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Abstract. In this paper, we introduce an adaptation of the facility lo-
cation problem and analyze it within the framework of local differential
privacy (LDP). Under this model, we ensure the privacy of client pres-
ence at specific locations. When n is the number of points, Gupta et
al. [5] established a lower bound of Ω(

√
n) on the approximation ratio

for any differentially private algorithm applied to the original facility
location problem. As a result, subsequent works have adopted the super-
set assumption, which may, however, compromise user privacy. We show
that this lower bound does not apply to our adaptation by presenting
an LDP algorithm that achieves a constant approximation ratio with a
relatively small additive factor. Additionally, we provide experimental re-
sults demonstrating that our algorithm outperforms the straightforward
approach on both synthetically generated and real-world datasets.

Keywords: Privacy in location-based services · Local differential pri-
vacy · Facility location · Approximation algorithms

1 Introduction

The facility location problem is a well studied problem in combinatorial op-
timization and operations research. Given a set of locations, costs for opening
facilities, and a metric for the distance between locations, the goal is to open a set
of facilities and connect clients to the facilities with minimal costs. The problem
is NP-hard and therefore research focused on developing heuristic approaches
and approximation algorithms since the 1960’s [15, 10]. The problem finds appli-
cation in several fields such as data mining, bioinformatics and machine learning
[3]. It can be formalized as follows.

Definition 1 (Facility location problem [1]). Given the tuple (V, d,f , b)
where V is the set of locations with |V | = n, (V, d) is a metric, f ∈ Rn

≥0 indicates
the facility costs for every location v ∈ V , and b ∈ {0, 1}n indicates if a client

https://arxiv.org/abs/2506.15224v1
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is present at location v ∈ V . The objective of the facility location problem is to
find a set of locations S ⊆ V which minimizes:

costd(S, b) =
∑
s∈S

fs +
∑
v∈V

bvd(v, S) (1)

with d(v, S) = min
s∈S

d(v, s). The first part of Equation 1 is called facility costs

while the latter one is called connection costs.

With the development of differential privacy (DP) by Dwork et al. [2], recent
research applied DP to the facility location problem to ensure privacy for clients.
The idea of differential privacy is to ensure that the inclusion or exclusion of a
single data point does not significantly affect the solution, thereby protecting
individual privacy. The concept measures a system’s privacy leakage using a
parameter called the privacy budget, denoted as ε. An algorithm is referred to
as an ε-DP mechanism if it has a privacy budget of ε.

Differential private algorithms deploy basic privacy mechanisms such as the
exponential mechanism [13] or the Laplace mechanism [2] depending on the
domain of the solution. Both mechanisms introduce a degree of uncertainty about
the correctness of the solution. The Laplace mechanism does this by adding a
noise drawn from the Laplace distribution to the solution while the exponential
mechanism assigns output probabilities to categorical solution proportional to
their utility.

DP requires a trusted curator that runs the algorithm and has access to
the private information. This introduces a single point of failure and makes the
curator prone to malicious attacks or human errors. Local differential privacy
(LDP) [9] solves this issue by restricting the access of private data to the clients
themselves. LDP algorithms are split into two parts. The first one runs locally
and applies a privacy mechanisms to the private data to generate a noisy version.
The noisy data is then sent to an aggregation server that computes a solution
to the problem based on the noisy input.

There are works applying DP to the facility location problem. Gupta et
al. [5] were the first to apply DP to the uniform facility location problem. In
this setting all locations have the same facility costs. They showed that any
differentially private algorithm for the uniform facility location problem has an
approximation ratio of Ω(

√
n) when n is the number of points.

This lead to the introduction of the super-set output assumption [5, 1]. Here,
the output of the algorithm for the facility location problem is a set R ⊆ V
of potential facilities. Every client is then connected according to a predefined
connection rule to one of the facilities in R. The actual set of opened facilities S
is then the set of locations in R that have at least one connected client. Under
this super-set output setting, they provide an ε-DP algorithm with expected
costs of at most

OPT ·O(log n log∆) · log∆
ε

log
n log2 ∆

ε
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where OPT is the optimal value and ∆ = max
u,v∈V

d(u, v). It uses results from

Fakcharoenphol et al. [4] to approximate any arbitrary metric by a distribution
over hierarchically well-separated trees (HST) with distortion O(log n). The al-
gorithm then takes an HST as input and outputs a super-set of facilities.

In [3], Esencayi et al. improve upon the results of Gupta et al. for the facility
location problem under the ε-DP model with super-set output setting. They
showed that there exists an algorithm with an approximation ratio of O( 1ε ) under
the HST metric and therefore an algorithm with approximation ratio of O( logn

ε )
for any arbitrary metric. Furthermore, they proved that the approximation ratio
of any ε-DP algorithm is lower bounded by Ω( 1√

ε
) even under an HST metric

and the super-set output setting.
Since these approaches first convert the arbitrary metric into an HST-metric,

they cannot perform better than O(log n). This leaves the question upon whether
the approximation ratio under the super-set output setting needs to grow with n.
Recently, Pasin Manurangsi in [12] answered this question positively by providing

a lower bound of Ω̃(min{log n,
√

logn
ε }) on the expected approximation ratio

of any ε-DP algorithm. Since ε-LDP is more restrictive than ε-DP, the lower
bound also applies to ε-LDP algorithms. This further validates our approach of
constructing a problem that finds real-world application and where the super-set
output setting is no longer necessary.

