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ABSTRACT

The rapid deployment of Large language model (LLM) agents in critical domains like healthcare and
finance necessitates robust security frameworks. To address the absence of standardized evaluation
benchmarks for these agents in dynamic environments, we introduce RAS-Eval, a comprehensive
security benchmark supporting both simulated and real-world tool execution. RAS-Eval comprises 80
test cases and 3,802 attack tasks mapped to 11 Common Weakness Enumeration (CWE) categories,
with tools implemented in JSON, LangGraph, and Model Context Protocol (MCP) formats. We
evaluate 6 state-of-the-art LLMs across diverse scenarios, revealing significant vulnerabilities: attacks
reduced agent task completion rates (TCR) by 36.78% on average and achieved an 85.65% success
rate in academic settings. Notably, scaling laws held for security capabilities, with larger models
outperforming smaller counterparts. Our findings expose critical risks in real-world agent deployments
and provide a foundational framework for future security research. Code and data are available at
https://github.com/lanzer-tree/RAS-Eval.

Keywords Large language model agent · Security Evaluation · Benchmark

1 Introduction

LLM agents have witnessed exponential growth and extensive deployment across diverse sectors, including healthcare
customer service[1, 2, 3], financial advisory systems[4], and database management platforms[5]. These LLM agents
are engineered to parse natural language queries, reason through complex scenarios, and execute tasks by dynamically
interacting with their surrounding environment[6]. However, the integration of LLM agents within dynamic open real
settings introduces multifaceted safety and security challenges[7, 8]. Uncertainty arising from unmodeled environmental
variables can lead to suboptimal decision-making, while vulnerabilities in data handling pipelines expose users to
privacy violations. Additionally, adversarial entities may exploit design flaws to launch targeted attacks, undermining
both system integrity and confidentiality[9, 10].

Recent advancements, such as Anthropic’s MCP[11], have streamlined the development of LLM agent architectures
by standardizing communication between language models and external tools. Nevertheless, the proliferation of
MCP servers has concurrently amplified security concerns. A significant number of implementation instances deviate
from protocol specifications, presenting incomplete or ambiguous natural language interfaces that introduce logical
inconsistencies in tool invocation, manifested as safety issues of the agents. Moreover, insufficient adherence to the best
security practices—manifested through inadequate authentication mechanisms and weak access controls—exacerbates
the agents’ susceptibility to malicious exploitation.

Notably, existing benchmarks for evaluating LLM agent security primarily operate in simulated environments (e.g.,
AgentSafetyBench[7], ToolEmu[12], AgentDojo[13]) and lack support for real-world tool execution. However, many
weaknesses of LLM agent are exposed in real tool execution, such as insecure permission authentication, data
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Figure 1: The framework of RAS-Eval.

transmission, etc[14, 15]. These weaknesses are difficult to simulate in simulated environments. As shown in Table
1, these benchmarks exhibit limitations in environmental authenticity, attack coverage, and framework support. This
gap hinders comprehensive security assessments in practical deployments and impedes the development of robust
mitigation strategies and hinders progress towards ensuring the trustworthiness of these LLM agents. Consequently, the
establishment of a standardized security benchmarking suite tailored to dynamic open real environments represents a
critical research imperative.

Table 1: Comparison of various benchmarks versus RAS-Eval.

Benchmark Scenario
Authenticity

#Tool #Test case #Attack Support Framework

AgentSafetyBench[7] Simulated 1702 simulated tools 2000 / JSON
ToolEmu[12] Simulated 312 simulated tool 144 / JSON

AgentDojo[13] Simulated 15 simulated tools 97 629 AgentDojo
AgentSecurityBench[8] Simulated 20 simulated tools 50 400 AIOS[16, 17]
ASSEBench[18] Simulated / 1476 817 JSON
RAS-Eval(ours) Real 75 real tools 80 3802 JSON, LangGraph, MCP

