50 millivolts to
±350 millivolts, depending on the specific application). These indicators determine the
sensitivity and anti-interference ability of the system, which is crucial for the accurate
acquisition of EEG signals.

Traditional EEG signal acquisition architectures mostly use multi-channel designs
to achieve synchronous monitoring of different brain areas. Among them, time-division
multiplexing technology is a common method that reduces the occupation of hardware
resources by sampling multi-channel signals on the time axis and sharing a single analog-
to-digital converter. For example, the classic time-division multiplexing architecture
includes multiple low-noise amplifiers and an analog multiplexer. After each channel
signal is amplified by the low-noise amplifier, it is transmitted to the analog-to-digital
converter in sequence. However, when the number of channels increases significantly
(such as more than dozens), the time-division multiplexing architecture faces certain
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technical bottlenecks. In order to avoid signal loss, the sampling rate of the analog-to-
digital converter needs to be increased, which will lead to a significant increase in power
consumption; at the same time, the crosstalk noise in the analog multiplexer may reduce
the signal quality.

In order to solve these problems, frequency division multiplexing technology was in-
troduced, which modulates the signals of each channel to different frequencies and then
merges them into a single signal line, and demodulates them through a single analog-to-
digital converter. This method not only improves the dynamic range of the system, but
also reduces power consumption and redundant hardware requirements, and improves
the overall efficiency of the acquisition system. In addition, the fast multiplexing tech-
nology proposed in recent years further optimizes the signal acquisition process. This
technology significantly reduces the number of amplifiers by directly multiplexing sig-
nals at the electrode end instead of multiplexing after amplification, making ultra-high
density recording possible, and providing a new technical path for future high-channel
EEG acquisition systems.

According to the way of handling DC offset, the analog front end (AFE) of EEG
acquisition is mainly divided into two categories: AC coupling and DC coupling, each
with its own advantages and limitations. The AC-coupled analog front end uses a ca-
pacitor at the input of the amplifier to block the DC offset voltage generated by the
electrode-tissue interface, which usually comes from the contact between the electrode
material and the skin. The setting of the low cutoff frequency depends on the capacitor
and pseudo-resistance in the feedback loop, which is usually less than 1 Hz to ensure
that the low-frequency components of the EEG signal are retained. However, since the
EEG signal is extremely weak and easily interfered by 1/f noise, chopping technology is
widely used to reduce noise. For example, a typical AC-coupled chopper instrumentation
amplifier can effectively reduce 1/f noise and amplifier offset through signal modulation
at the input stage and secondary chopping at the output stage. The measured common-
mode rejection ratio can exceed 120 dB, and the input-referred noise density can be as
low as 57 nV/rtHz. Although this type of design can improve signal quality, the input
capacitor and feedback capacitor occupy a large chip area, which limits its application
in multi-channel or implantable systems. In addition, the existence of chopping spike
noise requires additional filtering circuits to eliminate it, which increases the complexity
of the design.

In contrast, DC-coupled analog front ends handle DC offsets by removing input ca-
pacitors and integrating low-pass filters or servo loops in the feedback loop. This design
approach enables a more compact chip layout and is particularly suitable for invasive
EEG recordings such as cortical electroencephalography. Some high-performance bioam-
plifiers use active integrators to achieve high-pass filtering, combined with small Miller
capacitors and equivalent resistors of specific structures, to significantly reduce chip area
while maintaining high input impedance. In addition, advanced dual mixed-signal servo
loop architectures combine digital low-pass filters with digital-to-analog converters to dy-
namically cancel offsets, reducing chip area to 0.013 mm2 while supporting synchronous
acquisition of local field potentials and spike signals. However, DC-coupled schemes are
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sensitive to the nonlinear characteristics of the circuit, especially the nonlinear effects of
pseudo-resistances, which may affect system stability and require additional calibration
mechanisms in high-offset environments.

In recent years, in order to further improve the efficiency of EEG acquisition sys-
tems, module reuse and sparsity utilization technologies have become research hotspots.
The module reuse method based on successive approximation registers integrates data
conversion and signal processing functions (such as finite impulse response filtering and
feature extraction) in the same module, thereby reducing hardware redundancy. For
example, this method can simultaneously realize dot product calculation and signal
digitization, which is particularly suitable for neural vector analysis systems. In ad-
dition, low-power analog-to-time conversion technology can directly convert electrode
signals into time-encoded pulses, eliminating the need for a preamplifier and further
reducing system power consumption. These technologies are particularly important in
high-channel density scenarios, which help improve the integration and energy efficiency
of the acquisition system.

At present, EEG acquisition systems are widely used in non-invasive recording (such
as scalp EEG) and invasive recording (such as cortical electroencephalogram), showing
great potential in the fields of brain-computer interface, epilepsy monitoring and sleep
research. However, in practical applications, key issues such as low power consumption
(less than 100 microwatts per channel), small area (less than 1 square millimeter per
channel), high input impedance and low noise still need to be solved. For example, some
advanced EEG acquisition systems have achieved parallel recording of more than 10,000
channels, greatly improving the temporal and spatial resolution, but long-term stability
is still limited by electrode drift and brain movement interference. In response to the
needs of multimodal data acquisition, reconfigurable analog front-end design has become
a future trend, and the system can adapt to different types of signals by dynamically
adjusting gain and bandwidth.

The development of EEG acquisition technology mainly presents the following trends:
First, the realization of higher channel density. Whole-brain neural recording needs to
support tens of thousands of channels, relying on miniaturized electrodes and intelligent
algorithms (such as motion correction) to improve signal stability. Secondly, multi-
modal integration will become the mainstream. Reconfigurable analog front ends will
support the acquisition of multiple signals such as voltage and current, and balance
power consumption and chip area through hardware optimization. Finally, the analog-
to-information conversion mode will be widely used, taking advantage of the sparsity of
the signal, directly outputting decision information through event-driven sampling and
feature extraction, thereby reducing the energy consumption of the analog-to-digital
converter.

5.1.2 EEG signal transmission

EEG signal transmission technology aims to capture and transmit the brain’s electrical
activity wirelessly to support medical diagnosis, neuroscience research, brain-computer
interface development, and other innovative applications. Traditional wired systems
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limit the patient’s mobility due to cables, affecting the naturalness of data collection and
the comfort of long-term use. The emergence of wireless transmission technology has
significantly improved this problem, allowing patients to move freely in their daily lives
while allowing longer monitoring. The core of this technology is to transmit EEG signals
from the acquisition device to the receiving device, such as a smartphone, computer,
or medical system. Its development is closely related to the progress of biomedical
engineering, communication technology, and material science. According to the use
method and deployment location of the device, EEG signal transmission technology is
mainly divided into two categories: wearable devices and implantable devices. The two
have their own characteristics in communication methods, application scenarios, and
technical implementation. In addition, the exploration of emerging technologies such as
visible light communication and ultrasonic communication provides new directions for
future technological breakthroughs.

Wearable EEG devices are non-invasive and usually come in the form of headbands,
helmets, headphones or patches. They collect EEG signals through electrodes placed on
the scalp. Such devices have a wide range of applications in the medical and consumer
fields, such as sleep monitoring, brain health assessment, attention training, meditation
assistance, and the development of brain-computer interfaces. Sleep monitoring can
help diagnose sleep disorders such as insomnia or sleep apnea; brain-computer interfaces
control external devices by analyzing EEG signals, such as helping paralyzed patients
operate wheelchairs or computers. Studies have shown that wearable devices mainly use
radio frequency technology for wireless data transmission, commonly using industrial,
scientific and medical frequency bands, such as 2.4 GHz Bluetooth or Wi-Fi protocols,
which are widely adopted because they do not require a license and have a mature
hardware ecosystem.

Some typical wearable EEG devices on the market include EMOTIV Insight, Muse,
OpenBCI and NeuroSky MindWave. EMOTIV Insight is a lightweight five-channel
device designed for real-time EEG monitoring, which transmits data to smartphones
or computers via Bluetooth. It is widely used in field research, emotion analysis and
brain-computer interface development. Muse is a device focused on meditation and sleep
monitoring. It is equipped with seven sensors and connects to mobile applications via
Bluetooth to provide real-time feedback to help users relax or improve sleep quality.
OpenBCI is an open source platform that supports up to 16 channels of EEG signal
acquisition and can transmit data via Bluetooth or Wi-Fi. It is favored by researchers
and developers for its flexibility and customizability. NeuroSky MindWave is a single-
channel device with a simple design, mainly used for educational and entertainment
purposes, such as controlling simple games through EEG signals.

These wearable devices achieve real-time data transmission through wireless commu-
nication. Patients do not need to be fixed to bulky equipment and can be monitored for
a long time at home, in the office or even in outdoor environments, which significantly
improves the convenience and comfort of use. The advantages of industrial, scientific and
medical frequency bands are their global versatility and low-cost hardware support, but
there are also potential interference issues, especially in environments with dense wire-
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Figure 5.3: Schematic diagram of wearable EEG device

less signals such as hospitals or cities. In addition, the battery life and miniaturization
of the device are key challenges. In order to ensure wearing comfort, the device needs to
be light and low power, so efficient protocols such as low-power Bluetooth are usually
adopted. For example, this protocol minimizes power consumption while maintaining
a stable connection, allowing the device to continue to operate for hours or even days.
In addition, the contact quality of the scalp electrodes and signal noise suppression are
also the focus of technical attention. Modern devices often use dry electrodes or active
amplification technology to improve signal quality.

Unlike wearable devices, which are non-invasive, implantable devices need to be
implanted in the body through surgery and are usually placed in the brain or skull
to more accurately monitor and stimulate specific brain areas. Such devices play an
irreplaceable role in the treatment of complex neurological diseases, such as Parkinson’s
disease, epilepsy, dystonia, chronic pain, and severe depression. They can directly record
electrical activity in deep brain areas, capture signals that scalp devices cannot detect,
or regulate abnormal neural activity through electrical stimulation, thereby alleviating
symptoms and even improving the patient’s quality of life. Implantable devices usually
require wireless communication to interact with external devices to transmit monitoring
data or receive control signals, such as adjusting stimulation parameters or uploading
EEG recordings.

Studies have shown that implantable devices mainly use radio frequency technology
to communicate in the medical implant communication service band (402-405 MHz).
This frequency band has good tissue penetration, low power requirements and safety,
and is considered ideal for in-vivo communication. For example, Medtronic’s Percept PC
and Percept RC neurostimulators are representative devices for deep brain stimulation,
used to treat Parkinson’s disease and epilepsy. These devices not only provide electrical
stimulation, but also record EEG signals, and communicate with external controllers
through this frequency band, so that doctors can remotely adjust treatment plans. Neu-
roPace RNS System is a responsive neurostimulation system designed for patients with
intractable epilepsy. It can monitor EEG signals in real time and provide electrical stim-
ulation intervention immediately when abnormal activity is detected. It also relies on
radio frequency communication technology.
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Figure 5.4: Schematic diagram of implanted device

In addition to RF technology, some implantable devices also use inductive coupling
technology to transmit energy and data through electromagnetic induction between ex-
ternal coils and internal coils. This method performs well in short-distance communica-
tions and is often used in pacemakers or muscle stimulators. In EEG signal transmission,
inductive coupling is often used in low data rate scenarios to help reduce the size and
power consumption of implanted devices. However, its transmission distance is usually
limited to within a few centimeters, and the data rate is low, which makes it difficult to
meet applications that require high bandwidth, such as real-time transmission of high-
resolution EEG data. Therefore, inductive coupling is often used in combination with
RF technology to achieve more comprehensive functions.

The future development of EEG signal transmission technology will focus on im-
proving performance, reducing costs, and expanding application scenarios to meet the
diverse needs of the medical, scientific research, and consumer markets. Potential direc-
tions include multi-mode communication integration, such as combining radio frequency,
ultrasound, and optical communications to improve flexibility; intelligent signal process-
ing, such as using machine learning to optimize signal compression and denoising; and
telemedicine applications, such as combining EEG devices with the Internet of Things
to achieve remote diagnosis and real-time intervention. As technology continues to
evolve, EEG signal transmission will bring more possibilities to healthcare, neuroscience
research, and human-computer interaction.

5.1.3 Classification and application of brain-computer interfaces

Brain-computer interfaces can be classified according to different criteria, including clas-
sification based on the degree of invasiveness, signal type, and user interaction mode.
These classifications can help researchers and engineers more comprehensively under-
stand and optimize brain-computer interface systems so that they can play the greatest
role in different application scenarios.
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According to the degree of invasiveness, brain-computer interfaces can be divided
into two types: invasive and non-invasive. Invasive brain-computer interfaces refer to
systems that require surgical implantation of electrodes to directly record brain neural
activity. This method usually implants electrodes on the surface of the cerebral cor-
tex, or deep into the brain tissue to obtain high-resolution neural signals. Because the
electrodes are in direct contact with the brain tissue, the signal quality of invasive brain-
computer interfaces is high, the spatial resolution can reach the millimeter level, the
frequency bandwidth is usually more than 200 Hz, and the signal amplitude is usually
around 100 microvolts. This means that it can provide more accurate and stable sig-
nals than non-invasive brain-computer interfaces, and more precise control of external
devices. In addition, the signals of invasive brain-computer interfaces are less affected
by external noise and can support low-latency real-time control applications such as
prosthetic control and neural restoration therapy.

The main applications of invasive brain-computer interfaces include: helping quadriplegic
patients control mechanical prostheses through brain signals, enabling them to recover
some autonomous activities; realizing neural prostheses, such as controlling robotic arms
to grab objects through brain signals; and being used for brain-to-brain communication
experiments, so that the neural activities of two people are directly interconnected,
thus achieving non-verbal communication. These applications demonstrate the great
potential of invasive brain-computer interfaces, especially in the fields of rehabilitation
medicine and human-computer fusion. However, invasive brain-computer interfaces also
face many challenges and limitations, such as high risks of surgery, including infection,
tissue damage, and biocompatibility issues caused by long-term implantation. In addi-
tion, the high cost of manufacturing, implantation, and maintenance of the equipment
limits its popularity among ordinary users. Despite this, research in recent years is
exploring more minimally invasive electrode implantation methods, such as implanting
microelectrodes through blood vessels to reduce the risks of invasive surgery.

In contrast, non-invasive brain-computer interfaces rely on external electrodes to
measure brain activity, the most common method being electroencephalography. Elec-
troencephalography records the brain’s electrical activity by placing electrodes on the
surface of the scalp to extract useful neural signals. Since this method does not require
surgical implantation, it is low-cost, easy to use, and safer, so it is widely used in neuro-
science research, brain-computer interaction systems, and commercial applications. For
example, consumer-grade EEG devices on the market are relatively affordable and can
meet different needs from academic research to personal health management.

The main technical features of non-invasive brain-computer interfaces include: high
portability, some EEG devices have been designed as wearable headbands or wireless
headphones, suitable for daily use; compared with invasive brain-computer interfaces,
they are less expensive and suitable for large-scale applications. However, the quality of
EEG signals is limited and is easily interfered by myoelectric noise (such as electroocu-
lography, facial muscle movements), poor electrode contact, and environmental noise.
Due to the obstruction of the scalp and skull, the spatial resolution of the EEG is low,
usually only reaching the centimeter level, so its ability to decode fine brain activity is
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not as good as that of invasive brain-computer interfaces.
The main applications of non-invasive brain-computer interfaces include: cognitive

status monitoring, such as detecting the user’s attention level, fatigue status, and mood
swings; brain-controlled games and entertainment devices, where users can control vir-
tual characters or adjust the game environment through their thoughts; and smart home
control, such as switching lights, TVs, or smart speakers through brain waves. Due to
its non-invasiveness and operability, non-invasive brain-computer interfaces are gradu-
ally entering the consumer market and are being used in many fields such as education,
medical rehabilitation, and human-computer interaction.

In addition to being classified by the degree of invasiveness, brain-computer interfaces
can also be classified by the type of neural signals utilized. Among them, brain-computer
interfaces based on event-related desynchronization and event-related synchronization
are mainly used for motor imagery tasks. For example, when a user imagines the move-
ment of his or her left or right hand in his or her mind, the system can parse the
movement intention by identifying neural signals in specific brain areas, thereby achiev-
ing cursor control or mechanical prosthetic operation. Brain-computer interfaces based
on event-related potentials utilize the brain’s specific response to external stimuli (such
as sound and flash), of which the P300 wave is the most commonly used signal. For ex-
ample, the P300 speller allows users to spell words by looking at different letters, which
is suitable for patients with ALS who cannot use keyboard input.

Brain-computer interfaces based on steady-state visual evoked potentials rely on the
brain’s response to light sources flickering at different frequencies and can be used for
high-frequency interactive applications, such as quickly switching menus and controlling
drones. The advantages of this method are strong signals, easy recognition, and low
training costs, but long-term use may lead to visual fatigue. In addition, brain-computer
interfaces based on slow cortical potentials are mainly used in clinical rehabilitation, such
as helping locked-in syndrome patients communicate. Brain-computer interfaces based
on sensorimotor rhythms are often used for tasks such as cursor control and wheelchair
navigation, and have high control accuracy.

In recent years, hybrid brain-computer interface technology has gradually developed,
combining multiple signal sources (such as EEG and near-infrared spectral imaging,
EEG and magnetic resonance imaging) to improve the robustness and adaptability of
the system. For example, the combination of EEG and near-infrared spectral imaging
can simultaneously obtain high temporal resolution and high spatial resolution data,
which is widely used in neurorehabilitation and cognitive assessment.

Brain-computer interfaces can also be classified according to the user’s interaction
method, mainly into active brain-computer interfaces, reactive brain-computer inter-
faces, and passive brain-computer interfaces. Active brain-computer interfaces require
users to actively control brain activity, such as imagining limb movements to operate
external devices. Reactive brain-computer interfaces are based on external stimuli, and
the user’s brain responds specifically to visual or auditory cues, such as steady-state
visual evoked potentials. Passive brain-computer interfaces do not require active user
operation, but the system autonomously monitors brain activity, such as for emotion de-
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Figure 5.5: Classification of brain-computer interfaces

tection and cognitive load assessment, and are widely used in scenarios such as driving
safety monitoring and brain-computer interaction games..

5.2 Application of brain-computer interface in affective com-
puting

In recent years, brain-computer interface technology has gradually occupied an impor-
tant position in emotional computing due to its unique capabilities. Brain-computer
interface is a technology that directly extracts information from the brain’s electrical
activity signals and converts them into commands without relying on peripheral nerves
or muscles. This feature makes brain-computer interface not only used for traditional
neural control, but also as an effective tool for emotional computing, thereby achieving
accurate perception of the user’s emotional state.

The combination of affective computing and brain-computer interfaces has given rise
to affective brain-computer interface systems, which can not only detect and analyze
emotional state signals, but also use these signals to optimize the way people interact
with computers. Therefore, the role of brain-computer interfaces is not limited to control



5.2. APPLICATION OF BRAIN-COMPUTER INTERFACE IN AFFECTIVE COMPUTING109

Figure 5.6: Emotion recognition system

functions, but also extends to the perception and feedback of user emotions. Especially in
intelligent human-computer interaction systems, the enhancement of emotion recognition
capabilities can significantly improve the naturalness of interaction, allowing machines
to adapt to user needs more intelligently.

In brain-computer interface systems, EEG signals have become one of the most widely
used biological signals due to their non-invasiveness and high sensitivity to emotional
states. EEG signals are not only used in the medical field to diagnose neurological
diseases such as epilepsy, brain tumors, and sleep disorders, but can also be used to
assess an individual’s mental and emotional state. Therefore, in scenarios where accurate
assessment of individual emotions is required, brain-computer interface technology based
on EEG signals has become a core tool for identifying emotional states. The advantage of
this technology is that it can provide more intuitive and accurate results than traditional
behavioral analysis methods, thereby improving the reliability of emotional computing.

The EEG-based emotion recognition system mainly includes a signal stimulation
module and a signal processing module. The signal stimulation module involves the
equipment used, the type of stimulation, and the data processing mode, while the signal
processing module covers signal acquisition, preprocessing, feature extraction, feature
selection, classification algorithm, and final performance evaluation. Many studies have
been devoted to optimizing these two modules to improve the accuracy and stability
of emotion recognition. By systematically analyzing and integrating existing research
results, the main trends in the field can be summarized and information gaps that have
not been fully explored can be revealed. This not only helps to optimize the existing
system, but also provides a clear direction for future research.

In the development of affective computing, the recognition of EEG emotional states
has become a core research direction. Emotion recognition based on EEG signals relies
on signal changes in specific frequency bands, such as changes in activity in the frontal
lobe and limbic system-related areas, to analyze the emotional state of an individual.
Studies have shown that different emotional states will show significant differences in
specific EEG bands, which makes EEG-based emotion classification possible. At the
same time, with the advancement of machine learning and deep learning technologies,
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the accuracy of emotion recognition has also been significantly improved.
In addition, brain-computer interface technology also shows great potential in the

field of intelligent robots. By applying brain-computer interface to robot interaction
systems, robots can more accurately perceive the user’s emotional state and make corre-
sponding feedback. This combination can not only be used for medical rehabilitation and
mental health intervention, but also in education, social companionship and other fields.
For example, in assisting the emotional training of autistic children, brain-computer
interface technology can help robots better understand children’s emotional needs and
provide a more humane interactive experience.

With the continuous advancement of affective computing technology, the role of
brain-computer interfaces in emotion recognition and intelligent interaction will become
increasingly important. The following chapters will further explore the specific applica-
tions of brain-computer interfaces in EEG emotional state recognition and robot inter-
action. First, we will focus on the emotional state recognition method based on EEG
signals, analyze the EEG characteristics under different emotional states and related
signal processing technologies. Subsequently, we will explore the practical application
of brain-computer interfaces in robot interaction and show how they can enhance the
robot’s perception and response capabilities to human emotions. Through these in-
depth analyses and examples, we will fully reveal the broad prospects of brain-computer
interfaces in the field of affective computing.

5.2.1 Identification of EEG emotional states

As an important research direction in the field of affective computing, EEG emotion
state recognition has its theoretical foundation based on the systematic cognition of the
nature of emotion. Emotion, as a complex manifestation of human consciousness, is not
only a direct reflection of the inner psychological state, but also an adaptive response
mechanism of individuals to external environmental stimuli. This dynamic psychological
and physiological phenomenon not only affects human decision-making processes and
social interactions, but also forms a two-way regulatory relationship with physical and
mental health status - positive emotions can effectively improve the quality of life and
physiological functions, while long-term negative emotional states may lead to cognitive
dysfunction and even induce organic diseases.

In the psychological theory system, emotion representation models are mainly di-
vided into two theoretical schools: discrete emotion model and dimensional emotion
model. The former regards emotion as a collection of several basic units, while the latter
constructs a spatial mapping of emotional states through a multidimensional coordinate
system. The theoretical origin of the discrete model can be traced back to Darwin’s evo-
lutionary view. On this basis, Tomkins proposed a classification system containing nine
basic emotions, emphasizing the basic role of core emotions such as interest-excitement,
surprise-fright in maintaining mental health. As a typical representative of this school,
the Ekman model established six basic emotions with universal expression characteristics
through cross-cultural research, including sadness, surprise, happiness, etc. These emo-
tion units have core characteristics such as consistency of physiological expression and
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convergence of situational responses, which provides an important theoretical reference
for subsequent emotion recognition research based on physiological signals.

However, with the development of cognitive neuroscience, researchers have found
that discrete models have significant limitations in describing complex emotional states.
Emotional experiences in real life often present multi-dimensional dynamic characteris-
tics, which are difficult to fully represent with limited discrete categories. This theoretical
breakthrough has given rise to the rise of dimensional models, which transform emotional
states into continuous quantized spatial vectors by establishing a multi-dimensional emo-
tional coordinate system. Russell’s two-dimensional ring model is a typical representa-
tive. It uses two orthogonal dimensions, valence (pleasure level) and arousal (activation
intensity), to construct an emotional space and divides the emotional state into four
quadrants: high arousal positive valence areas correspond to positive activation states
such as excitement and satisfaction; high arousal negative valence areas cover negative
stress reactions such as tension and anxiety; low arousal negative valence areas repre-
sent inhibitory states such as depression and fatigue; low arousal positive valence areas
include low activation positive states such as calmness and relaxation. This quantitative
modeling method provides an operational mathematical framework for emotional feature
extraction based on EEG signals.

As a key link in EEG emotion recognition research, the methodology of emotion in-
duction experiment has evolved from subjective recall to standardized stimulation. Early
studies mostly used subjective recall method to induce the target state by guiding the
subjects to reproduce specific emotional memories, but this method has inherent defects
such as poor state stability and difficulty in time synchronization. Modern experimen-
tal paradigms generally use international standardized stimulation systems, such as the
International Affective Picture System (IAPS), which contains 1,200 visual stimulation
materials labeled with valence-arousal, and the International Affective Digital Sound Sys-
tem (IADS), which provides 167 auditory stimulations calibrated in three dimensions.
These standardized tools not only ensure the validity and reliability of experimental
stimulation, but also significantly improve the comparability of data across studies. It
is worth noting that current research is expanding from passive reception of stimulation
to interactive situations, and constructing emotion induction models that are closer to
real scenes through immersive environments such as virtual reality and somatosensory
games. This paradigm innovation is of great value in improving the generalization ability
of EEG emotion recognition models.

At the neural mechanism level, emotional states are closely related to brain electro-
physiological activities. The asymmetric activation pattern of the prefrontal cortex is
significantly correlated with the dimension of emotional valence. The enhanced activity
of the left prefrontal cortex is usually accompanied by positive emotional experiences,
while the dominant activation of the right side is associated with negative emotional
states. Structures such as the amygdala and hippocampus of the limbic system play
a core regulatory role in the dimension of emotional arousal, and their neural oscilla-
tion characteristics can be effectively captured through time-frequency analysis of EEG
signals. These neurophysiological findings provide a theoretical basis for constructing
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Figure 5.7: Schematic diagram of neural mechanism

an emotion recognition model based on multi-lead EEG signals. By integrating time
domain, frequency domain and nonlinear features, researchers have developed a variety
of effective feature extraction and pattern classification algorithms.

The main challenges facing this field at present are the individual differences and
environmental dependence of emotional states. There may be significant variations in
the EEG response patterns of different subjects under the same stimulus, and there
are also systematic differences in the expression of emotions in laboratory environments
and real scenes. Solving these problems requires the development of more adaptive
personalized modeling methods, and the establishment of a fusion analysis framework
that includes multimodal data (such as EEG, physiological parameters, and behavioral
performance). Future research trends will focus on dynamic emotional state tracking,
cross-situational model transfer, and autonomous mining of emotional features based
on deep learning. These breakthroughs will promote the practical application of brain-
computer interface technology in the fields of mental health monitoring and intelligent
interactive systems.

5.2.2 Brain-computer interface and robot interaction

An often underestimated but crucial component of brain-computer interface driving
devices is how to convert the output of the neural signal decoder into a control sig-
nal suitable for driving the robotic device. The core of this conversion process lies in
the design of the control strategy, which not only determines the efficiency of human-
computer interaction, but also directly affects the practicality and user experience of
the entire system. The current mainstream control strategies can be divided into two
major paradigms: discrete and continuous. Each strategy has its unique advantages and
applicable scenarios, and also faces different technical challenges.

The typical feature of discrete control strategy is that users can only send discrete
instructions to external devices at intervals of a few seconds (usually 3-4 seconds). This
control mode is naturally adaptable to brain-computer interfaces based on exogenous
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stimuli. For example, a system built with visual evoked potentials or steady-state visual
evoked potentials essentially generates instructions by detecting the brain’s response to
specific discrete stimuli (such as flashing lights). Under this mechanism, the system
structure determines that it can only generate intermittent control signals. In actual
application scenarios, such discrete commands are often used to trigger robots to perform
preset semi-autonomous actions, such as turning a wheelchair or a robotic arm to perform
a grasping action. Although the information transmission rate of this mode is low (an
average of 0.3 instructions per second), its advantage is that the instruction recognition
has high certainty and stability.

In contrast, brain-computer interface systems based on endogenous neural activity
(such as autonomous regulation of sensorimotor rhythms) theoretically have the poten-
tial to achieve continuous control. Such systems do not rely on external stimuli to trigger
and can continuously decode the user’s spontaneous neural activities such as motor im-
agery. However, in practical applications, most studies still tend to adopt a discretization
processing strategy. This choice is mainly due to considerations of signal stability: the
continuous probability output of the decoder is accumulated through a time integration
algorithm (such as a moving average filter or an exponential smoothing filter), and valid
instructions are triggered only when the confidence reaches a preset threshold. Although
this approach sacrifices real-time performance, it significantly reduces the risk of false
triggering caused by the non-stationarity of EEG signals. This compromise reflects the
limitations of the current technical system in terms of signal decoding reliability.

Breaking through the shackles of discrete control modes and achieving true con-
tinuous interaction is an important direction for improving the performance of brain-
controlled devices. Existing explorations are mainly carried out along two technical
paths: one is to establish a direct mapping relationship between neural activity char-
acteristics and robot motion parameters, and the other is to develop a new signal pro-
cessing framework to improve the stability of decoding output. Typical cases of the
former include directly mapping the neural oscillation characteristics corresponding to
specific motion imagination patterns into multi-degree-of-freedom motion control signals
for drones or robotic arms through linear or nonlinear transformation functions. This
type of method has achieved continuous control at the six-degree-of-freedom level in a
laboratory environment, but its strict requirements on signal decoding accuracy limit
the scalability of actual application scenarios.

In terms of signal processing optimization, researchers have proposed a variety of
innovative solutions. A team has developed a new control framework based on dynamic
system theory, which significantly improved the stability of continuous control signals
by modeling the temporal evolution characteristics of the decoder output. Another
study used a composite filtering strategy, combined with the Savitzki-Golay filter and
reverse bias correction technology, to effectively suppress noise interference and abnormal
fluctuations in the classifier output. These technological breakthroughs enable healthy
subjects to continuously control mobile robots to complete complex navigation tasks,
marking the beginning of the continuous control strategy from theoretical verification to
practical application.
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The core challenge facing the current technology system is the limited set of available
instructions. Even the most advanced non-invasive brain-computer interface system
can hardly break through the upper limit of eight types of instructions that can be
reliably identified. This has posed a significant constraint on the control of complex
equipment that requires delicate operations (such as multifunctional exoskeletons or
multi-joint robotic arms). To address this bottleneck, researchers have proposed an
intelligent assistance enhancement strategy: on the one hand, through a preset behavior
template library, discrete instructions are converted into a complex action sequence that
can be autonomously executed by the robot; on the other hand, a semi-autonomous
control framework for human-machine collaboration is constructed, enabling the robot to
intelligently complete user instructions based on environmental perception information.

In terms of specific implementation, systems based on exogenous stimuli often adopt
goal-oriented autonomous planning strategies. For example, after selecting the target
position through the visual interface, the robot autonomously completes path planning
and obstacle avoidance navigation. This "target selection-autonomous execution" mode
has achieved good application results in intelligent wheelchair control. Systems based
on endogenous signals tend to adopt hierarchical interaction design, expanding limited
instructions into a multi-dimensional control space through a hierarchical menu system.
Typical applications include controlling the robotic arm to approach the target object
first, and then triggering a sequential operation process of grasping the action. It is
worth noting that the latest research has begun to try to organically integrate the two
control strategies, and simultaneously obtain discrete instructions and continuous ad-
justment signals through a hybrid brain-computer interface architecture, which provides
new possibilities for breaking through the limitations of existing technologies. .

Although the current mainstream synchronous sequential control mode has achieved
basic functions to a certain extent, its mechanized interaction process seriously restricts
the naturalness and flexibility of human-machine collaboration. This rigid structure of
"command sending-action execution" not only causes operation delays, but also makes it
difficult for users to make dynamic adjustments in complex scenarios. To break through
this limitation, researchers began to explore a new interaction paradigm that deeply
integrates user intentions with machine intelligence, which marks an important leap
from simple command transmission to intelligent collaborative decision-making in brain-
controlled robot systems.

Among various brain-controlled robotic devices, the differences in application sce-
narios have a profound impact on the choice of control strategies. As the most common
research object (accounting for 38.4%), the control mode of telepresence mobile robots
often prioritizes real-time feedback performance, so more than half of the systems adopt
an interactive method based on exogenous stimuli such as steady-state visual evoked
potentials. Such devices are usually equipped with environmental perception systems,
and users set the macroscopic movement direction through discrete instructions, while
micro-decisions such as obstacle avoidance are made autonomously by the machine. In
contrast, electric wheelchairs (accounting for 22.1%), as auxiliary equipment directly
related to personal safety, emphasize stability in their control strategies. 57.9% of the
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studies use exogenous paradigms to ensure the certainty of command recognition. It
is worth noting that the robot arm (19.8%) exhibits unique control characteristics in
grasping operations: 52.9% of the systems select the target object through visual evoked
potentials, and nearly half of the solutions use motor imagery to achieve continuous
trajectory control of the end effector. This mixed strategy reflects the high requirements
of fine operations on the control dimension.

Wearable exoskeleton devices show obvious differentiation in control modes. 87.5%
of lower limb exoskeleton systems use self-paced psychological task control, which is in
line with the physiological rhythm characteristics of walking initiation - users trigger the
gait cycle through motor imagery, and the details of joint movement are automatically
generated by the preset biomechanical model. Upper limb exoskeletons show the opposite
trend, with 66.7% of studies relying on exogenous paradigms. This is because their
functions focus more on specific action triggers (such as grasping and releasing), which
require clear discrete command confirmation. As an emerging control object, the three-
dimensional spatial motion characteristics of quadcopters have prompted researchers to
try hybrid control modes, using steady-state visual evoked potentials for flight mode
switching, and mapping motor imagery to continuous adjustment of pitch and roll.