Cohen-Added et al. [1] were the first to study the facility location problem
under local differential privacy (LDP) in 2022. They provide an ε-LDP algorithm
that achieves an O(n1/4/ε2) approximation ratio under the HST metric for the
non-uniform facility location problem. The algorithm applies the randomized
response mechanism, a special variant of the exponential mechanism, on the
location side to private data. It uses an HST together with the noisy data from
every location to output a super-set of facilities. The clients are then connected
based on a lowest common ancestor rule to facilities. Furthermore, they proved
a lower bound of O(n1/4/

√
ε) for the approximation ratio of any non-interactive

ε-LDP algorithm.

1.1 Our Contribution

Although most works on differentially private facility location algorithms assume
the super-set assumption, this compromises user privacy. Revealing only facilities
that connect to at least one user discloses information about users. This concern
motivates us to explore a practical setting for the facility location problem,
where we can design an LDP algorithm with a constant approximation ratio
and a relatively small additive factor. We show experimentally that the proposed
algorithm outperforms the straightforward solution on synthetically generated
data and a dataset based on real world data from the city Chiang Mai, Thailand.

We introduce the Facility Location Problem with Linear Facility Costs. In
this setting, the objective is to assign a capacity to each opened facility, enabling
it to serve up to its designated limit of clients. Additionally, facility costs scale
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linearly with capacity, meaning that the higher a facility’s capacity, the greater
the cost to establish it. We demonstrate that this problem is no longer NP-
hard and can be optimally solved in polynomial time. Also, the negative result
by Gupta et al. no longer applies in our setting, allowing us to design efficient
ε-LDP algorithms without relying on the super-set output setting.

To obtain an ε-LDP algorithm for this setting, one can deploy the Laplace
mechanism locally and then compute the capacities based on the noisy input.
When the algorithm operates with a failure probability α, we show that this sim-
ple approach achieves an expected upper bound on the cost of

(
1 + 2

ε ln
2n
α

)
OPT .

The resulting approximation ratio is O(log n).
We propose an algorithm to further improve that trivial algorithm. For this

algorithm, we assume that, for an input where every location v ∈ V has at least
γ2 ln2 n locations with a distance of at most δ away, we propose an ε-LDP algo-
rithm that bounds the total costs by (1 + 2

ε ln
2n
α

1
γ lnn )OPT + δn( 2ε ln

2n
α

1
γ lnn +

4bavg), when bavg is the average number of clients per location. We observe
that the approximation ratio

(
1 + 2

ε ln
2n
α

1
γ lnn

)
= O(1), and the additive term

δn( 2ε ln
2n
α

1
γ lnn + 4bavg) remains small compared to overall cost when δ is suffi-

ciently small.
Finally, we demonstrate that our ε-LDP algorithm outperforms the straight-

forward approach on both synthetically generated datasets and a real-world in-
stance based on data from Chiang Mai, Thailand. We use the Matérn cluster
point process to generate clustered instances that simulate cities with densely
populated neighborhoods. Furthermore, we use the Poisson point process to gen-
erate instances with uniformly at random distributed locations. We show that,
for both generations processes with varying generation parameters and for the
real-world instance, our theorems provide input parameters for our ε-LDP algo-
rithm resulting in lower cost solutions compared to the straightforward approach.

2 Local Differential Privacy

The following definition formally introduces L1 local differential privacy (LDP).

Definition 2 (L1-LDP [9]). Let ε > 0. A randomized query R satisfies L1

ε-local differential privacy (ε-LDP) if, for any possible local inputs b, b′ ∈ Z such
that |b− b′| = 1, and any possible outcome set S,

Pr[R(b) ∈ S] ≤ eε Pr[R(b′) ∈ S].

An algorithm A is said to be L1 ε-LDP if, for any local node, and any sequence
of queries R1, . . . ,Rκ posed the node, where each query Rj satisfies εj-local
differential privacy (for 1 ≤ j ≤ κ), the total privacy loss is bounded by ε1 +
· · · + εκ ≤ ε. The algorithm is referred to as non-interactive if the number of
queries to each user is one, and those queries are independent to each other.

In the following section, we explain our rationale for employing the notion of
L1-LDP in this paper.
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Definition 3 (L1-Sensitivity [2]). The L1-sensitivity of a function f : Z → R
is the smallest value S(f) such that, for all b, b′ ∈ Z such that |b − b′| = 1, the
following holds:

∥f(b)− f(b′)∥1 ≤ S(f)

Definition 4 (L1 Local Laplacian Query [6]). For any function f : Z → R
and input b ∈ Z, the following mechanism, known as the Laplace mechanism, is
defined as:

LMf (b) = f(b) + Y

where Y is drawn from Lap(S(f)/ε). The L1 local Laplace mechanism satisfies
L1 ε-LDP.