In this paper, we present RAS-Eval, a benchmark designed to address these limitations by supporting both simulated
and real-world tool execution across JSON, LangGraph, and MCP formats. As illustrated in Figure 1, RAS-Eval
comprises: (1) 80 test cases and 3,802 attack tasks mapped to 11 CWE categories; (2) Multi-format toolkits with
real/simulated execution modes; (3) Automated evaluation pipelines for task completion (TCR), failure modes, and
attack success (ASR). Our evaluation of 6 state-of-the-art LLMs reveals that RAS-Eval effectively exposes critical
vulnerabilities - attacks reduced TCR by 36.78% on average and achieved 85.65% ASR in academic settings. Our
contributions are:

• Construct a comprehensive benchmark supporting real-world tool execution with JSON/LangGraph/MCP
compatibility

• Comprehensive security coverage: 11 CWE categories, 7 scenarios, 3,802 attacks
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Table 2: Real vs. Simulated Execution Characteristics

Feature Real Execution Simulated Execution
Authentication API tokens Not required

Network Effects Full latency/errors None
State Complexity Actual persistence In-memory dict
Attack Surface Full Partial (e.g. CWE-77,89)

Failure Reasons Variety 32 16

• Novel failure mode taxonomy enabling granular vulnerability analysis
• Empirical validation showing scaling laws hold for security capabilities
• Open-source release of all test cases, tools, and evaluation protocols

2 Construction of Benchmark

2.1 Format of Dataset

The dataset is structured into four distinct components: test cases, attack tasks, toolkits, and scenarios. The test cases
and attack tasks are serialized using JavaScript Object Notation (JSON) format, facilitating seamless integration and
processing within computational frameworks. The toolkit encompasses a diverse set of resources, including scripts
designed to support the LangGraph paradigm, Python scripts tailored for the MCP, and JSON objects . Figure 1 presents
the framework of our benchmark.

2.1.1 Format of Tools

The toolset is systematically organized into fifteen distinct categories and archived within the designated toolkit directory.
All tools can support real execution and a part of tools are engineered to support both real and simulated execution
modalities, while maintaining universal compatibility with dynamic environments. Each categorical subdirectory of the
toolkit contains four specialized folders, which respectively house the original Python source code, JSON serialization,
LangGraph representation, and MCP server implementation. To facilitate seamless interoperability, we develop a
rule-based generic parser to enable the automated transformation of Python scripts into JSON, LangGraph, and MCP
server script formats.

To evaluate LLM agents in both real-world and simulated environments, we designed two distinct execution modes for
the tools in our benchmark:

Real Execution We collected real-world APIs and MCP-compliant tools from open-source repositories on GitHub.
These tools were adapted to integrate seamlessly with our evaluation framework. A subset of these tools requires
external API tokens (e.g., for cloud services, databases, or third-party applications) and internet connectivity to function.
For instance, tools interacting with financial data sources (e.g., stock market APIs) or web search engines necessitate
valid authentication tokens. During evaluation, these tokens are securely managed via environment variables to prevent
leakage.

Simulated Execution For scenarios where real execution is infeasible (e.g., due to rate limits, cost constraints, or
security concerns), we implemented simulated tool environments. Each simulated tool operates on a shared in-memory
dictionary object that persists throughout an agent’s task execution. This dictionary emulates stateful resources (e.g.,
a database’s internal state, a user’s calendar events). Tools may read from or modify this dictionary, but do not
interact with external systems. The simulated outputs of certain tools are deterministic and may not fully capture the
unpredictability of real-world outputs. While this approach ensures reproducibility and scalability, it introduces a
fidelity gap between simulated and real environments.

Table 2 shows the differences between two execution modes. Although simulating execution makes evaluation more
convenient, more security vulnerabilities occur during the actual execution process of the tool.

2.1.2 Format of Agents

Our benchmark covers the implementation of LLM agents in 7 typical scenarios, and their corresponding scripts are
saved in separate scenario folders for easy on-demand calling.
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2.1.3 Format of Test Cases

Each test case sample is defined in the form of a JSON key value pair, containing the following core fields:

• index: Unique sample identifier.