In-depth analysis of the distribution of control strategies shows that discrete control
modes are absolutely dominant (93.0%), which reflects the bottleneck of the current
technical system in terms of signal decoding reliability. Even self-paced systems that
theoretically support continuous control generally use a confidence threshold mechanism
to discretize continuous outputs. Although this compromise improves operational safety,
it sacrifices the fluency of human-computer interaction. A few breakthrough studies
have made progress in the field of mobile robot navigation: by constructing a dynamic
mapping model of motion imagery neural features and velocity vectors, combined with
Kalman filtering for noise reduction, continuous trajectory tracking with centimeter-level
accuracy is achieved. An innovative team has also developed an adaptive extraction
algorithm for neural oscillation features that can analyze the user’s intention to adjust
the six-degree-of-freedom motion of the drone in real time, achieving a breakthrough of
5 continuous command updates per minute in a laboratory environment.

The introduction of a shared control framework provides a new approach to breaking
through the limitations of discrete control. This framework positions the robot as an
intelligent decision-making subject rather than a passive execution terminal. Typical ap-
plications include brain-controlled wheelchair systems: users trigger steering commands
by imagining left and right movements, while the wheelchair autonomously calculates
the steering radius and avoids obstacles. This hierarchical control architecture reduces
the command transmission rate by 40% while increasing task completion efficiency by
2.3 times. The advanced solution builds a dynamic weight allocation mechanism that
automatically adjusts the human-machine control weight according to the complexity of
the environment - giving users more freedom in open areas and enhancing the machine’s
autonomous obstacle avoidance function when entering narrow passages. Clinical trials
have shown that this adaptive system reduces the operational error rate of patients with
spinal cord injury by 68%.



116 5. BRAIN-COMPUTER INTERFACE TECHNOLOGY

The integration of the error potential feedback mechanism has created a new dimen-
sion of two-way interaction between humans and machines. When the robot’s behavior
deviates from the user’s expectations, the system corrects the motion trajectory in real
time by detecting the error-related potentials. Breakthrough research has combined
this neural feedback with reinforcement learning: when the robotic arm completes the
grasping task, it continuously receives the user’s subconscious error evaluation signals,
and after 300-500 iterations, it can autonomously optimize the motion trajectory that
meets individual preferences. Recent progress has shown that by decoding the user’s
subjective satisfaction evaluation of the robot’s movements (such as fluency scores), the
system can establish a personalized control model to achieve accurate reproduction of
natural motion patterns in the field of prosthetic control.

The evolution of intelligent fusion strategies has driven brain-control systems to-
ward cognitive collaboration. The latest experimental platform has been able to achieve
multimodal intent analysis: in addition to traditional motor imagery signals, it simulta-
neously integrates neural features such as attention level and task urgency, allowing the
robot to predict user needs. For example, when a neural oscillation pattern related to
user anxiety is detected, the nursing robot will automatically reduce its movement speed
and increase the frequency of environmental scanning. This forward-looking interaction
mode upgrades the brain-computer interface from a simple control channel to a two-
way cognitive interaction interface, laying the foundation for building a truly intelligent
brain-controlled robot system.



6

Emotional Computing of
Physiological Electrical Signals

6.1 Types and characteristics of physiological electrical sig-
nals

As an important research direction in the field of artificial intelligence and human-
computer interaction, affective computing is committed to identifying, analyzing and
simulating human emotional states through technical means. Among the many emotion
recognition methods, analysis based on physiological electrical signals has gradually be-
come the core technical path for emotion state detection due to its strong objectivity,
high real-time performance and not easily affected by subjective disguise. The human
body maintains life functions through complex bioelectric activities. These electrical
signals not only carry physiological state information, but also have a deep correlation
mechanism with emotional fluctuations. This chapter will systematically explain the
main types of physiological electrical signals commonly used in affective computing and
their characteristics, focusing on analyzing the generation mechanism of electrocardio-
gram signals and electromyogram signals, signal characteristics and their unique value
in emotion recognition.

The generation of physiological electrical signals originates from the electrophysiolog-
ical activities of human tissue cells. When the emotional state changes, the autonomic
nervous system and the endocrine system will work together on various organ tissues
to induce characteristic changes in electrical signals. This electro-chemical physiological
response has clear timing characteristics and a quantifiable parameter system, provid-
ing a reliable biological information carrier for emotional computing. Compared with
external behavioral signals such as facial expressions and voice intonation, physiological
electrical signals have higher anti-interference and individual consistency, and can break
through the limitations of cultural differences and subjective disguises to capture more
essential emotional physiological reactions.

Among many physiological electrical signals, electrocardiogram signals have become
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Figure 6.1: Schematic diagram of the generation of physiological electrical signals and
emotion calculation

the basic data type for emotional computing research because of their easy collection and
rich physiological information content. As an organ directly regulated by the autonomic
nervous system, the electrical activity of the heart is particularly sensitive to emotional
changes. When an individual experiences emotional fluctuations, the balance between
the sympathetic and parasympathetic nerves is broken, which directly changes the depo-
larization and repolarization process of myocardial cells, manifested as regular changes in
the morphology, rhythm, and spectral characteristics of the ECG waveform. By analyz-
ing the characteristic parameters such as RR interval variation, T wave amplitude, and
ST segment displacement in the ECG signal, different emotional states such as anxiety,
pleasure, and anger can be effectively identified. It is worth noting that the response of
the ECG signal to emotional stimuli has a significant time delay characteristic, which
is closely related to its conduction mechanism through neuro-humoral regulation. This
physiological characteristic provides important time dimension information for building
a dynamic emotion recognition model.

Unlike the electrocardiogram (ECG) that reflects the state of the autonomic nervous
system, the electromyography (EMG) signal directly records the electrical activity char-
acteristics of skeletal muscle fibers, providing a unique motor physiological dimension
for affective computing. Emotional experience can trigger unconscious contraction re-
actions in motor systems such as facial expression muscles and limb muscles. Although
such tiny electromyographic changes are difficult to detect with the naked eye, they can
be accurately captured by highly sensitive surface electrodes. For example, when disgust
is generated, the electromyographic activity of the corrugator muscles is significantly en-
hanced; while in a state of pleasure, the discharge frequency of the zygomatic major
muscle will show a characteristic increase. The time-frequency domain feature analysis
of the electromyographic signal (such as root mean square value, median frequency, and
wavelet energy coefficient) can effectively distinguish active movement from emotion-
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Figure 6.2: Electrocardiogram

induced muscle activity. This ability to distinguish plays a key role in avoiding motion
artifact interference and improving the accuracy of emotion recognition. Especially in
dynamic interactive scenarios such as virtual reality, the multi-channel synchronous mon-
itoring technology of electromyographic signals can achieve a refined analysis of complex
emotions. This chapter will be divided into two sections to explore the core character-
istics of electrocardiogram and electromyographic signals. Through comparative studies
of these two types of typical physiological electrical signals, readers will be able to es-
tablish a complete knowledge system of physiological computing and lay a theoretical
foundation for discussing multimodal emotion computing models in subsequent chapters.

6.1.1 Electrocardiogram (ECG) signal

Electrocardiogram is a common method for recording the electrical activity of the heart.
It measures the potential difference on the surface of the skin to obtain the depolariza-
tion and repolarization process of the heart in each cardiac cycle. The electrical activity
of the heart is generated by the excitation of myocardial cells, forming unique electrical
signals, which are captured by electronic recording equipment and presented as electro-
cardiograms. This technology has extremely high application value in clinical practice
and is an important tool for the diagnosis of the cardiovascular system.

The ECG reflects the repetitive pattern of electrical depolarization and repolarization
of the heart muscle with each beat. A typical ECG consists of five major waveforms,
labeled P, Q, R, S, and T waves. In some cases, a U wave may also be present. The P wave
represents depolarization of the atria and is the first visible waveform of cardiac activity.
This is followed by the QRS complex, which primarily represents the depolarization of
the ventricles. The T wave corresponds to the repolarization phase of the ventricles.
The U wave is rare and is usually associated with late repolarization of the ventricles.

The history of electrocardiogram can be traced back to 1903, when Dutch scientist



120 6. EMOTIONAL COMPUTING OF PHYSIOLOGICAL ELECTRICAL SIGNALS

Willem Einthoven designed a method to record cardiac action potentials using a gal-
vanometer. He introduced P, Q, R, S, and T marks in the standard electrocardiogram
and recorded the signal on paper with an ink pen. This primitive recording method had
important scientific value at the time. Although modern technology has widely adopted
digital equipment, traditional paper electrocardiogram recording is still retained in some
clinical environments.

In a complete cardiac cycle, the P wave occurs due to atrium depolarization, which
causes the atria to contract and pump blood into the ventricles. The P wave usually
lasts about 90 milliseconds and has an amplitude of no more than 2.5 × 10−4 volts.
The following QRS complex reflects the depolarization of the ventricles and lasts
about 80 milliseconds with an amplitude of up to 1 millivolt. The formation of this
complex involves multiple steps, including depolarization of the septum and electrical
signal conduction in the Purkinje fibers. The T wave that follows the QRS complex
represents the repolarization of the ventricles and is usually smaller in amplitude than the
QRS complex. The electrical signal of repolarization is conducted from the epicardium
to the endocardium, forming the T wave.

Atrial repolarization is not usually seen on an ECG because it is smaller in amplitude
and is masked by the QRS complex produced by ventricular depolarization. Although
the atrial repolarization signal is not visible on a normal ECG, it is still an important
part of the electrophysiological activity of the heart.

In actual measurement, ECG signals are collected through electrodes placed on the
body surface. Different electrode positions provide different perspectives to fully evaluate
the electrical activity of the heart. The earliest standard measurement method was to
record through three-point limb electrodes, namely the left arm, right arm and left
leg. The bipolar limb leads established by Einthoven include lead I (potential difference
between left arm and right arm), lead II (potential difference between left leg and right
arm) and lead III (potential difference between left leg and left arm).

As technology develops, another important measurement method has been intro-
duced, namely the precordial leads. By placing six electrodes at specific locations on
the chest, leads V1 to V6 are formed. The chest leads can provide detailed information
about the anterior, lateral, and posterior walls of the ventricles, which helps diagnose
heart diseases such as myocardial ischemia and myocardial infarction. This method is
called Wilson precordial leads. The electrodes are arranged along both sides of the ster-
num and the fifth and sixth ribs on the left to capture the electrical activity of different
areas of the heart.

In order to further improve the sensitivity of the measurement, Goldberg proposed
the decoupling lead technology. By removing the common signal components from the
limb leads and performing differential measurements, enhanced leads are formed. Com-
bining limb leads, chest leads and enhanced leads, the standard 12-lead ECG recording
has become the most commonly used ECG detection method in clinical practice. In
addition, in order to reduce noise interference and enhance signal quality, modern ECG
equipment generally uses differential amplifiers. By measuring the potential difference
between the two electrodes and amplifying the signal changes, the differential amplifier
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can effectively suppress common-mode noise. This technology is particularly effective in
eliminating environmental noise and equipment noise, making ECG recordings clearer
and more reliable.

The ECG signal is an important tool for recording and analyzing the electrical ac-
tivity of the heart. The standard twelve-lead ECG is the most common form of mea-
surement, but in some cases, other minimally invasive electrode placement techniques
are used. These techniques involve the use of a spring-loaded catheter with multiple
electrode bundles that are placed into the left ventricle. Each bundle typically contains
16 electrodes, and up to 16 bundles can be deployed simultaneously. These electrodes
fit snugly against the endocardial wall and directly record electrical activity close to
depolarized cells. These types of measurements are often used for research purposes or
to diagnose cases of complex cardiac pathology.

Electrode placement in the coronary arteries and ventricles is accomplished by in-
serting catheters equipped with electrodes. These catheters are usually equipped with
two or three electrodes, and inserting multiple catheters simultaneously allows for more
precise measurements. This approach provides greater spatial resolution, which aids
clinicians in the detection and localization of cardiac abnormalities. The concept that
the electrical activity of the heart can be described by a single current dipole was first
proposed by Albert Einthoven. He proposed that the three-dimensional rotating field
vector generated by the heart, the cardiac vector, could be used to represent the electri-
cal activity of the heart. The cardiac vector reflects not only the direction of the current
dipole, but also the magnitude of the dipole moment, which is the combined result of
ion flow during polarization and repolarization in cardiac cells.

When building a mathematical model of the heart vector, it is usually assumed that
the human body is a sphere and the origin of the heart vector is located at the center
of the sphere. Although the human arm and left leg extend from the sphere, the model
assumes that they are in the same plane and are equidistant from the center of the
sphere. This simplification helps analyze the electrical activity of the heart. In addition,
it is assumed that the electrical conduction in the sphere is uniform and isotropic to
ensure the accuracy of the calculation.

In the traditional Einthoven lead system, the electrical activity of the heart is
recorded through leads on the left hand, right hand, and left leg. Leads I, II, and
III form a two-dimensional plane with an angle of 120°. Although these leads provide
part of the information of the heart’s vector, there is a direct mathematical dependence
between them due to Kirchhoff’s laws. This dependence limits the measurement results
within the two-dimensional plane and cannot fully reveal the depolarization process of
the heart.

To address this limitation, additional electrode placement methods can be used, such
as Winston or Goldman leads. These methods provide more dimensional information by
placing electrodes at different locations, thereby forming a complete three-dimensional
cardiac vector. The formation of a three-dimensional vector allows the spatial charac-
teristics of the cardiac electrical activity to be more accurately characterized. One of the
main features of the electrocardiogram is the interpretation of hemodynamic phenom-
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ena, especially the systolic and diastolic cycles of the heart, that is, the heart rate. A
complete cardiac cycle begins with atrial contraction, which corresponds to the P wave
on the electrocardiogram. Subsequently, the ventricular contraction produces the QRS
complex wave, which is the hallmark feature. The cardiac cycle ends with diastole, when
both the atria and ventricles are in a relaxed state. After this, a new atrial contrac-
tion starts the cycle again. Due to this cyclical feature, the electrocardiogram plays an
important role in assessing cardiac function and rhythm.

Generally speaking, the normal heart rate of an adult is about 75 beats per minute,
which corresponds to a 0.8-second cycle on the electrocardiogram. In this cycle, atrial
contraction usually lasts about 0.1 seconds, ventricular contraction lasts 0.3 seconds,
and the remaining 0.4 seconds is the heart’s diastole. The atrial diastole is 0.7 seconds,
and the ventricular diastole is 0.5 seconds. This time distribution ensures the heart’s
effective pumping function.

The regulation of heart rate is influenced by many factors, including intrinsic and
extrinsic mechanisms. The intrinsic mechanisms are mainly related to the spontaneous
activity of the sinoatrial node. The excitability of the sinoatrial node can change due to
factors such as stretching and temperature changes, which directly affects the heart rate.
Increased temperature usually increases the heart rate, while decreased temperature
slows it down.

The extrinsic mechanism mainly involves the regulation of the autonomic nervous
system. The parasympathetic and sympathetic nervous systems regulate heart rate by
releasing neurotransmitters such as acetylcholine or norepinephrine. The parasympa-
thetic nerves slow down the heart rate through the vagus nerve, while the sympathetic
nerves speed up the heart rate by releasing norepinephrine and adrenaline. In response
to emergency situations, such as the "fight or flight" response, the secretion of adrenaline
will significantly increase the heart rate to ensure that the body has an adequate blood
supply.

6.1.2 Electromyography (EMG) signal

The recording of muscle electrical activity is an important biomedical measurement tech-
nology, which is widely used in medical diagnosis, exercise physiology, human-computer
interaction and other fields. By recording muscle electrical activity, it is possible to
evaluate muscle function, diagnose neuromuscular diseases, and assist in motor func-
tion rehabilitation training. In recent years, with the advancement of signal processing
and machine learning technology, the application of muscle electrical signals in emotion
recognition has gradually become a research hotspot.

There are two main methods for recording muscle electrical activity: surface elec-
trodes and needle electrodes. Surface electrodes are a non-invasive method that detects
electrical signals generated by muscle groups during contraction by attaching electrodes
to the surface of the skin. These signals are actually the superposition of the electrical
activities of multiple motor units. A motor unit is a functional unit consisting of a motor
neuron and all the muscle fibers it controls. Since surface electrodes record the spatially
weighted sum of the electrical activities of motor units, their signal characteristics are
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Figure 6.3: Schematic diagram of surface electrode and needle electrode

affected by multiple factors such as skin thickness, subcutaneous fat layer, and electrode
position. Although the accuracy of surface electrodes is slightly lower than that of needle
electrodes, they are particularly suitable for continuous monitoring and large-scale data
acquisition due to their simple operation, high comfort, and non-invasive nature.

Needle electrodes are a common choice when more precise information about the
electrical activity of muscle fibers is needed. This method records local electrical signals
from specific muscle fibers by inserting a needle with an electrode directly into the
muscle tissue. Needle electrodes include concentric electrodes and monopolar electrodes.
Concentric electrodes consist of a central electrode and a ring-shaped outer electrode
that can capture precise electrical signals from adjacent muscle fibers. This method is
particularly useful for diagnosing neuromuscular diseases such as amyotrophic lateral
sclerosis and myasthenia gravis.

The amplitude and duration of muscle electrical signals are usually within a spe-
cific range. The amplitude of electrical signals in healthy muscles is usually between 2
and 6 millivolts, and the duration is 5 to 8 milliseconds. Their typical waveform shows
a three-phase potential, which is the electrophysiological characteristic of muscle fiber
depolarization and repolarization. In the resting state, normal muscles do not produce
significant electrical signals, but when contracted or externally stimulated, the ampli-
tude and frequency of electrical signals will increase significantly. By analyzing these
characteristics, the conductivity and excitability of muscles can be evaluated, thereby
detecting the functional state of the neuromuscular system.

EMG signals are widely used in medicine. For example, in muscle strength assess-
ment, the amplitude of the EMG signal is proportional to the force generated by muscle
contraction. By measuring EMG signals, the strength of muscle contraction can be in-
ferred, which can guide rehabilitation training and sports performance assessment. In
addition, in the diagnosis of neurological diseases, the pattern of abnormal muscle fiber
activity can be identified by analyzing the frequency and time domain characteristics of
EMG signals.

It is worth noting that the application of electromyographic signals in emotion recog-
nition has also attracted much attention. Changes in human emotions are often accom-
panied by subtle muscle movements, and these micro-movements are mainly manifested
as changes in facial expression muscles. By recording the electrical signals of facial



124 6. EMOTIONAL COMPUTING OF PHYSIOLOGICAL ELECTRICAL SIGNALS

muscles through surface electrodes, researchers are able to extract feature information
for emotion recognition and psychological state analysis. Emotion recognition systems
based on electromyographic signals usually include steps such as signal acquisition, fea-
ture extraction, and classification. In the feature extraction stage, researchers usually
use time domain, frequency domain, and time-frequency domain features, such as root
mean square value, frequency mean, and wavelet transform coefficients. Subsequently,
the extracted features are classified through machine learning models such as support
vector machines, random forests, or deep neural networks to identify the emotional state
of individuals.

In practical applications, EMG emotion recognition technology has been widely used
in scenarios such as human-computer interaction and mental health monitoring. For
example, intelligent interactive systems can use EMG signals to identify the user’s emo-
tional state and then make corresponding feedback, such as adjusting the voice assistant’s
tone or providing personalized content recommendations. In the field of mental health,
EMG signals can be used to detect the physiological manifestations of psychological
states such as anxiety and depression, and assist psychologists in early screening and
diagnosis.

In addition, emotion recognition combined with multimodal data is also a current
research trend. The combination of electromyographic signals with physiological signals
such as facial expressions, voice, and heart rate can significantly improve the accuracy
and robustness of emotion recognition. Multimodal emotion recognition systems can
comprehensively analyze physiological and behavioral data of different dimensions to
form more comprehensive emotion assessment results.

6.2 Physiological signal processing methods

In the field of affective computing, physiological signals, as an objective, continuous and
difficult-to-forge information carrier, have received widespread attention in recent years.
The key to emotion recognition is how to extract effective features that reflect the indi-
vidual’s emotional state from massive and complex physiological data, and then achieve
efficient and accurate emotion classification. Based on this background, this chapter will
systematically explain the physiological signal processing methods for emotion recogni-
tion, and build a complete emotion recognition system by introducing key steps such
as data preprocessing, feature extraction, and classification algorithms. Emotion is an
important and complex part of human cognitive activities. Its physiological basis is man-
ifested in a variety of signals such as heart rate, skin electricity, and brain waves. These
signals will change significantly under different emotional states. Therefore, how to fully
mine the emotional information in the signal under the influence of noise interference
and individual differences has become a core issue in emotion recognition research.

At the beginning of this chapter, we first need to preprocess the collected physiolog-
ical signals reasonably. The collection process of physiological signals is often subject to
various interferences such as environmental noise, instrument errors, and motion arti-
facts. These interferences will not only reduce the signal quality, but may also seriously
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affect the subsequent feature extraction and emotion classification work. By performing
a series of preprocessing operations such as filtering, denoising, and normalization on
the signal, the signal-to-noise ratio of the signal can be effectively improved, making
the subsequent processing stage more targeted and effective. The preprocessing pro-
cess is not limited to traditional filtering methods, but can also combine a variety of
technical means such as time domain, frequency domain, and time-frequency domain to
perform multi-scale and multi-angle analysis of complex signals, so as to better capture
the weak changes and potential patterns in the signal. This part will lay a solid founda-
tion for subsequent content, and also provide theoretical support and practical guidance
for understanding the dynamic characteristics of signals.

After preprocessing, feature extraction of physiological signals becomes an indispens-
able step in emotion recognition. Each emotional state corresponds to specific physi-
ological changes. How to extract effective features from the preprocessed signal is the
key to achieving high-precision emotion classification. Feature extraction methods can
rely on traditional statistical features, time domain and frequency domain features, or
use advanced signal analysis methods such as wavelet transform and empirical mode
decomposition to mine local features and instantaneous changes in signals. In addition,
with the continuous development of deep learning technology, automatic feature learn-
ing methods based on convolutional neural networks and recurrent neural networks are
gradually applied to the processing of physiological signals. These methods can automat-
ically capture the hidden high-order nonlinear relationships and complex spatiotemporal
dynamic features in the signal, thereby greatly improving the robustness and accuracy
of the emotion recognition system. The work of feature extraction is not just a simple
conversion of data, but a deep internal logic analysis of physiological signals, providing
rich and accurate information support for subsequent emotion classification.

Physiological signal classification is the key step to classify the data after feature
extraction according to different emotional states. The selection and design of the clas-
sifier directly affects the overall performance of the emotion recognition system. Tradi-
tional classification methods such as support vector machines, decision trees, and random
forests have achieved good results to a certain extent due to their high generalization
ability and adaptability to small sample data. However, with the continuous increase
in data volume and the complexity of emotional states, the application of deep learning
models, especially long short-term memory networks (LSTM) and convolutional neu-
ral networks (CNN) in physiological signal classification has received more and more
attention. These models can not only make full use of large-scale data for end-to-end
learning, but also maintain high accuracy and robustness when facing high-dimensional
and nonlinear data. In the classification stage, how to deal with the fusion of multi-
modal information, how to achieve a unified description of emotional states between
individuals, and how to effectively train and optimize the model have become hot topics
and difficulties in current research. By combining traditional methods and deep learning
methods, this chapter strives to build an emotion recognition framework with excellent
comprehensive performance and strong adaptability, and provide a practical technical
solution for practical applications.
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Figure 6.4: Physiological signal classification flow chart

The content of this chapter aims to provide readers with a systematic and complete
set of physiological signal processing methods for emotion recognition. From the basic
steps of signal preprocessing to the key technologies of feature extraction, and then to the
model selection and optimization in the classification stage, each part is closely connected
and together constitutes the core module of the emotion recognition system. Through
a detailed discussion of each link of physiological signal processing, it can not only help
readers deeply understand the basic principles of emotion recognition, but also provide a
comprehensive reference for subsequent application practice and theoretical research. In
the future, with the continuous advancement of data acquisition technology, computing
power and algorithm theory, the application prospects of physiological signals in emotion
recognition will be broader. The mutual cooperation and synergy between various sub-
modules will further promote the development of the field of emotional computing and
promote the in-depth application of emotional intelligence in multiple fields such as
medical care, mental health, and intelligent interaction.

In the following chapters, we will discuss in detail the three steps of preprocessing,
feature extraction, and classification. First, the physiological signal preprocessing sec-
tion will introduce data acquisition and noise suppression technology, and explore how
to improve data quality through signal filtering, artifact removal, and normalization.
Then, in the physiological signal feature extraction section, we will focus on how to ex-
tract effective features that can reflect emotional states from preprocessed signals, and
compare and analyze traditional methods with emerging technologies. Finally, the phys-
iological signal classification section will introduce in detail the application of various
classification algorithms in emotion recognition, analyze the advantages and disadvan-
tages of different models and applicable scenarios, and explore the innovative application
of deep learning technology in this field. Through the detailed elaboration of these three
sections, we hope to build a research framework for emotion recognition that combines
theory and practice for readers, and provide strong theoretical support and technical
references for in-depth exploration of related fields in the future.

6.2.1 Physiological signal preprocessing

The problems caused by artifacts in biomedical signals are wide-ranging and varied, and
their potential degradation effect on the performance of state-of-the-art signal process-
ing algorithms is high. The magnitude of the noise removal problem and its importance
are fully reflected in the scope of this chapter. By analyzing the various types of arti-
facts that contaminate biomedical signals and exploring filtering techniques to remove
them without degrading the quality of the signal of interest, we can gain a deeper un-
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derstanding of the challenges and solutions in this area. If a subject coughs or twists
during ECG acquisition, the electromyogram associated with such activities will consti-
tute interference or artifacts. In adult patients, this physiological interference can be
minimized through strict guidance and self-control, however, this solution may not be
applicable to infants and children. An interesting example of physiological interference
is when the mother’s ECG appears together with the fetus’s ECG, the latter of which
is the real signal of interest. In this case, external control is neither feasible nor ideal,
and researchers are forced to develop innovative solutions to extract the desired signal.

Since most biomedical signals are weak at their source, high amplification factors of
several hundred to several thousand times may be required. Electronic noise in the in-
strument amplifier is also amplified along with the desired signal. Although the thermal
component of the noise can be reduced by cooling the equipment to very low temper-
atures, this step may not be practical or cost-prohibitive in most applications. Low-
noise power supplies and modern electronic amplifiers with high input impedance, high
common-mode rejection ratio, and high power supply rejection ratio are necessary when
acquiring biomedical signals. Our environment is filled with natural and man-made elec-
tromagnetic waves. Electromagnetic waves broadcast by radio and television stations,
as well as radiated by fluorescent lighting equipment, computer monitors, and other
systems used in the laboratory or work environment, are picked up by cables, equip-
ment, and connectors. 50 Hz or 60 Hz power waveforms are notorious for the many
ways they can mix with and contaminate the signal of interest. This interference can be
considered interference caused by the experimental environment. In most cases, simple
electromagnetic shielding of cables and grounding of the equipment chassis can reduce
electromagnetic and power interference. For experiments dealing with extremely weak
signals, it may be necessary to use a metal mesh shielding cage to contain the subject
and the instrument.

The ECG is a relatively strong signal with an easily identifiable waveform, and
most types of interference affecting its signal can be removed by bandpass filtering.
However, other signals with less identifiable waveforms and wider bandwidths may not
be suitable for simple filtering procedures. For signals such as event-related potentials
or somatosensory evoked potentials, the noise level may be much higher than the signal
level, making the latter difficult to discern in a single recording. Before attempting
to filter or preprocess the signal, it is important to have a good understanding of the
noise processes involved. In chest lead ECG signals, low-frequency artifacts and baseline
wandering can be caused by coughing or breathing with large chest movements, or by
movement of the arms or legs when acquiring limb lead ECGs. Electrogastrograms are
a common source of artifacts in chest lead ECGs. Low-frequency artifacts can also be
caused by poor electrode contact or electrode polarization. Baseline wandering can also
sometimes be caused by temperature changes and offsets in the instrument and amplifier.
ECG signals with low-frequency artifacts can make isoelectric analysis of the ST segment
difficult, and large baseline wandering can even cause positive or negative peaks in the
ECG to be truncated by the amplifier or analog-to-digital converter.

The most common periodic artifacts in biomedical signals are 50 Hz or 60 Hz power
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Figure 6.5: ECG with baseline drift before and after processing

supply interference. If the power supply waveform is not a pure sine wave due to dis-
tortion or truncation, harmonics of its fundamental frequency may also appear. If the
interference is a periodic waveform but not a sine wave, such as a rectangular pulse, the
harmonics will also be apparent. Power supply interference may be difficult to detect
visually in signals with undefined waveforms such as phonocardiograms or electromyo-
grams; however, if the interference occurs in signals with well-defined waveforms such as
electrocardiograms or carotid pulse signals, it is easy to observe. In either case, the power
spectrum of the signal should clearly indicate the presence of power supply interference,
which appears as pulses or spikes at 50 Hz or 60 Hz; if harmonics are present, additional
spikes will appear at integer multiples of the fundamental frequency. An ECG signal
with 60 Hz interference will show the regular or periodic structure of the interference
superimposed on the ECG waveform, and its power spectrum will clearly show a spike
at 60 Hz, and additional spikes at 180 Hz and 300 Hz, representing the third and fifth
harmonics, respectively. The recommended sampling rate for ECG signals is 500 Hz, but
a higher sampling rate of 1000 Hz was used in this case because the ECG was recorded
along with the phonocardiogram as a reference signal. A wider bandwidth also helps to
better show artifacts and filtering effects. The bandwidth of interest for ECG signals is
usually in the range of 0.05 - 100 Hz, including the 60 Hz component, so simple low-pass
filtering is not suitable for removing power supply interference. Low-pass filtering the
ECG below 60 Hz may smooth and blur the QRS complex, while affecting the PQ and
ST segments. The ideal solution is to remove the 60 Hz component without sacrificing
any other components.

In the study of emotion recognition, the preprocessing of physiological signals is a
crucial step, because the original signals are often interfered by various noises, which
may mask key emotional features. In order to extract meaningful patterns from these
signals, we need to adopt appropriate signal processing techniques, among which time
domain filters have attracted much attention due to their unique advantages. A notable
feature of time domain filtering is that it can process the signal directly without in-depth
analysis of the frequency characteristics of the signal and noise, at least in most cases
without the need for spectral characterization in a direct way. In addition, compared with
frequency domain filtering, time domain processing usually has a faster computational
speed, which is particularly important in real-time emotion recognition applications.

Among the many time-domain techniques, synchronous averaging is a very effective
method, especially for situations where the signal or event of interest can be acquired
multiple times. The core of this method is to solve a common problem: when the
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frequency range of the signal and the noise overlap, traditional linear filters often have
difficulty in effectively separating them. Synchronous averaging addresses this challenge
by taking advantage of the repetitiveness of the signal. For example, when dealing
with event-related potentials or somatosensory evoked potentials, we can record the
corresponding signal segments multiple times by repeatedly applying the stimulus. Then,
using the time when the stimulus occurred as a reference point, these segments are
aligned and averaged. This method can also be applied to ECG signals by detecting the
position of the QRS complex in the heart cycle, aligning the waveforms, and averaging
to filter out noise. As long as the noise is random and has a zero average value and is
not correlated with the signal itself, the averaging process can significantly improve the
signal-to-noise ratio. In other words, as the number of averages increases, the impact
of noise gradually decreases, while the clarity of the signal continues to increase. This
improvement is not linear, but rather increases proportionally with the square root of
the number of acquisitions, so the more signal segments acquired, the better the final
signal-to-noise ratio is.

In addition to ECG and event-related potentials, synchronous averaging can also be
extended to the processing of other physiological signals, such as electromyographic sig-
nals. Electromyographic signals record the potential changes during muscle activity and
are often used to study facial expressions or body movements in emotional expression.
Since electromyographic signals are easily affected by environmental noise, power supply
interference, and other physiological activities, direct analysis is often difficult. Through
synchronous averaging, we can use the repeatability of specific muscle movements to
enhance signal quality. For example, in the experiment, the subjects are asked to repeat
a certain expression movement (such as smiling or frowning) many times, and the corre-
sponding electromyographic signals are recorded each time. Then, these signal fragments
are aligned with the moment when the movement starts as the reference point and the
average is taken. In this way, random noise is effectively weakened, while the muscle
activity patterns related to expression are retained and highlighted. This method is par-
ticularly suitable for studying subtle emotional clues such as micro-expressions because
it can extract reliable signal features in a noisy background.

In practice, the process of synchronous averaging requires several key steps. First, we
need to obtain multiple repeated signal records. These signals may come from reactions
triggered by external stimuli or naturally repeated events in quasi-periodic signals. Tak-
ing electromyographic signals as an example, the reference point for alignment can be
determined by detecting the starting point of muscle contraction. Secondly, the signal
part corresponding to the event is extracted and accumulated in a buffer. It should be
noted that the duration of different signal segments may not be exactly the same, so the
reference point should be used as the benchmark when aligning, and there is no need to
force the uniformity of the end of the segment. Finally, the accumulated result is divided
by the number of signal segments to obtain the averaged signal. This method relies on
the precise alignment of the repeated parts of the signal. If the alignment is deviated,
the signal features may become blurred on the time axis, thus affecting the accuracy of
the analysis.
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Taking visual evoked potential as an example, a single acquired signal often contains
a lot of noise, making it difficult to directly distinguish key features. However, when
we average the responses to multiple flash stimuli, the main peaks and valleys in the
signal gradually emerge. For example, in normal visual evoked potentials in adults, the
first positive peak usually appears about 120 milliseconds after the stimulus, often called
P120, while the negative valleys before and after it are marked N80 and N145, respec-
tively. By averaging multiple recordings, the latency of these features can be accurately
measured, and the results usually fall within the normal range. This improvement in
clarity is crucial for emotion recognition, because emotional states may be reflected by
small changes in these latencies.

In the processing of ECG signals, synchronous averaging also demonstrates its power-
ful capabilities. Suppose we are faced with a noisy signal containing multiple heartbeats.
We can first extract a typical QRS complex from the signal as a template, and then find
the position of each heartbeat through template matching technology. This matching
process is achieved by calculating the similarity between the template and the signal.
Positions with high similarity usually correspond to the appearance points of the QRS
complex. After determining these positions, we align and average the corresponding sig-
nal fragments, thereby significantly suppressing the impact of noise. The final average
waveform not only removes random interference, but also retains the typical character-
istics of the heartbeat, providing a reliable basis for subsequent sentiment analysis.