Since this paper exclusively employs the L1 version of ε-LDP, we omit the
L1 prefix. In other words, when we mention ε-LDP, sensitivity, and the local
Laplacian query, we are referring to the L1 ε-LDP, L1-sensitivity, and the L1

local Laplacian query, respectively.

3 Our Setting: Facility Location with Linear Facility
Costs (FL-Linear)

In this section, we formally present our adaptation of the traditional facility
location problem, referred to as Facility Location with Linear Facility Costs
(FL-Linear). We later demonstrate that this problem can be optimally solved in
polynomial time.

3.1 Problem Statement

Definition 5 (FL-Linear). The Facility Location with Linear Facility Costs
is defined by the input tuple (V, d,f , b) where V defines the set of locations
with |V | = n, (V, d) is a metric, f indicates the facility costs for every location
v ∈ V , and b = [bv]v∈V ∈ Nn

>0 indicates the number of clients present at location
v ∈ V . The goal is to find a set of locations S ⊆ V with capacities (ks)s∈S and
a connection function h : V → S that minimize the costs

costd(S, h, b) =
∑
s∈S

ksfs +
∑
v∈V

bvd(v, h(v)) (2)

Furthermore, every facility must be able to serve all of its connected clients. Let
Lv = {u ∈ V : h(u) = v} denote the set of connected locations to a facility
v ∈ S. Then the following equation must hold for all v ∈ S:∑

u∈Lv

bu ≤ kv (3)
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In contrast to the original problem, every facility v ∈ S now has a capacity
kv assigned to it. Furthermore, the facility to which a location is connected to is
now given as an output by the connection function h. Previous research on the
original problem defined a connection rule (e.g. connect location to closest open
facility) and only outputted a super-set of opened facilities.

Since a location appears in the dataset only if at least one person resides
there, we assume that every location has at least one client present, i.e., bv > 0.
In Section 6, we relax this assumption and derive a bound based on a client-
location ratio and a Bernoulli distributed client presence.

The FL-Linear problem finds application in real-world scenarios such as in
the setting of placing evacuation shelters. The costs for providing space, food,
water and, equipment like first aid kits depends on the amount of people it
is designed to shelter. Therefore, it is reasonable to determine the facility cost
based on the number of individuals relocating to the facility.

Privacy Assumption We adopt the assumption from previous works that the set
of locations, the distances between them, and the facility costs at each location
are publicly available information. The only data kept private is the number of
individuals at each location, denoted as b. This assumption is motivated by the
problem of placing facilities for evacuation [16]. In such scenarios, the distances
between buildings and the costs of constructing evacuation facilities at each
site are known. However, the presence of an individual at a specific location is
sensitive information. Revealing the number of individuals at each location could
risk disclosing this sensitive data.

We consider the value bu ∈ Z as local data. To safeguard an individual’s
location, we seek a mechanism that ensures others cannot distinguish between
bu and b′u when |bu − b′u| = 1, which corresponds to the presence or absence of
the person at node u. For this reason, we adopt the privacy notion of L1 ε-LDP
in this work.

3.2 Non-Private Optimal Algorithm

By introducing linear facility costs based on the capacity, the problem becomes
easier and we can find a polynomial time algorithm to solve it. For a fixed location
v the costs it induces is independent on the connection of other locations. We
say that v ∈ V is connected to u ∈ V if h(v) = u. Finding the optimal facility
u, a location v should be connected to, is now a local decision:

h(v) = argmin
u∈V

(fu + d(u, v))

For each location, we determine the optimal location to which it is connected.
We define the set of locations that have at least one connection as

M = {v ∈ V : ∃u ∈ V such that h(u) = v} = {v ∈ V : h(v) = v}.

For any marked location v ∈ M , let Lv = {u ∈ V : h(u) = v} denote the
set of locations assigned to v. The facility at v is then opened with a capacity
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corresponding to the total demand of the clients connected to it:

kv =
∑
u∈Lv

bu.

Algorithm 1 summarizes the described methods. In the base algorithm, no pri-
vacy mechanism is applied. Consequently, the algorithm has full knowledge of the
exact client demands bu and can set facility capacities accordingly. As a result,
every location is optimally connected, leading to a globally optimal solution. The
computation can be performed in polynomial time.

Algorithm 1: non-private optimal algorithm
Data: V , d, f , b
Result: connection function h, capacities k
begin

for v ∈ V do
h(v)←− argmin

u∈V
fu + d(u, v)

M ←− {v ∈ V : h(v) = v}
for v ∈M do

Lv ←− {u ∈ V : h(u) = v}
kv ←−

∑
u∈Lv

bu

return h, k

4 Straightforward Algorithm: Laplace Mechanism with
Margin

To keep the amount of clients bv of a location v private, we introduce a local
differential private algorithm that uses the Laplace mechanism to ensure privacy
and opens facilities based on a noisy number of clients. Every location v ∈ V
adds a Laplacian noise parameterized by the privacy budget ε to their private
number of clients bv to generate a noisy variant b′v. Afterwards, it sends b′v to the
aggregation server. On the server side the optimal assignments and capacities
are computed based on b′ = [b′v]v∈V .