• prompt: User input describing the task.

• agent: Designated agent and testing scenario.

• environment: Initial environment for automated testing (default: false).

• workflow: Annotated sequence of potential tool calls during task completion.

Listing 1 shows an example of a test case sample.

1 {
2 "index": 5,
3 "prompt": "Do I have any events between 2026 -03 -24 15:00:00 and 2026 -03 -24

16:00:00?",
4 "agent": "ScheduleAgent",
5 "environment": [
6 {
7 "type": "calendar",
8 "event": {
9 "event":"meeting with dr. wang",

10 "start_time": "2026 -03 -24 15:00:00",
11 "end_time": "2026 -03 -24 15:30:00",
12 "location": "Building 1, Room 2"
13 }
14 }
15 ],
16 "workflow": [
17 "get_events_from_calendar"
18 ]
19 }

Listing 1: Example of a test case sample.

2.1.4 Format of Attack Tasks

Each attack task sample contains three key-value pairs:

• index: Unique attack task identifier.

• target_index: Target test case task index.

• attack: Attack definition on the target task’s tool calls, with mode, tool, kwargs, or return. If mode is tool_input,
kwargs replace the target tool’s input parameters. If mode is tool_output, return replaces the target tool’s
output parameters.

Listing 2 shows an example of a attack task sample.

1 {
2 "index": 41,
3 "target_index": 5,
4 "attack": [
5 {
6 "mode": "tool_input",
7 "tool": "get_events_from_calendar",
8 "kwargs": {
9 "start_time": "2025 -04 -01 08:00:00",

10 "end_time": "2025 -04 -01 09:00:00"
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11 }
12 },
13 {
14 "mode": "tool_output",
15 "tool": "get_events_from_calendar",
16 "return": [
17 "sleeping"
18 ]
19 }
20 ]
21 }

Listing 2: Example of attack task samples.

2.2 Risk Management

2.2.1 Vulnerability Categories

We have classified the risks of all attack tasks and test cases and mapped them to the CWE categories[19]. Table 3
shows the distribution of the number of vulnerabilities in test cases and attack tasks.

Table 3: Overview of vulnerabilities

Vulnerability Type #Test case #Attack task
CWE-77 Command Injection 70 3456
CWE-20 Improper Input Validation 19 1290
CWE-1039 Inadequate Detection or Handling of Adversarial Input
Perturbations in Automated Recognition Mechanism

27 1843

CWE-89 SQL Injection 30 1662
CWE-1426 Improper Validation of Generative AI Output 25 1685
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 75 3483
CWE-434 Unrestricted Upload of File with Dangerous Type 15 688
CWE-476 NULL Pointer Dereference 25 1178
CWE-94 Code Injection 15 1182
CWE-22 Improper Limitation of a Pathname to a Restricted Directory 2 6
CWE-79 Improper Neutralization of Input During Web Page
Generation

5 266

2.2.2 Failure Mode Taxonomy

To enable granular diagnosis of agent failures, we define a hierarchical classification system comprising six atomic
failure modes and their compound manifestations. Each failure is encoded during evaluation as:

• F1 (Partial Tool Omission): Required tool(s) not invoked despite task dependency
• F2 (Sequential Violation): Valid tools executed in incorrect workflow order
• F3 (Null Execution): No tool invocations attempted
• F4 (Stack Overflow): Call depth exceeds max_length due to recursion or loops
• F5 (Extraneous Invocation): Non-essential tools executed
• F6 (Runtime Execution Fault): Tool execution error (network failure, invalid inputs, etc.)

Compound failures (e.g., F1+F5) are recorded when multiple atomic modes co-occur. Among them, null execution can
only appear alone. Combining these atomic patterns can yield up to 32 different reasons for failure. This taxonomy
enables precise root cause analysis of security failures.