For the application of EMG signals, the potential of synchronous averaging is also
worth exploring. For example, when studying emotions such as anger or happiness,
subtle contraction patterns of facial muscles may be reflected through EMG signals.
By recording the EMG response of the same expression multiple times and averaging
it based on the starting point of muscle activity, we can filter out irrelevant noise and
highlight the muscle activity characteristics related to emotion. This method is not
only applicable to facial EMG signals, but can also be extended to the analysis of body
movements, such as EMG changes in actions such as clenching a fist or waving a hand,
providing more possibilities for multimodal emotion recognition.

Another major advantage of synchronous averaging is that it does not rely on fre-
quency domain filtering, so the frequency content of the signal is not lost. Unlike tradi-
tional low-pass filters or moving average filters, this method preserves the integrity of the
signal and avoids the distortion of characteristics caused by filtering. In addition, syn-
chronous averaging can effectively suppress some structured noise, such as power supply
interference. As long as the phase of the interference is different in each signal recording,
the averaging process will weaken it. To fully utilize this property, the repetition rate of
the stimulus should be as far as possible from the power supply frequency. For example,
when collecting visual evoked potentials, the frequency of the flash stimulus can be set
to 2.1 times per second instead of a value directly related to the power supply frequency
of 50 Hz or 60 Hz.

In the preprocessing of physiological signals for emotion recognition, the diversity of
time domain techniques provides us with a wealth of tools to deal with noise problems
in different scenarios. When we cannot apply synchronous averaging techniques by
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acquiring signals multiple times, how to effectively remove random noise in a single
signal record becomes a key issue that needs to be solved. At this time, the moving
average filter, as a classic time domain method, can fill this gap well. Its core idea is to
weaken the influence of noise through temporal smoothing. This method assumes that
the characteristics of the signal have a certain stability in the time dimension, so the
average value of the signal over a short period of time can be used to approximate its true
form. Unlike synchronous averaging, which requires multiple copies of the signal, the
moving average filter relies only on a single signal, and generates a smoothed output by
sliding a window along the time axis and performing a weighted average of the samples
in the window. Because this window is constantly moving, it can provide a new estimate
at each time point of the signal, hence the name "moving average".

The implementation of a moving average filter is very intuitive. It calculates the
output by taking a weighted combination of the current value of the signal and several
previous values. This weighting process is determined by a set of filter coefficients,
which not only reflect the importance of each sample, but also implicitly normalize the
number of samples. For example, a simple and commonly used form is the Hanning filter,
which smoothes by taking a specific weighted average of the current sample, the previous
sample, and the previous two samples. The design of this filter is inspired by the early
practice of signal processing and can effectively reduce high-frequency noise without over-
complication. Imagine that when we are faced with a piece of electromyographic signal
mixed with sharp fluctuations, the Hanning filter is like a gentle iron, ironing out those
abrupt noise peaks while trying to preserve the core features related to muscle activity
in the signal. This smoothing effect is particularly important in emotion recognition
because it helps us more clearly observe the physiological changes related to emotional
expression, such as the subtle rise and fall of facial muscles when smiling or frowning.

However, the moving average filter is not a panacea. Its smoothing characteristics
can remove noise but may also blur the rapidly changing details in the signal. For
example, in an electrocardiogram signal, the steep peak of the QRS complex may be-
come less obvious due to over-smoothing, thus affecting subsequent sentiment analysis.
Therefore, in practical applications, we need to reasonably select the filter window length
and weighting method based on the characteristics of the signal and the needs of emo-
tion recognition. For electromyographic signals, since their frequency range is usually
wide and emotion-related features may be hidden in rapid muscle contractions, shorter
windows may be more suitable to avoid losing key information.

In addition to smoothing high-frequency noise, physiological signal preprocessing also
needs to deal with the interference of low-frequency artifacts, such as baseline drift, which
is common in ECG signals. This drift is usually caused by breathing, body movement, or
poor electrode contact, which will introduce slow fluctuations in the signal and directly
affect the extraction of emotional features. At this time, derivative-based operators
become a powerful time domain tool. The essence of the derivative operation is to
capture the rate of change of the signal. It has no response to the constant components
in the signal, but is extremely sensitive to the rapidly changing parts. Imagine that
when we apply a derivative operation to an ECG signal with baseline drift, the slowly
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Figure 6.6: Schematic diagram of synchronous average and moving average filtering

fluctuating low-frequency components will be greatly weakened, while high-frequency
features such as the QRS complex will be highlighted. This feature makes the derivative
operation similar to a natural high-pass filter, which can effectively remove the DC
component and suppress low-frequency interference.

In practice, derivatives can be implemented by differential methods in digital signal
processing. For example, the simplest form is to calculate the difference between the cur-
rent sample and the previous sample. This first-order differential operation can quickly
reflect the local change trend of the signal. If the high-frequency component needs to be
further enhanced, we can apply the differential twice in succession to obtain the second-
order derivative, which has the effect of measuring the acceleration of the signal change.
This method is also promising in the processing of electromyographic signals. For ex-
ample, when analyzing angry expressions, facial muscles may show rapid and violent
contractions. The second-order derivative can help us capture the dynamic characteris-
tics of these moments, thereby revealing hidden emotional clues. However, the derivative
operation also has its limitations. Due to its amplification of high-frequency components,
the noise in the signal may be enhanced together, especially in the first-order difference,
where this effect is particularly obvious. To alleviate this problem, we can adopt an
improved method, namely the three-point central difference. This method can suppress
low-frequency artifacts and control the amplification of high-frequency noise to a certain
extent by combining the information of the current sample with the two previous and
next samples.

Taking the electrocardiogram signal as an example, when we are faced with a wave-
form contaminated by low-frequency baseline drift, both the first-order difference and
the three-point center difference can significantly remove the drift effect. However, the
results show that while both methods highlight the QRS complex, they also inevitably
weaken the morphology of the P wave and the T wave, and even make the entire wave-
form look unlike a typical electrocardiogram signal. This reminds us to be cautious when
using derivative operations, especially in emotion recognition. If the goal is to preserve
the complete morphology of the signal to analyze features such as heart rate variability,
the derivative operation may not be the best choice. However, it still has its unique
value in certain specific tasks, such as detecting the exact location of the QRS complex,
which is crucial for subsequent synchronous averaging or other analysis steps.

In contrast, frequency domain filters offer a completely different approach. If time
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domain filters directly trim and polish the "time story" of the signal, frequency domain
filters decompose the signal into different frequency chapters and then edit these chapters
in a targeted manner. Although moving average filters and derivative operations in
the time domain are simple and efficient, their frequency responses are often indirectly
generated byproducts rather than the focus of the initial design. For example, when
the moving average filter suppresses high-frequency noise, its effect on the frequency
axis is not very sharp, and it usually only shows significant attenuation near a specific
frequency. Although the high-pass characteristics of the derivative operation are clear,
the law of its gain changing with frequency is also relatively rough and lacks precise
control.

The advantage of frequency domain filters is that they allow us to tailor the fre-
quency characteristics of the signal according to the specific needs of emotion recogni-
tion. Whether it is low-pass filtering to retain the slow changes of the signal, high-pass
filtering to highlight fast dynamics, or even band-pass or band-stop filtering to focus on a
specific frequency band, we can achieve it through frequency domain design. For exam-
ple, in the processing of electromyographic signals, if we know that the muscle activity
related to emotion is mainly concentrated in a certain frequency range, we can design a
bandpass filter to accurately extract this part of information while removing irrelevant
low-frequency drift and high-frequency noise. This flexibility is particularly important
in multimodal emotion recognition, because different physiological signals (such as elec-
trocardiogram, electromyography, and EEG) may require completely different frequency
processing strategies.

In practice, frequency domain filters can be implemented in a variety of ways. We can
first perform a Fourier transform on the signal, adjust its frequency components in the
frequency domain, and then return to the time domain through an inverse transform; or
we can directly design an equivalent time domain filter and apply it to the signal samples.
Classic design methods include Butterworth filters, Chebyshev filters, elliptic filters,
and Bessel filters, each of which focuses on smoothness, transition steepness, and phase
characteristics. For example, the Butterworth filter is known for its smooth passband
response, which is very suitable for sentiment analysis that needs to preserve the natural
form of the signal; while the elliptic filter is known for its steep transition band, which
can quickly separate the target frequency band from the noise in the electromyographic
signal.

6.2.2 Physiological signal feature extraction

One of the most important time-domain features of an ECG signal is the duration of
the cardiac cycle. Typically, the length of the cardiac cycle is derived by measuring the
time span from one R wave to the next. Other relevant features include the duration of
individual waves, such as the duration of the QRS complex, and the time interval between
waves, such as the time interval between the T wave and the P wave. The measurement
of this interval is particularly important because it reflects the relationship between the
cardiac repolarization phenomenon and the sinus node pulse rate.

The duration of the QRS complex is an important time domain feature. It is usually
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Figure 6.7: Schematic diagram of normal and abnormal ECG frequency comparison

identified by its unique shape and relatively stable time constant. On the other hand, the
time interval between the T wave and the P wave also has significant clinical significance,
which reveals the separation of two important events in the electrical activity of the heart.
In the electrocardiogram, the QRS complex is mainly manifested as a high-frequency
area, while the P wave and T wave are mainly composed of low-frequency components.
The ST segment is limited in time and mainly contains low-frequency content.

There are significant differences in the frequency content of normal and abnormal
ECGs. A normal heart rate is usually between 60 and 100 beats per minute, while
a patient with atrial fibrillation may have a heart rate of more than 200 beats per
minute. In addition to changes in frequency, the slopes of the heart’s depolarization and
repolarization processes also change in pathological conditions. These changes require
a wider frequency bandwidth to fully describe the different phenomena. In general, a
standard ECG can be basically described by the first eight harmonics of the Fourier
transform. Fourier analysis provides a basic representation of the frequency domain
characteristics of the ECG. For seemingly normal ECGs, frequency analysis usually
covers the range of 0 to 100 Hz. When detecting arrhythmias, the frequency analysis
may need to be extended to 200 Hz. It is worth noting that as the frequency increases,
noise gradually dominates the spectrum, reducing the effectiveness of the additional
information.

In addition, the frequency effects measured by electrodes do not always reflect the
true spectrum of cellular activity. Different types of noise, including respiratory signals
and electromyographic signals of skeletal muscles, often interfere with the measurement
results. For this reason, filters are usually used to remove these noises, such as ap-
plying notch filters to remove device and capacitor noise. Respiration signals are one
of the common artifacts. Since breathing involves the movement of the chest and di-
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aphragm, the amplitude of the electromyographic signals generated is large. Although
the respiratory frequency is much lower than the heart rate, the displacement of the
electrodes will cause modulation effects in the spectral content of the signal. Monitoring
the breathing process through a flow probe and subtracting the relevant signal from the
electrocardiographic signal is an effective noise reduction method.

Wavelet analysis is also widely used in ECG signal processing. Unlike traditional
Fourier transform, wavelet transform can provide localized information in the time-
frequency domain, which helps to capture short and complex events in ECG signals. It
reveals the characteristics of the signal at different time scales by convolving the signal
with the mother wavelet. Wavelet analysis is particularly suitable for detecting the
pattern and positioning of QRS complex waves, and can also quantify the amplitude
and scaling of these waves. Daubechies and Coiflet wavelets are commonly used tools in
ECG analysis.

In the analysis of physiological signals, EMG signals are also an important research
object. Since EMG signals reflect the electrical activity of muscle fibers, they are often
used to evaluate muscle function, diagnose neuromuscular diseases, and study muscle
fatigue. In order to extract effective features from EMG signals, time domain, frequency
domain, and time-frequency domain analysis methods are usually used.

A commonly used time domain feature is the root mean square value, which is used
to represent the power level of the signal. The root mean square value provides a
quantification of the strength of muscle contraction, which in turn reflects the ability
of the muscle to generate force. In addition, the average rectified value is also often
used in EMG analysis. It describes the average value of the absolute changes in the
signal and is used to evaluate the smoothness or non-smoothness of the signal. In the
frequency domain, EMG signals are usually concentrated between 50 and 500 Hz, and
their main energy distribution is between 70 and 300 Hz. By analyzing the spectral
characteristics of the EMG, the changes in muscles under contraction and fatigue states
can be effectively distinguished. During muscle fatigue, the power spectrum usually
shifts from high frequency to low frequency, and this feature provides a strong basis for
evaluating muscle function.

The application of wavelet analysis in EMG signals also shows significant advantages.
Through wavelet decomposition, the characteristic changes of EMG signals at different
time scales can be detected. For example, wavelet analysis can identify different types
of contraction patterns during isometric contractions and detect the difference between
fast contractions and slow contractions. In addition, wavelet analysis can also be used
to evaluate the recruitment status of motor units. Detecting the response delay of
motor units through short-time Fourier transform or wavelet transform can help identify
abnormalities in neuromuscular function.

6.2.3 Physiological signal classification

The classification of ECG signals is mainly used to identify abnormal states of the heart,
and its methods can be divided into traditional methods and machine learning-based
methods. Traditional methods usually rely on the extraction of time and frequency do-
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main features of the signal, such as the morphology of the QRS complex, the RR interval,
and heart rate variability. Through these features, researchers can use threshold judg-
ment or rule systems for classification. A classic example is the Pan-Tompkins algorithm,
which extracts QRS complex features through steps such as bandpass filtering, differ-
entiation, square and moving window integration, and then realizes the classification of
heartbeats. This method is simple and intuitive, with low computational complexity,
and is suitable for some basic classification tasks. However, with the increase in data
complexity and the increase in classification requirements, the limitations of traditional
methods have gradually emerged, especially when dealing with diverse and noisy ECG
signals.

In recent years, the rapid development of machine learning technology has brought
new possibilities for ECG signal classification. Support vector machine is a common ma-
chine learning algorithm that distinguishes normal heartbeats from abnormal heartbeats
by finding the optimal hyperplane. Studies have shown that the classification accuracy of
support vector machine can be significantly improved when time domain and frequency
domain features are used in combination. Random forest, as an integrated learning
method, can effectively process high-dimensional feature data by constructing multiple
decision trees and integrating their results for classification, and has good robustness
and generalization ability. In addition, with the rise of deep learning technology, the
application of neural networks in ECG signal classification is increasing. Convolutional
neural networks can automatically extract the spatial features of signals, while recurrent
neural networks are good at processing time series data. Researchers have found that
combining these two networks into a hybrid model can further improve the classification
performance. For example, a study proposed a hybrid model based on convolutional
neural networks and recurrent neural networks for automatic detection of arrhythmias.
The model can directly extract features from the original signal and classify it, achieving
a high accuracy rate.

In actual research, the methods of ECG signal classification are constantly innovat-
ing. For example, some scholars use transfer learning technology to migrate the model
pre-trained on a large-scale dataset to a small sample dataset, thereby improving clas-
sification performance. This method is particularly suitable for scenarios with limited
data resources. In addition, for applications with high real-time requirements, such as
wearable ECG monitoring devices, researchers are also exploring lightweight models to
reduce computational complexity while ensuring accuracy.

The classification of electromyographic signals mainly serves motion recognition and
muscle function assessment, and its methods can also be divided into traditional methods
and machine learning-based methods. Traditional methods usually rely on the extraction
of time domain features, such as root mean square, zero crossing rate, and wavelength,
and judge the activity state of the muscle through threshold judgment or pattern match-
ing. For example, the threshold method based on root mean square features can quickly
detect whether the muscle is in an active state. The advantage of this method is that
it is simple to implement and has a small amount of calculation, but it often performs
poorly in complex motion recognition or multi-channel signal processing.
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Similar to ECG signals, machine learning techniques have also been widely used in
EMG signal classification. Support vector machines perform well in multi-class gesture
recognition, especially when combined with time domain and frequency domain features,
they can effectively distinguish different gesture patterns. The K nearest neighbor al-
gorithm is an instance-based learning method that classifies by calculating the distance
between the sample to be classified and the training sample. It is particularly suitable
for classification tasks with small sample data sets. In recent years, deep learning mod-
els have gradually dominated the classification of EMG signals. Convolutional neural
networks can automatically extract the spatial features of signals, while long short-term
memory networks are good at processing time series data. Studies have shown that com-
bining these two networks into a hybrid model can significantly improve the accuracy
and real-time performance of EMG signal classification. For example, a study proposed
a gesture recognition method based on multi-channel EMG signals, which uses convolu-
tional neural networks to simultaneously process signal data from multiple channels to
achieve high-precision gesture classification.

In practical applications, research on EMG signal classification is also making contin-
uous breakthroughs. For example, some scholars have designed a real-time EMG signal
classification system based on embedded systems, which uses a lightweight machine
learning model to achieve low-power operation and high real-time gesture recognition.
This system is particularly suitable for scenarios that require instant feedback, such
as prosthetic control. In addition, there are studies that further improve the recogni-
tion accuracy of complex movements through the analysis of multi-channel EMG signals
combined with deep learning models, providing new technical support for the field of
human-computer interaction.

When selecting a classification algorithm for ECG and EMG signals, multiple fac-
tors need to be considered, including accuracy, real-time performance, computational
complexity, and the characteristics of the data set. Deep learning models usually have
higher accuracy, but require a large amount of data for training and have high comput-
ing resource requirements, so they are more suitable for scenarios with sufficient data
and good hardware conditions. Traditional methods and shallow machine learning mod-
els, such as support vector machines and random forests, often perform better on small
sample data sets and have lower computational complexity, making them suitable for
applications with high real-time requirements, such as wearable devices or embedded
systems. In addition, characteristics of the data set, such as noise level and class imbal-
ance, will also affect the choice of algorithm. For data with high noise, robust algorithms
(such as random forests) may have more advantages; for data with class imbalance, data
enhancement or transfer learning techniques may be needed to improve performance.

In recent years, researchers have proposed many innovative classification methods,
which have promoted the development of ECG and EMG signal analysis. In the field
of ECG signals, some studies have achieved automatic arrhythmia detection through
deep learning, and used a hybrid model of convolutional neural networks and recurrent
neural networks to directly extract features from the original signals and classify them,
significantly improving the diagnostic efficiency. In addition, the application of transfer
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learning also provides new ideas for the classification of small sample data sets. By
using pre-trained models, researchers can obtain better classification results when data
is limited. In the field of electromyographic signals, multi-channel signal processing and
real-time classification are research hotspots. For example, some studies have achieved
high-precision recognition of complex gestures by processing multi-channel electromyo-
graphic signals through convolutional neural networks; and lightweight classification
models based on embedded systems provide practical solutions for prosthetic control
and rehabilitation training.

Physiological signal classification is a challenging and promising research field. The
classification methods of ECG and EMG signals have evolved from traditional feature
extraction to automatic feature learning based on machine learning, which has greatly
improved the classification performance. Traditional methods still have a place for their
simplicity and efficiency, while machine learning methods, especially deep learning mod-
els, have become mainstream with their powerful feature extraction capabilities and
high accuracy. In practical applications, researchers continue to promote technological
progress through innovative algorithms and system designs, such as using transfer learn-
ing to solve small sample problems or developing lightweight models to meet real-time
requirements. In the future, with the advancement of data acquisition technology and
the improvement of computing power, the research on physiological signal classification
can further explore cutting-edge technologies such as small sample learning to adapt
to small sample scenarios, while paying attention to the interpretability and real-time
performance of the algorithm, bringing greater breakthroughs to fields such as medical
diagnosis and human-computer interaction.

6.3 Sentiment Analysis of Physiological Electrical Signals

As the direct output of the human autonomic nervous system, physiological electrical
signals can reflect the dynamic changes of emotions with millisecond accuracy, provid-
ing an objective biological basis for the quantification and identification of emotional
states. This chapter will systematically explain the application framework of physio-
logical electrical signals in emotion analysis, starting from the correlation mechanism
between physiological signals and emotional states, explore the key technical paths of
emotional computing, and lay a theoretical foundation for building an accurate and
explainable emotion recognition model.

The human body’s emotional experience is essentially an integrated response of the
nervous system to external stimuli, a process achieved through the synergistic action
of the autonomic nervous system and the central nervous system. When an individ-
ual experiences emotions such as pleasure, fear, and sadness, the balance between the
sympathetic and parasympathetic nerves changes, which in turn triggers synchronous
fluctuations in physiological indicators such as heart rate, skin conductance, and elec-
tromyographic activity. For example, anxiety is often accompanied by an acceleration
of heart rate and an increase in skin conductance, while a state of relaxation is associ-
ated with a slowing of breathing rhythm and an increase in the energy of EEG alpha
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Figure 6.8: Multimodal physiological electrical signals

waves. These physiological electrical signals can not only distinguish the valence (posi-
tive/negative) and arousal (high/low) of emotions, but also reveal the temporal evolution
characteristics of emotions. Taking the electrocardiogram signal as an example, the high-
frequency component of its RR interval variability is closely related to parasympathetic
nerve activity and can be used as a biomarker of emotion regulation ability; while the
phase response of skin electrical activity is highly synchronized with emotional arousal
events and is widely used to detect instantaneous emotional fluctuations.

It is worth noting that the multimodal characteristics of physiological electrical sig-
nals provide complementary information for emotion analysis. Electroencephalography
(EEG) reflects the emotional load in cognitive processing through cortical neural oscilla-
tions, electromyography (EMG) captures muscle motor unit potentials related to facial
micro-expressions, and electrooculography (EOG) associates attention allocation with
emotional salience assessment. This coupled analysis of multi-channel signals can break
through the information limitations of a single modality and build a more robust emotion
representation system. However, the relationship between physiological signals and emo-
tional states is not a simple linear correspondence. Individual differences, environmental
interference, and the subjectivity of emotional experience all introduce complexity. For
example, the same fear stimulus may cause significant differences in the degree of sym-
pathetic nerve activation in different subjects, which is closely related to the individual’s
emotion regulation strategy, genetic traits, and even cultural background. Therefore,
the establishment of a universal emotion-physiology mapping model requires taking into
account both group rules and personalized adaptation.

Emotional analysis of physiological electrical signals is essentially a cross-modal map-
ping problem of "signal → feature → emotion". Its technical implementation involves
the deep integration of signal preprocessing, feature engineering and machine learning
algorithms. In the signal preprocessing stage, it is necessary to design noise reduction
schemes based on the physical characteristics of different physiological modalities: for
example, wavelet transform is used to eliminate power frequency interference in ECG
signals, and independent component analysis is used to separate eye movement artifacts
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in EEG. Feature extraction needs to take into account the time domain, frequency do-
main and nonlinear pattern, such as extracting the slope characteristics of tonic/phasic
components from EDA signals, or quantifying the complexity of HRV signals through
fuzzy entropy. These features constitute a multi-dimensional characterization of emo-
tional states, but their high dimensionality and redundancy also require researchers to
use algorithms such as principal component analysis (PCA) and maximum correlation
minimum redundancy to optimize features.

In recent years, breakthroughs in deep learning technology have opened up new paths
for end-to-end emotion computing. Convolutional neural networks can learn spatiotem-
poral sensitive feature representations directly from raw physiological signals, while long
short-term memory networks are good at capturing emotion-related temporal dependen-
cies. More cutting-edge cross-modal fusion architectures (such as Transformer) integrate
multi-channel physiological signals through self-attention mechanisms, showing signifi-
cant advantages in cross-subject emotion recognition tasks. However, the interpretabil-
ity of the model remains a key bottleneck restricting clinical applications. To this end,
researchers have begun to introduce physiological prior knowledge to constrain model
structures, such as using heart rate variability spectral features as input gating signals
for LSTM, or using graph neural networks to model the functional coupling relationship
between ECG and EEG. This hybrid paradigm of "data-driven + knowledge-guided" is
expected to enhance the traceability of its physiological significance while maintaining
model performance.

This chapter will systematically discuss the core issues of emotion analysis of physi-
ological electrical signals. First, in the section on the relationship between physiological
signals and emotional states, the biological mechanisms of autonomic nervous activity
and emotional response will be deeply analyzed, and the complementary representation
capabilities of multimodal physiological signals will be explained in combination with
classical emotion theory, and the impact of individual differences and situational factors
on emotion-physiology associations will be discussed. Subsequently, the section on emo-
tion computing methods for physiological electrical signals will systematically sort out
the technical chain of emotion computing, compare the advantages and disadvantages
of traditional machine learning and deep learning paradigms, and focus on discussing
solutions to key issues such as signal noise reduction, feature optimization, and model
generalization.

6.3.1 Relationship between physiological signals and emotional states

The relationship between physiological signals and emotional states has always been
an important research topic in the fields of psychophysiology and affective computing.
This relationship not only reveals the deep mechanism of human emotions, but also
provides broad prospects for technological applications. Studies have found that phys-
iological signals such as heart rate variability, electroencephalogram, skin conductivity,
and breathing rate can reflect the emotional state of an individual to a certain extent.
For example, when a person is in a highly excited mood, the heart rate may increase
and the skin conductivity will also increase; and changes in specific frequency bands
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in the electroencephalogram, such as alpha wave activity in the frontal lobe area, may
be related to the experience of positive emotions. However, this association is not sim-
ple and direct. It is deeply affected by individual differences, situational factors, and
the complexity of the physiological signals themselves. Therefore, understanding and
utilizing this relationship is full of potential, but also accompanied by many challenges.

From a historical perspective, the connection between emotions and physiological
signals has long attracted the attention of scholars. In the late 19th century, William
James proposed an influential view that emotions are essentially the perception of phys-
iological changes in the body. This theory captured the public’s imagination at the time
and inspired widespread discussion about the nature of emotions. However, as research
deepened, subsequent scholars found that physiological reactions do not always corre-
spond one-to-one to specific emotions. For example, blocking visceral feedback does not
completely eliminate emotional experience, and the intervention of cognitive factors can
also significantly change an individual’s emotional state. This finding shows that the
generation and experience of emotions is a multidimensional process, and relying solely
on physiological signals may not be enough to fully explain its complexity. Neverthe-
less, James’s theory laid the foundation for later research, prompting scientists to begin
exploring more specific physiological indicators, such as whether changes in skin conduc-
tivity can reveal hidden psychological activities. This exploration even gave birth to the
prototype of lie detection technology. Although its scientific validity was questioned due
to methodological issues in the mid-20th century, it undoubtedly promoted the further
development of emotion research.

In terms of theoretical framework, modern emotion research mainly relies on two
models to understand the relationship between physiological signals and emotional states.
One is the discrete emotion model, which believes that humans have several basic emo-
tions, such as happiness, sadness, anger, fear, surprise and disgust, and these emotions
are universal and independent. The other is the dimensional model, which places emo-
tions in a continuous coordinate system and uses the two dimensions of arousal and
pleasure to describe the intensity and positive and negative nature of emotions. For
example, high arousal and high pleasure may correspond to excitement or joy, while low
arousal and low pleasure may point to fatigue or depression. These models provide re-
searchers with a clear framework, making the measurement of physiological signals and
the interpretation of emotional states more systematic. In addition, some scholars have
proposed the concept of "core emotion", believing that the basis of emotion is a prim-
itive positive and negative feeling or a contrast between vitality and laziness, and this
basic emotion may be expressed through brain activity and physiological signals. This
view further emphasizes that physiological signals may be better at capturing the overall
characteristics of emotions rather than those more delicate or philosophical emotional
experiences.

In actual measurements, physiological signals mainly come from the autonomic ner-
vous system and the central nervous system. Heart rate variability reflects the changes
in heartbeat intervals and is usually regulated by the sympathetic and parasympathetic
nervous systems. Studies have found that when individuals are under stress or nega-
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tive emotions, heart rate variability tends to decrease, while it increases in a relaxed or
positive emotional state. Skin conductivity reflects the degree of emotional arousal by
measuring sweat gland activity. For example, skin conductance increases significantly
when one is afraid or excited. As a representative of the central nervous system, the
electroencephalogram can capture the electrical activity of the cerebral cortex. Changes
in different frequency bands are closely related to emotional states. For example, the
enhancement of alpha waves in the frontal lobe may be associated with calm or positive
emotions, while the activity of beta waves may indicate anxiety or tension. In addi-
tion, breathing rate also changes with emotional state. For example, breathing becomes
rapid and shallow when anxious, and tends to be slow and deep when relaxed. The
measurement of these signals has benefited from technological advances in recent years,
especially the popularity of wearable devices. Devices such as smart bracelets and heart
rate monitors enable researchers to collect data in real time in natural environments,
greatly expanding the breadth and depth of research.

With the development of technology, the research on emotion recognition has ush-
ered in new breakthroughs. In particular, the application of machine learning and deep
learning technologies has significantly improved the accuracy of extracting emotional
information from physiological signals. For example, by applying convolutional neural
networks to the analysis of EEG data, researchers have achieved an emotion classifi-
cation accuracy of more than 90% on some data sets, which can effectively distinguish
positive, neutral, and negative emotions. In addition, more and more studies have begun
to adopt multimodal methods, combining multiple signals such as EEG, ECG, and skin
conductivity to more comprehensively capture the characteristics of emotional states.
The advantage of this method is that it not only relies on the representation of a sin-
gle signal, but also constructs a more three-dimensional emotional portrait through the
fusion of multi-dimensional data. With the continuous improvement of wearable de-
vices, real-time emotion monitoring has gradually moved from the laboratory to daily
life, bringing new possibilities to areas such as mental health monitoring and human-
computer interaction.

Despite this, this field still faces many challenges. First, individual differences are an
issue that is difficult to ignore. The same emotion, such as anger, may trigger completely
different physiological reactions in different people. Some people may have a sharp in-
crease in heart rate, while others may show significant changes in skin conductance. This
difference makes it difficult for a universal emotion recognition model to be applicable
to everyone. Secondly, data labeling is also a big problem. Emotional states are usually
dynamic, especially in long-term monitoring. How to accurately label the emotional
state at each moment is a huge burden for researchers. In addition, the gap between
the experimental environment and real life also limits the promotion of research results.
Although well-controlled stimulation conditions in the laboratory facilitate data collec-
tion, it is difficult to fully simulate the complex and changeable emotional experience in
the natural environment.

Personalized models are considered to be an effective means of dealing with indi-
vidual differences. Through transfer learning or adaptive algorithms, the system can
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Figure 6.9: Photoplethysmography acquisition diagram

be adjusted according to each person’s physiological baseline, thereby improving the
accuracy of recognition. At the same time, advances in unsupervised learning and semi-
supervised learning techniques are also expected to reduce reliance on large amounts of
labeled data, allowing models to extract meaningful patterns from unlabeled raw data.
In addition, the further development of wearable devices will push emotion recognition
into the "wild." These devices are not only lightweight and easy to use, but can also
covertly record a variety of physiological signals, such as skin conductivity, body tem-
perature, and heart rate, providing researchers with a more realistic and richer source
of data. At the same time, the application of virtual reality technology also provides
new possibilities for emotion induction. Through immersive scene design, researchers
can more directly induce target emotions, thereby improving the quality of data.

The relationship between physiological signals and emotional states is a research field
full of complexity but great potential. From historical theoretical exploration to modern
technological breakthroughs, this topic has achieved remarkable results in the fields of
psychophysiology and affective computing. Although problems such as individual dif-
ferences, data annotation, and experimental paradigms still exist, with the continuous
advancement of personalized models, wearable devices, and machine learning technol-
ogy, future emotion recognition systems are expected to achieve higher accuracy and
practicality. It is expected that in the next decade, this field will usher in greater devel-
opment, not only to more accurately capture the dynamic changes of emotional states,
but also to play an important role in multiple scenarios such as mental health monitor-
ing, educational assistance, and human-computer interaction. By deeply understanding
the relationship between physiological signals and emotions, we may be able to better
interpret the inner world of human beings and open up new paths for the integration of
technology and humanities.

Reduced heart rate variability is associated with a variety of psychiatric disorders,
such as depression, anxiety, and alcohol use disorder. Since heart rate can analyze the
activity of sympathetic and parasympathetic nerves through time series, it is widely
used to detect emotional states. However, heart rate is highly dependent on the phys-
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ical state at the time of measurement, so further feature extraction is needed in the
emotion classification task. In related studies, an experiment selected five key features
to identify five emotions: sadness, anger, fear, happiness, and relaxation. The support
vector machine classifier was used for emotion recognition, and the average accuracy
finally achieved reached 56.9%. Another study adopted a multimodal approach to com-
bine multiple physiological signals such as blood volume pulse, electromyography, skin
electrodermal activity, skin temperature, and respiration for emotion classification. The
statistical classifier was trained by support vector machine and Fisher linear discriminant
method, and features were extracted from multiple subjects and compared. The results
showed that the average classification accuracy of Fisher linear discriminant method was
28.83%, while the accuracy of support vector machine classifier reached 46.5%.

Electrodermal activity is another physiological signal commonly used in affective
computing. By placing two electrodes on the fingers to measure the conductivity of the
skin, the emotional state of the individual can be obtained. Since the exocrine glands in
the palm are highly sensitive to emotional changes, measuring the galvanic response of
the skin by applying a small voltage can effectively capture emotional fluctuations. In
a relaxed state, skin conductivity decreases, while it increases under stress or tension.
Related research uses smart gloves to collect electrodermal activity data and induce emo-
tions based on the International Affective Picture System Database. Statistical analysis
methods are used to extract features and classify the data into different emotional arousal
levels, and finally an average classification accuracy of 64.32% is obtained.

Breathing pattern is also one of the important physiological features in affective
computing. Breathing signals can be measured by resistive wire strain gauges, pho-
toplethysmography, or foam-based pressure sensors, and can be integrated into smart
textiles for convenient monitoring. Studies have found that a decrease in breathing rate
usually indicates a state of relaxation, while deep and fast breathing may mean happiness
or anger. In addition, irregular changes in breathing are often associated with negative
emotions. For example, shallow and fast breathing may indicate that an individual is in
a state of tension or fear, while shallow and slow breathing patterns may be associated
with depression. A study used a deep learning algorithm to analyze breathing patterns
and classified them based on an emotional database. The recognition accuracy of valence
and arousal levels reached 73.06% and 80.78%, respectively.