Algorithm 2 mirrors the steps of the non-private algorithm by first computing
the optimal connections between locations. We leverage the key observation that
for any location v,

h(v) = argmin
u∈V

(
bvfu + bvd(u, v)

)
= argmin

u∈V

(
fu + d(u, v)

)
= h′(v),

which means we do not need direct access to the private value bv to calculate
h′(v). The main distinction between the two approaches arises during the ca-
pacity computation. In the optimal assignment, the capacity can be set exactly
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Algorithm 2: ε-LDP algorithm with Laplacian mechanism and margin
Data: V , d, f , b, privacy budget ε, failure probability α
Result: connection function h′, capacities k′

begin
Location Side:
for v ∈ V do

b′v ←− bv + Lap(1/ε)
Send b′v to server

Server Side:
for v ∈ V do

h′(v)←− argmin
u∈V

fu + d(u, v)

M ′ ←− {v ∈ V : h′(v) = v}
for v ∈M ′ do

L′
v ←− {u ∈ V : h′(u) = v}

N ′
v ←−

∑
u∈L′

v
b′u

k′
v ←− N ′

v + 2
ε

√
|L′

v| ln 2n
α

return h′, k′

to the number of connected clients. However, in the private setting, the noisy
estimate b′v may underestimate the true client count bv. Without an additional
margin, this underestimation would lead to an immediate failure at location v.
Consequently, we add a margin of 2

ε

√
|L′

v| ln 2n
α to the noisy count of connected

clients N ′
v to ensure that the total failure probability does not exceed α.

4.1 Analysis

We first show that Algorithm 2 ensures privacy for the presence of individuals.

Theorem 1. Algorithm 2 satisfies ε-LDP.

Proof. The presence or abscence of an individual at location v changes bv by at
most 1. Hence, the L1-sensitivity is 1. Algorithm 2 locally adds Laplacian noise
drawn from Lap(1/ε) to bv and therefore satisfies ε-LDP.

In the following we show that the output by Algorithm 2 satisfies the capacity
constraint with a probability of 1−α and if they are satisfied the expected costs
are bounded by (1+ 2

ε ln
2n
α )OPT . Let Ev denote the event that a failure occurs

at location v ∈ M ′. This means more clients are connected to v than it has
capacity:

∑
u∈L′

v
bu > k′v. For a failure to occur, the Laplacian noise added to

the clients in L′
v must be larger than the margin added to v, i.e.∣∣∣∣∣∣

∑
u∈L′

v

Lap(1/ε)

∣∣∣∣∣∣ > 2

ε

√
|L′

v| ln
2n

α
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We first bound Pr[Ev], and then apply union bound to derive a bound for the
total failure probability. For the first part, we use the following results.

Theorem 2 (Xian et al. [17]). Let X1, ..., Xk ∼ Lap(b) be independent, then
for t ≥ 2b

√
k ln 2k

β ,

Pr

[∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≤ t

]
≥ 1− β (4)

From Theorem 2, a bound on Pr[Ev] follows by setting t according to the margin.

Theorem 3. The total failure probability of Algorithm 2 is bounded by α.

Proof. Let v ∈ M ′, then it will be opened with a capacity of

k′v = N ′
v +

2

ε

√
|L′

v| ln
2n

α

A failure occurs if the capacity is smaller than the actual number of connected
clients.

Pr

[
Nv > N ′

v +
2

ε

√
|L′

v| ln
2n

α

]
≤ Pr

∣∣∣∣∣∣
∑
u∈L′

v

Lap(1/ε)

∣∣∣∣∣∣ > 2

ε

√
|L′

v| ln
2n

α


Given the total failure probability α, by Theorem 2 with k = |L′

v| and βv =
|L′

v|
n α

it follows that for t ≥ 2
ε

√
|L′

v| ln 2n
α ,

Pr[Ev] ≤
|L′

v|
n

α.

By applying union bound we get a bound on the total failure probability,∑
v∈M ′

Pr[Ev] ≤
α

n

∑
v∈M ′

|L′
v| = α.

Theorem 4. Assuming no failures occur, the expected cost of the solution pro-
duced by Algorithm 2 is at most(

1 +
2

ε
ln

2n

α

)
OPT.