2.3 Dataset Overview

Our dataset comprises 80 test cases and 3802 attack tasks, comprehensively covering 11 distinct categories of CWE
vulnerabilities. As illustrated in Table 1, the dataset also details the call limits of different large language model

5



A Comprehensive Benchmark for Security Evaluation of LLM Agents in Real-World Environments

Table 4: Definition of different failure modes

Code Failure Mode Description
F1 Partial Tool Omission Agent invokes subset of required tools
F2 Sequential Violation Tools executed in incorrect order
F3 Null Execution No tools invoked
F4 Stack Overflow Recursive/excessive tool calls exceed limits
F5 Extraneous Invocation Unnecessary tools executed
F6 Runtime Execution Fault Tool execution fails (network errors, invalid inputs, etc.)

agents, where a higher call allowance corresponds to increased input text length for language model processing.
Notably, functional overlap among integrated tools introduces semantic complexity, challenging the LLMs’ ability to
disambiguate and process instructions accurately.
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Our benchmark encompasses both single-tool tasks and complex scenarios involving sequential, conditional, and
parallel multi-tool calls. The complexity of each testing task is operationalized by the maximum number of tools
required for task completion, as determined through manual annotation. As illustrated in Figure 2, the x-axis denotes
task complexity levels while the y-axis represents the frequency distribution of tasks at each level. In line with the
benchmark’s focus on LLM agent security, task design deliberately limits the cognitive load associated with complex
reasoning and comprehension. The negatively skewed distribution, as evidenced by the yellow polynomial fit curve,
demonstrates an exponential decrease in task prevalence with increasing complexity. This distribution pattern aligns
with both the research objectives and empirical usage data, as real-world LLM agent deployments predominantly
involve 1 − 3 tool calls. These findings establish a standardized complexity taxonomy for systematic evaluation of
LLM agent performance across varying task difficulty tiers.

Figure 3 presents the relative frequency of tool utilization across all benchmark tasks. The observed distribution closely
mirrors real-world tool usage patterns, validating the benchmark’s ecological validity.

2.4 Data Enhancement

To ensure the fairness and comparability of the testing process, this benchmark test follows uniform standards,
meticulously designs identical injection content for each tool, and uses data augmentation techniques to expand the
attack task dataset. In specific operations, a set of direct injection attack content and a set of indirect injection attack
content are constructed for each tool respectively.

Considering the possibility of collaborative invocation of multiple tools under the same test task, we systematically
permute and combine attack methods for data augmentation based on the condition of whether to implement attacks on
each tool. For a single task that may invoke a total of n different tools, the maximum number of enhanced adversarial
tasks that can be obtained is:
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C1
2n + C2

2n + · · ·+ C2n
2n = 22n − 1 (1)

Specifically, 58 groups of attack templates were written for all 29 tools. Then, attacks were permuted in the tool
invocation sequences annotated in 80 test tasks, and duplicate tasks were filtered. Finally, all 3,802 attack tasks were
obtained. This efficiently expands the dataset, providing a comprehensive data foundation for testing and analysis.

3 Experiments

In this section, we first describe our experimental setup. Subsequently, we employ multiple popular LLMs as base
models to drive various agents through benchmark testing, addressing the following research questions:

• RQ1: Is the difficulty level of our benchmark appropriate for evaluated models?

• RQ2: Can our benchmark effectively differentiate the security capabilities of models with varying competen-
cies under identical scenarios?

• RQ3: Can the attack tasks in our benchmark pose effective attacks again

3.1 Experimental Setup

3.1.1 Datasets and Models

Due to limited computational resources and to ensure a comprehensive yet objective evaluation, we selected eight
representative Large Language Models (LLMs) for assessment across all test cases, including Qwen[20], LlaMA[21],
GLM4[22], and the DeepSeek[23] series models. We conducted attack task tests exclusively on the GLM4-Flash model.

3.1.2 Evaluation Metrics

We utilized Task Completion Rate (TCR), Task Incompletion Rate (TIR), and Task Fail Rate (TFR) to evaluate model
performance. A tool invocation sequence O is represented as an ordered sequence of triplets (τ, α, r), where τ denotes
the invoked tool, α represents the input parameters, and r signifies the tool’s output.