Changes in skin temperature can also be used for emotion recognition. When mea-
sured at the fingertips, vasodilation causes the fingertips to warm up when relaxed,
while vasoconstriction causes them to cool down when stressed or anxious. Similar to
skin electrodermal activity detection, skin temperature sensors can also be integrated
into wearable devices such as gloves to enable mobile monitoring. Studies have shown
that measuring skin temperature with smart gloves and extracting features in combina-
tion with specific emotional stimuli (such as watching movies or pictures) can effectively
classify different emotional states. Experimental results show that positive emotions
are easier to identify than negative emotions, and the accuracy of emotion classification
using skin temperature features can reach 89.29%.

Electromyography, as another physiological signal, can provide rich information about
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muscle activity. Its measurement usually requires electrodes to be attached to the sur-
face of the skin to record the electrical signals generated when the muscles contract. In
emotional computing, electromyography is often used to detect specific emotion-related
muscle activities. For example, the tension of the upper trapezius muscle in the neck
can be used to assess mental stress, while facial muscle activity can be used to analyze
changes in facial expressions. Studies have found that high-frequency signals generated
when muscles contract are usually associated with an increase in emotional valence. A
study combined galvanic skin response with electromyography signals to construct an
emotion recognition system, in which galvanic skin response is related to the level of
emotional arousal, while electromyography signals are used to assess emotional valence.
Experiments have shown that the system can effectively identify the emotional state of
an individual, providing strong support for multimodal emotional computing.

Facial recognition, speech recognition, and cardiac-related methods are able to mea-
sure emotions independently and identify them on two dimensions: valence and arousal.
Among them, breathing signals play a special role in emotion recognition, and their
recognition capabilities are usually limited to specific emotional states, such as panic,
fear, concentration, or depression, and cannot cover a wider range of emotion categories.
Skin electrodermal activity and skin temperature are mainly used to detect arousal lev-
els, while electromyographic signals are mainly used to classify valence levels. Therefore,
in order to recognize the full range of emotional states, it is recommended to combine
multiple physiological signals for multimodal emotion calculation. The advantage of this
method is that it can improve the accuracy of emotion recognition, although the setting
of multimodal fusion is more complicated.

For clinical research, static measurements of EEG, EMG, ECG, or pulse volume
changes may be more suitable because these methods can provide high accuracy and
enable diverse emotion classification. For example, a research system achieved an ac-
curacy of 89.73% in emotional arousal recognition and 63.76% in valence classification.
When the classification bandwidth was increased, that is, the emotion search range was
expanded, the arousal accuracy increased to 96.58% and the valence accuracy increased
to 89.93%. However, due to the high sensitivity of EEG signals, the system is suscep-
tible to motion artifacts. Another study optimized the emotion recognition system for
racing drivers, using facial EMG, ECG, respiratory signals, and skin electrical activity
to achieve an overall accuracy of 79.3% for five emotional states (high stress, low stress,
disappointment, excitement, and neutrality). This system is particularly suitable for
scenarios where emotions need to be recognized in dynamic motion environments.

In situations where mobile emotion measurement is required, such as elderly care,
ECG signals may be a better solution. Some smart wearable devices, such as the smart
T-shirt developed by a company, can measure ECG signals and extract heart rate vari-
ability features. Through ECG signals and heart rate variability features, five emotional
states can be distinguished with an accuracy of 56.9%. This method can be widely used
for emotion monitoring in daily life and outdoor activities. For home environments,
medical practices or psychological assessments, remote and non-invasive emotion recog-
nition methods are better choices. For example, you can interact with virtual images
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on smart devices or install cameras in the room for continuous emotion monitoring.
Facial recognition technology has made significant progress in emotion recognition, and
an algorithm can achieve an accuracy of up to 89% for seven emotional states. Speech
recognition can also be used for emotion classification, but its accuracy drops signifi-
cantly when the number of emotion categories increases. For example, when only happy
and sad emotions are recognized, the accuracy can reach 80.46%, but when six emotions
are recognized, the accuracy drops to 49%.

In the calculation of emotions from physiological signals, the biggest challenge is that
the measurement dimensions of different signals are limited. For example, electromyo-
graphic signals are mainly used for valence classification, while skin electrodermal activ-
ity and skin temperature are only used to measure the arousal level. These signals can be
fused to achieve a more complete description of emotions. However, heart rate variabil-
ity, respiratory signals, and pulse volume changes can measure both valence and arousal
dimensions at the same time, so pulse volume changes may become an important pa-
rameter for future research. Studies have shown that the correlation between pulse rate
variability measured using photoplethysmography and heart rate variability measured
using electrocardiogram signals exceeds 95%. If the reliability of wrist pulse volume
change measurement can be further verified, it is expected that emotion recognition can
be performed solely on smart watches in the future.

In terms of experimental settings, different studies used different methods. For exam-
ple, one study compared two experimental situations: one was to let participants enter
an active situation by playing video games, and the other was to enter a passive situation
by watching visual stimuli. Both experiments were conducted in a laboratory environ-
ment. Another study used a mobile wearable device to record ECG signals. During the
experiment, participants watched a video and remained seated. The use of this mobile
wearable device may be one of the reasons for the moderate accuracy. In addition, a
study used a portable EEG device to measure EEG signals in a laboratory environment,
but because EEG sensors are extremely sensitive to vibration and movement, it is not
advisable to use them in a dynamic environment.

Research on facial recognition often focuses on the effects of lighting conditions.
As long as there is sufficient lighting, it may not make much difference whether the
measurement is in a real environment or a laboratory environment. Another study on
ECG signals and facial physiological signals was conducted in a quiet room, with subjects
sitting in a comfortable chair and playing music with headphones. The study showed
that the accuracy of emotion measurement based solely on ECG signals is relatively low.
In addition, a study on speech recognition used professional actors to directly record
speech data. The results showed that the accuracy of the actors in conveying emotions
may have a greater impact on the final recognition results.

Research on multimodal emotion recognition shows that the fusion of different sig-
nals can improve the overall accuracy. For example, some studies have combined facial
recognition, speech recognition, and gesture analysis in emotion computing, and the ex-
perimental data were recorded simultaneously on multiple participants. Studies have
shown that multimodal data fusion can significantly improve the accuracy of emotion
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prediction. Another study used a sensor kit to record multimodal physiological signals
in a laboratory environment. However, the intuitiveness and naturalness of this method
still need to be optimized, so its applicability in mobile environments may be low. In
addition, a study on racing drivers used a multi-sensor wearable device, which included a
head-mounted facial electromyography sensor, a chest electrocardiogram and breathing
sensor, a glove-embedded skin electrodermal activity sensor, and a data acquisition and
communication module. The system is designed to assess the basic emotional state of
racing drivers in a high-intensity environment.

Regarding the mobility of emotion recognition, with the development of smart wear-
able devices, such as smart watches or smart fabrics, non-invasive emotion recognition
has become more widely used in daily life. For example, a smart wristband has devel-
oped a method to measure photoplethysmography signals and skin electrodermal activity
from the wrist. These wearable devices can provide a more convenient way to monitor
emotions, which is more practical than traditional fixed measurement methods. With
the further development of technology, future emotion recognition systems may be more
intelligent and applicable to a variety of daily situations.
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7

Design Principles for Social
Robots

7.1 Interaction Model of Social Robots

The interaction framework of the social robot adopts a three-layer architecture of "perception-
decision-feedback", which can effectively simulate the information processing mechanism
of humans in the social process, thereby achieving a more humanized interaction expe-
rience.

7.1.1 Perception layer: integrated multimodal sensors

The perception layer is the first gateway for social robots to contact the outside world.
It is responsible for collecting various information from the environment and users. By
integrating multiple sensors, the robot can obtain rich and comprehensive perception
data, providing a solid foundation for subsequent decision-making and feedback.

Visual sensors are an important part of the perception layer. Take the Intel Re-
alSense D455 multimodal kit as an example. It has multiple functions such as depth
perception, RGB camera and infrared sensor. Among them, the depth perception accu-
racy is 4 meters.ZAxis error is less than2%This high-precisionDepth perception enables
robots to accurately perceive the three-dimensional structure of the surrounding envi-
ronment, realize object recognition, scene understanding, and capture the user’s body
movements. For example, the robot can judge the distance between the user and itself
through depth information, so as to adjust its behavior and tone of voice and maintain
an appropriate social distance. RGB cameras can capture color images for face recog-
nition, expression recognition, and lip reading recognition. Through face recognition
technology, robots can remember the appearance characteristics of different users and
realize personalized greetings and communication; expression recognition allows robots
to perceive the user’s emotional state, such as happiness, sadness, anger, etc., so as to
make corresponding emotional responses in conversations; lip reading recognition is of
great significance in noisy environments, and can assist voice recognition to improve
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Figure 7.1: Appearance of Intel RealSense D455 depth camera

the accuracy of information acquisition. Infrared sensors play an advantage in low-light
conditions, and can help robots perceive the user’s movements and presence even in dark
environments, ensuring that robots can work normally under various lighting conditions.

The voice sensor is also a key part of the perception layer. It can capture the user’s
voice signal and convert it into text information through voice recognition technology.
In the process of voice recognition, many factors need to be considered, such as the
speed, tone, accent and background noise of the voice. In order to improve the accuracy
of voice recognition, social robots usually use advanced voice processing algorithms and
deep learning models to train and optimize a large amount of voice data. For example,
some social robots can recognize multiple languages and dialects to meet the needs of
different regions and user groups. At the same time, the voice sensor also has a voice
wake-up function.(e.g. "Hey Siri"), users can activate the robot through specific wake-up
words and communicate with it conveniently and quickly.

Tactile sensors add tactile perception capabilities to social robots. By installing
tactile sensors on the robot’s shell, hands or other contact parts, the robot can sense the
user’s touch strength, position and pattern. For example, when a user gently touches
the robot’s head, the robot can interpret it as a friendly and intimate behavior and give
corresponding positive feedback, such as making a pleasant sound or a happy expression.
Tactile sensors can also be used to detect the robot’s own state, such as whether it has
been collided or squeezed, so as to take corresponding protective measures to avoid
damage. At present, some robot platforms with flexible electronic skin (E-skin), such as
HuggieBot 3.0, can achieve multi-point tactile distributed perception, and even identify
the user’s touch behavior intention through a "tactile map".

In addition, the perception layer can also integrate other types of sensors, such as en-
vironmental sensors (temperature, humidity, light, etc.) and olfactory sensors, to obtain
more comprehensive environmental information and further enrich the robot’s perception
capabilities. For example, environmental sensors can help the robot adjust its operat-
ing state according to the ambient temperature and humidity, such as automatically
turning on the heat dissipation function in a high temperature and high humidity en-
vironment; olfactory sensors can detect odors in the environment to determine whether
there are abnormal situations, such as fire or harmful gas leakage.In medical care and
home service robots, the integrated environmental perception system not only improves
the interactive intelligence, but also enhances the safety protection function.
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Figure 7.2: HuggieBot 3.0 with flexible electronic skin

7.1.2 Decision-making layer: interaction strategy optimization

The decision layer plays a core role in the interaction framework of social robots. Its
main task is to conduct in-depth analysis and processing based on the rich informa-
tion collected by the perception layer, and generate appropriate dialogue strategies and
behavioral decisions. This process combines a variety of cutting-edge technologies to
ensure that the robot can make natural, intelligent and human-desirable responses.

Deep learning technology plays an important role in the formulation of dialogue
strategies. By building complex neural network models, robots can extract features and
recognize patterns from large amounts of data transmitted from the perception layer.
For example, deep neural networks can analyze user voice and text input to identify
semantic information, emotional tendencies, and intentions. These models can capture
subtle patterns and relationships in conversations by learning from massive amounts of
data, thereby providing robots with more accurate decision-making basis. For example,
intelligent customer service robots can track user goals in multiple consecutive rounds
of conversations and maintain continuity at the semantic level to avoid the phenomenon
of "answering questions that are not asked". In the optimization of dialogue strategies,
deep learning models can not only understand the user’s current input, but also combine
the conversation history to predict the user’s possible subsequent reactions. This ability
enables robots to generate more coherent and forward-looking dialogue strategies. For
example, when a user asks about the weather, the robot can not only provide current
weather information, but also proactively provide relevant suggestions based on the
conversation history and the user’s interest preferences, such as whether to bring rain
gear or whether it is suitable for outdoor activities.

In recent years, the rapid development of big model technology has brought new pos-
sibilities to the decision-making layer of social robots. Models represented by DeepSeek
big model and BERT semantic encoding have powerful language understanding and gen-
eration capabilities through pre-training on massive text data. These models can handle
complex language tasks such as question and answer, text generation and semantic un-
derstanding, providing social robots with more intelligent conversation capabilities. The
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Figure 7.3: Diagram of the Talker-Reasoner method

application of big model technology enables social robots to better understand users’
intentions and emotions. For example, the AI virtual human emotional companionship
system "Virtual Partner" has achieved super-human emotional companionship with its
solid self-developed big model capabilities. This technology enables robots to gener-
ate empathetic responses based on the user’s emotional state and enhance the user’s
emotional experience.

In addition, large model technology can also help robots maintain consistency in
multiple rounds of conversations. By understanding the context of the conversation,
the robot can generate more coherent and natural responses. For example, Google
DeepMind’s Talker-Reasoner architecture divides the conversation into two parts: the
fast Talker and the thoughtful Reasoner.Inspired the design strategy of "layered response"
in human-computer interaction,This architecture enables the robot to perform complex
reasoning and planning while responding quickly to users.

In multimodal interaction, the decision layer needs to process information from dif-
ferent modalities, such as vision, speech, and touch. The application of large model
technology in this field has also made significant progress. For example, multimodal
large models can process visual and language information at the same time, allowing
robots to combine users’ expressions and body movements in conversations to generate
more natural and emotional responses. This multimodal interaction capability not only
improves the robot’s conversation quality, but also enhances its adaptability in complex
environments. In social scenarios, robots can judge users’ emotional states by observing
their expressions and movements, and adjust their conversation strategies accordingly.
This capability enables robots to better integrate into human social environments and
provide more personalized services.For example, after integrating image-text alignment
models such as CLIP, the robot can recognize the content of picture books and combine it
with voice explanations in child-accompanying scenarios, and even recognize the child’s
smile or sleepy expression, and adjust the rhythm of interaction in a timely manner.

Affective computing technology also plays an important role in the decision-making
layer. By analyzing the emotional information in the user’s voice tone, expression and
text, the robot can generate emotional responses and enhance the user’s emotional ex-
perience. For example, when the user shows sadness, the robot can provide emotional
support through comforting words and warm tone. The application of model technology
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Figure 7.4: Robot Kismet

in affective computing has also made significant progress. For example, some emotion
recognition models can accurately identify the user’s emotional state by analyzing the
user’s voice and text, and generate corresponding emotional responses. This technology
enables robots to better understand the user’s emotional needs and provide more con-
siderate services.For example, the Kismet robot developed by the MIT Media Lab can
generate corresponding facial expressions and voice responses by analyzing human facial
expressions and voice features, thereby achieving natural interaction with humans.

7.1.3 Feedback layer: multi-channel emotional expression coordination
mechanism

The feedback layer is an important part of the emotional communication and interaction
between social robots and users. It is responsible for conveying the robot’s decisions
and intentions to users through multiple channels, including expressions, voice, body
movements, etc. In order to make the robot’s feedback more natural, coordinated and
emotional, it is necessary to establish a multi-channel emotional expression coordination
mechanism.

In terms of facial expression feedback, social robots can display various expressions,
such as smiles, frowns, and blinks, through screens, LED lights, or other display devices.
These expressions should match the robot’s emotional state and the content of the
conversation to enhance the effect of emotional expression. For example, when the robot
expresses happiness, it can show a big smile accompanied by bright eye flashes; when
the robot expresses confusion, it can frown and reveal confusion in its eyes. At the same
time, the change of expression should have a certain fluency and naturalness, avoiding
abrupt switching, so that users can feel that the robot’s emotions are real and coherent.
For example, the Emo robot, which is equipped with 26 precision actuators, can predict
and imitate human facial expressions, including smiles, within 840 milliseconds. It also
has a high-resolution camera in its pupils to track the eyes of the conversation partner,
and is equipped with an artificial intelligence model that can predict and respond to



156 7. DESIGN PRINCIPLES FOR SOCIAL ROBOTS

Figure 7.5: Emo robot learning facial expressions

Figure 7.6: EveR-2 robot has the ability to lip sync

human expressions and learn complex emotions frame by frame from sample videos.
Voice feedback is one of the main channels for social robots to communicate with

users. In voice feedback, emotional expression is mainly reflected in intonation, speaking
speed, and volume. For example, when the robot expresses excitement, it can increase
its intonation and speaking speed, and its voice will be louder; when the robot expresses
comfort, it can lower its intonation and speaking speed, and its voice will be softer. In
addition, the timbre and pronunciation of voice can also be used to express emotions,
such as using warm and friendly timbre to express friendliness, and using clear and
accurate pronunciation to express professionalism. In order to achieve emotional voice
feedback, social robots usually use speech synthesis technology, and combine it with
emotional voice databases for training and optimization to make the generated voice
more emotional.The EveR series of robots developed by the Korea Institute of Science
and Technology (KIST) have the ability to express emotions through voice feedback.
When EveR-2 Muse sang the Korean lyrical song "I Will Close My Eyes For You", it was
able to convey sadness by adjusting the tone, speed and volume of its voice, allowing
the audience to feel the emotional connotation of the song. This ability to convey
emotions through voice characteristics makes social robots more vivid and expressive
when interacting with humans.

Body movement feedback adds more dimensions to the emotional expression of social
robots. By controlling the movements of the robot’s arms, head, body and other parts,
various emotions and intentions can be conveyed. For example, when the robot expresses
welcome, it can extend its arms to make a hugging gesture; when the robot expresses
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Figure 7.7: Pepper robot developed by SoftBank Robotics

rejection, it can shake its head and retract its arms. The design of body movements
should be consistent with human social habits and cultural norms, and avoid using
movements that may cause misunderstanding or discomfort. At the same time, body
movements should be coordinated with facial expressions and voice feedback to form an
overall emotional expression system. For example, when the robot expresses apology,
it can lower its head, speak in a low voice and bow slightly. These movements, facial
expressions and voices work together to convey a sincere apology.The Pepper robot
developed by SoftBank Robotics can express a variety of emotional states by coordinating
its arm movements, head movements and voice intonation. In its interactions with
autistic patients, Pepper can show emotional expressions such as happy dancing or angry
fist pumping through dance, gestures and facial expressions, helping patients understand
the connection between emotions and body language and learn how to express their
emotions with body language.

In order to achieve the coordination of multi-channel emotional expression, social
robots need to establish a unified emotional model and expression rules. Based on psy-
chological theory, the emotional model can divide emotions into basic emotions (such as
happiness, sadness, anger, fear, etc.) and compound emotions (such as surprise, anxiety,
disgust, etc.), and define the expression form of each emotion on different channels. For
example, based on the PAD emotional model (Pleasure-Arousal-Dominance), emotions
with high pleasure are usually expressed as positive emotions, such as happiness; emo-
tions with high arousal are expressed as strong emotions, such as anger or excitement;
and emotions with high dominance are expressed as confidence and control, such as
confidence or relaxation. The expression rules specify how to coordinate the feedback
of each channel in different dialogue scenarios and emotional states to achieve the best
emotional expression effect. For example, when the robot is having a pleasant chat with
the user, it can use smiling expressions, brisk voices, and relaxed body movements to
convey happy emotions; when the robot provides advice to the user, it can use focused
expressions, steady voices, and slightly forward body movements to express seriousness
and concern.
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Figure 7.8: The PAD emotional model

In addition, the feedback layer can also enhance emotional expression through en-
vironmental interaction. For example, the robot can control the surrounding lighting,
music and other environmental factors to create an atmosphere that matches the emo-
tion. When the robot expresses romance, it can dim the lights and play soft music; when
the robot expresses vitality, it can turn on bright lights and play cheerful music. Through
interaction with the environment, the robot’s feedback is richer and more vivid, which
can better attract the user’s attention and trigger emotional resonance. At the same
time,Some service robots already have the ability to link with smart home systems and
support dynamic adjustment of environmental feedback to adapt to different intentions.

The three-layer interaction framework of "perception-decision-feedback" provides a
comprehensive and systematic solution for the design of social robots. Through the
perception layer integrating multiple sensors, social robots can obtain rich and accurate
environmental and user information; the decision layer based on reinforcement learning
enables the robot to intelligently process information and generate appropriate dialogue
strategies; and the feedback layer of the multi-channel emotional expression coordination
mechanism makes the robot’s feedback more natural, coordinated and emotional. The
continuous improvement and development of this interaction framework will promote
the widespread application of social robots in various fields and bring more convenience
and fun to human social life.

7.1.4 Design principles of social robots

In the design of social robots, the design of interactive behaviors is crucial, as it di-
rectly affects the communication effect and user experience between users and robots.
Among them, the Proxemics principle and the Turn-taking mechanism are two key as-
pects, which regulate the interactive behaviors of robots from the spatial and temporal
dimensions, making them more natural, comfortable and efficient.
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Proxemics principle

Definition and Importance of Proxemics The Proxemics principle was proposed by
American anthropologist Edward T. Hall in the 1950s. It studies the use and significance
of spatial distance between people in the process of communication. In the design of
social robots, following the Proxemics principle can help robots better understand human
social habits, adjust their own movement trajectory and position, and thus create a
communication atmosphere that makes users feel comfortable and natural. If robots
can properly apply the Proxemics principle, it can not only improve user acceptance
and satisfaction, but also enhance the adaptability and practicality of robots in social
situations.

Specific Application of Proxemics Principle

1. Social distance: According to the Proxemics principle, the distance between
people can be divided into different types, mainly including intimate distance,
personal distance, social distance and public distance. In social situations, the
distance between the robot and the user is usually kept between 0.45 and 1.2
meters, which is considered to be the social distance. Within this distance range,
users usually feel more comfortable and natural, and will not feel that the robot is
too close and intrusive, nor will the communication effect and intimacy be affected
because of the distance.

Intimate distance refers to a very close distance, usually within 0.45 meters. This
distance is mainly used between close relationships, such as family members and
lovers. In the interaction between social robots and users, unless it is a specific
emotional companionship scenario, intimate distance is generally not used to avoid
making users feel uncomfortable. Personal distance is between intimate distance
and social distance, about 0.45-1.2 meters. This distance is suitable for friends,
colleagues and other familiar people. After establishing a certain degree of trust
and familiarity with the user, the social robot can appropriately adjust to the
personal distance to enhance the affinity and intimacy of communication.

Public distance refers to a longer distance, usually more than 3.6 meters, which is
mainly used in public speeches, performances, etc. In large-scale events or speech
scenes where social robots participate, the robots need to reasonably adjust their
position and volume according to the size of the venue and the distribution of the
audience to ensure that the information can be clearly conveyed to all audiences.

2. Adjustment of robot’s movement trajectory: In order to better follow the
Proxemics principle, social robots need to have flexible mobility and be able to
adjust their movement trajectory according to different social scenarios and user
needs. For example, in a small meeting, the robot can move to different social
distances in a timely manner according to the location of the participants and the
topic of discussion. When discussing more formal and serious topics, the robot can
maintain a social distance to show professionalism and respect; when discussing
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Figure 7.9: Proxemics principle interpersonal distance chart

more relaxed and casual topics, the robot can move closer and enter a personal
distance to enhance the affinity and interactivity of the communication.
In addition, robots also need to consider the user’s personal space and privacy
needs. During the movement process, avoid sudden and large movements to avoid
scaring the user or invading the user’s personal space. At the same time, the
robot can use some non-verbal signals, such as nodding and smiling, to indicate its
intention to move in advance, so that the user has enough time and psychological
preparation.

Case Analysis of Proxemics Principle

1. Application of service robots in hotels: In hotel scenarios, social robots
often need to communicate and interact with guests at close range. For example,
when checking in at the front desk, the robot can maintain a social distance to
demonstrate professionalism and courtesy. When guests need help carrying luggage
or being guided to the room, the robot can adjust to the personal distance in a
timely manner according to the guest’s movements and expressions to provide more
intimate and thoughtful service. In this process, the robot not only improves the
efficiency and quality of service by flexibly applying the Proxemics principle, but
also enhances guest satisfaction and loyalty.

2. Application of educational robots in classrooms: In a classroom environ-
ment, educational robots need to interact with students effectively. When explain-
ing knowledge points, the robot can maintain a social distance to ensure that all
students can clearly hear and see the teaching content. When conducting one-on-
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Figure 7.10: Hotel service robot

Figure 7.11: Educational robot in classroom

one tutoring or answering questions with students, the robot can get closer and
enter a personal distance to enhance the affinity and interactivity of communica-
tion. By properly applying the Proxemics principle, educational robots can better
stimulate students’ interest and enthusiasm in learning and improve teaching ef-
fectiveness.

Turn-taking mechanism

1. Definition and Importance of Turn-taking Mechanism: Turn-taking mech-
anism refers to the rules and strategies for how participants take turns speaking
during a conversation. In daily human communication, turn-taking is a natural
and tacit mechanism that ensures the fluency and effectiveness of the conversation.
For social robots, mastering and applying the turn-taking mechanism is also cru-
cial. Through reasonable turn-taking, the robot can better understand the user’s
intentions and conversation rhythm, avoid interrupting the user or being silent for
a long time, thereby improving the naturalness and affinity of the conversation.

2. Implementation of Turn-taking Mechanism: Voice Activity Detection (VAD)
is a commonly used turn-taking implementation technology that is used to detect
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Figure 7.12: Voice signal endpoint detection (VAD)

pauses and silences in voice signals. In the design of social robots, through VAD
technology, the robot can monitor the user’s voice signal in real time, determine
whether the user has finished speaking, and then decide when to respond. For
example, when the user is speaking, the robot can detect the pause in the voice
through VAD technology. If the pause time exceeds a certain threshold, the robot
can assume that the user has finished speaking and then respond. The accuracy and
reliability of VAD technology are crucial to the implementation of the Turn-taking
mechanism. In order to improve the performance of VAD, researchers usually use
a variety of signal processing and machine learning algorithms, such as energy
threshold-based methods, probability model-based methods, etc. These methods
can effectively identify pauses and silence segments in speech signals and maintain
a high detection accuracy even in noisy environments. Also, eye contact is also a
way to achieve turn-taking. As an important non-verbal signal in human communi-
cation, it can convey rich information and emotions. In the design of social robots,
through eye contact technology, robots can maintain appropriate eye contact with
users and enhance the naturalness and affinity of the conversation.For example,
the Domo robot developed by the Massachusetts Institute of Technology (MIT) is
equipped with human-like eyes and built-in cameras to perceive its surroundings.
These eyes are designed so that humans can easily understand the robot’s gaze
direction, thereby enhancing the naturalness and effectiveness of human-robot in-
teraction.at the same time,When the user is speaking, the robot can capture the
user’s eyes through the camera and determine whether the user’s attention is fo-
cused on itself, so as to better understand the user’s intentions and the rhythm of
the conversation.

Case Analysis of Turn-taking Mechanism

1. Application of intelligent customer service robots: In intelligent customer
service scenarios, social robots need to have efficient conversations with users and
answer their questions and needs. By using the Turn-taking mechanism, the robot
can better understand the user’s intentions and avoid interrupting the user or being
silent for a long time. For example, when the user is describing a problem, the robot
can detect the pause in the voice through VAD technology to determine whether
the user has finished speaking, and then decide when to respond. At the same
time, the robot can also maintain appropriate eye contact with the user through
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Figure 7.13: Domo robot with human-like eyes

eye contact technology to enhance the naturalness and affinity of the conversation.
This efficient Turn-taking mechanism not only improves the service quality of the
customer service robot, but also improves user satisfaction and experience.

2. Application of virtual assistants in home scenarios: In family scenarios,
virtual assistants need to communicate and interact with family members on a
daily basis. By using the Turn-taking mechanism, virtual assistants can better
integrate into family life and provide more intimate and thoughtful services. For
example, when family members are discussing family affairs, virtual assistants can
participate in the conversation in a timely manner and provide relevant suggestions
and information through VAD technology and eye contact technology. This natural
Turn-taking mechanism not only enhances the practicality of virtual assistants, but
also improves the interactive experience of family members.

The synergy between the Proxemics principle and the Turn-taking mecha-
nism

1. Coordination between space and time: The Proxemics principle and the
Turn-taking mechanism regulate the interactive behavior of social robots from the
spatial and temporal dimensions respectively. In practical applications, the two
need to cooperate with each other to create a natural and comfortable commu-
nication atmosphere. For example, in a social gathering, the robot can adjust
the distance with the user through the Proxemics principle to keep it within the
social distance range; at the same time, through the Turn-taking mechanism, the
robot can have a natural conversation with the user, speak and respond in a timely
manner. This synergy of space and time not only improves the robot’s interactive
effect, but also enhances the user’s experience and satisfaction.

2. Synergy between emotion and cognition: The Proxemics principle and the
Turn-taking mechanism also involve the synergy of emotion and cognition. By
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properly applying the Proxemics principle, the robot can create a space environ-
ment that makes users feel comfortable and safe, thereby alleviating users’ tension
and anxiety. At the same time, through an effective Turn-taking mechanism, the
robot can better understand the user’s intentions and emotions and provide more
intimate and thoughtful services. This synergy of emotion and cognition not only
improves the robot’s interaction quality, but also enhances the user’s trust and
dependence on the robot.

3. Synergy between Culture and Individual Differences: In different cultural
contexts, the application of the Proxemics principle and the Turn-taking mecha-
nism will also be different. For example, in some cultures, people prefer to maintain
a closer social distance, while in other cultures, people prefer to maintain a longer
social distance. Social robots need to flexibly adjust their interactive behaviors
according to different cultural backgrounds to adapt to the needs and habits of
different users. At the same time, for individual differences, such as the user’s
personality, age, gender, etc., the robot also needs to be personalized to provide
more intimate and thoughtful services.
In summary, the Proxemics principle and the Turn-taking mechanism are two im-
portant aspects in the design of social robot interaction behavior. By reasonably
applying the Proxemics principle, the robot can adjust its own movement trajec-
tory and position to create a comfortable and natural communication atmosphere
for users. Through an effective Turn-taking mechanism, the robot can better un-
derstand the user’s intentions and conversation rhythm, and achieve natural and
smooth conversations. The synergy of the two not only improves the robot’s inter-
action effect, but also enhances the user’s experience and satisfaction. In the future
development, with the continuous advancement of technology and the continuous
expansion of application scenarios, the Proxemics principle and the Turn-taking
mechanism will play a more important role in the design of social robots, bringing
more convenience and fun to human social life.

7.2 Personalization of Social Robots

7.2.1 The Importance of Personalized Design

Personalized design is extremely important in improving the user acceptance and trust
of social robots. By giving robots unique personality traits, the interactive experience
and emotional connection between users and robots can be significantly enhanced.

Many studies and practical application cases have fully demonstrated the positive
effects of personalized design. For example, the "extroverted" personality design of the
Pepper robot has significantly increased its acceptance in the service industry by 37%.
This data shows that when robots show distinct personality traits, users are more willing
to interact with them and are more inclined to trust and rely on these robots.The differ-
ences in preferences for personalized robots among different user groups are becoming
increasingly apparent. For example, children prefer lively and humorous personalities,
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while the elderly prefer calm and caring personalities, which has been verified in medical
care and education scenarios.From a psychological perspective, personalized design can
enhance users’ identification and emotional connection with robots. When robots show
personality traits similar to humans, users are more likely to resonate and feel close to
them, which promotes more positive interactions and improves the robot’s use effect and
user experience.

From a technical perspective, the implementation path of personalized design con-
tinues to expand. In 2018, Mila and Facebook jointly published a paper proposing a
deep learning framework based on the persona-CHAT dataset (generated by artificially
simulated multi-type personality dialogues), which verified that the injection of person-
ality traits significantly improved the dialogue effect. In the same year, the neural model
developed by the MIT research team used a multi-level attention mechanism to perform
IDB encoding of movie character dialogues, achieving effective extraction of personal-
ity vectors. The model performed well in the task of dialogue role classification. In
the direction of multimodal fusion, a 2024 review study pointed out that a multimodal
system that integrates text, voice and visual information can enhance the expression of
personality traits (see Figure 7-14 for a schematic diagram of a multimodal architec-
ture), while emphasizing the use of explainable design to enhance users’ understanding
of robot behavior. This direction provides technical support for personalized services
in scenarios such as medical care and education. In the field of cultural personality
reconstruction, the historical figure simulation technology proposed in the 2024 study
constructs a personality model by parsing specific character corpora (such as the poetry
and literature of Li Bai and Su Dongpo), and its derived cultural guide robots have been
successfully applied in museum scenarios. The ChatHaruhi project (Figure 7-14) con-
ducted MBTI personality assessments on 32 fictional characters based on a large-scale
pre-trained language model. The results showed that their personalities matched human
perception by 82.8%, confirming the effectiveness of this technology in restoring complex
personalities. In terms of strengthening social attributes, a 2019 study confirmed that
robots with social participation designs have significantly improved their acceptance in
human-robot interaction (HRI), and that emotional processing mechanisms can enhance
the effectiveness of persuasive strategies. This finding provides an important basis for
the commercial application of service robots.

7.2.2 Methods and Practices of Personalized Design

Personalization design plays a vital role in the development of social robots. By giving
robots unique personality traits, users’ acceptance and trust can be significantly im-
proved, thereby enhancing the interactive experience between users and robots. The
following will explore the methods and practices of personality design, including five-
factor model (Big Five) mapping, dynamic personality adjustment, personalized dialogue
generation technology based on deep learning, neural models and multi-level attention
mechanisms, personalized personality feature integration in multimodal dialogue sys-
tems, personality simulation of historical figures and story characters, application of
large-scale pre-trained language models, social participation and emotional processing,
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Figure 7.14: The ChatHaruhi library creates 32 chatbot roles

as well as cognitive architecture and human-inspired design.