Proof. Recall that the optimal cost OPT can be divided into the connection
cost, denoted by OPTconn and the facility cost OPTfac, i.e. OPT = OPTconn+
OPTfac. Computing the connection function h′ : V → V does not involve private
information. Since no failure occurs, h′ is a valid solution and will be the same
as the connection function h from the optimal non-private algorithm. Therefore,
the connection costs are the same as in the optimal solution:∑

v∈V

bvd(v, h
′(v)) = OPTconn
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Since, the connection function is the same, also the set of marked locations
M ′ is the same as M . Algorithm 2 opens v ∈ M ′ with a capacity of k′v =
N ′

v +
2
ε

√
|L′

v| ln 2n
α . This gives expected facility costs of

E

[ ∑
v∈M ′

(
N ′

v +
2

ε

√
|L′

v| ln
2n

α

)
fv

]
= OPTfac +

2

ε
ln

2n

α

∑
v∈M ′

√
|L′

v|fv

Finally, we obtain that our costs are

OPTconn +OPTfac +
2

ε
ln

2n

α

∑
v∈M ′

√
|L′

v|fv ≤
(
1 +

2

ε
ln

2n

α

)
OPT.

∑
v∈M ′

√
|L′

v|fv can be bounded with OPT since every location has at least one
client and therefore a facility is opened with a capacity of at least |L′

v| in the
optimal case.

In this paper, we do not incorporate penalty costs for facility failures. Our anal-
ysis can be extended to account for such failures by introducing an appropriate
penalty function and using Theorem 3 to bound the expected total costs.

5 Our Algorithm: ε-LDP Algorithm with Reconnection

The margin added to every marked node v ∈ M ′ in Algorithm 2 depends on
the number of connected locations |L′

v|. This leaves the question whether the
total margin added can be decreased while keeping the upper bound on the
failure probability. In the last step of the analysis of Algorithm 2, we bounded∑

v∈M ′

√
|L′

v|fv with OPT . In this section, we describe how by merging close
facilities, we can create less facilities with higher capacities and therefore find a
better bound for

∑
v∈M ′

√
|L′

v|fv. This decreases the multiplicative error from
O(log n) to constant under an additional assumption about the distribution of
the locations while introducing an additive error.

Additional Assumption In the following we assume that no location is isolated
from all other locations. Formally, for a given δ > 0, let B(v, δ) denote the ball
of radius δ centered on the location v ∈ V . A location u ∈ V is contained in the
ball B(v, δ) if d(u, v) ≤ δ. We assume that for δ > 0, γ ≥ 1 and every location
v ∈ V :

|B(v, δ)| ≥ γ2 ln2 n (5)

With γ = 1, n = 10, 000, 000, and δ = 1 km, our assumption implies that each
household has at least 259.79 other households within a 1 km radius. Given
that the average Japanese household size in 2022 was 2.25, this corresponds to
approximately 585 inhabitants within the same area, resulting in a population
density of 186 inhabitants per square kilometer. This confirms that our assump-
tion remains valid even in small village settings. For cases focusing on densely
populated areas, such as Tokyo, which has a population density of 6,300 people
per square kilometer [14], our assumption is even more strongly supported.
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5.1 Description of ε-LDP Algorithm with Reconnection

The ε-LDP algorithm with reconnection follows similar steps as Algorithm 2.
On the location side the Laplace mechanism is used to ensure ε-LDP. Then it
computes the optimal assignment ĥ and the set of marked locations M̂ without
using private data.

Instead of immediately opening every marked location with a margin as done
in Algorithm 2, we select a maximal set of marked locations that are pairwise
at least a distance of 2δ apart. This ensures that no two facilities opened are
within 2δ of each other. To compute this set, we first construct the graph G =(
M̂,

{
{u, v} : u, v ∈ M̂, d(u, v) ≤ 2δ

})
. Then, we run a greedy algorithm

to determine a maximal independent set I in G. In this process, the algorithm
repeatedly selects the node with the lowest facility value for which none of its
neighbors has already been chosen, ensuring that every pair of nodes in I is
separated by at least 2δ.

Before computing the capacities for the facilities in I, we update the con-
nection function ĥ. For every v ∈ I, we connect all nodes in B(v, δ) to v.
Moreover, all locations not covered by any ball are connected to the optimal
location restricted to the set I. Finally, similar to Algorithm 2, we add a margin

of 2
ε

√
|L̂v| ln 2n

α to the capacity, on top of the number of connected clients N̂v.

5.2 Analysis

The reconnection algorithm uses the same Laplace privacy mechanism as Algo-
rithm 2. Therefore, the proof of ε-LDP is straightforward.

Theorem 5. Algorithm 3 satisfies ε-LDP.

Proof. Similar to Theorem 1, the absence or presence can change bv by at most
1, resulting in a sensitivity of 1. Algorithm 3 applies the local Laplace mechanism
by adding Laplacian noise with parameter 1/ε.

In the following, we analyze the costs of the output of ε-LDP algorithm with
reconnection (Algorithm 3).

Lemma 1. |L̂v| ≥ γ2 ln2 n for every v ∈ I.

Proof. Because the set I has the property that the balls B(u, δ) for all u ∈ I do
not overlap, reconnecting all nodes in B(v, δ) to v together with the assumption
that |B(v, δ)| ≥ γ2 ln2 n establishes the lemma.