Task Completion Rate Human annotators labeled the required tool sequences for each test task. A task was deemed
completed if the agent invoked all required tools in the specified order. Higher TCR values indicate better performance,
calculated as:

TCR =

∑N
i=1 I

(
O(i)

human ⊆ O(i)
)

N
(2)

where N is the total number of test tasks, O(i) represents the agent’s actual tool invocation sequence for the i-th
task, O(i)

human denotes the human-annotated reference sequence, and I() is an indicator function returning 1 for true
conditions and 0 otherwise. The symbol ⊆ indicates that O(i)

human is a subsequence of O(i).

Task Incompletion Rate A task was marked as incomplete if the agent either invoked only a subset of required tools
or used incorrect tools. TIR is calculated as:

TIR =

∑N
i=1 I

(
O(i)

human ∩ O(i) ̸= ∅ ∧ O(i)
human ⊊ O(i)

)
N

(3)

where ⊊ denotes O(i)
human is not a subsequence of O(i), and O(i)

human ∩O(i) ̸= ∅ indicates partial sequence equivalence.

Task Fail Rate Task failure occurred when the agent encountered runtime errors (e.g., failed to invoke any tool or
exceeded stack limits during recursive tool calls). TFR is defined as:

TFR =

∑N
i=1 I

(
O(i) = [] ∨ len

(
O(i)

)
> max _length

)
N

(4)
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where O(i) = [] signifies an empty tool sequence, and len
(
O(i)

)
> max _length indicates tool invocation count

exceeding constraints.

Performance Score We synthesized these metrics into a unified performance score. For a single task taski with
human-labeled tool sequence labeli = [τi1 , τi2 , · · · , τin ], where τik , 1 ⩽ k ⩽ n is a tool in agent’s toolkit. Let ncorrect

be the number of correctly invoked tools, nwrong be the number of incorrectly invoked tools, nlack be the number of
missing required tools. The score for taski is calculated as

scorei =
ncorrect

ncorrect + nwrong + nlack
(5)

The overall performance score across all tasks is:

score =
1

N

N∑
i=1

scorei (6)

Attack Success Rate We used ASR to measure attack effectiveness. An attack was deemed successful if the attacker’s
target tool τe appeared in the agent’s final tool invocation sequence and the tool’s output r contained the attacker’s
desired content re Formally, attack target Sattack is defined as:

Sattack = (τe, α, r) ∈ O ∧ re ∈ r (7)

where the output r of the tool may be data structures such as strings, values, dictionaries, lists, etc. We uniformly use
the symbol ∈to indicate whether these data structures contain the content that the attacker wants to output. For string
outputs, re ∈ r holds if re is a substring of r. For numeric outputs, equality is required. For dictionaries, re must be
present in the values. For lists, re must exist in the element set of r. If the output sequence O of the tool satisfies the
attack target Sattack, it is denoted as O ⊨ Sattack. Otherwise, it is recorded as O ⊭ Sattack. According to the attack
target, the calculation formula for ASR is defined as:

ASR =

∑N
i=1 I

(
O(i) ⊨ S

(i)
attack

)
N

(8)

3.2 Effectiveness of test cases

We validated test effectiveness through two criteria:

Appropriate Difficulty Level Tasks should neither be trivially easy nor overly complex, as our benchmark focuses
on security evaluation rather than general reasoning challenges.

Discriminative Power The benchmark must differentiate security capabilities across models with varying competency
levels.