Big Five Mapping

The Five Factor Model is a commonly used personality classification model in psychol-
ogy, which includes five dimensions: Openness, Conscientiousness, Extraversion, Agree-
ableness, and Neuroticism. By converting these dimensions into behavioral parameters,
robots can show different personality traits. For example, a robot with high openness
may show more creativity and curiosity, while a robot with high conscientiousness may
be more reliable and organized.

In practical applications, the five-factor model can be used to design and evaluate the
personality characteristics of social robots. For example, researchers can evaluate the
personality characteristics of users through questionnaires or behavioral observations,
and then set corresponding behavioral parameters for the robot based on these char-
acteristics. This mapping method can not only help robots better adapt to the needs
and preferences of users, but also improve users’ identification and trust in robots. For
example, in the field of elderly care, by evaluating the personality characteristics of the
elderly, corresponding behavioral parameters can be set for nursing robots, so that they
can better interact with the elderly and provide more considerate care services.

Dynamic Personality Adjustment

Dynamic personality adjustment is an important development direction of personalized
design. By adjusting the robot’s behavior and personality traits in real time, the robot
can better adapt to the needs and preferences of different users. For example, the DynPer
framework proposed by Zhejiang University can adjust the robot’s behavior in real time
according to the user’s personality. This dynamic adjustment capability enables the
robot to provide more personalized services, thereby improving user satisfaction and
experience.

In practical applications, dynamic personality adjustment can be achieved through
a variety of technologies. For example, through machine learning algorithms, robots can
analyze the user’s conversation content and behavior patterns, and thus adjust their own
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Figure 7.15: Big Five personality classification model

behavior and personality traits in real time. This dynamic adjustment capability can
not only improve the robot’s adaptability and flexibility, but also enhance the interactive
experience between users and robots. For example, in the field of education, teaching
robots can adjust teaching content and methods in real time according to students’
learning progress and interests, providing more personalized teaching services.

Personalized dialogue generation technology based on deep learning

Personalized dialogue generation technology based on deep learning is one of the im-
portant means of personalized design. Through big data training, robots can show
specific personality traits, thereby improving the quality of conversation and user expe-
rience. For example, in 2018, a paper jointly published by Mila and Facebook proposed
a method to give chatbots personalized personality traits through deep learning models
and big data. The method uses the persona-CHAT dataset, which is a dataset in which
workers play different personalities and generate conversations. Studies have shown that
when chatbots are given personality information, the conversation effect is significantly
improved.

In practical applications, personalized dialogue generation technology based on deep
learning can be implemented in a variety of ways. For example, by using pre-trained
language models such as GPT-3 or BERT, robots can generate more natural and person-
alized dialogue content. This technology can not only improve the robot’s conversational
ability, but also enhance the emotional connection between users and robots. For exam-
ple, in the field of customer service, chatbots can generate more intimate and personalized
responses based on users’ emotions and needs, thereby improving user satisfaction.
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Neural Model and Multi-level Attention Mechanism

Neural models and multi-level attention mechanisms are another important means of
personalized design. By learning the embedding of character images from conversations,
robots can better capture and model personality traits, thereby improving the quality
of conversations and user experience. For example, in 2018, a research team from the
Massachusetts Institute of Technology (MIT) proposed a neural model that can learn the
embedding of character images, that is, the embedding of personality, from conversations.
The model converts the IDB encoded text of the conversation into a vector through
a multi-level attention mechanism and a memory network to capture the aspects of
different movie characters. In addition, the study also uses text descriptions as prior
knowledge to improve model performance. Experimental results show that the model
performs well in the task of dialogue role classification.

In practical applications, neural models and multi-level attention mechanisms can be
implemented in a variety of ways. For example, by using deep neural networks, robots
can analyze conversation content and extract feature vectors related to personality traits.
This technology can not only improve the robot’s conversation ability, but also enhance
the emotional connection between users and robots. For example, in the entertainment
field, chatbots can analyze the user’s conversation content and generate replies that
are more in line with the user’s interests and preferences, thereby improving the user’s
entertainment experience.

Personalized Personality Feature Integration in Multimodal Dialogue Sys-
tems

In multimodal dialogue systems, the integration of personalized personality features is
one of the important directions of personality design. By combining text, voice, and
visual information, robots can show richer and more personalized personality features,
thereby improving user satisfaction and experience. For example, a review article in
2024 discussed how to integrate personalized personality features in multimodal dialogue
systems. The article also emphasized the importance of improving the transparency
and explainability of the personality features of the dialogue agent so that users can
understand the robot’s behavior.

In practical applications, the integration of personalized personality features in mul-
timodal dialogue systems can be achieved through a variety of methods. For example,
by using multimodal data fusion technology, the robot can analyze the user’s voice,
expression, and body movements to better understand the user’s emotions and needs.
This technology can not only improve the robot’s adaptability and flexibility, but also
enhance the emotional connection between the user and the robot. For example, in the
medical field, nursing robots can provide more intimate and personalized nursing services
by analyzing the patient’s voice, expression, and body movements.
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Personality Simulation of Historical Figures and Story Characters

Personality simulation of historical figures and story characters is another important di-
rection of personalized design. By simulating historical figures or story characters, robots
can provide a richer and more personalized experience, thereby improving user satisfac-
tion and experience. For example, research in 2024 proposed methods for developing
chatbots that can simulate historical figures or story characters. These robots are de-
signed to provide educational, entertainment, or cultural experiences, further promoting
the development of personalized dialogue strategies.

In practical applications, personality simulation of historical figures and story char-
acters can be achieved through a variety of methods. For example, by using natural
language processing technology, robots can generate dialogue content that matches his-
torical figures or story characters. This technology can not only improve the robot’s con-
versation ability, but also enhance the emotional connection between users and robots.
For example, in the field of education, teaching robots can provide more vivid and inter-
esting teaching content and improve students’ learning interest by simulating historical
figures or story characters.

Application of Large-scale Pre-trained Language Models

The application of large-scale pre-trained language models is one of the important means
of personalized design. By using large-scale pre-trained language models, robots can gen-
erate more natural and personalized conversation content, thereby improving user sat-
isfaction and experience. For example, a 2023 study conducted personality assessments
on 32 character chatbots created by the ChatHaruhi library based on the Big Five per-
sonality and MBTI dimensions. The study found that modern character chatbots based
on large-scale pre-trained language models can effectively portray the personality traits
of the corresponding characters and have a high degree of consistency with human-
perceived personality (82.8%). In addition, the study also proposed potential strategies
for shaping the personality of chatbots.

In practical applications, the application of large-scale pre-trained language models
can be achieved in a variety of ways. For example, by using pre-trained language models
such as GPT-3 or BERT, robots can generate more natural and personalized conver-
sation content. This technology can not only improve the robot’s conversation ability,
but also enhance the emotional connection between users and robots. For example,
in the entertainment field, chatbots can generate more vivid and interesting conversa-
tion content by using large-scale pre-trained language models, thereby improving users’
entertainment experience.

Social Engagement and Emotional Processing

Social engagement and emotional processing are important aspects of personification
design. By designing robots with socially engaging personalities, acceptance in human-
robot interaction (HRI) scenarios can be improved, thereby enhancing the emotional
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connection between users and robots. For example, a 2019 study explored how design-
ing robots with socially engaging personalities can improve acceptance in human-robot
interaction (HRI) scenarios. The study found that emotional processing plays an impor-
tant role in persuasion when social robots use persuasive strategies.

In practical applications, social engagement and emotional processing can be achieved
in a variety of ways. For example, by using emotion recognition technology, robots
can analyze the user’s emotional state and generate corresponding emotional responses.
This technology can not only improve the adaptability and flexibility of robots, but also
enhance the emotional connection between users and robots. For example, in the field
of customer service, chatbots can analyze the user’s emotional state and generate more
intimate and personalized responses to improve user satisfaction.

Cognitive Architecture and Human-inspired Design

Cognitive architecture and human-inspired design are important theoretical and method-
ological supports for personalized design. By designing and implementing human-inspired
cognitive architecture, robots can exhibit more natural and humanistic behaviors, thereby
improving user satisfaction and experience. For example, a 2023 paper discussed in de-
tail the design, implementation, and testing of a human-inspired cognitive architecture
for social robots. The architecture aims to give social humanoid robots the ability to
perform human social behaviors and virtual robot emotions. Tests have shown that this
approach performs well in successful application cases.

In practical applications, cognitive architecture and human-inspired design can be
implemented in a variety of ways. For example, by using deep learning and reinforce-
ment learning techniques, robots can learn and imitate human cognitive and behavioral
patterns, thereby showing more natural and humane behaviors. This technology can not
only improve the adaptability and flexibility of robots, but also enhance the emotional
connection between users and robots. For example, in the field of education, teaching
robots can provide more vivid and interesting teaching content and improve students’
interest in learning by learning and imitating human cognitive and behavioral patterns.



8

Emotional Interaction Technology
of Social Robots

With the continuous development of social robot technology, emotional interaction tech-
nology has become an important part of improving the human-computer interaction
experience. Emotional interaction not only enables robots to understand the user’s
emotional state, but also respond accordingly to these emotional states, thereby enhanc-
ing user satisfaction and trust. This section will explore the implementation mechanism
of emotional interaction, including emotion recognition technology and emotion response
technology.

8.1 Implementation Mechanism of Emotional Interaction

8.1.1 Emotion Recognition Technology

Emotion recognition technology is the basis of emotional interaction. It identifies the
user’s emotional state by analyzing multiple information such as the user’s speech, ex-
pression, voice and physiological signals. In recent years, multimodal fusion and context
perception have become important development directions of emotion recognition tech-
nology.

Multimodal fusion refers to the comprehensive analysis of information from different
modalities to improve the accuracy of emotion recognition. The EmoFusion system
developed by Tsinghua University is a typical example. The system achieves efficient
recognition of the user’s emotional state by weighting multimodal features through the
attention mechanism. Studies have shown that the accuracy of the EmoFusion system
in emotion recognition tasks has reached 92.1%. In the EmoFusion system, information
from multiple modalities such as speech, facial expressions, and physiological signals are
input into the model at the same time. Through the attention mechanism, the system can
automatically select the most useful features for emotion recognition, thereby improving
the accuracy of recognition. For example, when a user is speaking, the system not only
analyzes the tone and speed of his voice, but also combines the user’s facial expressions
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Figure 8.1: Alexa, Amazon’s intelligent voice assistant

and body language to comprehensively judge his emotional state. This cross-modal
fusion method makes emotion recognition more comprehensive and accurate.

Context-aware technology corrects emotional judgments by combining conversation
history and scene information. Amazon’s Alexa is a successful example of context-
aware application. Alexa’s Contextual ASR (contextual automatic speech recognition)
system can dynamically adjust its understanding of the user’s voice based on the user’s
conversation history and current scene information, thereby more accurately identifying
the user’s emotional state. For example, when a user is talking to Alexa, if the user
has previously mentioned an unpleasant event, Alexa can adjust its understanding of
subsequent voices based on this context information and identify the user’s emotional
changes. This context-aware capability enables Alexa to be more intelligent and humane
in emotional interactions.

8.1.2 Emotion Response Technology

Emotional response technology is an important part of the field of affective computing.
Its core lies in expressing emotions through verbal and nonverbal behaviors and providing
feedback during the interaction process, thereby improving emotional understanding and
empathy. With the rapid development of artificial intelligence and interactive technology,
emotional response technology has been widely used in many fields, including human-
computer interaction, intelligent customer service, virtual assistants, and mental health
support.

The theoretical basis of emotional response technology mainly comes from the inter-
section of psychology, cognitive science and artificial intelligence. Psychologists provide
theoretical support for emotional response technology by studying the mechanisms of
human emotional expression and understanding. For example, Paul Ekman’s emotion
theory points out that humans have six basic emotions (happiness, sadness, anger, sur-
prise, fear and disgust), which can be expressed through non-verbal behaviors such as
facial expressions, voice intonation and body language. Emotional response technology
can recognize and respond to human emotions by simulating these emotional expression
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Figure 8.2: Paul Ekman’s Emotion Theory

mechanisms.
Emotional response technology mainly achieves emotional expression and feedback

through verbal and non-verbal behaviors. Verbal behaviors include voice intonation,
language content, and dialogue structure, while non-verbal behaviors include facial ex-
pressions, body language, and spatial distance. In practical applications, emotional
response technology can be implemented in many ways, such as voice generation, visual
feedback, or action response.

Emotional response technology has broad application prospects in the field of human-
computer interaction. For example, in intelligent customer service, emotional response
technology can understand the user’s emotional state and provide corresponding emo-
tional support through voice recognition and natural language processing technology.
In the field of virtual assistants, emotional response technology can enhance the user’s
interactive experience through the simulation of facial expressions and body language.
In addition, emotional response technology can also be applied to mental health support
to help users relieve stress and anxiety.

Evaluating the effect of emotional response technology is the key to ensuring its
practical application value. Evaluation methods usually include indicators such as user
satisfaction surveys, emotion recognition accuracy, and interaction fluency. Through
these evaluation methods, researchers can understand the performance of emotional
response technology in different scenarios and further optimize its performance.

8.2 Application Case Analysis of Emotional Interaction

Emotional interaction technology has shown great potential in many fields. The following
will list its typical application cases from different fields to deeply analyze the actual
value and effectiveness of emotional interaction.
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Figure 8.3: Moxie robot

8.2.1 Education

New York public elementary schools have introduced Moxie robots to assist in teaching,
focusing on educational support for children with autism. With its emotional interaction
function, the robot provides emotional companionship and guidance for children with
autism. Through interactive communication and emotional feedback with children, it
effectively improves the social skills of children with autism by up to 41%. This case
shows that emotionally interactive robots can provide strong support for the education
of special children, helping them to better develop their social skills and integrate into
social life.

8.2.2 Medical field

Paro seal robots have been used in medical scenarios to care for patients with Alzheimer’s
disease, and have achieved remarkable results. It interacts with patients through tactile
comfort, which can effectively reduce the anxiety level of patients with Alzheimer’s
disease, and the clinically verified effectiveness is as high as 68%. Paro robots interact
with patients with their cute appearance and docile behavior, giving them emotional
comfort, reducing their psychological burden, and improving their quality of life. At the
same time, they also provide auxiliary support for the nursing work of medical staff.

8.2.3 Service Industry

Retail industry: Affective computing technology is applied to retail service robots, en-
abling them to keenly perceive changes in customers’ emotions. When customers express
dissatisfaction, robots can adjust their service methods in a timely manner, such as
changing the tone of communication, providing more considerate solutions, etc., thereby
effectively improving customer satisfaction and winning better reputation and more cus-
tomer loyalty for retailers.

Family services: In a family environment, affective computing technology helps
robots interact better with the elderly. Robots can identify the emotional state of the
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Figure 8.4: Paro seal robot

elderly and take appropriate measures when they are depressed, such as playing music
they like, telling interesting stories, etc., to relieve their unpleasant emotions, provide
emotional companionship for them, alleviate their loneliness, and improve their happi-
ness in their later years.

Nursing homes: Affective computing technology plays a positive role in nursing
homes, helping robots reduce cognitive impairment and loneliness in Alzheimer’s pa-
tients. Robots can stimulate brain activity and slow cognitive decline by interacting
with patients emotionally, such as reminiscing about the past and playing simple games.
At the same time, they can provide emotional companionship and care to patients,
improving their quality of life.

8.2.4 Entertainment and social fields

Affective computing technology is applied to social robots, enabling them to recognize
and respond to human emotions. The robot can generate corresponding responses based
on the user’s emotional state. For example, when the user is in a happy state, the
robot can share interesting topics or jokes to further enhance the user’s pleasure; when
the user is depressed, the robot can give comfort and encouragement. In addition,
social robots can also create personalized articles and poems to meet users’ needs for
emotional expression and cultural entertainment, adding new colors to people’s social
and entertainment lives.

In the field of social media, emotional computing technology enables robots to imitate
human behavior and become important participants in the production of information
content, the dissemination of opinions, and the guidance of public opinion. Robots can
generate content that meets user needs based on users’ emotional tendencies and inter-
ests, guide the direction of topic discussions, influence the direction of public opinion,
and inject new vitality into the development of social media.

8.2.5 Military and Security Field

In military scenarios, affective computing technology plays an important role. On the
one hand, it can be used for morale assessment and psychological diagnosis. By analyzing
the emotional state of soldiers, psychological problems of soldiers can be discovered in a
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Figure 8.5: Unitree H1, a humanoid robot from Yushu Technology, made its debut on
the Spring Festival Gala

Figure 8.6: Quadruped bionic robots enter the PLA equipment sequence

timely manner, providing scientific basis for military commanders to take corresponding
measures, enhance the scientificity and accuracy of combat command, and improve the
combat effectiveness of the army.

In terms of border inspection and security monitoring, affective computing tech-
nology helps robots identify potential security threats. Robots can analyze people’s
emotions, behaviors and other characteristics to determine whether they have security
risks, thereby improving security capabilities and contributing to maintaining national
security and social stability.

8.2.6 Other fields

Recruitment field: Affective computing technology can be applied to the interview stage
of the recruitment process. Robots can assist recruiters in understanding job seekers
more comprehensively by analyzing the emotional state and language expression of job
seekers, improve the accuracy and efficiency of recruitment, and provide technical sup-
port for enterprises to select suitable talents.

Driving assistance: In driving scenarios, affective computing technology enables
robots to monitor the driver’s emotional state. When the driver is tired or distracted,
the robot can issue prompt reminders, such as sound alarms, adjusting the in-car envi-
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ronment, etc., to ensure driving safety and reduce the occurrence of traffic accidents.
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9

Current Challenges

9.1 Technical Challenges

As an emerging technology field, affective computing aims to capture subtle changes in
human emotions through technical means and convert them into computable signals,
thereby providing support for multiple fields such as medical care, education, and enter-
tainment. However, achieving this goal is far from easy, because the expression of human
emotions has highly complex multimodal characteristics. Emotions are not presented
in a single way, but rather integrate facial expressions, voice intonation, body posture,
text content, and even physiological signals such as heart rate or skin galvanic response.
For example, when a person is angry, he may frown, speak louder, and have a faster
heartbeat, but these manifestations vary greatly depending on cultural background or
individual differences. This multimodal characteristic requires the system to not only
process a single data source, but also integrate multiple information, and this process
itself is accompanied by many technical obstacles. At the same time, the accuracy and
reliability of the affective computing system directly determine its practical value in real-
world scenarios, especially in high-risk fields such as medical diagnosis or educational
counseling, where any wrong judgment may lead to serious consequences. However, the
current system still seems to be unable to cope with problems such as insufficient gener-
alization ability, data bias, and model transparency. These challenges not only limit the
development of technology, but also lay the foundation for the discussion in this chapter.
This chapter will explore the difficulties of multimodal emotion recognition and the core
issues of accuracy and reliability of emotion computing to reveal the current state of
technology and future improvement directions.

As one of the most challenging links in affective computing, multimodal emotion
recognition aims to improve the accuracy and stability of emotion recognition by fusing
multiple input signals. Facial expressions are generally considered to be the most intu-
itive manifestation of emotions. For example, a smile is often associated with happiness,
while a frown may indicate anger or confusion. However, it is far from enough to judge
emotions based solely on facial expressions, because human emotional expressions are
often multi-layered. For example, when a person says "I’m fine", a calm tone may mask
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Figure 9.1: Schematic diagram of the concept of affective computing

inner anxiety, while a trembling voice or clenched fists may reveal true feelings. In ad-
dition, changes in voice pitch, speed of speech, and subtle body movements all play an
important role in emotional expression. Furthermore, physiological signals such as heart
rate or galvanic skin response can provide deeper emotional insights, but the collection
of these signals requires professional equipment and is easily affected by the external en-
vironment, such as interference during exercise or poor contact of the equipment. How
to effectively integrate these signals from different sources has become a core problem
facing multimodal emotion recognition.

The complexity of integrating multimodal data is reflected in all aspects of technical
implementation. A common fusion strategy is to merge all raw data before classifica-
tion. This method can capture the correlation between different modes, such as the
coordinated changes of facial expressions and voice intonation. However, this method
has extremely high requirements for data quality and time synchronization. Imagine
that facial expressions may switch quickly in a few milliseconds, and the ups and downs
of voice intonation may last for several seconds. How to accurately align these signals
in the time dimension is a headache. Another method is to extract features and make
preliminary judgments in each mode separately before aggregating the results. This
method has low computational cost and is suitable for scenarios with limited resources,
but it often ignores the deep interactive information between modes. Studies have shown
that both methods have their own advantages and disadvantages, but in dynamic and
noisy real-world environments, the system often finds it difficult to maintain stable per-
formance. For example, in a cafe full of background noise, the microphone may not be
able to capture speech clearly, and the dim light may make it difficult for the camera
to recognize facial details. The noise and data loss in these real-world scenarios further
amplify the technical difficulty.

The complexity of real-world applications is also reflected in the diversity and lim-
itations of the data itself. Existing emotion recognition systems may perform well in
the laboratory, but often fail in real-world scenarios. For example, a system that works
well in a quiet conference room may fail in a crowded public place due to environmental
interference. In addition, the current datasets used to train models often have significant
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Figure 9.2: Multimodal data integration methods and challenges

defects. Many datasets are mainly based on recordings of Western people, with limited
sample sizes and usually collected under controlled conditions, which makes it difficult
to reflect the diversity of emotional expressions in the real world. For example, emo-
tional expressions in Asian culture may be more restrained, while African culture may
tend to be more extroverted. This cross-cultural difference causes the model to perform
poorly in global applications. Even more problematic is that emotion annotation itself
is highly subjective. The same segment of speech with a rapid tone may be labeled as
"angry" by one annotator, while another may think it is "excited". This inconsistency
introduces noise to the training data and directly affects the performance of the model.
In recent years, researchers have tried to alleviate this problem by using unlabeled data
through semi-supervised learning or unsupervised learning, but the actual effects of these
methods still need to be further verified in larger-scale experiments.

Technological advances have brought new hope for multimodal emotion recognition.
Deep learning techniques, such as transformer-based models, are able to process time
series data and capture cross-modal dependencies, while graph neural networks excel
at modeling complex interactions between modalities. These tools have great potential
in theory, but face resource bottlenecks in practice. They require a lot of computing
power and high-quality annotated data, and the current situation of data scarcity and
high computational costs limits their widespread application. In addition, performance
differences in cross-cultural scenarios further highlight the current dilemma. A model
trained on North American users’ smile data may not accurately recognize the more
implicit expressions of happiness from East Asian users. This cultural bias not only
affects the fairness of the system, but also limits its potential for promotion in the global
market. To solve this problem, it is necessary to build more inclusive datasets, but this
involves high costs, strict privacy regulations, and the complexity of cultural differences,
which is difficult to achieve in the short term.

The accuracy and reliability of affective computing systems are key to their imple-
mentation. Unlike tasks such as object recognition or speech transcription, emotion
recognition lacks clear objective criteria. An object can be clearly classified as a "cat" or
a "dog," but emotional states such as "happy" or "sad" often vary from person to person
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Figure 9.3: Differences in emotional expression in different cultures

and are deeply affected by context. For example, a person may smile when receiving
a gift, but may be disappointed rather than happy. This subjectivity and ambiguity
make it difficult for systems to achieve high accuracy, especially in scenarios that require
real-time responses, such as virtual assistants or customer service robots. Insufficient
generalization ability is the primary issue affecting accuracy. Many models perform well
on benchmark datasets, but are vulnerable in dynamic environments. For example, a
speech emotion recognition system trained in a quiet environment may not be able to
adapt to the effects of user fatigue, stress, or environmental noise. This performance
degradation stems from the difference in distribution between training data and actual
scenarios. Although domain adaptation techniques can partially alleviate this problem,
it still requires additional labeled data and computing resources.

Data bias is also an important factor affecting reliability. If the training data mainly
comes from a specific population, such as young white men, then the system’s emotional
judgments on other groups, such as the elderly or non-Western users, may be signif-
icantly inaccurate. In medical health monitoring, this bias may lead to misdiagnosis,
such as misjudging the anxiety of elderly patients as calmness, thereby delaying treat-
ment. In addition, the current mainstream deep learning models are often regarded as
"black boxes" and their prediction processes lack transparency. For example, a system
may judge that a user is "angry" based on voice tone and facial expressions, but cannot
explain why "frustration" or "anxiety" is excluded. In high-risk areas such as medical
decision-making or psychological counseling, this opacity may reduce the trust of pro-
fessionals because they need clear evidence to support system output. Explainable arti-
ficial intelligence technology has received attention in recent years, such as highlighting
key features through attention mechanisms, or reconstructing decision-making processes
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through generative models, but how to effectively apply these methods to multimodal
and time-dependent emotional data remains an unsolved mystery.

The lack of uniformity in evaluation standards further exacerbates the reliability
problem. Different studies may use different performance indicators, such as accuracy,
F1 score, or mean square error, making it difficult to compare the performance of models
in different scenarios. For example, speech emotion recognition may focus more on clas-
sification accuracy, while physiological signal analysis may focus more on the prediction
consistency of time series. This difference not only makes it difficult for researchers to
judge which method is better, but also hinders the establishment of technical standards.
To solve this problem, the industry and academia need to work together to develop a
unified emotion evaluation framework, but this involves the coordination of interests of
multiple parties and is difficult to achieve in the short term. The circular dilemma of
data scarcity and bias is the core obstacle to accuracy and reliability. Improving model
performance requires more diverse data, but data collection is limited by privacy regula-
tions and ethical constraints. For example, collecting users’ facial videos or physiological
signals requires explicit consent, and many users are reluctant to participate due to pri-
vacy concerns. Even if data is collected, how to ensure its representativeness and fairness
is also a problem. Researchers try to make up for the shortcomings through synthetic
data or data augmentation technology, but synthetic data often cannot fully reflect the
complexity of real emotions, and its effect still needs to be improved.

The technical challenges currently faced by affective computing include both data-
level limitations and algorithm design difficulties. The complexity of multimodal emo-
tion recognition and the lack of accuracy and reliability of affective computing together
constitute the bottleneck of technological development. Through in-depth analysis of
these issues, this chapter not only reveals the gap between theory and practice of af-
fective computing, but also provides a direction for thinking about future technological
breakthroughs. Only by making comprehensive progress in data quality, algorithm inno-
vation, and ethical norms can affective computing truly realize its potential in real-world
scenarios.

9.1.1 Challenges of multimodal emotion recognition

As an important research direction in the field of affective computing in recent years,
multimodal emotion recognition aims to integrate information from different physiologi-
cal modalities, such as electroencephalogram, electrocardiogram, galvanic skin response,
facial expressions, and eye movement data, to obtain complementary features, thereby
significantly improving the performance of emotion recognition. Compared with the lim-
itations of a single modality, multimodal fusion can effectively alleviate the weaknesses
caused by single signal noise, missing or insufficient expression ability. By organically
combining the characteristics of different modalities, researchers hope to build a more
robust and accurate emotion recognition system to adapt to the complex and changeable
human emotional expression.

In the study of multimodal emotion recognition, the way to fuse different modal in-
formation has become one of the key issues. For example, some studies have constructed
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a new emotion discrimination space by analyzing physiological signals. Specifically, the
researchers used EEG signals as auxiliary information, combined with discriminative
canonical correlation analysis techniques, extracted features from a variety of physiolog-
ical data, and finally trained the emotion recognizer through machine learning methods.
This method makes full use of the unique advantages of EEG signals in capturing brain
activity and makes up for the shortcomings of other modalities in deep emotional ex-
pression. Similar ideas have also been adopted by other researchers. They trained
feedforward neural networks by fusing multiple signals and found that the fused model
performed significantly better than the results of relying on a single signal when recog-
nizing various emotions. The reason for this performance improvement is that different
modal signals are complementary in emotional expression. For example, facial expres-
sions may more intuitively reflect emotional categories, while physiological signals can
more accurately capture the intensity or arousal level of emotions.

In the practice of feature fusion, researchers have also explored a variety of specific
implementation methods. For example, some studies have spliced facial expression im-
ages with corresponding EEG signal features to generate a higher-dimensional feature
map, and trained emotion recognition models on this basis. Experimental results show
that this combination of multimodal features significantly outperforms single modality
features in performance. In addition, some studies have attempted to hybridly fuse
EEG, galvanic skin response, and facial data, first estimating the arousal level by inte-
grating EEG and galvanic skin response features, and then incorporating facial data into
the final fusion process. This gradual fusion method makes full use of the advantages
of each modality in different emotional dimensions, such as the sensitivity of galvanic
skin response to states of tension or excitement, and the ability of facial expressions to
represent specific emotional categories.

In addition to feature-level fusion, decision-level fusion has also become an impor-
tant strategy in multimodal emotion recognition. The researchers proposed an emotion
recognition framework based on decision fusion, training independent classifiers at the
electrocardiogram, electromyogram, and skin conductance levels, and then integrating
the outputs of these classifiers by majority voting to determine the final emotion category.
The advantage of this method is that it allows each modality to function independently,
while reducing the impact of single-modality misjudgment through collective decision-
making. Similar ideas have also been applied to the fusion of multi-domain features, such
as integrating features in the time domain, frequency domain, and wavelet domain to
identify combinations that can stably characterize the underlying signal characteristics,
thereby improving the classification effect. This multi-domain fusion generates the final
feature vector through splicing, providing the model with more comprehensive emotion
information.

In practical applications, researchers have also tried to process physiological sig-
nals by weighted average fusion to classify valence and arousal levels. Experimental
results show that this method performs slightly better than valence in the classifica-
tion of arousal levels, which may be related to the fact that physiological signals are
more sensitive to intensity changes than to the representation of positive and negative
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Figure 9.4: Schematic diagram of feature fusion method

emotions. In addition, there are studies that combine EEG data with the audiovisual
features of videos and optimize the feature space through dimensionality reduction tech-
nology to improve the computational efficiency and recognition accuracy of the model.
These methods show that multimodal fusion not only needs to pay attention to the
way signals are integrated, but also needs to consider how to retain key information in
high-dimensional data.

The introduction of deep learning technology has further promoted the develop-
ment of multimodal emotion recognition. For example, a study developed a late fusion
method based on deep convolutional neural networks to estimate positive and negative
emotion scores. The researchers designed two fusion strategies: one is to train a neural
network model for each modality and then integrate their outputs; the other is to cal-
culate the average probability of the pre-trained model on different emotion categories
and select the category with the highest probability as the final result. This late fusion
method makes full use of the powerful ability of deep learning in feature extraction, while
adapting to the needs of different signal combinations through flexible fusion strategies.
Similarly, there are studies that convert electrocardiogram signals into image form, gen-
erate frequency domain and time-frequency domain features through Fourier transform
and wavelet transform, and then extract multi-domain features by neural network, and
finally improve classification accuracy through decision fusion. This combination of mul-
timodality and multi-domain provides a new idea for emotion recognition.

Although multimodal fusion has shown significant advantages in theory and exper-
iments, it still faces many challenges in its implementation. First, how to effectively
integrate information from different modalities is a complex issue. Feature-level fusion
concatenates the features of each modality into a single vector. Although it is simple
and intuitive, it may lead to information redundancy or conflict when faced with large
heterogeneity between modalities. Although decision-level fusion can preserve the inde-
pendence of each modality, its performance is highly dependent on the quality of each
classifier and the design of the fusion rules. Studies have shown that there is no consen-
sus on the pros and cons of feature-level fusion and decision-level fusion. For example, in
some experiments, feature-level fusion has a slightly higher accuracy in emotion classifi-
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cation than decision-level fusion, while in other scenarios, decision-level fusion performs
better due to its adaptability to differences between modalities.

In addition, in real-world applications, not all modal signals used in the training
phase may be available in the testing phase. For example, both EEG and eye movement
data may be used during training, while only eye movement data is available during
testing. This modality missing problem poses a challenge to the robustness of multimodal
emotion recognition. Researchers have tried to solve this problem through methods such
as transfer learning, proving that even if the test data only contains some modalities,
the model can still use the multimodal information in the training phase to achieve
good performance. This approach not only improves the practicality of the system,
but also expands its application potential in real-world scenarios, such as emotion-based
brain-computer interface technology.

The difficulty of multimodal emotion recognition lies not only in how to design an
efficient fusion strategy, but also in how to deal with practical challenges such as data
heterogeneity, modality loss, and computational complexity. By combining the diversity
of physiological signals with the powerful capabilities of deep learning technology, future
research is expected to further break through these bottlenecks and lay the foundation
for building a more intelligent and humane emotion recognition system.

9.1.2 Accuracy and Reliability of Affective Computing

Although sentiment computing has made significant progress, its accuracy and reliabil-
ity still face many challenges, especially the generalization ability of models in practical
applications. This chapter will discuss the accuracy and reliability of sentiment recogni-
tion, focusing on its core challenge - designing models that can generalize well on unseen
data or new data sets, and explore the main obstacles such as limited data set samples,
non-standard data segmentation techniques, and data variability between individuals,
while proposing possible solutions.

The core goal of emotion recognition is to accurately judge the emotional state of an
individual by analyzing multimodal data such as facial expressions, voice intonation, and
physiological signals. However, the excellent performance of the model in the laboratory
environment is often difficult to directly migrate to the real scene. One of the roots of this
problem lies in the limitations of training data. The currently available emotion datasets
are usually small in scale, and the number of samples is insufficient to cover a wide range
of population characteristics and emotional expressions. For example, some datasets may
only contain subjects from a specific cultural background or age group, which makes the
model prone to performance degradation when facing unseen subjects with different
backgrounds. In addition, emotional expression is highly individual, and even the same
emotion may be expressed in completely different ways by different people. This inter-
individual data variability further exacerbates the difficulty of model generalization,
making the accuracy and reliability of emotion recognition systems in cross-individual
applications questionable.