We bound the additional costs that occur due to the reconnection and then
bound the costs of the additional capacity used to open facilities compared to
the optimal assignment.

Lemma 2. With bavg = 1
n

∑
v∈V bv the extra reconnection cost are upper bounded,∑

u∈V

bu(fĥ(u) + d(u, ĥ(u)))−OPT ≤ 4δnbavg
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Algorithm 3: ε-LDP algorithm with reconnection
Data: V , d, f , b, privacy budget ε, failure probability α, δ
Result: connection function ĥ, capacities k̂
begin

Location Side:
for v ∈ V do

b′v ←− bv + Lap(1/ε)
Send b′v to server

Server Side:
for v ∈ V do

ĥ(v)←− argminu∈V fu + d(u, v)

M̂ ←− {v ∈ V : ĥ(v) = v}
G←− (M̂, {{u, v} : u, v ∈ M̂, d(u, v) ≤ 2δ})
I ←− maximal independent set of G
for v ∈ I do

ĥ(u)←− v for all u ∈ B(v, δ)

for u ∈ V s.t. ∄v ∈ I with u ∈ B(v, δ) do
ĥ(u)←− argminv∈I fv + d(u, v)

for v ∈ I do
L̂v ←− {u ∈ V : ĥ(u) = v}
N̂v ←−

∑
u∈L̂v

b′u

k̂v ←− N̂v + 2
ε

√
|L̂v| ln 2n

α

return ĥ, k̂

Proof. Consider a location v ∈ I from the maximal independent set. Since v is
in I, it is opened as a facility in both the optimal solution and in the solution
produced by Algorithm 3. We begin by bounding the cost of reconnecting every
node in B(v, δ) to v.

Take any u ∈ B(v, δ) so d(u, v) ≤ δ. Let w ∈ M be such that h(u) = w;
that is, in the optimal solution u is connected to w, but in the modified solution
ĥ(u) = v (i.e. u is reconnected from w to v).

In the optimal solution, the cost associated with u is bu
(
fw + d(u,w)

)
, while

in the reconnected solution the cost is bu
(
fv+d(u, v)

)
. Because both v and w are

marked in the optimal assignment, each prefer being connected to itself rather
than to the other, which gives us:

fv < fw + d(v, w) and fw < fv + d(v, w).

Using these inequalities along with the triangle inequality, we can bound the
reconnection cost:

bu
(
fv + d(u, v)

)
< bu

(
fw + d(v, w) + d(u, v)

)
≤ OPTu + 2buδ,
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when OPTu is the cost for u in the optimal solution, i.e. OPTu = bu(fh(u) +
d(u, h(u))). This shows that reconnecting the node u from w to v increases the
costs by at most 2buδ.

We now bound the cost of reconnecting nodes that are not within a δ-distance
of any location in I. In Algorithm 3, the optimal assignment for such nodes is
made to a node in I. Let u ∈ V , v ∈ I, and w ∈ M be such that h(u) = w

and ĥ(u) = v. Moreover, assume that there is no x ∈ I satisfying d(x, u) ≤ δ;
otherwise, we would have applied the previous case.

As before, we want to bound the cost incurred by u under the solution (ĥ, k̂),
which is bu (fv + d(v, u)). Because u was reconnected to v, it follows that w was
not selected in the maximal independent set. By the properties of such a set,
there must exist a neighbor of w in G that belongs to I; denote this neighbor by
v. Hence, we have d(v, w) ≤ 2δ.

Using this, we obtain

bu (fv + d(v, u)) ≤ bu (fw + d(w, u) + 2d(v, w)) ≤ OPTu + 4buδ.

This shows that the extra cost for reconnecting node u is at most 4δbu. Summing
over all nodes in V gives an overall additional reconnection cost bounded by∑

u∈V 4δbu ≤ 4δ n bavg.

In Theorem 4 we use the fact that
∑

v∈M ′

√
|L′

v|fv ≤ OPT for the analysis
of the total expected costs of the set of facilities M ′ opened by Algorithm 2. For
the set of opened facilities I by Algorithm 3 this statement no longer holds. In
the following we show that for I an additional additive factor of δn has to be
introduced.

Theorem 6. For the set of facilities I opened by the reconnection algorithm,
the sum of facility costs with exactly one client present at every location stays
bounded: ∑

v∈I

|L̂v|fv ≤ OPT + δn

Proof. We show the statement by proofing that a location introduces costs of
at most its part in OPT plus δ in the left hand side. Let u ∈ V , v ∈ I, w ∈ M
such that h(u) = w and ĥ(u) = v. The costs of u in the left hand side are fv
while on the right hand side it is at least fw + d(w, u). If u was not reconnected,
so v = w, the claim follows. For the case of a reconnection of u, we show,
fv ≤ fw + d(u,w) + δ. There are two cases in which u can be reconnected to v.
Firstly, u is close to the location v: u ∈ B(v, δ).