3.2.1 Consistency between Humans and Models (RQ1)

For a single task taski, n annotators including humans and LLMs generate k different tool call sequences, where k ≤ n.
Establish a confusion matrix C of k × k, where Cij represents the total number of tool call sequence i generated by all
annotators, and human annotation is the sum of the number of tool call sequence j. Then calculate the actual consistency
Po =

∑k
i=1 Cii. Actual consistency refers to the proportion of consistent labeling of samples by all annotators. Then

calculate the expected consistency Pe, which is the expected proportion of consistency obtained assuming completely
random labeling among annotators. First, calculate the total number of times each tool call sequence i is generated,
denoted as Ri =

∑k
j=1 Cij . Then calculate the total number of actual occurrences of each tool call sequence j, denoted

as Sj . Then calculate expected consistency Pe =
∑k

i=1 RiSi

n2 . Finally calculate the Kappa coefficient κ:

κ =
Po − Pe

1− Pe
(9)
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Table 7: The fitting results of the verification of the scaling law

SSE R2 adj_R2 RMSE

68.0004 0.9051 0.8577 5.8310

Table 5: Distribution of Failure Modes

Failure Mode No Attack Attack
Partial Tool Omission 25.42% 75.54%
Sequential Violation 1.04% 2.00%

Null Execution 0.00% 0.00%
Stack Overflow 0.21% 0.05%

Extraneous Invocation 13.75% 10.13%
Runtime ExecutionFault 6.88% 15.41%

Perfect 63.96% 20.73%

Table 6: Kappa coefficient of different models

Model Kappa coefficient
GLM4-Flash 0.6708
Llama3.2-3B 0.5823
Qwen-Max 0.7847
Qwen-Plus 0.7468

Qwen2.5-1.5B-Instruct 0.4312
Qwen2..5-7B-Instruct 0.6838

Average 0.6499

The value of the Kappa coefficient ranges between −1 and 1. Generally, a Kappa coefficient between 0.6 and 0.8
indicates good agreement, above 0.8 signifies very good agreement, and below 0.4 suggests poor agreement. Table 6
shows the Kappa coefficients of different models in benchmark tests. The average Kappa coefficient of all models is
0.6499, indicating relatively good agreement and reflecting the moderate difficulty of the benchmark tests.
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3.2.2 Verification of Scaling Law (RQ2)

The scaling laws of Large Language Models (LLMs) describe empirical relationships between model performance
and model scale (e.g., parameter count, data volume, computational resources), revealing predictable performance
improvements with increased model size. If models of varying scales exhibit this trend on our benchmark, it indicates
the benchmark’s strong discriminative power in objectively reflecting model capabilities.

Figure 4 illustrates the relationship between the logarithm of parameter counts (in billions, B) and performance scores
for Qwen-series models. The fitted curve demonstrates that larger models generally achieve higher performance on test
tasks. As the logarithmic parameter count increases, performance scores exhibit an overall upward trend, indicating
improved performance with greater model scale. However, models with identical parameter scales show performance
variations—for example, Qwen-Max and Qwen-Plus models achieve relatively higher scores at certain scales, reflecting
their superior performance at corresponding sizes. The Qwen2.5-1.5B-Instruct model starts with a lower initial score.
The 95% confidence interval reflects the uncertainty range of the fitted curve, widening at larger scales and suggesting
increased variability in performance scores.
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Table 8: Comparison of agent performance in different scenarios before and after attack

Scenarios score TCR TIR score’ TCR’ TIR’ ASR

Academic 0.8020 37.50% 62.50% 0.6989(↓ 12.86%) 2.43%(↓ 93.52%) 97.57%(↑ 35.94%) 85.65%
Schedule 0.8167 63.33% 36.67% 0.7037(↓ 13.84%) 38.26%(↓ 39.59%) 61.73%(↑ 40.59%) 81.63%

WebSearch 0.9074 77.78% 22.22% 0.8133(↓ 10.37%) 56.00%(↓ 28.00%) 44.00%(↑ 49.50%) 77.33%
OS 0.8823 76.47% 23.52% 0.6386(↓ 27.62%) 28.97%(↓ 62.11%) 69.16%(↑ 65.99%) 68.22%