In order to meet these challenges, researchers have conducted extensive explorations
in data segmentation techniques. Common data segmentation methods are mainly di-
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Figure 9.5: Some Imbalanced Sentiment Datasets

vided into two types: subject-dependent and subject-independent. The former uses the
data of the same batch of subjects in the training and testing stages. Although it can
achieve high accuracy in a specific group, its generalization ability is weak because the
model is too dependent on the characteristics of the subjects seen during training. In con-
trast, the subject-independent segmentation technique completely separates the subjects
in the training set and the test set, thereby simulating the situation in which the model
faces completely new subjects in real scenarios. The research in Section 7 shows that
models trained under the subject-independent setting are more likely to achieve good
generalization effects. This is because this method forces the model to learn more general
emotional features rather than the expression habits of specific individuals. However,
although the subject-independent method is theoretically closer to the actual application
needs, the performance of existing recognition models in this setting is still not ideal,
especially in terms of real-time and intelligence. For example, when the model needs to
quickly process unseen emotional data in a dynamic environment, its prediction results
often have large deviations and even fail to meet the minimum requirements of practical
applications.

The reasons for this phenomenon can be attributed to many aspects. First, the
limited sample size of the data set is a long-standing problem in the study of affective
computing. Since the collection of emotional data requires the voluntary participation of
the subjects and involves privacy protection and ethical issues, the construction of large-
scale high-quality data sets faces many difficulties. The insufficient sample size directly
limits the model’s ability to learn diverse features, especially in scenarios independent of
the subjects, the model may not be able to fully capture the universal laws of emotional
expression. Secondly, non-standard data segmentation techniques further exacerbate
the complexity of the problem. In the field of affective computing, different research
teams often adopt different segmentation strategies, such as segmentation by time series,
segmentation by emotional category, or random segmentation. This inconsistency makes
the evaluation of model performance lack a unified standard and makes it difficult to
make fair comparisons between different studies. In addition, inter-individual variability
is not only reflected in the style of emotional expression, but may also be affected by the
external environment (such as light, noise) and internal state (such as fatigue, health
status), all of which may become noise that interferes with the accuracy of the model.
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Figure 9.6: Segmentation Strategy Examples and Descriptions

In order to improve the generalization ability of emotion recognition models, an
intuitive solution is to train and validate them on a large number of subjects. By
increasing the number and diversity of subjects, the model can be exposed to a wider
range of emotional expression patterns, so that it can better adapt to unseen data when
testing. For example, if an emotion recognition system is trained on a dataset containing
hundreds of subjects of different ages, genders, and cultural backgrounds, its prediction
accuracy when facing new users will be significantly better than that of a model trained
on data from only dozens of people. However, the implementation of this solution is
limited by the availability of datasets. In practice, researchers often need to rely on
existing public datasets, and the scale and diversity of these datasets usually cannot
fully meet the needs. To make up for this deficiency, data augmentation technology has
become a widely tried means. Data augmentation transforms the original data (such
as rotation, scaling, adding noise, etc.) to artificially generate more training samples,
thereby alleviating the problem of insufficient sample size to a certain extent. However,
data augmentation is not a panacea. If the enhancement process is not careful enough,
it may lead to an imbalance in data distribution. For example, some emotion categories
are over-enhanced while samples of other categories are still scarce, which will eventually
cause the model to overfit during training. That is, the model is too sensitive to the
specific patterns of the enhanced data and cannot be generalized to real scenarios.

In addition to the challenges at the data level, the intelligence level of the model
design itself also has a profound impact on the accuracy and reliability of emotional
computing. Existing subject-independent recognition models often lack sufficient adapt-
ability when facing complex real-world scenarios. For example, in real-time applications,
emotion recognition systems need to process multimodal inputs (such as facial expres-
sions and voice) simultaneously and give accurate judgments in a short time. However,
current models usually perform well on a single modality, and are prone to information
conflicts or improper weight distribution when multimodal fusion occurs. In addition,
the dynamic nature and contextual dependence of emotions themselves also increase
the difficulty of recognition. Human emotions are not static, but evolve over time and
environment. For example, a person’s anger after being criticized may quickly turn
into frustration, and this rapidly changing emotional conversion places higher demands
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on the model’s real-time tracking capabilities. Most existing models are trained based
on static data and lack the ability to model the dynamic evolution of emotions, which
greatly reduces their reliability in continuous tasks.

In order to solve the above problems, future research can start from multiple direc-
tions. First, in terms of data collection, larger and more diverse emotion datasets can
be constructed through cross-institutional cooperation or crowdsourcing. For example,
combining mobile devices and wearable technologies to collect users’ emotional data in
natural environments can not only increase the sample size, but also improve the authen-
ticity of the data. Secondly, in model design, more advanced deep learning techniques
such as transfer learning and meta-learning can be introduced. Transfer learning can
effectively make up for the shortcomings of small sample datasets by utilizing models
pre-trained on large-scale general datasets and then fine-tuning them for specific emo-
tional tasks. Meta-learning, on the other hand, enables the model to quickly adapt to
new tasks and new subjects through the method of "learning how to learn", thereby
improving generalization ability. In addition, the improvement of multimodal fusion
technology is also a key direction. By designing smarter fusion strategies (such as atten-
tion mechanisms), the model can better integrate information from different modalities
and avoid the interference of single modal noise.

In terms of data enhancement, future work needs to pay more attention to the ratio-
nality of enhancement strategies. For example, enhancement methods can be designed
based on the semantic characteristics of emotional expression rather than simply ap-
plying general transformations. For example, for facial expression data, new expression
samples can be generated by simulating muscle movements rather than relying solely on
geometric transformations. This semantically driven enhancement method can generate
data that is closer to the true distribution, thereby reducing the risk of overfitting. In
addition, in order to cope with inter-individual variability, researchers can also explore
hybrid methods that combine personalized modeling with general modeling. For ex-
ample, a general model is used for rough emotion recognition in the initial stage, and
then the model parameters are gradually adjusted according to the user’s specific data
to form a personalized recognition system. This method can not only ensure the basic
performance of the model on unseen data, but also improve its adaptability to specific
users.

The accuracy and reliability of emotion computing are the core issues in current
research, and the key lies in improving the generalization ability of the model on un-
seen data. Limited data set samples, non-standard data segmentation techniques, and
inter-individual data variability are the main obstacles to achieving this goal. These
problems can be alleviated to a certain extent by training models on a large number
of subjects, carefully applying data augmentation techniques, and improving model de-
sign. However, the complexity of emotion recognition determines that this field still
requires long-term exploration and innovation. Future development requires not only
breakthroughs in technology, but also coordinated progress in data collection, ethical
norms, and application scenario design. Only in this way can emotion computing truly
move towards the goal of high accuracy and high reliability and bring more profound
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value to human society.

9.2 Ethical and social challenges

With the rapid development and widespread penetration of technology, the ethical and
social challenges caused by affective computing have gradually surfaced and become an
issue that cannot be ignored. These challenges not only stem from the limitations of the
technology itself, but also touch upon the core value system of human society at a deeper
level, including the definition of privacy rights, the reshaping of trust relationships, and
the profound transformation of the interaction model between technology and humans.
As a technology that aims to perceive, understand and respond to human emotions,
affective computing has exciting application prospects, but at the same time, it also
brings unprecedented ethical dilemmas and social reflections. This chapter will deeply
analyze the complexity of affective computing at the ethical and social levels, focusing on
two core issues: privacy and data security issues, and ethical considerations of human-
computer relationships. Through a systematic discussion of these issues, we hope to
outline a more responsible and sustainable framework for the future development of
affective computing to ensure that technological progress not only serves efficiency and
convenience, but also protects human dignity and well-being.

The core of affective computing is to capture and interpret human emotional states
through technical means. This process relies on the real-time collection and analysis
of user physiological signals (such as heart rate, galvanic skin response), facial expres-
sions, voice intonation and even text content. This capability provides a broad space
for personalized services, psychological support and optimization of human-computer
interaction. However, this "emotional insight" is also accompanied by profound ethi-
cal concerns. When a device can detect the fluctuations in our hearts earlier than we
can, and even "read" our unspoken emotions, can our inner world still remain indepen-
dent and private? When these emotional data are stored, transmitted or even used for
commercial purposes, who will ensure their security and legality? Furthermore, when
machines evolve from simple tools to beings that can express "empathy" or "care", how
should the boundaries of the relationship between humans and machines be defined?
These issues not only concern the pros and cons of technical design, but also directly
challenge the ethical bottom line of human society, prompting us to rethink the tension
between technological progress and social values. This chapter will start with the is-
sues of privacy and data security, exploring the high sensitivity of emotional data and
its potential risks; then turn to the ethical considerations of the human-computer re-
lationship, analyzing how technology reshapes human emotional dependence and social
connections. Through the interweaving analysis of these two major topics, we will reveal
how emotional computing, while promoting technological innovation, profoundly affects
our lifestyles and moral concepts.

In the practical application of affective computing, privacy and data security un-
doubtedly constitute one of the most urgent and complex ethical challenges. The op-
eration of affective computing systems depends on the deep mining of users’ emotional
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Figure 9.7: Diagram of potential risks in emotional computing

states, which requires them to collect and process a large amount of highly personalized
data. For example, an application for mental health monitoring may need to record the
user’s heart rate changes, emotional ups and downs in voice, and subtle differences in
facial expressions in real time. These data not only reflect the user’s current emotional
state, but may also reveal deeper information, such as mental health status, living habits,
and even details of social relationships. Compared with traditional personal information
(such as name or address), emotional data is more sensitive because it directly points
to the individual’s inner world. Once this data is abused or leaked, the consequences
may far exceed the scope of conventional privacy violations. For example, insurance
companies may use emotional data to assess the psychological stability of policyhold-
ers, thereby adjusting premium standards or directly refusing insurance; employers may
judge their work performance or loyalty by analyzing employees’ emotional fluctuations.
This potential risk of surveillance and discrimination makes privacy protection an un-
avoidable issue in the development of affective computing, and the commercial use of
data further amplifies this challenge.

The vulnerability of data security has added new complexity to the privacy issue.
Emotional computing systems often run on the cloud or connected devices, which means
that users’ emotional data needs to be transmitted between multiple nodes. However,
current network security technology is far from impeccable, and hacker attacks and
data leaks occur frequently. According to a global study in 2023, more than 60% of
connected devices have encountered security threats, and emotional computing devices
are often the primary target of attackers due to the unique value and high sensitivity
of their data. What is more worrying is that many developers of emotional computing
applications did not fully consider the necessity of data protection at the beginning of
the design. For example, some smart speakers continue to record and upload voice data
containing emotional clues without the user’s explicit consent. This "secret collection"
behavior not only infringes on the user’s right to know and autonomy, but also lays
hidden dangers for data abuse. In addition, the commercialization trend of emotional
data has further blurred the boundaries of privacy. In the digital economy, data is hailed
as the "new oil", and emotional data is favored because it can accurately portray user
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needs. Advertisers may use this data to push more targeted advertisements, and social
platforms may optimize content recommendation algorithms by analyzing user emotions.
However, such commercialization often comes at the expense of user privacy. Users may
not be aware of the purpose for which their emotional data is used, let alone having
substantial control over it.

Although the EU’s General Data Protection Regulation (GDPR) provides a legal
framework for data privacy, its scope of application and enforcement vary significantly
around the world, especially in the emerging field of affective computing, where the lag
of relevant regulations is particularly obvious. How to find a balance between techno-
logical innovation and privacy protection has become an ethical problem that needs to
be solved urgently. To meet this challenge, researchers and developers need to incorpo-
rate the concept of "privacy first" into technology design. For example, edge computing
technology can be used to limit the processing of emotional data to the user’s device
and avoid uploading it to the cloud; or differential privacy technology can be used to
add noise to data analysis to protect individual identities. In addition, transparency
and user authorization are also crucial. The affective computing system should inform
users of the purpose of data collection and scope of use in a clear and easy-to-understand
manner, and provide a simple exit mechanism. However, the improvement of technical
means is only part of the solution. The comprehensive protection of privacy and data
security still depends on the improvement of laws, the establishment of social norms,
and the improvement of public awareness. Only when users can truly understand and
control their own emotional data can affective computing move forward steadily on the
ethical track and not become a tool for privacy erosion.

If privacy and data security are the external challenges facing affective computing,
then the ethical considerations of the human-machine relationship constitute its internal
core dilemma. As affective computing technology gives machines the ability to recog-
nize, simulate, and even respond to human emotions, the boundary between humans
and machines is becoming increasingly blurred. This change has not only changed the
way we interact with technology, but also has a profound impact on human emotional
dependence, social interaction, and self-cognition. When a device can "sense" our sad-
ness through voice tone or facial expressions, and comfort us with a warm tone, will we
gradually regard it as a source of emotional support? Will the deepening of this rela-
tionship weaken the real connection between people? These issues are not only about
the realization of technical functions, but also prompt us to re-examine the ethics of
the human-machine relationship in the context of affective computing, as well as the
potential impact of technology on the structure of human society.

First, emotional computing may lead to excessive human dependence on machines.
Studies have shown that when machines show human-like empathy, users tend to be
more likely to trust them and even develop emotional attachment to them. For exam-
ple, a 2024 experiment found that 40% of people with depression who used emotional
computing assistants said they would rather talk to their assistants than communicate
with family or friends. This phenomenon not only highlights the potential of emotional
computing in the field of psychological support, but also raises deep ethical concerns:
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Table 9.1: Some Laws Related to Data Privacy Protection
No. Title of Act Country

/ Re-
gion

Main Content User Rights Penalties

1 The United
States Privacy
Rights Act
(APRA)

USA
(pro-
posed),
2024

Unify privacy stan-
dards nationwide, re-
strict data transfer,
and emphasize data
minimization

Access, correction,
deletion, export,
opt-out

Enforcement by FTC and
state attorneys general;
users can file lawsuits

2 California Con-
sumer Privacy
Act (CCPA)

USA
(Cali-
fornia),
2020

Protect California
residents’ data pri-
vacy and limit data
sales

Know, access, delete,
and refuse to sell data

Maximum compensation of
$750 per breach

3 Personal Infor-
mation Protec-
tion Law (PIPL)

China,
2021.11.1

Standardize personal
data processing and
cross-border flow
management

Access, correction,
deletion, portability,
withdrawal of con-
sent

Max fine: 50 million yuan
or 5% of prior year’s
turnover

4 Data Security
Law

China,
2021.9.1

Enforce data classifi-
cation, grading pro-
tection, and security
review

— High administrative penal-
ties

5 General Data
Protection Reg-
ulation (GDPR)

EU,
2018.5.25

Transparent and
strict standards for
personal data protec-
tion with informed
consent

Access, rectification,
erasure, data porta-
bility, objection to
processing

Max fine: €20 million or
4% of annual turnover

If people rely more and more on machines to meet their emotional needs, will they re-
duce interactions with real humans, thereby exacerbating social isolation? Furthermore,
when the emotional response of the machine is merely an algorithm-based simulation
rather than real understanding and resonance, will this "false empathy" mislead users
and make them unknowingly fall into an unreal emotional relationship? The deepening
of this dependence may relieve the emotional pressure of individuals in the short term,
but in the long run, it may weaken the most precious emotional connections in human
society.

Secondly, the deepening of the human-machine relationship also brings about the
ethical dilemma of responsibility attribution. In the application of affective computing,
the decision-making of machines is often based on complex algorithms and data models,
but these models are not perfect. For example, an educational robot may determine
that a student has lost interest in a course by analyzing his or her facial expressions
and voice, and adjust the teaching content. However, if the algorithm misjudges the
student’s emotions, resulting in poor teaching results or even psychological stress, who
should be held responsible for this? Is it the developer, the user, or the machine itself?
The traditional responsibility allocation framework is stretched when facing affective
computing, because the machine is neither a completely autonomous subject nor a simple
tool. This ambiguity not only challenges the existing legal system, but also requires us to
redefine the power and responsibility relationship between people and technology at the
ethical level. In addition, when affective computing is used in more complex scenarios,
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such as medical diagnosis or legal consultation, the issue of responsibility attribution
will become more difficult, further highlighting the urgency of ethical considerations.

In addition, affective computing may also have a profound impact on human self-
cognition. When machines can identify our emotions more accurately than we can our-
selves, will we gradually lose control of our own emotions? For example, a smart bracelet
may prompt the user that he is "angry" through heart rate and skin electrical response
before the user is aware of the anger. Although this externalized emotional interpreta-
tion is helpful for self-management, it may also make users dependent on the judgment
of the machine, thereby weakening the ability of self-reflection. In more extreme cases,
when affective computing is used to manipulate user emotions, such as stimulating the
desire to buy through specific music or interface design, its ethical boundaries will be-
come more blurred. Does this manipulation infringe on the user’s autonomy? How can
we find a balance between technological empowerment and ethical constraints? These
issues are not only about the mental health of individuals, but also about the potential
threat of technology to human free will.

To address the ethical challenges of human-machine relationships, researchers have
proposed a "human-centered" design concept, emphasizing that technology should always
serve human needs rather than take over the role of the guest. For example, affective
computing systems can set clear boundaries of interaction to avoid over-simulating hu-
man emotions, thereby reminding users that they are tools rather than partners. At
the same time, it is also crucial to educate the public to understand the limitations of
affective computing. Only when users realize that the machine’s emotional response is
algorithm-driven rather than real emotional resonance can they treat this relationship
more rationally. In addition, interdisciplinary collaboration—including the participation
of ethicists, psychologists, and sociologists—will help develop more comprehensive ethi-
cal guidelines to ensure that affective computing does not undermine human autonomy
and social connections while enhancing human-machine interaction. Through these ef-
forts, we can establish a healthy balance between technology and humanity and prevent
affective computing from becoming a double-edged sword.

The ethical and social challenges of affective computing are a multi-dimensional,
cross-domain issue, covering privacy and data security, ethical considerations of human-
machine relationships, and many other aspects. These challenges are not stumbling
blocks to technological development, but opportunities to promote its maturity. By
incorporating privacy protection principles into the design, strengthening user control,
and clarifying the ethical boundaries of human-machine relationships, we can find a
harmonious coexistence between technological innovation and social responsibility. The
ultimate goal of affective computing should not only be a technological breakthrough,
but also to improve the quality and meaning of life by understanding and responding to
human emotions. However, the realization of this goal is inseparable from the joint efforts
of technology developers, policymakers, and the public. Only when ethical and social
challenges are properly addressed can affective computing truly become an emotional
bridge connecting humans and technology, rather than a controversial ethical minefield.
In the future, as technology evolves further, the answers to these questions may become
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clearer, but before that, we must welcome this change with an open mind and a cautious
attitude to ensure that affective computing gives machines "emotional intelligence" while
not losing the warmth and bottom line of human society.

9.2.1 Privacy and data security issues

With the in-depth development of affective computing technology, privacy and data
security issues have gradually surfaced and become a challenge that needs to be solved
urgently. Especially in the field of highly sensitive data such as brain-computer interfaces,
the risk of privacy leakage not only threatens the personal information security of users,
but may also cause broader social and ethical issues. This article will conduct an in-
depth discussion on the privacy and data security issues in affective computing, analyze
its potential risks, technical response strategies and future development directions.

The core of affective computing is to extract emotional information from a variety
of physiological and behavioral signals. Taking brain-computer interface as an exam-
ple, many studies use EEG data to capture the user’s emotional state. These data are
usually processed by methods such as transfer learning to improve the adaptability and
accuracy of the model. However, EEG signals not only contain emotional information,
but also carry a lot of other private information, such as the user’s identity character-
istics, health status, and psychological state. The richness of this information makes
EEG data uniquely valuable in emotion recognition, but also brings significant privacy
risks. Studies have shown that users can be identified with extremely high accuracy
through only a few seconds of EEG data. This high-precision user identification capa-
bility means that once the data is improperly used or leaked, users may face the risk
of identity exposure, abuse of health information, and even psychological manipulation.
Similar situations are not limited to the field of brain-computer interface, but are also
prevalent in other branches of affective computing. For example, emotion analysis based
on facial expressions may leak the user’s identity or emotional preferences, while voice
emotion recognition may expose the user’s psychological state or personal habits.

As privacy issues become increasingly prominent, governments and institutions around
the world have begun to strengthen the protection of personal data through legislation.
Europe’s General Data Protection Regulation, which came into effect on May 25, 2018,
clearly stipulates the strict standards that companies must follow when collecting, pro-
cessing and storing user data, giving users greater control over their data. Similarly,
China’s Personal Information Protection Law, which was implemented on January 11,
2021, also puts forward clear requirements for the collection and use of personal in-
formation. The introduction of these laws reflects the global emphasis on data privacy
protection, and also sets a higher compliance threshold for the development and applica-
tion of affective computing technology. Whether it is a brain-computer interface or other
affective computing systems, developers must fully consider these legal requirements in
the technical design to ensure the legality and security of user data.

In order to meet the privacy challenge, researchers have proposed a variety of tech-
nical strategies to build privacy-preserving affective computing systems. Among them,
cryptographic methods are an important solution. Cryptography ensures that data is



196 9. CURRENT CHALLENGES

Figure 9.8: Privacy protection concept diagram

not directly accessed during transmission and processing through technologies such as
homomorphic encryption, secure multi-party computing, and secure processors. For ex-
ample, in the study of driver drowsiness detection based on EEG, researchers used secure
multi-party computing technology to achieve the same analysis results as unencrypted
data while protecting user privacy. This method provides a feasible path for privacy
protection under the premise of controllable computational costs. However, the applica-
tion of cryptography is not without limitations, and its computational complexity may
limit its use in large-scale real-time affective computing tasks.

Another common privacy protection strategy is data perturbation. The perturbation
method reduces the extractability of sensitive information in the data while maintaining
the utility of emotion recognition by adding noise to the original data or performing
data transformation. Differential privacy technology is a typical representative of this
strategy. It uses mathematical means to ensure that even if an attacker obtains the
processed data, the original information cannot be accurately inferred. In addition,
data reconstruction technology can also transform the original signal into a form that is
difficult to reverse parse, thereby further enhancing privacy protection. This method is
widely used in brain-computer interfaces and speech emotion recognition. For example,
in speech emotion analysis, researchers can mask the user’s identity information by
adding background noise or changing the pitch characteristics while retaining the core
features of emotional expression. The advantage of the perturbation method lies in its
flexibility and low computational overhead, but its challenge lies in how to find a balance
between privacy protection and data utility.

Machine learning-assisted systems provide another approach to privacy protection.
Such systems can not only be used for emotion recognition itself, but can also help users
better understand privacy policies and provide risk warnings in data usage decisions. For
example, by designing intelligent privacy management tools, users can clearly understand
potential privacy risks before authorizing data use, so that they can make more informed
choices. Although this method does not directly act on the data itself, it adds a layer of
security to the emotional computing system by enhancing users’ privacy awareness and
control capabilities.

Although the above strategies have alleviated the privacy issue to a certain extent,



9.2. ETHICAL AND SOCIAL CHALLENGES 197

the field of affective computing still faces many unresolved challenges. Taking brain-
computer interface as an example, recent studies have proposed an unsupervised multi-
source decentralized migration method to protect the privacy of EEG data in offline
scenarios. This method achieves high classification accuracy and avoids direct sharing of
sensitive data by using the parameters or prediction results of the source model instead
of the original data for transfer learning. Experiments on specific datasets have veri-
fied the effectiveness of this method. However, compared with the accuracy of emotion
recognition, the issue of privacy protection has not received enough attention in research
and application. Many developers prefer to pursue the improvement of technical per-
formance and ignore the importance of data security. This unbalanced attention may
cause the system to face greater risks in actual deployment.

In addition to privacy leaks, affective computing systems also face security threats
from adversarial attacks. Adversarial attacks trick machine learning models into out-
putting incorrect results by introducing tiny perturbations into the input data. These
perturbations are often so subtle that they are difficult for humans to detect, but they
are enough to cause serious interference to the system. In the field of brain-computer
interfaces, adversarial attacks are particularly prominent. For example, researchers de-
signed a specific attack method for an EEG-based regression model, which successfully
changed the estimated results of the driver’s drowsiness level by generating tiny pertur-
bations, with a success rate of nearly 100%. Similar problems also exist in other affective
computing scenarios. For example, facial expression recognition models may misjudge
the user’s emotional state due to adversarial samples, and voice emotion analysis systems
may draw incorrect conclusions due to noise interference.

The potential consequences of adversarial attacks should not be underestimated. In
extreme scenarios of brain-computer interfaces, hackers may directly affect the user’s
emotions and cognitive functions by invading the system, or even manipulate the motor
cortex to induce unexpected behavior. For example, in military applications, opponents
may use adversarial attacks to send false instructions to operators, causing misoperation
or emotional confusion. Although this possibility is still theoretical speculation, it has
attracted great attention from security experts. A report pointed out that the abuse of
affective computing technology may provide malicious actors with a direct way into the
human brain, thereby creating chaos or causing more serious consequences.

Despite the growing threat of adversarial attacks, research on defenses against affec-
tive computing systems has lagged behind. At present, researchers have proposed some
potential defense strategies to improve the adversarial robustness of the system. Data
modification is a common method that adjusts the training data or test data to enhance
the model’s ability to resist interference. For example, adversarial training introduces
adversarial samples during the training process so that the model learns to recognize
and resist similar attacks. In addition, data compression and randomization techniques
can also weaken the impact of perturbations during the testing phase. Another strat-
egy is model modification, which directly improves the robustness of the model through
techniques such as regularization or defense distillation. Regularization reduces the sen-
sitivity of the model to small perturbations by limiting its complexity, while defense
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distillation generates a more stable model structure through multi-stage training. In
addition, the application of auxiliary tools also provides new ideas for defense. For
example, using additional machine learning modules to detect adversarial samples can
issue warnings or block abnormal inputs in time when an attack occurs.

However, the application of these defense strategies in the field of affective computing
is still in the exploratory stage. Taking brain-computer interfaces as an example, there is
currently no research on adversarial defenses specifically targeting emotion recognition
systems. This is in stark contrast to the rapid pace of technological development in
this field. In the future, as affective computing becomes more popular in the fields of
healthcare, education, and entertainment, the importance of privacy and security issues
will become more prominent. Developers need to find a balance between technological
innovation and risk control to ensure that the system can not only accurately understand
users’ emotions, but also effectively protect their privacy and security.

The issue of privacy and data security in affective computing is a multi-dimensional
and multi-level challenge. From brain-computer interfaces to facial expression analysis
to speech emotion recognition, each technology is accompanied by unique privacy risks
and security threats. Cryptography, data perturbation, and machine learning-assisted
systems provide technical support for privacy protection, while data modification, model
modification, and auxiliary tools open up paths for defense against adversarial attacks.
However, the implementation of these solutions still needs to overcome many difficulties,
including computing costs, utility loss, and legal compliance. In the future, the field
of affective computing needs to work together in technology research and development,
policy formulation, and user education to build an ecosystem that is both smart and
secure. Only in this way can this technology benefit mankind while minimizing potential
risks.

9.2.2 Ethical considerations of human-computer relationships

Emotion recognition systems rely on a large amount of personal data, including facial
images, voice samples, electroencephalogram (EEG) data, and other biological signals.
The collection and storage of this data raises serious privacy issues. If a user’s emotional
data is collected, stored, or shared without permission, it may lead to personal privacy
leaks or even be used to manipulate user behavior. For example, companies can use sen-
timent analysis data to optimize advertising and influence consumer decisions in a more
targeted manner, while government agencies may use emotion recognition technology for
social monitoring.

In order to protect user privacy, strict data collection and storage specifications must
be established. First, the collection of emotional data should be based on explicit user
consent (opt-in) rather than default collection. Second, data anonymization and de-
identification can reduce the risk of user identity leakage. Finally, the use of encryption
technology and secure storage solutions such as blockchain can help improve the security
of emotional data and reduce the possibility of malicious attacks.

With the development of emotion recognition systems, machines can not only under-
stand human emotions, but also adjust their own behavior based on the analysis results
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Figure 9.9: Qtrobot, developed by LuxAI, is a social robot designed for children with
autism spectrum disorder (ASD).

to make them more "human". For example, virtual assistants can provide comfort when
users express sadness, and social robots can adjust their interaction methods based on
human emotional feedback. This highly intelligent emotional interaction enhances the
intimacy of the human-machine relationship, but it also raises some ethical issues.

First, users may become overly dependent on emotion recognition systems, view-
ing them as true "friends" or "psychological supporters." This dependence may weaken
emotional communication between people and even affect mental health. Second, the
machine’s emotion recognition ability is essentially based on data pattern analysis, rather
than truly understanding or experiencing emotions. In other words, the machine is "sim-
ulating" human emotions, but it does not have true empathy. If users have a wrong per-
ception of the machine’s "emotional response," it may affect their emotional regulation
ability and social behavior.

To address these issues, developers need to be transparent in the design of emotion
recognition systems to avoid misleading users into thinking that machines have real
emotional awareness. In addition, users should be encouraged to use emotion recognition
technology as an auxiliary tool rather than a substitute for human relationships.

Emotion recognition systems are usually based on machine learning models, and
the source of training data for these models determines their applicability to different
populations. However, due to data imbalance, emotion recognition systems may show
bias. For example, some studies have found that existing emotion recognition algorithms
may have different accuracy rates when identifying emotions of different races, which may
lead to discriminatory treatment of certain groups.

This bias not only affects individual user experience, but may also lead to social
injustice in certain application scenarios. For example, in the recruitment process, if a
company uses emotion recognition technology to assess the emotional stability of appli-
cants, and the system has biased emotion recognition for certain groups, it may lead to



200 9. CURRENT CHALLENGES

employment discrimination. For another example, in the judicial system, if sentiment
analysis is used to assess the credibility of suspects, and the technology performs incon-
sistently across different races and cultural backgrounds, it may affect judicial justice.

In order to reduce the bias of emotion recognition systems, researchers should ensure
the diversity of training data and develop fairness optimization algorithms. In addition,
in practical applications, when using emotion recognition systems for decision-making,
other human supervision mechanisms should be combined to reduce the negative impact
of algorithmic bias.

The transparency and explainability of AI system decisions have always been im-
portant topics in the ethical discussion of artificial intelligence. In the field of emotion
recognition, users usually cannot know how the system makes a certain emotional judg-
ment. For example, a virtual assistant may judge that the user is angry based on the
tone of the user’s voice, but the user does not know the specific basis of the analysis. This
"black box" problem reduces the user’s trust in the system and may lead to misjudgment.

To improve transparency, emotion recognition systems should provide clear expla-
nations of their decisions. For example, the system can show users the main basis for
its emotion analysis, such as facial expression changes, voice characteristics, or heart
rate fluctuations. In addition, the use of explainable AI (XAI) methods can help users
understand the system’s analysis logic, thereby improving trust and controllability.

The use of emotion recognition technology may have a profound impact on the user’s
mental health. First, emotion tracking may cause users to pay too much attention
to their own emotions, thereby exacerbating anxiety. For example, if a person finds
that their emotion analysis data shows "persistent stress" or "chronic anxiety", it may
strengthen their perception of negative emotions and increase their psychological burden.

Secondly, emotion recognition technology may be used for emotional manipulation.
Advertisers can use emotion data to precisely place advertisements to maximize the user’s
emotion-driven consumption behavior; social media platforms can optimize information
flow through emotion analysis, making it easier for users to immerse themselves in it
and even form emotional dependence.

Therefore, when designing an emotion recognition system, ethical boundaries should
be set to avoid using technology for emotional manipulation. For example, it should
avoid collecting and analyzing emotional data without informing the user, and ensure
that the user can choose whether to use the relevant function. In addition, psychology
experts can be introduced to participate in system design to evaluate the potential
impact of technology on the user’s mental health.
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Future Development Trends

10.1 Technology Development Trends

The rapid development of emotion recognition technology is first of all due to the deep
integration of deep learning and emotion recognition. As one of the core technologies
in the field of artificial intelligence, deep learning has proven its powerful capabilities
in many fields such as image recognition, speech processing and natural language un-
derstanding. In the field of emotion recognition, the application of deep learning has
also brought revolutionary changes. By building a complex neural network model, the
system can automatically extract emotional features from massive data without relying
on traditional manual feature engineering. For example, convolutional neural networks
(CNNs) perform particularly well in facial expression recognition. They can capture
subtle changes in human facial muscles and even distinguish micro-expressions such as
"slightly raised corners of the mouth" or "slight wrinkles between eyebrows". With the
continuous expansion of the data set size and the continuous optimization of the model
structure, future CNN models will be able to more accurately identify emotional states
in complex scenarios, such as maintaining high accuracy in low light or expression oc-
clusion. At the same time, recurrent neural networks (RNNs) and their variants, such
as long short-term memory networks (LSTMs) and gated recurrent units (GRUs), have
shown unique advantages in processing speech emotions and text emotions. They are
good at analyzing time series data and can capture the ups and downs in speech in-
tonation or the emotional ups and downs in text sentences. Imagine that the smart
assistant of the future can not only understand what you say, but also judge whether
you are happy or frustrated by the tone of your voice. This ability will undoubtedly
greatly improve the naturalness of the interaction. What’s more exciting is that the
emergence of the Transformer model has brought new possibilities for emotion recog-
nition. Transformer initially shined in the field of natural language processing, but its
powerful attention mechanism also makes it promising in multimodal emotion recogni-
tion. The Transformer model of the future will be able to seamlessly integrate multiple
information such as text, voice and images. For example, by analyzing the conversation
content, the speaker’s tone and facial expressions in a video, the speaker’s true emo-
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tions can be comprehensively judged. This multimodal fusion capability will bring a
qualitative leap in the accuracy and application scenarios of emotion recognition.

However, the expression of human emotions is never single-dimensional, and judg-
ing emotions solely by facial expressions or voice is often not comprehensive enough.
This leads to another important trend - the rise of multimodal emotion recognition.
Emotions are complex, and they may be expressed through facial expressions, voice
intonation, body movements, and even physiological signals (such as heart rate or skin
galvanic response) at the same time. Single-modal recognition systems are easily affected
by noise or lack of context, while multimodal emotion recognition significantly improves
the robustness and accuracy of the system by integrating multiple sources of information.
In the future, multimodal emotion recognition systems will be more mature and able to
intelligently fuse data from different modalities. For example, an intelligent customer
service system may analyze the user’s voice, facial expressions, and input text at the
same time to determine whether the user is satisfied with the service and adjust the
response strategy accordingly. The key to achieving this goal lies in the advancement of
data fusion technology. In the future, fusion algorithms will no longer simply splice data
from each modality together, but will automatically explore the correlation and comple-
mentarity between different modalities through deep learning. For example, tremors in
voice may echo tension in facial expressions. In addition, cross-modal learning will also
become a highlight. This approach uses the knowledge of one modality to enhance the
recognition capabilities of another modality. For example, by training the model with
voice data, it can better understand the emotional clues in facial expressions. It is worth
mentioning that one challenge facing multimodal emotion recognition is the high cost
of data annotation. To solve this problem, unsupervised learning and semi-supervised
learning will play an important role in the future. These methods can make full use of
unlabeled natural data, such as videos and texts on social media, so that the system can
still learn emotional patterns in the absence of manual annotation. It can be foreseen
that as multimodal emotion recognition technology matures, we will see more intelligent
systems that can "read minds". They can not only perceive our explicit emotions, but
also capture the subtle emotions hidden under multiple expressions.