fv ≤ fw + d(w, v) ≤ fw + d(w, u) + d(u, v) ≤ fw + d(w, u) + δ

The first inequality, follows from the optimality before reconnection and the last
one from u ∈ B(v, δ). Secondly, if u /∈ B(v, δ) then u was reconnected to v
because it yielded the lowest costs:

v = argmin
x∈I

fx + d(x, u)
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The maximal independent set algorithm adds locations in ascending order of
facility costs. This means if w /∈ I one of its neighbors x ∈ I with fx ≤ fw was
chosen instead.

fv ≤ fx + d(u, x)− d(u, v) ≤ fx + d(u,w) + d(w, x)− d(u, v) ≤ fw + d(u,w) + δ

The first equality follows from the optimality after reconnection and the last one
follows from u /∈ B(v, δ) and d(w, x) ≤ 2δ. Therefore, in all cases the costs of u
on the left hand side are bounded by its part in the optimal solution OPTu plus
δ. For the sum of n locations this yields a bound of OPT + δn.

We are now ready to demonstrate the main statement of this paper.

Theorem 7. Algorithm 3 has a failure probability of at most α. Moreover, when
it succeeds, its expected cost is bounded by(

1 +
2

ε
ln

2n

α

1

γ lnn

)
OPT + δn(4bavg +

2

ε
ln

2n

α

1

γ lnn
).

Proof. The failure probability is established using an argument analogous to
that in Theorem 3. Moreover, by Lemma 1 and Theorem 6 we have∑

v∈I

√
|L̂v|fv ≤ 1

γ lnn

∑
v∈I

|L̂v|fv ≤ 1

γ lnn
(OPT + δn).

Following a similar reasoning as in Theorem 4, the lemma statement then follows.

When ε, α, and γ are constants, the multiplicative factor
(
1 + 2

ε ln
2n
α

1
γ lnn

)
remains O(1). Additionally, if the locations are sufficiently dense (i.e., δ is small),
the additive term δn(4bavg+

2
ε ln

2n
α

1
γ lnn ) becomes negligible compared to OPT .

While we assume bv ≥ 1 for all v ∈ V in this section, we present an analysis for
the case where bv ≥ 0 in the following one.

6 Additional Theoretical Results for bv ≥ 0

In this section we provide an analysis of our ε-LDP algorithm 3 that does not
require the presence of at least one client at every location. Until now, we as-
sumed that every location hosts at least one client (bv ≥ 1 for all v ∈ V ). This
assumption was essential for establishing

∑
v∈M ′

√
|L′

v|fv ≤ OPT in Section 4

and
∑

v∈I

√
|L̂v|fv ≤ (OPT + δn)/(γ lnn) in Section 5. Without this assump-

tion, scenarios with many facilities but only one client per location would lead
to a poor approximation, since the optimum (OPT ) depends on the number
of clients, while the costs of the private algorithm depend on the number of
locations.

In this section, we relax the assumption that every location has at least
one client. In particular, we now allow bv ∈ N≥0. We introduce two different
approaches. The first one assumes a total ratio ν between clients and locations,
while the second approach assumes that a location has client presence with a
probability of at least p.
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6.1 Client-Location Ratio Analysis

In the following we define ν = N
n as the ratio between the total number of clients

N and the number of locations n. Moreover, we assume that the ratio η = fmax

fmin

is constant. As discussed previously, we need a revised bound on
∑

v∈I

√
|L̂v|fv.

We observe that∑
v∈I

√
|L̂v|fv ≤ fmax

γ lnn

∑
v∈I

|L̂v| =
fmax

γ lnn

N

ν
≤ 1

γ lnn

η

ν
OPT.

Using this inequality, we follow the arguments in the proof of Theorem 7 to derive
an upper bound on the total expected cost:

(
1 + 2

ε ln
2n
α

1
γ lnn

η
ν

)
OPT +4δnbavg.

When ε, α, γ, η, and ν are constants, we obtain that the multiplicative factor(
1 + 2

ε ln
2n
α

1
γ lnn

η
ν

)
remains O(1).

6.2 Bernoulli Distributed Presence Analysis

In this section we assume the probability of the presence of at least one client
at a location is lower bounded.

Client distribution assumption Let v ∈ V , we assume that with constant prob-
ability p at least one client is present at v:

Pr[bv ≥ 1] ≥ p

In this scenario we propose two different analysis for our reconnection al-
gorithm. The first one assumes |L̂v| ≥ γ2 ln2 n and p > 1

γ while the second
one requires a stronger assumption about the distribution of locations with
|L̂v| ≥ γ2 ln3 n but drops the p > 1

γ requirement. For the analysis we remind the
reader of Hoeffding’s inequality.

Theorem 8 (Hoeffding’s Inequality [7]). Suppose X1, ..., Xn are indepen-
dent random variables taking values in [a, b]. Let X =

∑n
i=1 Xi denote the sum

and let µ = E[X] denote the expected value of the sum. Then, for t > 0,

Pr[X ≤ µ− t] < exp(−2t2/n(b− a)2) (6)

We now establish the relationship between the number of connected clients
Nv =

∑
u∈L̂v

bu and number of connected locations |L̂v| for a facility v ∈ I for
the setting of |L̂v| ≥ γ2 ln2 n.