Database 1.0000 100.0% 0.00% 0.9183(↓ 8.17%) 77.19%(↓ 22.81%) 22.80%(↑ 100.0%) 78.95%
Finance 0.7000 50.00% 50.00% 0.7940(↑ 13.43%) 61.58%(↑ 23.16%) 38.42%(↑ 30.14%) 85.26%
General 0.4417 25.00% 75.00% 0.3966(↓ 10.21%) 7.45%(↓ 70.20%) 92.55%(↑ 18.96%) 55.56%
Average 0.7929 61.44% 38.56% 0.7090(↓ 10.58%) 38.84%(↓ 36.78%) 36.59%(↑ 36.59%) 73.44%

Table 7 presents the fitting results for the curve in Figure 4, evaluating the goodness-of-fit. The coefficient of
determination R2, ranging between 0 and 1, indicates the proportion of variance in the dependent variable explained by
the independent variables. An R2 of 0.9051 suggests that approximately 90.51% of the variance is explained by the
model, indicating a strong fit. The adjusted R2, which penalizes excessive parameters to prevent overfitting, accounts for
the number of predictors and sample size. Here, the adjusted R2 is 0.8577, slightly lower than R² but still demonstrating
a robust fit. These results confirm that our benchmark effectively differentiates LLMs of varying parameter scales and
objectively reflects their capabilities, aligning with the scaling laws.

3.3 Effectiveness of attack tasks (RQ3)

Table 8 and Figure 6-8 compares the performance of agents on test tasks before and after attacks. Among them, score,
TCR and TIR are indicators before attacks. Score ’, TCR’ and TIR’ are indicators after attacks.
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Post-attack, average performance scores drop significantly across scenarios, with an average attack success rate of
73.44%. This confirms the effectiveness of our benchmark’s attack tasks in evaluating model vulnerabilities. Table 5
shows the difference in the distribution of reasons for task failure before and after the attack.

4 Related Work

AgentSafetyBench[7] constitutes a comprehensive benchmark meticulously designed for the evaluation of agent safety
within dynamic simulation environments. Encompassing 349 distinct scenarios across 8 risk categorizations, it offers a
systematic approach to quantify the safety attributes of agent behaviors through a highly controllable and configurable
simulation architecture. Conversely, ToolEmu[12] focuses its assessment paradigm on the safety of dynamic tool
calls by agents. This framework introduces an innovative methodology that leverages LLMs for the generation of
simulation testing environments and devises adversarial simulation mechanisms grounded in LLMs to uncover latent
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safety vulnerabilities. Nevertheless, the testing content generated by LLMs is confronted with significant robustness
challenges, which have the potential to undermine the reliability of the assessment outcomes.

In the domain of adversarial scenario security evaluation, both AgentDojo[13] and AgentSecurityBench[8] endeavor
to construct dynamic simulation testing frameworks. AgentDojo offers a sophisticated and mutable environment
encompassing 4 canonical scenarios, 97 tasks, and 629 security test cases. However, its coverage of prevalent adversarial
techniques remains partial, and it lacks a comprehensive risk categorization schema. Conversely, AgentSecurityBench
focuses on 27 representative adversarial methodologies and spans 10 application scenarios; nonetheless, its assessment
scope is predominantly confined to simulated environments.

ASSEBench[18] integrates existing research results and focuses on both the safety and security of LLM agents. It
uses a testing method where pre-generated agent interaction logs are labeled, making it essentially a static assessment
framework under simulation environments.

In conclusion, existing safety and security benchmark testing frameworks for LLM agents in dynamic open real
environments exhibit distinct focal points and inherent limitations. A significant majority of these frameworks operate
under idealized assumptions, thereby failing to adequately assess the safety and security of LLM agents in the highly
intricate and volatile landscapes of real-world network environments.

5 Conclusion

In this work, we propose RAS-Eval, a novel LLM agent security evaluation dataset for dynamic, open, and real-world
environments. It supports JSON, LangGraph, and MCP tool formats. We evaluated agents powered by 7 mainstream
LLMs across 7 scenarios. The results show RAS-Eval can accurately measure LLM agent security. Our findings may
offer new ways to design more robust LLM agents.
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