At the same time, the real-time and imperceptible nature of emotion recognition is
also a top priority for future development. With the rapid development of the Internet
of Things and edge computing technologies, emotion recognition systems will gradually
get rid of their dependence on cloud computing and instead realize real-time process-
ing on local devices. This shift will greatly improve the system’s response speed while
reducing the latency of data transmission. For example, future smartphones may have
built-in emotion recognition modules that analyze users’ voices and facial expressions in
real time and actively suggest taking a break when users feel tired. This imperceptible
emotion recognition means that the system can complete emotion analysis without the
user noticing, thereby providing a more natural service. The support of edge computing
technology is the basis for achieving this goal. By deploying lightweight emotion recog-
nition models on edge devices, the system can complete processing without uploading
sensitive data to the cloud, which not only improves efficiency but also enhances pri-
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Figure 10.1: Multimodal emotion recognition system concept diagram

vacy protection. In addition, the development of embedded systems will enable emotion
recognition technology to be integrated into more everyday devices, such as mirrors in
smart homes that can adjust the lighting atmosphere by observing your expression, or
cars that analyze the driver’s emotional state to remind them to pay attention to safety.
However, the privacy issues brought about by imperceptibility cannot be ignored. Fu-
ture emotion recognition systems need to incorporate privacy protection mechanisms in
their technical design, such as using federated learning or differential privacy technolo-
gies to ensure that users’ emotional data will not be abused. It is conceivable that in the
near future, our devices will be like a caring friend, silently understanding our emotions
without disturbing us and providing just the right amount of help.

Personalization and adaptability of recognition is another trend worth paying atten-
tion to. Everyone has a unique style of expressing emotions. For example, some people
raise their voices when they are angry, while others may become silent. General emo-
tion recognition models often have difficulty adapting to such individual differences, and
future systems will be able to automatically adjust recognition strategies based on the
characteristics of users. Transfer learning will play a key role in this process, allowing the
model to transfer knowledge learned from one user to another, so as to quickly adapt to
the new user’s emotional expression habits. For example, an emotion recognition system
may be pre-trained on a large dataset, and then fine-tune the model through brief inter-
actions with a user to make it more consistent with the user’s emotional pattern. Online
learning further enhances the system’s adaptability. This method allows the system to
continue learning during operation, such as by observing the user’s reactions in different
situations, and gradually optimizing the judgment of the user’s emotions. Furthermore,
the introduction of user profiling technology will enable the emotion recognition system
to combine the user’s background information (such as age, gender, cultural habits) and
behavior patterns to build a more comprehensive emotion understanding framework.
Imagine that in the future, intelligent assistants can not only recognize your emotions,
but also provide personalized responses based on your personality and preferences - when
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you are depressed, it may play your favorite music instead of the stereotyped suggestion
that you "relax." This personalized emotion recognition will greatly enhance the user
experience and make technology truly integrated into our lives.

The development of technology is inseparable from the deep integration with other
branches of artificial intelligence. As an important part of artificial intelligence, emo-
tion recognition will co-evolve with technologies such as natural language processing and
computer vision to jointly promote the intelligence of human-computer interaction. For
example, the emergence of emotional agents will enable machines to not only perceive
and understand emotions, but also express emotions in an appropriate way. A virtual
assistant with emotional intelligence may comfort you with a warm tone when you are
lost, or show the same enthusiasm when you are excited. This "two-way emotional in-
teraction" will make the human-computer relationship closer to communication between
people. In addition, the combination of emotion recognition and natural language pro-
cessing will enable machines to generate emotional language, such as adjusting the tone
and wording of conversations according to the user’s emotions. And the integration with
computer vision allows the system to perceive emotions more accurately through visual
clues, such as by analyzing the posture and expression of the characters in the video
to judge their emotional state. It can be foreseen that the deep integration of emotion
recognition and artificial intelligence will give birth to a series of more intelligent and
more "human" interactive systems.

After discussing the technical development trends of emotion recognition, it is not
difficult to find that behind all this, there are two key driving forces: the progress
of artificial intelligence and the innovation of interactive technology. In the following
part of this chapter, we will further explore the "progress of artificial intelligence" and
"innovation of interactive technology", analyze how they inject new vitality into emotion
recognition, and look forward to their coordinated development in the future.

10.1.1 Progress of Artificial Intelligence

As the core driving force in the field of emotion recognition, the technological progress of
artificial intelligence (AI) not only provides strong support for emotional computing, but
also points out the direction for future development trends. With the continuous evolu-
tion of technology, emotion recognition is gradually moving from a simple classification
task of a single modality to a complex system of multimodality, real-time, impercep-
tible, personalized and emotional intelligence. The progress of artificial intelligence is
reflected in the innovation of deep learning models, the deepening of multimodal fusion,
the application of edge computing, the optimization of personalized strategies, and the
rise of emotional intelligence. This section will explore these emerging technologies in
depth, analyze their specific implementation methods, and look forward to how they will
shape the future of emotion recognition. At the same time, we will also pay attention to
privacy protection and ethical considerations to ensure that technological development
is coordinated with social needs.

The breakthrough of artificial intelligence in the field of emotion recognition first
stems from the continuous evolution of deep learning technology. In the past decade,
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convolutional neural networks (CNNs) have dominated facial expression recognition.
Through multi-layer convolution and pooling operations, they can automatically extract
emotional features from images, such as a raised corner of the mouth indicating plea-
sure and a frown indicating anger. However, with the increase in task complexity, such
as the need to recognize micro-expressions or mixed emotions, traditional CNNs have
gradually revealed their limitations in processing high-dimensional data and capturing
subtle changes. To this end, researchers have begun to explore more expressive model
architectures, among which the rise of the Transformer model is particularly notewor-
thy. Transformer initially achieved success in the field of natural language processing.
Its core lies in the self-attention mechanism, which can capture long-range dependencies
in data. In emotion recognition, this feature makes it particularly suitable for analyzing
dynamic changes in emotional expressions. For example, in speech emotion recognition,
Transformer can extract subtle ups and downs in tone from a speech signal, distin-
guish whether the speaker is calm or excited, and even perceive hidden anxiety without
changing the speaking speed. In the future, researchers plan to combine Transformer
with CNN to build a multimodal emotion recognition system. For example, a system
may receive a user’s facial video, voice signal, and text input at the same time, and
integrate this information through the Transformer’s attention mechanism to determine
whether the user is using a sarcastic tone to cover up his true emotions. This mul-
timodal fusion not only improves recognition accuracy, but also makes it possible to
understand complex emotions, such as identifying patients’ contradictory psychology in
psychological counseling scenarios.

At the same time, graph neural networks (GNNs), as another emerging deep learn-
ing model, also show unique advantages in emotion recognition. GNNs are good at
processing data with non-Euclidean structures, such as the spatial relationship between
facial feature points or the propagation of emotions in social interactions. In facial
expression recognition, researchers can capture dynamic changes by constructing a rela-
tionship graph between feature points. For example, the combination of drooping eyes
and drooping mouth corners may indicate sadness, and this dynamic relationship is dif-
ficult for traditional CNNs to model directly. In the future, the application of GNNs will
be further expanded, such as combining physiological signals (such as heart rate or skin
electrical response) to construct multidimensional emotion maps, so as to more com-
prehensively understand the user’s emotional state. In order to improve the efficiency
of GNNs, researchers are developing lightweight architectures that can run on resource-
constrained devices, which lays the foundation for real-time emotion recognition.

The future of emotion recognition depends not only on the innovation of model archi-
tecture, but also on the deep integration of multimodal information. Human emotions
are multidimensional, and a single modality such as facial expression or voice often can-
not fully reflect the inner state. For example, a person may smile but have a low voice,
and this contradiction requires a combination of multiple information sources to accu-
rately interpret. Multimodal emotion recognition significantly improves the robustness
and accuracy of the system by integrating facial expressions, voice, text, and physio-
logical signals. Advances in artificial intelligence are pushing this field to new heights,
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Figure 10.2: Graph neural network for emotion recognition

among which cross-modal learning is a key direction. Cross-modal learning uses the
knowledge of one modality to enhance the recognition ability of another modality, such
as assisting the judgment of facial expressions through changes in voice intonation. This
method is particularly suitable for scenarios where data is scarce. For example, in some
cultures, emotional expression is more restrained, and when single-modal data is not
enough to train a reliable model, cross-modal learning can make up for the deficiency
through rich data from other modalities. In the future, researchers will develop more
efficient cross-modal algorithms, such as using generative adversarial networks (GANs)
to generate data of missing modalities, thereby achieving seamless integration between
different modalities. For example, a system might generate virtual facial expressions
from a user’s speech for use in training models or enhancing real-time interactions.

Attention mechanisms also play a crucial role in multimodal emotion recognition.
Traditional fusion methods usually treat all modalities equally, but in fact the impor-
tance of each modality may be different in different situations. For example, in a noisy
environment, facial expressions may be more reliable than voice, while text information
may become the main clue when a video call is interrupted. The attention mechanism
can dynamically weight the importance of different modalities according to the context,
so as to capture emotional clues more accurately. The future development trend is to
develop smarter attention networks, such as dynamic attention mechanisms, which can
adjust weights in real time according to the user’s context (such as fatigue or concen-
tration). For example, an intelligent education system may pay more attention to the
student’s eyes and gestures when he or she appears confused, rather than the voice
disturbed by background noise. This refined fusion will make the emotion recognition
system closer to human intuition.

With the rise of the Internet of Things and edge computing technologies, real-time
and imperceptible emotion recognition has become possible. The traditional cloud com-
puting model requires data to be transmitted to the server for processing, which not
only increases latency but may also raise privacy concerns. Edge computing delegates
data processing capabilities to local devices, such as smartphones or smart cameras,
so that emotion recognition can be completed in milliseconds. For example, a smart
watch with a built-in emotion recognition module can monitor the user’s heart rate and
voice in real time, judge their stress level, and remind the user to take a deep breath
through vibration when anxiety is detected. In the future, researchers will focus on
developing lightweight models, such as compressing complex deep learning models to a
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Figure 10.3: Transformer model multi-head attention mechanism

size suitable for edge devices through model pruning or knowledge distillation technol-
ogy. At the same time, imperceptible emotion recognition will further enhance the user
experience. This technology allows the system to complete emotion analysis without
the user’s awareness, such as smart homes monitoring the emotions of family members
through cameras and microphones, and automatically adjusting lights and music to re-
lieve tension. To achieve this goal, researchers are developing more advanced sensors,
such as high-resolution thermal imagers, to capture subtle emotional signals caused by
changes in facial blood flow, as well as smarter algorithms to ensure that the analysis
process is completely transparent to users.

The personalization and adaptability of emotion recognition are also important di-

Figure 10.4: Smartwatch with built-in emotion recognition module
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rections for future development. Everyone has a unique style of expressing emotions.
For example, some people are used to expressing joy with exaggerated expressions, while
others tend to be more restrained. General emotion recognition models often have diffi-
culty adapting to such individual differences, resulting in inaccurate recognition results.
Transfer learning provides a solution that allows the model to be pre-trained on a large
dataset and then fine-tuned through brief interactions with specific users. For example,
a virtual assistant may quickly learn the user’s emotional patterns through a few minutes
of conversation when it is first used, such as distinguishing whether the user’s "tears in
laughter" is happy or sad. In the future, transfer learning will be further optimized to
reduce the amount of data required for personalization, such as through the few-shot
learning technology, user-specific models can be generated with only a few interactions.
In addition, online learning will enable the system to continuously optimize during op-
eration. For example, a companion robot can gradually improve its understanding of
the user’s emotions by observing the user’s reactions in different situations over a long
period of time, such as learning to distinguish whether the user’s silence when tired
requires rest or simply does not want to talk. This adaptive ability will make the emo-
tion recognition system more flexible and adapt to the dynamic changes in the user’s
emotional expression.

The rise of emotional agents marks another leap forward in emotion recognition
technology. Emotional agents can not only perceive and understand emotions, but also
express them in an appropriate way, thus achieving "two-way emotional interaction".
For example, a virtual assistant can comfort a user with a warm tone when the user
is upset, or show the same enthusiasm when the user is excited. This ability relies
on the development of emotion generation technology, such as generating emotional
responses through natural language processing, or generating facial expressions that
match emotions through computer vision. In the future, emotional agents will play
an important role in virtual reality (VR) and the metaverse. In virtual environments,
emotional agents can monitor users’ immersion and emotional reactions in real time and
dynamically adjust content. For example, in a virtual meeting, when the system detects
that the user is tired, the emotional agent may suggest a pause or adjust the rhythm, or
even show a caring expression through the virtual avatar. This real and vivid interaction
will make the virtual experience more humane.

However, the widespread use of emotion recognition technology also brings privacy
and ethical challenges. Users’ emotional data is highly sensitive and once leaked, it may
be used for improper purposes, such as manipulating emotions or commercial marketing.
Federated learning and differential privacy technologies offer hope for solving this prob-
lem. Federated learning allows models to be trained without sharing original data. For
example, multiple devices can process user data locally and only upload model updates
to the server to protect privacy. Differential privacy ensures that even if the data is
intercepted, it cannot be traced back to an individual by adding noise to the data. In
the future, these technologies will be widely integrated into emotion recognition systems.
For example, a smart speaker may complete all emotion analysis locally and only use
anonymized statistical data for model optimization. At the same time, the establishment
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of an ethical framework is crucial. Researchers need to clarify the boundaries of tech-
nology use, such as prohibiting the use of emotion recognition for surveillance without
consent, and develop a responsibility attribution mechanism to ensure that technology
development complies with social norms.

Advances in artificial intelligence are injecting new vitality into emotion recognition
technology. From the innovation of deep learning models such as Transformer and GNN,
to the deepening of multimodal fusion and cross-modal learning, to the realization of
edge computing, imperceptibility, personalization and emotional intelligence, these tech-
nologies will jointly promote emotion recognition to a higher level. At the same time,
the integration of privacy protection and ethical considerations will ensure that the tech-
nology is on the right track. It can be foreseen that the emotion recognition system of
the future will be more intelligent, accurate and natural, which will not only change the
way we interact with machines, but also have a profound impact in education, medical
care, entertainment and other fields. Machines will no longer be cold tools, but partners
that can understand our emotions and accompany us in our growth. The continuous
breakthroughs in artificial intelligence will gradually make this vision a reality.

10.1.2 Innovation of interactive technology

In the field of affective computing, innovations in interactive technologies are driving the
development of emotion recognition at an unprecedented pace. With the rise of emerg-
ing technologies such as virtual reality (VR), augmented reality (AR), brain-computer
interface (BCI), tactile feedback technology, and the metaverse, emotion recognition is
shifting from traditional screen- and voice-based interaction to a more immersive, intu-
itive, and multi-dimensional experience. The advancement of these technologies not only
provides new application scenarios for emotion recognition, but also greatly enriches the
possibilities of emotional expression and perception. This section will explore in depth
how these innovative technologies are combined with emotion recognition technology,
analyze their future development trends, and look forward to their far-reaching impact
on the field of human-computer interaction.

Virtual reality technology brings users into a completely virtual environment through
head-mounted displays and controllers, opening up new frontiers for the research and
application of emotion recognition. The immersive nature of VR allows users to move
freely in the virtual world, while emotion recognition technology can capture users’ emo-
tional responses in real time through a variety of sensors. For example, in a virtual social
scene, a user may have a conversation with a virtual character. The system can analyze
the user’s facial expressions through a camera, detect voice intonation through a micro-
phone, and even capture gestures through a handle to determine the user’s emotional
state - whether it is excitement, tension or boredom. This real-time emotional feedback
provides a basis for optimizing the interactive experience: virtual characters can adjust
their behavior according to the user’s emotions, such as giving a comforting response
when the user shows anxiety, or speeding up the conversation when the user is excited.
This technology has shown potential in the field of psychotherapy, where patients can
face fear or trauma in a safe virtual environment, while the system monitors their mental
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Figure 10.5: Virtual interaction

state through emotion recognition to help therapists adjust intervention strategies.
In the future, the combination of VR and emotion recognition will be more in-depth.

With the advancement of sensor technology, the system will be able to monitor more
physiological signals, such as heart rate, galvanic skin response, and eye tracking, to
more accurately assess the user’s immersion and emotional involvement. For example,
in a virtual adventure game, when the system detects that the user’s heart rate is
accelerated and the pupil is dilated, it can be inferred that the user is in a state of
tension or excitement, and dynamically adjust the difficulty or atmosphere of the scene-
such as increasing the tension of the background music or introducing new challenges. In
addition, emotion recognition in VR can also be deeply integrated with brain-computer
interface technology. By analyzing the user’s brain wave signal (EEG), the system can
perceive his emotional changes in real time, such as from calm to frustration, and adjust
the virtual content accordingly. For example, in educational VR applications, if students
show fatigue during the learning process, the system can automatically switch to more
relaxing content or introduce interactive games to re-stimulate their interest. It can be
foreseen that with the portability of VR hardware and the improvement of computing
power, emotion recognition will be seamlessly embedded in the virtual experience, and
it may even be possible to directly manipulate the emotional expression of the virtual
environment through thoughts, such as users can make the virtual avatar smile just
by "wanting to smile". This highly personalized and intuitive interaction will greatly
enhance the immersion and practicality of VR, and promote its widespread application
in entertainment, education, medical and other fields.

Unlike VR, augmented reality technology overlays virtual information onto the real
world, providing users with a hybrid interactive experience. In the field of emotion
recognition, the application potential of AR technology lies in enhancing the experience
of interpersonal communication and environmental perception. Imagine an AR pair of
glasses with a built-in camera and microphone that can analyze the facial expressions and
voice intonation of both parties in the conversation in real time and display emotional
cues in the user’s field of view. For example, in business negotiations, AR glasses can
detect subtle changes in the other party’s tone or hesitation in the eyes, and remind the
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user in the form of text or icons: "The other party may feel uneasy" or "The other party
is interested in your proposal." This technology can not only improve communication
efficiency, but also help users better understand the emotions of others in scenarios such
as education and training, cross-cultural communication, etc.

In the future, AR technology will further integrate with emotion recognition, showing
a trend of being more intelligent and personalized. With the maturity of eye tracking
and head posture recognition technology, AR systems will be able to analyze users’
attention and emotional response to specific objects. For example, in a museum visit
scene, when a user stares at an exhibit for a long time and smiles, the system can
judge that he is interested in it and automatically push relevant background stories
or interactive content. In addition, AR can also be combined with tactile feedback
technology to provide users with multi-sensory experiences related to emotions through
smart gloves or tactile vests. In a virtual shopping scene, when a user touches a virtual
product, the system can adjust the intensity and mode of tactile feedback according to
his emotional response-if the user shows excitement, the gloves may simulate stronger
texture feedback; if the user hesitates, a softer touch is provided to encourage decision-
making. This multimodal interaction will make the AR experience more real and vivid.
Looking to the future, with the development of 5G networks and edge computing, AR
devices will achieve lower latency and higher computing power, and the real-time and
accuracy of emotion recognition will be greatly improved, which may give rise to new
application scenarios. For example, in telemedicine, doctors use AR glasses to perceive
patients’ emotions in real time and adjust treatment plans.

Brain-computer interface technology provides a revolutionary method for emotion
recognition by directly connecting the human brain with external devices. Traditional
BCI systems mainly rely on electroencephalogram (EEG) signals to monitor the user’s
brain activity, while in the field of emotion recognition, this technology can decode the
user’s emotional state such as concentration, relaxation, excitement or fatigue in real
time. For example, in an intelligent education system, BCI can monitor the student’s
attention level in class. When it detects that the student is distracted or tired, the system
can automatically adjust the difficulty of the teaching content or introduce interactive
links to re-attract their attention. The high real-time and accuracy of this technology
gives it a unique advantage in personalized interaction.

In the future, the combination of BCI and emotion recognition will move towards a
deeper level of intelligence. Through the analysis of brain wave signals by deep learning
algorithms, the system can not only recognize basic emotions, but also capture more
complex emotional changes, such as the transition from expectation to disappointment,
and even predict the user’s emotional trends. For example, in a virtual reality game,
when BCI detects that the user is tired of repetitive tasks, the system can automati-
cally introduce new challenges or rewards to maintain their interest. In addition, BCI
technology can also work with VR and AR technologies to create a true "mind interac-
tion". In a virtual environment, users may be able to control the character’s emotional
expression or scene changes with just their thoughts, such as "thinking about calmness"
can make the virtual world soft and peaceful. This technology may also extend to daily
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Figure 10.6: Brain-computer interface device interaction

life. For example, in a smart home scenario, after the BCI system senses the user’s
low mood, it automatically adjusts the light color or plays soothing music to improve
his mood. It can be foreseen that with the popularization of non-invasive BCI devices
and the advancement of signal processing technology, emotion recognition will shift from
external behavior analysis to direct decoding of internal psychological states, bringing
unprecedented depth and breadth to human-computer interaction.

As an emerging means of interaction, tactile feedback technology provides users with
a multi-sensory experience beyond vision and hearing through vibration, pressure or tem-
perature changes. In the field of emotion recognition, this technology can significantly
enhance the effect of emotional expression and perception. For example, a smart watch
can convey the user’s emotional state through different vibration patterns - fast and
strong vibrations indicate excitement, and slow and soft vibrations indicate calmness.
This technology is particularly useful in remote communication, such as a long-distance
couple "transmitting heartbeats" through tactile devices, allowing the other party to feel
each other’s emotional fluctuations.

In the future, tactile feedback technology will be more closely integrated with emotion
recognition, showing a highly personalized and dynamic trend. The system can adjust
the mode and intensity of tactile feedback in real time by analyzing the user’s emotional
state. For example, in a virtual reality training scenario, when the user shows tension
when completing a task, the tactile vest can simulate a gentle massage to relieve stress;
when the user succeeds, it provides a strong pat on the back to enhance the sense of
achievement. In addition, tactile feedback can also be deeply integrated with VR and AR
technologies to bring users a more realistic sensory experience in a virtual environment.
For example, in a virtual tourism scenario, when a user touches the sand on a virtual
beach with a tactile glove, the system can adjust the fineness and temperature of the
touch according to their emotional response - if the user feels happy, the warmth is
enhanced; if the user is bored, the touch of waves is introduced to stimulate interest.
With the development of material science and micro-sensor technology, the portability
and accuracy of tactile devices will be greatly improved. In the future, tactile feedback
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may realize the customized design of "emotional touch", such as tailoring unique touch
patterns for different users’ emotional preferences, so as to play a greater role in emotional
companionship, education and entertainment.

As a virtual world concept that integrates virtual reality, augmented reality and
artificial intelligence, the Metaverse provides a broad stage for emotion recognition tech-
nology. In the Metaverse, users interact with others through virtual avatars, and emotion
recognition technology can monitor the user’s emotional state in real time through multi-
modal data - facial expressions, voice intonation, gestures and even physiological signals
- and dynamically reflect it on the avatar. For example, when a user feels happy in the
Metaverse, his avatar will naturally smile and speed up the pace of movement; when the
user feels frustrated, the avatar may bow his head or speak in a low tone. This kind of
emotional mapping not only enhances the user’s sense of immersion and substitution,
but also makes virtual social interaction more real and vivid.

In the future, emotion recognition in the metaverse will develop in a more intelligent
and ecological direction. With the advancement of artificial intelligence technology, the
system will be able to infer the deep emotional state and personality traits of users by
analyzing their behavioral trajectories and interaction patterns in the metaverse. For
example, a user who is often active in virtual parties may be identified as an extrovert,
and the system will recommend more social activities for him; while a user who prefers
to explore alone may receive personalized task push. In addition, emotion recognition
in the metaverse can also be combined with the AI-driven behavior of virtual characters
to create more autonomous and emotionally intelligent NPCs (non-player characters).
These virtual characters can adjust their reactions in real time according to the user’s
emotional state, such as trying to appease the user when he is angry and celebrating to-
gether when the user is excited. It is conceivable that with the development of blockchain
and distributed computing technology, the metaverse will form a decentralized emotional
interaction ecology, and the user’s emotional data may be stored and autonomously con-
trolled in encrypted form to customize personalized virtual experiences. In the future,
emotion recognition technology may become one of the core pillars of the metaverse,
promoting the deep integration of the virtual world and the real world at the emotional
level.

Innovations in interactive technologies such as virtual reality, augmented reality,
brain-computer interface, tactile feedback, and the metaverse have brought unprece-
dented opportunities for emotion recognition. These technologies not only expand the
application scenarios of emotion recognition, but also greatly enrich the ways of emo-
tional expression and perception through multimodal data fusion and real-time feedback.
In the future, with the continuous advancement of sensor technology, artificial intelli-
gence, and computing power, emotion recognition will be more accurate, real-time, and
personalized, and it may be possible to achieve seamless decoding from external behav-
ior to internal psychological state, and even predict users’ emotional trends and actively
optimize the interactive experience. For example, a system that integrates VR, BCI,
and tactile feedback may automatically generate a virtual forest scene when the user
feels stressed, and help the user regain calm through mind-controlled relaxing music and
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warm tactile feedback.

10.2 Social and cultural influences

In the future development trend of affective computing, emotion recognition technology
is changing the way we interact with the world at an astonishing rate. From the daily use
of smart devices to complex social systems, this technology not only improves the ability
of machines to understand human emotions, but also has a profound impact on our so-
cial structure, cultural customs and ethical concepts. As emotion recognition technology
is increasingly integrated into daily life, its impact on the social and cultural level has
become an issue that cannot be ignored. This section will discuss the enhancement of
social interaction, the adaptability of cultural customs, and the challenges of ethical pri-
vacy, and provide an introduction for the subsequent discussion of the social adaptability
of human-machine integration and the role of robots in cross-cultural communication.

The core of emotion recognition technology is to give machines the ability to per-
ceive and respond to human emotions, which is first reflected in the optimization of
social interaction. In traditional face-to-face communication, people rely on language,
facial expressions and body movements to convey emotions, and the emergence of emo-
tion recognition technology has injected new possibilities into this process. For example,
in the field of education, teachers can monitor students’ learning status in real time
through systems equipped with emotion recognition functions. Studies have shown that
students’ emotions such as interest, confusion or anxiety directly affect their learning
effects. When the system detects that students are frustrated by the difficulty of the
course, teachers can adjust the teaching rhythm or provide additional support in time,
thereby creating a more inclusive and efficient learning environment. This technology
not only improves the quality of education, but also opens up new paths for personalized
teaching. In the medical field, emotion recognition technology also shows great potential.
Doctors can use this technology to monitor patients’ emotional fluctuations, especially
in the field of mental health. For example, the emotional changes of patients with de-
pression are often subtle and difficult to detect, and the emotion recognition system can
assist medical staff to detect problems earlier and provide intervention by analyzing the
patient’s voice tone or facial expressions. In addition, for special groups such as children
with autism, emotion recognition technology can also help them learn emotional expres-
sion and understanding through simulated interaction and feedback, thereby improving
social skills. These applications show that emotion recognition technology is reshaping
the way people communicate with each other, making social interactions more sensitive
and humane.

However, the impact of this technology on social interaction is not entirely positive.
As emotion recognition devices become more popular, people may gradually rely on tech-
nology to interpret the emotions of others, while neglecting their natural observation and
empathy abilities. Especially among the younger generation, long-term use of emotion
recognition tools may weaken their experience of interacting with real humans and lead
to the degradation of social skills. In addition, the accuracy of the technology has also
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Figure 10.7: Emotion recognition technology in education and medical care

become a major concern. If the emotion recognition system misinterprets the emotional
state, such as misjudging a neutral expression as anger, it may cause misunderstandings
or even conflicts, especially in high-risk scenarios such as court trials or public security
monitoring. Therefore, when promoting the integration of emotion recognition technol-
ogy into social interactions, its reliability must be ensured and the final judgment of
humans must be retained to avoid excessive intervention of technology in interpersonal
relationships.

The change in social interaction caused by emotion recognition technology is only
one aspect of its impact. Its impact on cultural customs is also worthy of attention. The
expression and understanding of emotions vary significantly in different cultures, which
brings complexity to the design and application of technology. For example, in Eastern
culture, people tend to express emotions implicitly and facial expressions may be more
restrained, while in Western culture, direct emotional expression is more common. An
emotion recognition system trained on data from a single culture may not accurately
interpret emotional signals from other cultures. For example, in Japanese culture, a
smile may represent politeness rather than happiness, while in a Western context, the
same expression is often interpreted as a positive emotion. If the technology fails to
recognize these nuances, it can lead to misunderstandings and even conflicts in cross-
cultural interactions. To meet this challenge, researchers are developing cross-cultural
emotion recognition models to improve the universality of the system by building a
dataset containing multicultural emotional expressions.

In addition, some studies have proposed using transfer learning technology to allow
the system to quickly adapt to new cultural environments with fewer samples. For
example, the system can automatically adjust the algorithm based on the user’s language
or geographic location to more accurately identify emotional patterns in local culture.

Cultural diversity not only requires technology to be adaptable, but also brings
ethical considerations in design. In some cultures, emotions are considered private,
and unauthorized emotional monitoring may be considered offensive. For example, in
European countries that emphasize personal privacy, the collection of emotional data is
strictly regulated by the General Data Protection Regulation (GDPR).

A system that analyzes the user’s emotional state without their consent may be



216 10. FUTURE DEVELOPMENT TRENDS

resisted for violating laws and cultural norms. Therefore, developers of emotion recogni-
tion technology must have a deep understanding of the customs and values of the target
culture to ensure that the system operates under the premise of respecting cultural dif-
ferences. For example, when designing smart assistants for multicultural markets, user
customization options can be added to allow users to choose whether to enable emotion
recognition functions and the scope of data use. This cultural sensitivity not only helps
promote technology, but also avoids social disputes caused by cultural misunderstand-
ings.

When discussing the impact of emotion recognition technology on society and culture,
ethical and privacy issues are undoubtedly the focus that cannot be avoided. As a
highly sensitive personal information, the collection and use of emotion data has aroused
widespread concern. First of all, emotion recognition systems usually need to obtain
multimodal data of users, such as facial images, voice and text. The leakage of this data
may lead to serious privacy crises. For example, users’ facial expression data may be
used for unauthorized identity identification or abused by advertisers to push customized
emotional marketing content.

Imagine a scenario where a user cries in front of a smart TV, and the system records
this emotional state and sells it to a third party, which then pushes ads for antidepres-
sants. This kind of emotional exploitation without consent not only violates privacy,
but can also cause psychological burden on users.

Secondly, the potential bias of emotion recognition technology may also exacerbate
social injustice. Due to the limitations of training data, the system may not accurately
recognize the emotional expressions of certain groups. For example, studies have found
that some commercial emotion recognition models have biased judgments on the facial
expressions of ethnic minorities, which may lead to unfair treatment in scenarios such
as recruitment or security checks.

To address this problem, researchers are exploring fairness-enhancing algorithms to
reduce bias through data enhancement and model correction. However, the fairness
of technology not only relies on algorithm improvement, but also requires a diverse
development team and extensive social participation to ensure that the system reflects
the needs of different cultures and populations.

What is even more worrying is that emotion recognition technology may be used
for emotional manipulation. In the business and political fields, criminals may use
technology to analyze users’ emotional weaknesses and push precise advertisements or
guide public opinion. For example, social media platforms may use emotion recognition
technology to identify users’ anxiety and then push inflammatory content to manipulate
their behavior.

This practice not only threatens individual autonomy, but may also pose a risk
to social stability. Therefore, society urgently needs to establish a legal and ethical
framework to regulate the collection and use of emotional data. For example, clear
policies can be formulated to require companies to obtain informed consent from users
when using emotion recognition technology and to undergo regular independent audits
to ensure that the technology is not abused.
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When exploring the social and cultural impact of emotion recognition technology,
we naturally touch upon its role in human-machine integration. With the rapid devel-
opment of robotics and artificial intelligence technology, human-machine interaction is
becoming more frequent and in-depth, and emotion recognition technology, as the key to
human-machine interaction, can significantly enhance the emotional intelligence of ma-
chines, making them better adapted to the needs of human society. In home scenarios,
service robots can perceive users’ emotions through emotion recognition and provide per-
sonalized companionship. For example, when a user feels tired due to work pressure, the
robot may play soothing music or take the initiative to initiate a relaxing conversation;
when a user appears lonely, the robot can accompany him in entertainment activities.

This emotional sensitivity not only improves the user experience, but also alleviates
social problems to a certain extent, such as the loneliness caused by aging. However,
human-machine integration is not without challenges. Humans need to adapt to coex-
isting with emotionally intelligent machines and learn to maintain the authenticity of
emotional communication with the assistance of technology. At the same time, robots
must also follow social norms to avoid causing discomfort due to excessive intervention.
For example, an overly proactive emotional robot may be seen as an invasion of privacy,
so its design should focus on respecting emotional boundaries.

These issues will be further elaborated in the subsequent section “Social Adaptabil-
ity of Human-Machine Integration” to explore how humans and machines can achieve
harmonious coexistence in society.

The social and cultural impact of emotion recognition technology also extends to the
field of cross-cultural communication. In today’s globalized world, interactions between
different cultures are becoming increasingly frequent, and emotion recognition technol-
ogy makes it possible for robots to play a bridging role in this scenario. For example, in
international business negotiations, emotion recognition systems can analyze the emo-
tional state of participants in real time, helping translators to convey emotional colors
more accurately and avoid misunderstandings caused by cultural differences.

In the field of education, language learning robots can adjust teaching strategies
through emotion recognition. For example, when students feel frustrated by language
barriers, the robot can slow down the speech or provide encouragement, thereby improv-
ing learning outcomes.

In tourism scenarios, tour guide robots can adjust their interpretation style accord-
ing to tourists’ emotional reactions and provide more considerate services. However, to
realize these applications, emotion recognition technology must have a high degree of
cultural adaptability. Researchers are developing algorithms that can recognize multi-
cultural emotional expressions and ensure the robustness of the system in multilingual
environments.

In addition, robots need to demonstrate cultural humility in cross-cultural commu-
nication, that is, to acknowledge the limitations of their own knowledge and seek human
assistance when necessary. These issues will be explored in depth in the section "Robots’
Role in Cross-Cultural Communication" to reveal how emotion recognition technology
can help promote cultural integration in globalization.
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The social and cultural impact of emotion recognition technology is multidimensional
and far-reaching. It brings new opportunities to human society by optimizing social in-
teractions, adapting to cultural differences, and responding to ethical challenges, but it
also raises new questions. Future development needs to find a balance between techno-
logical innovation and social responsibility to ensure that emotion recognition technology
does not undermine individual rights and social harmony while improving the quality
of life. Subsequent sections of this chapter will further focus on the social adaptability
of human-machine integration and the role of robots in cross-cultural communication,
in order to comprehensively analyze the potential and challenges of emotion recognition
technology in the future society. Through these discussions, we hope to present read-
ers with a clear and profound picture of how this technology will shape the future of
mankind.

10.2.1 Social adaptability of human-machine integration

Since its advent in the late 1990s, emotion recognition technology has experienced a
leap from basic theoretical research to widespread application. With the advancement
of artificial intelligence and machine learning technology, this technology has gradually
moved from the laboratory to the market and penetrated into all aspects of human life.
Initially, emotion recognition was limited to simple emotion classification, such as distin-
guishing between joy, anger, sadness and happiness through facial expressions; but now
it has developed into a complex system that can comprehensively analyze multimodal
data such as voice intonation and physiological signals. The evolution of this technology
not only reflects the improvement of computing power, but also reflects the expectation
of humans to give "humanized" characteristics to machine intelligence.

In the future society, human-machine integration will become a new normal. The
interaction between humans and machines will no longer be limited to the cold functional
task execution, but will evolve into an emotional and dynamic coexistence relationship.
Imagine that when you return home tired, an intelligent assistant can not only turn on
the lights for you, but also sense your low mood, actively play soothing music and say
"You have worked hard today, do you need to talk?" The realization of this scenario is the
embodiment of emotion recognition technology as a bridge connecting human emotions
and machine intelligence. However, the social adaptability of technology is not achieved
overnight. It needs to be constantly adjusted in practical applications and coordinated
with human culture, psychology and social norms.

In the home environment, emotionally intelligent robots are gradually becoming an
important tool for companionship and support. Take the Pepper robot developed by
SoftBank Corporation of Japan as an example. This robot is equipped with an advanced
emotion recognition system that can capture the user’s facial expressions through a cam-
era and analyze the voice tone through a microphone to judge the user’s emotional state.
When Pepper detects that the user is depressed, it may take the initiative to initiate a
conversation, such as "You look a little unhappy, is there anything I can help you with?"
At the same time, it can also play music or tell jokes according to the user’s preferences
to relieve emotions. This personalized emotional interaction is particularly important for
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Figure 10.8: Human-machine integration

elderly people living alone. Studies have shown that emotionally intelligent robots can
significantly improve mental health in elderly care. For example, a systematic review by
Pu et al. (2019) found that elderly people living alone who interacted with emotional
robots had about 30% fewer symptoms of loneliness and depression, showing the po-
tential of technology in improving the quality of life. In addition, emotion recognition
technology can also be combined with smart home systems to form a more comprehen-
sive emotional support network. For example, when the system detects that a family
member is in a state of anxiety for a long time, it can automatically adjust the color
temperature of the light, reduce indoor noise, and even remind other family members to
pay attention to this situation. This seamless emotional care not only strengthens the
connection between family members, but also makes machines an indispensable part of
family life.

In the field of education, emotion recognition technology provides new tools for per-
sonalized teaching. The Tega robot developed by the Massachusetts Institute of Tech-
nology is a typical example. This robot monitors students’ learning status in real time by
analyzing their facial expressions, voice intonation and body movements. For example,
when Tega finds that students are confused or frustrated because the math problems
are too difficult, it will pause the teaching content and provide encouraging words, such
as "It’s okay, let’s try it together!" or adjust the teaching strategy to break down the
problem steps to reduce the difficulty. Gordon et al. (2015) showed that students who
used Tega to assist in teaching had an increase of about 20% in participation and perfor-
mance in second language learning, thanks to the robot’s accurate response to students’
emotions. Emotion recognition technology can also play a role in large-scale online ed-
ucation. For example, by analyzing students’ camera images and voice feedback, the
system can identify which students are bored or confused about the course content,
thereby providing real-time suggestions to teachers and optimizing classroom interac-
tions. This technology not only improves teaching effectiveness, but also makes students
feel cared for and understood, thereby enhancing their motivation to learn.

In the medical field, emotion recognition technology provides a new way for the
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treatment and rehabilitation of special populations. Taking the social training of autistic
children as an example, the Milo robot developed by the University of Cambridge in the
UK can simulate human emotional expressions and help children learn to recognize and
express emotions through interactive games. Milo’s facial screen can display different
expressions, such as smiling or frowning, and guide children to imitate or respond through
voice prompts. For example, when Milo says "I’m happy, can you give me a smiley face?",
the child needs to try to imitate the smile, and Milo will give real-time feedback based on
the child’s expression. The experiment of Scassellati et al. (2012) showed that after 12
weeks of Milo training, autistic children’s scores in social skills tests increased by about
25%, and their emotional understanding ability also improved significantly. In addition,
emotion recognition technology also shows potential in the field of mental health. For
example, some smart devices can detect depression or anxiety symptoms by analyzing
the user’s voice patterns and physiological signals (such as heart rate), and promptly
remind the user to seek professional help. This technology not only provides patients
with the opportunity for early intervention, but also reduces the burden on the medical
system.

The appearance design of emotionally intelligent machines directly affects the user’s
first impression and emotional response. According to the "uncanny valley" theory (Mori,
1970), when the appearance of a robot is highly similar to that of a human but not com-
pletely identical, people tend to feel uneasy or even fearful. For example, although the
Atlas robot of Boston Dynamics is very advanced in terms of functionality, its overly
realistic humanoid appearance may make users feel uncomfortable. In contrast, the Pep-
per robot of Japan’s SoftBank adopts a cartoon-like design. Its small body and rounded
facial features make it more friendly, and users are more likely to regard it as a "friend"
rather than a threat. Studies have shown that the acceptance of appearance design
is closely related to the psychological comfort of users (Bartneck et al., 2009), which
suggests that developers need to find a balance between similarity and acceptability.

Behavior patterns and the naturalness of emotional expression are also key factors
affecting acceptance. If the robot’s emotional expression is too mechanical or exagger-
ated, users may feel unreal or even disgusted. For example, if an emotional robot says
"Don’t be sad" in a stiff tone when the user is sad, it may be counterproductive. On
the contrary, conveying emotions through subtle facial expressions and soft tones often
wins the favor of users. Take the Pepper robot as an example. When it expresses con-
cern, it tilts its head slightly and slows down its speech. This delicate behavioral design
significantly enhances the user’s sense of trust. Research shows that the naturalness
of emotional expression is positively correlated with user acceptance (Breazeal, 2003),
which means that future technology development needs to pay more attention to the
delicacy of behavioral simulation.

The impact of cultural background on acceptance cannot be ignored. There are sig-
nificant differences in preferences for emotional expression among different cultures. For
example, in Eastern culture, people tend to be more accepting of robots that express
emotions in a more subtle way. Japanese users may prefer a low-key and gentle interac-
tion like Pepper, while in Western culture, direct and enthusiastic emotional expression
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Figure 10.9: Robot emotional expression

may be more popular. American users may expect robots to show stronger personali-
ties, such as humor or a straightforward conversational style. A cross-cultural study by
Trovato et al. (2013) found that Egyptian users were less accepting of emotional robots
than Japanese users, which was related to differences in trust in technological interven-
tion in the culture. Therefore, the development of emotion recognition technology needs
to incorporate cultural adaptability to ensure that robots can adjust their interaction
methods according to the cultural characteristics of the target market. A specific exam-
ple is the feedback from users on emotional robots in different cultural backgrounds. In
Japan, the deployment of Pepper robots in homes and commercial places has been widely
successful, with users considering them as "family members" as high as 60%. In Europe,
some users expressed discomfort with Pepper’s "too friendly" behavior and believed that
it was too intrusive. This difference highlights the importance of cultural adaptabil-
ity. Cross-cultural research further shows that technology developers need to optimize
robots’ emotional expression strategies through user research and localized design to
improve their acceptance in the global market (Trovato et al., 2013).

There are multiple challenges to the adaptability of emotionally intelligent robots
in social norms, one of which is the privacy issue caused by excessive intervention. For
example, if a household robot proactively provides emotional support when the user does
not explicitly request it, such as "You look tired today, do you want to take a break?" It
may be regarded as an invasion of private space. To address this problem, designers have
proposed the concept of "emotional humility", that is, robots should maintain appropriate
restraint when interacting with humans and not try to dominate emotional exchanges
(Calo, 2015). For example, when a robot detects that the user is emotionally abnormal,
it can first ask "Do you need my help?" instead of directly intervening. This design not
only respects the user’s autonomy, but also meets the general expectation of society for
privacy.

Emotion recognition technology relies on the collection of a large amount of personal
data, including facial images, voice features, and physiological signals. The leakage of
this data may lead to a serious crisis of trust. For example, if an emotion recogni-
tion system leaks a user’s depression data to a third-party advertiser, the user may
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Figure 10.10: Multimodal emotion technology

face harassment or even psychological harm from precision marketing. To address this
challenge, researchers are developing a technical framework based on federated learning
and differential privacy. Federated learning allows data to be processed on local devices
without uploading to the cloud, while differential privacy protects the anonymity of in-
dividual data by adding noise (McMahan et al., 2017). These technologies can maximize
user privacy while ensuring the accuracy of emotion recognition.

The application of emotion recognition technology may also cause ethical dilemmas,
especially in medical scenarios. For example, if an emotional robot misjudges a patient’s
emotional state and recommends a treatment plan based on it, it may lead to deviations
in medical decision-making. Fiske et al. (2019) pointed out that over-reliance on emotion
recognition technology in psychotherapy may weaken the judgment of human doctors
and even cause patients to over-trust technology. To avoid such problems, technology
deployment must follow strict ethical standards, such as requiring all key decisions to
be reviewed by human doctors and ensuring that technology is used only as an auxiliary
tool rather than a dominant one. In addition, it is also crucial to establish a transparent
user consent mechanism, and users should be clearly aware of how the technology works
and its limitations.

On the technical level, the rise of multimodal emotion recognition technology will
significantly improve the accuracy and robustness of the system. By integrating multiple
information sources such as vision (facial expressions), hearing (voice intonation) and
physiological signals (heart rate, skin galvanic response), the system can capture the
emotional state of humans more comprehensively. For example, an intelligent assistant
may judge that the user is in a state of tension by analyzing the user’s frowning move-
ments, low tone of voice and accelerated heart rate, and provide relaxation suggestions
accordingly. Poria et al. (2017) pointed out that multimodal fusion can increase the
accuracy of emotion recognition from 70% of single modality to more than 85%.

In addition, personalization and situational adaptability will also become the focus



10.2. SOCIAL AND CULTURAL INFLUENCES 223

of technological development. Through deep learning and reinforcement learning, robots
can dynamically adjust emotional expression according to the user’s personality traits,
living habits and specific scenarios. For example, an extroverted user may like the robot’s
enthusiastic interaction, while an introverted user prefers low-key companionship. This
personalized design will further enhance the user experience (Breazeal, 2003). At the
same time, the application of edge computing and 5G technology will make the emotion
recognition system more efficient, and data processing can be completed locally, thereby
reducing latency and enhancing privacy protection.

At the social level, emotion recognition technology is expected to play a greater
role in public services and business. In public services, emotionally intelligent robots
can be used as psychological support tools. For example, in rescue work after natural
disasters, robots can use emotion recognition technology to identify the psychological
state of victims, provide targeted emotional comfort or guide them to accept professional
help (Bethel & Murphy, 2010). In the business field, emotion recognition technology
has been applied to customer service. For example, Microsoft’s AFFDEX system can
optimize service processes by analyzing customers’ facial expressions. When customer
dissatisfaction is detected, the system automatically reminds customer service staff to
adjust their tone or provide discounts (McDuff et al., 2016). These applications will
further promote the popularization of technology in society.

The widespread application of technology requires a sound legal and ethical frame-
work as a guarantee. At the policy level, the government can formulate regulations
requiring companies to obtain explicit consent from users when deploying emotion recog-
nition technology and to undergo regular third-party audits to prevent data abuse (Craw-
ford & Calo, 2016). At the same time, public education is crucial. Popularizing knowl-
edge about affective computing through school courses or community activities can help
people understand the functions and limitations of technology, thereby reducing misun-
derstandings or resistance to technology (Picard, 2000). For example, a simple popular
science video can show the public how emotion recognition can improve life while re-
minding them of privacy risks.

The social adaptability of emotion recognition technology in human-machine integra-
tion is a multi-dimensional and complex topic. This article demonstrates the potential of
technology by analyzing its applications in the fields of family, education, and medicine;
reveals the key factors for the popularization of technology by exploring the impact of
appearance design, behavioral patterns, and cultural background on human acceptance;
proposes solutions for the coordination of technology and society by discussing privacy
protection, social norms, and ethical dilemmas; and finally, describes a blueprint for
future development by looking forward to technological progress and social applications.

Emotion recognition technology opens up new possibilities for human-machine in-
teraction. From accompanying lonely elderly people to training autistic children to
optimizing customer service, it is gradually changing the way we live. However, the so-
cial adaptability of technology is not without challenges. Privacy risks, ethical dilemmas
and cultural differences may become obstacles to its popularization. Future development
needs to seek a balance between technological innovation and social responsibility, and
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ensure that technology can improve the quality of life while maintaining individual rights
and social harmony through interdisciplinary cooperation and continuous exploration.

10.2.2 The role of robots in cross-cultural communication

In the tide of globalization, cross-cultural communication has become an indispensable
part of human society. With the rapid development of emotion recognition technology,
robots are gradually transforming from simple tools to intelligent agents that can per-
ceive, understand and respond to human emotions, especially in the complex scenario of
cross-cultural communication, where their role becomes increasingly important. Robots
can not only serve as tools for language translation, but also understand the emotional
expressions of people in different cultural backgrounds through emotion recognition tech-
nology, thus playing a key role in cultural mediation, emotional bridges and personalized
services. This section will explore the role of robots in cross-cultural communication in
depth, analyzing their potential and limitations in cultural adaptability, technical chal-
lenges, ethical considerations and future development trends. By combining specific
examples and research results, we will fully reveal how emotion recognition technol-
ogy can help robots cope with the complex needs of cross-cultural communication in a
globalized society, and look forward to its broad prospects for future development.

In today’s world, cultural diversity brings rich layers to communication, but also
increases the possibility of misunderstanding. The core of emotion recognition technol-
ogy is to detect and interpret human emotional states through facial expressions, voice
intonation, body movements, and even physiological signals such as heart rate or skin
galvanic response. However, when this technology is applied to cross-cultural scenarios,
its complexity increases significantly. For example, in Japanese culture, a smile may be
just a polite social signal rather than a direct expression of happiness; while in West-
ern culture, the same smile is often interpreted as a manifestation of positive emotions.
This difference is not limited to facial expressions, but also reflected in the tone of lan-
guage, body posture, and the subtleties of social norms. An emotion recognition system
trained on data from a single culture, if it has not been cross-culturally adjusted, may
make wrong judgments when facing users from different cultures, or even cause conflicts.
Therefore, the first task of robots in cross-cultural communication is to understand and
adapt to the diversity of these emotional expressions.

Imagine a real scenario: In an international business negotiation, a Chinese negotia-
tor and an American negotiator are discussing the terms of cooperation. The Chinese
negotiator is accustomed to expressing dissatisfaction in an indirect way, such as a slight
frown or pause, while the American negotiator may be more inclined to speak bluntly.
A robot equipped with emotion recognition can play the role of an emotional translator
if it can monitor the emotional state of both parties in real time. It can analyze the
micro-expressions and intonation of the Chinese negotiator to prompt the American ne-
gotiator of the possible dissatisfaction of the other party, and at the same time convey
the intention of the American party to the Chinese negotiator by adjusting its own lan-
guage and tone. This ability not only relies on technology, but also requires the robot to
have deep cultural knowledge and situational awareness. Research shows that systems
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based on multimodal emotion recognition (combining facial, voice and text analysis)
have significantly improved their accuracy in cross-cultural scenarios. For example, the
multimodal emotion computing framework proposed by Poria et al. (2017) improves the
robot’s performance in identifying complex emotions by about 15% by fusing visual and
auditory signals. This lays a technical foundation for the practical application of robots
in cross-cultural communication.

The application scenarios of robots in cross-cultural communication are far more than
business negotiations. In the field of education, robots can be used as an auxiliary tool for
cultural teaching to help students understand and experience the emotional expressions
of different cultures. For example, a language learning robot can help students learn how
to express emotions appropriately in a specific culture while mastering the language by
simulating the enthusiastic tone of the French or the more restrained expression of the
Germans. Researcher Baylor (2009) found that students who used virtual agents (such as
robots) for emotional teaching scored 20% higher in cross-cultural communication ability
tests, indicating that robots can not only impart language knowledge, but also improve
students’ cultural adaptability through emotional simulation. In tourism scenarios, tour
guide robots can dynamically adjust services based on tourists’ emotional reactions. For
example, when a group of tourists from the Middle East showed fatigue while visiting a
museum, the robot could analyze their facial expressions and speech speed, slow down the
pace of the explanation or suggest a break, thereby improving the tourists’ experience. In
the medical field, robots can provide emotional support to patients across language and
cultural barriers. Research by Scassellati et al. (2012) showed that robots equipped with
emotion recognition capabilities can play a role in cross-cultural therapy for children with
autism by adjusting the interaction method to suit the needs of families from different
cultural backgrounds.

However, the application of robots in cross-cultural communication is not without
challenges. The primary technical difficulty lies in the demand for data. Emotion recog-
nition models require a large amount of diverse data to cover the emotional expression
patterns of different cultures, but collecting and labeling this data is a time-consuming
and expensive task. For example, to train a model that can recognize implicit emotions
in East Asian culture, thousands of hours of video and audio data may be required, and
the acquisition of this data is often restricted by privacy and ethics. To address this prob-
lem, researchers are exploring unsupervised learning and transfer learning techniques.
For example, Chen et al. (2017) proposed a deep learning method for cross-cultural
emotion recognition, which enables the system to quickly adapt to new cultural environ-
ments by pre-training the model on Western cultural data and then fine-tuning it with a
small amount of East Asian data. The accuracy of this method reached more than 85%
in the test, showing its potential in data-scarce scenarios. In addition, the introduction
of meta-learning also provides robots with the ability to "learn how to learn", enabling
them to quickly adjust their emotion recognition strategies through a small amount of
interaction when they come into contact with new users.

In addition to data issues, robots also need to have a high degree of contextual
awareness in cross-cultural communication. The same emotion may have completely
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Figure 10.11: Unsupervised learning process

different meanings in different scenarios. For example, in a formal business meeting, a
smile may indicate friendliness, while in a family gathering, it may be sarcastic. If robots
cannot adjust their behavior according to the context, misunderstandings may occur.
To address this problem, researchers are developing behavioral decision-making systems
based on reinforcement learning. Such systems allow robots to continuously optimize
their behavioral strategies through real-time interaction with users. For example, a
service robot may find through trial and error that nodding and whispering responses
are more popular when interacting with Japanese users, while more exaggerated gestures
and enthusiastic tones are required when interacting with Italian users. This dynamic
adjustment capability enables robots to maintain efficient communication in different
cultural environments.

The integration of language and culture is another key challenge. Traditional trans-
lation systems tend to focus only on the literal meaning of the text, while ignoring the
influence of emotions and cultural context. For example, "I’m fine" may be a polite
perfunctory expression in English, but may be misunderstood as sincere satisfaction in
some cultures. The combination of emotion recognition technology and natural lan-
guage processing provides a solution to this problem. An emotional translation system
can adjust the tone and wording of the translation by analyzing the speaker’s intonation
and expression. For example, when a Spanish user angrily says "¡Todo está bien!" (Ev-
erything is fine), the system can adjust the translation to "It’s all fine, but I’m upset!"
based on his emotional state, thereby more accurately conveying his intention. Research
by Schuller and Batliner (2013) shows that this emotion-enhanced translation system
increased user satisfaction by about 30% in cross-cultural tests, showing its potential in
improving communication fluency.

However, technological advances also bring ethical and privacy challenges. The col-
lection and analysis of emotional data inevitably involves the privacy rights of users.
In cross-cultural scenarios, the definition and protection standards of privacy vary from
culture to culture. For example, in Europe, the General Data Protection Regulation
(GDPR) has strict restrictions on the processing of personal data, while in other re-
gions, relevant regulations may be more relaxed. A globally applicable robot system
that fails to comply with local laws may lead to legal disputes or even user boycotts.
In addition, the behavior of robots in cross-cultural communication may also cause eth-
ical disputes. For example, if a robot fails to correctly identify cultural differences, it
may inadvertently offend users. For example, in some Middle Eastern cultures, direct
eye contact is seen as disrespectful, while in Western cultures it may be a symbol of
respect. A cross-cultural study by Trovato et al. (2013) found that the acceptance of
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Figure 10.12: Robot “Cultural Humility”

robot greeting behavior by Japanese and Egyptian users differed by as much as 40%,
which shows the importance of cultural sensitivity in robot design. To address these
issues, developers need to introduce "cultural humility" in the design stage, that is, let
the robot acknowledge the limitations of its own knowledge and seek human assistance
when uncertain. For example, when encountering complex cultural situations, the robot
can proactively ask the user: "Is my response appropriate?" This strategy can not only
reduce misunderstandings, but also enhance users’ trust in the robot.

Another ethical issue is the risk of cultural bias. If the emotion recognition model uses
biased data during training, it may misjudge or discriminate against certain cultures.
For example, Rhue (2018) found that some commercial emotion recognition systems
have low accuracy in identifying the emotions of African-American users, which may be
due to the lack of diversity in the training data. To address this problem, researchers
are developing fairness-enhancing algorithms to reduce bias through data enhancement
and model correction. For example, the method proposed by Buolamwini and Gebru
(2018) improved the fairness of emotion recognition by about 10% by balancing the data
distribution of different populations. At the same time, diverse development teams and
broad social participation are also considered important guarantees to ensure the fairness
of technology. Future robot design requires joint efforts at the technical and social levels
to avoid exacerbating cultural stereotypes.

Looking ahead, with the acceleration of globalization and the advancement of artifi-
cial intelligence technology, the role of robots in cross-cultural communication will usher
in new development opportunities. First, emotion recognition technology will be further
integrated with multimodal analysis technology to form a more comprehensive emotion
understanding system. This system can comprehensively analyze the user’s facial ex-
pressions, voice intonation, body movements and physiological signals, thereby achieving
higher accuracy in complex scenarios. For example, a multimodal robot can determine
whether the user is in a state of stress by detecting changes in the user’s heart rate and
fluctuations in tone, and choose the appropriate comfort method based on the cultural
background. In Western culture, it may directly ask "Are you okay?", while in East
Asian culture, it may express concern through indirect means (such as offering a cup
of tea). This multimodal fusion technology has made breakthroughs in the laboratory.
Poria et al. (2017) showed that its emotion recognition accuracy can reach more than
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90%, laying the foundation for future practical applications.
Secondly, the cultural adaptability of robots will be significantly enhanced. With

the development of transfer learning and meta-learning techniques, robots will be able
to quickly adapt to new cultural environments. For example, a service robot can learn
the cultural preferences of users and adjust their behavior patterns through several
interactions with them. Imagine a scenario: when a robot first enters an Indian home,
it quickly learns to interact with users by nodding and responding softly by observing
the user’s body language and tone of voice. This adaptive ability will enable robots to
provide personalized emotional support on a global scale. In addition, the establishment
of a global emotional expression dataset will also promote this trend. Future research
may create a database of hundreds of cultural emotional patterns for robots to learn and
call, thereby achieving true cultural universality.

The application areas of robots in cross-cultural communication will also continue
to expand. In international cooperation, robots can act as cultural mediators to help
team members understand each other’s cultural differences and promote collaborative
efficiency. For example, in a team composed of Chinese, German and Brazilian mem-
bers, robots can analyze the emotional expressions of each member to indicate potential
misunderstandings and make communication suggestions. In transnational education,
robots can act as virtual mentors to help students experience the emotional expressions
of different cultures. For example, an American student learning Chinese can under-
stand the emotional meaning of "face" in Chinese culture by interacting with robots.
In the field of global health, robots can serve as telemedicine assistants to help doctors
overcome language and cultural barriers and provide psychological support to patients.
For example, during the COVID-19 pandemic, a robot equipped with emotion recogni-
tion can monitor patients’ anxiety levels through video calls and provide personalized
comfort based on their cultural background.

At the same time, the improvement of ethical and legal frameworks will provide
guarantees for the widespread application of robots. In the future, the international
community may formulate unified standards and guidelines to ensure that the design and
use of robots in cross-cultural communication meet ethical requirements. For example,
a global robot ethics convention may require all emotion recognition systems to disclose
their data sources and algorithm logic to enhance transparency. At the same time,
governments will also strengthen privacy protection legislation to ensure that user data
is not abused. The public’s awareness and acceptance of emotion recognition technology
will also gradually increase. Picard (2000) pointed out that as people’s understanding
of emotional computing deepens, their concerns about privacy may gradually turn into
expectations for the benefits of technology. This increase in social acceptance will lay
the foundation for the popularization of robots around the world.

Driven by technological innovation, robots of the future may go beyond current imag-
ination and become true "cultural empaths". They can not only recognize emotions, but
also actively participate in cultural exchanges by learning and simulating behavioral pat-
terns of different cultures. For example, a robot may imitate gestures or intonations in
its culture when interacting with users, thereby narrowing the emotional distance. This
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ability will enable robots to play a more active role in a globalized society, transforming
from passive tools to active cultural participants. In addition, with breakthroughs in
quantum computing and neural network technology, robots’ emotion recognition capa-
bilities may reach a level close to that of humans. For example, an emotion recognition
system based on quantum algorithms may analyze millions of data points in milliseconds
to achieve real-time cross-cultural emotional understanding.

However, future development is also accompanied by new challenges. Rapid techno-
logical advances may exacerbate the digital divide, making it difficult for regions with
limited resources to enjoy the convenience brought by robots. In addition, over-reliance
on robots in cross-cultural communication may weaken human cultural adaptability and
lead to the phenomenon of "cultural laziness". To avoid these problems, future robot
design needs to find a balance between technological innovation and social impact. For
example, robots can be designed as "assistants" rather than "substitutes", encourag-
ing humans to actively participate in cross-cultural communication by providing advice
rather than direct decision-making.

The role of robots in cross-cultural communication is an area full of opportunities
and challenges. Emotion recognition technology gives them the ability to perceive and
respond to human emotions, enabling them to play the role of cultural mediator and
emotional bridge in a globalized society. However, the application of technology needs
to fully consider factors such as cultural differences, technical limitations, ethical issues
and privacy protection to ensure that it does not undermine individual rights and social
harmony while promoting cross-cultural understanding. Future development will rely on
the coordinated efforts of technological innovation, social adaptation and ethical gover-
nance. With the continuous expansion of multimodal technology, cultural adaptability
and application fields, robots will provide more personalized and intelligent emotional
support and services on a global scale. Ultimately, they may become not only a tool for
cross-cultural communication, but also an important link to connect different cultures
and enhance human understanding.



230 10. FUTURE DEVELOPMENT TRENDS



Bibliography

[1] Hua Xu et al. Natural Interaction for Inclusive Robots, 2023-01-01.

[2] IOS Press. Emotional Manifestation in Future Robot Life, 2020-01-01.

[3] Andrea Thomaz et al. Foundations and Trends in Robotics, 2016-01-01.

[4] Anonymous. The Role of Coherent Robot Behavior and Embodiment in Emotion
Perception and Recognition During Human Interaction.

[5] Anonymous. A Scoping Review of HRI Research on ‘Anthropomorphism’.

[6] Anonymous. Survey of Emotions in Human–Robot Interactions.

[7] Anonymous. Emerging Frontiers in Human–Robot Interaction.

[8] Anonymous. Facilitating the Child–Robot Interaction by Endowing the Robot with
the Capability of Understanding.

[9] Min Wu et al. Robots Can Also Possess Human Emotions: Affective Computing
Enables Robots to Read Minds, 2023-05-17.

[10] National Defense Industry Press. Artificial Psychology Methods and Applications in
Intelligent Robots, 2022.

[11] Zainan Jiang et al. Robot Interaction Technology, 2019-10.

[12] Wei Xu. Human-Machine Intelligence Interaction, Tsinghua University Press, 2024-
09.

[13] Haibin Duan et al. The Status, Challenges, and Future Prospects of Human-Machine
Integration Technology, 2016-01-01.

[14] China Machine Press. Artificial Emotion, 2009.

[15] Yuanchun Shi et al. The Ultimate State of Human-Computer Interaction, Tsinghua
University, 2019-10-21.

[16] Anonymous. Latest Research on Human Factors, Exploring New Developments in
HCI, 2024-12-05.

231



232 BIBLIOGRAPHY

[17] Anonymous. Research on Human, Academic Journal of Science and Technology,
2024-01-01.

[18] Faruk Seyitoğlu et al. Robots and Emotional Intelligence: A Thematic Analysis,
2024-01-01.

[19] Rosalind Picard. Affective Computing, MIT Press, 1997.

[20] Thomas Moerland, Joost Broekens, Catholijn Jonker. Emotion in reinforcement
learning agents and robots: a survey. Machine Learning, 2017.


	I Basic Theory and Technical Framework
	History and Development of Human–Computer Interaction
	The Evolution of Human–Computer Interaction
	Definition of Human–Computer Interaction
	Importance of Human-Computer Interaction

	The Evolution of Human-Computer Interaction
	Early manual work stage
	Job Control Language and Interactive Command Language Stage
	Graphical User Interface (GUI) Stage
	Web User Interface Stage
	Multi-channel and multimedia intelligent human-computer interaction stage

	Key technologies and equipment for human-computer interaction
	Development of input devices
	Evolution of output devices

	Overview of Modern Interaction Technologies
	Voice interaction: opening a new era of natural conversation
	Visual Interaction: Building an Immersive Visual Experience
	Brain-computer interface: exploring direct dialogue between the human brain and the machine
	Haptic feedback: giving machines delicate tactile expression capabilities

	Concept and goal of human-machine integration
	Definition of human-machine integration
	Core Goals of Human-Machine Integration


	Scientific Basis of Affective Computing
	Definition and Model of Affective Computing
	Definition of Affective Computing
	Development of Affective Computing
	Integration and Innovation of Affective Computing Models

	Psychological Basis of Emotion
	Discrete Emotion Theory
	Dimensional Model

	Neuroscience Basis of Emotion
	Amygdala and emotional response
	Prefrontal cortex and emotional cognition
	Synergistic effect of amygdala and prefrontal cortex

	Mechanisms of Emotion Recognition and Expression
	Emotion Recognition Mechanism
	The Mechanism of Emotional Expression


	Visual Interaction Technology
	Principles of visual perception
	Visual Sensor Technology
	Visual information processing

	Facial Expression Recognition
	Classification and encoding of facial expressions
	Facial expression recognition algorithm

	Body language recognition
	Semantic parsing of body movements
	Body language recognition technology


	Voice Interaction Technology
	Speech Recognition and Synthesis
	Basics of Speech Signal Processing
	Advances in speech recognition technology

	Emotional Speech Analysis
	Feature extraction of emotional speech
	Emotional speech analysis methods


	Brain-Computer Interface Technology
	Working principle of brain-computer interface
	EEG signal acquisition
	EEG signal transmission
	Classification and application of brain-computer interfaces

	Application of brain-computer interface in affective computing
	Identification of EEG emotional states
	Brain-computer interface and robot interaction


	Emotional Computing of Physiological Electrical Signals
	Types and characteristics of physiological electrical signals
	Electrocardiogram (ECG) signal
	Electromyography (EMG) signal

	Physiological signal processing methods
	Physiological signal preprocessing
	Physiological signal feature extraction
	Physiological signal classification

	Sentiment Analysis of Physiological Electrical Signals
	Relationship between physiological signals and emotional states



	II Social Robots and Emotional Interaction
	Design Principles for Social Robots
	Interaction Model of Social Robots
	Perception layer: integrated multimodal sensors
	Decision-making layer: interaction strategy optimization
	Feedback layer: multi-channel emotional expression coordination mechanism
	Design principles of social robots

	Personalization of Social Robots
	The Importance of Personalized Design
	Methods and Practices of Personalized Design


	Emotional Interaction Technology of Social Robots
	Implementation Mechanism of Emotional Interaction 
	Emotion Recognition Technology
	Emotion Response Technology

	Application Case Analysis of Emotional Interaction
	Education
	Medical field
	Service Industry
	Entertainment and social fields
	Military and Security Field
	Other fields


	Current Challenges
	Technical Challenges
	Challenges of multimodal emotion recognition
	Accuracy and Reliability of Affective Computing

	Ethical and social challenges
	Privacy and data security issues
	Ethical considerations of human-computer relationships


	Future Development Trends
	Technology Development Trends
	Progress of Artificial Intelligence
	Innovation of interactive technology

	Social and cultural influences
	Social adaptability of human-machine integration
	The role of robots in cross-cultural communication