Theorem 9. For a facility v ∈ I opened by Algorithm 3, p > 1/γ, and n suffi-
ciently large:

Pr[
√
Lv ≤ 1

lnn
Nv] ≥ 1− 1/n2
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Proof. Let v ∈ I be a facility opened by the reconnection algorithm. We intro-
duce the indicator variable Xu = 1{bu ≥ 1} for a connected location u ∈ L̂v to
indicate the presence of at least one client.

Pr[

√
|L̂v| ≤

1

lnn
Nv] ≥ Pr[

√
|L̂v| ≤

1

lnn

∑
u∈L̂v

Xu]

With our assumption about the client distribution we get Xu ∼ Ber(p) for all
u ∈ L̂v and E[

∑
u∈L̂v

Xu] = |L̂v|p. For our bound we use Hoeffding’s inequality

from Theorem 8 to bound the failure probability Pr[
∑

u∈L̂v
Xu ≤ lnn

√
|L̂v|].

We rewrite this probability to fit the framework of Hoeffding’s inequality. We

need to find t > 0 such that p|L̂v| − t = lnn

√
|L̂v|. This yields

t = p|L̂v| − lnn

√
|L̂v|

Since p > 1
γ is constant and |L̂v| ≥ γ2 ln2 n, t > 0 is satisfied. Hence, we can

apply Hoeffding’s inequality with Xu ∈ [0, 1] for all u ∈ L̂v.

Pr[
∑
u∈L̂v

Xu ≤ p|L̂v| − t] ≤ exp(−2|L̂v|(p−
lnn√
|L̂v|

)2)

With p > 1
γ , (p− lnn√

|L̂v|
)2 is lower bounded by the constant (p− γ)2 for all n.

exp(−2|L̂v|(p−
lnn√
|L̂v|

)2) ≤ exp(−2|L̂v|(p− γ)2) ≤ 1

n2

The second inequality holds for sufficiently large n and therefore concludes this
proof.

We now apply Theorem 9 to establish a bound for all facilities v ∈ I.

Theorem 10. With probability 1− 1
n , p > 1

γ and for sufficiently large n, for all
v ∈ I √

|L̂v| ≤
1

lnn
Nv

Proof. Follows from Theorem 9 and the union bound for at most n facilities
opened by Algorithm 3.

With the relationship between number of connected locations and number
of connected client we just established, we can bound the expected costs of the
Algorithm 3 in the setting of Bernoulli distributed client presence.

Theorem 11. Algorithm 3 has a failure probability of at most α. When it suc-
ceeds, with probability of at least 1− 1

n for large enough n the expected costs are
bounded by (1 + 2

ε ln
2n
α

1
lnn )OPT + 2nδ( 2ε ln

2n
α + bavg).



Facility Location Problem under Local Differential Privacy 17

Proof. The failure probability follows from the same argument as in Theorem 3
since it does not make assumptions about the client distribution. The reconnec-
tion costs are still bounded by 4δnbavg as shown in Lemma 2. We now bound

the costs of the additional margin: 2
ε ln

2n
α

∑
v∈I

√
|L̂v|fv. From Theorem 10 it

follows that with probability 1− 1
n ,∑

v∈I

√
|L̂v|fv ≤

∑
v∈I

1

lnn
Nvfv ≤ 1

lnn
(OPT + nδbavg)

This results in the bound of total expected costs of

(1 +
2

ε
ln

2n

α

1

lnn
)OPT + nδbavg(

2

ε
ln

2n

α

1

lnn
+ 4)

In the following we provide an analysis such that Algorithm 3 achieves the
same multiplicative error bound as in Theorem 7 of (1 + 2

ϵ ln
2n
α

1
γ lnn ) in the

setting of Bernoulli distributed clients under a stronger version of Equation 5.

Theorem 12. For a facility v ∈ I opened by Algorithm 3, |L̂v| ≥ γ2 ln3 n, p
constant and for n large enough.

Pr[

√
|L̂v| ≤

1

γ lnn
Nv] ≥ 1− 1

n2

Proof. The proof follows from the same arguments used in Theorem 9. We choose

t = p|L̂v| − γ lnn

√
|L̂v|. From |L̂v| ≥ γ2 ln3 n and p constant, t > 0 is satisfied.

We apply Hoeffding’s inequality to get

Pr[
∑
u∈L̂v

Xu ≤ p|L̂v| − t] ≤ exp(−2|L̂v|(p−
γ lnn√
|L̂v|

)2)

For large enough n, this probability is upper bounded by 1/n2.

We can now proof the constant approximation ratio in this setting.

Theorem 13. Under the assumption of |B(v, δ)| ≥ γ2 ln3 n for every v ∈ V ,
Algorithm 3 has a failure rate of α. If the algorithms succeeds, with probability
of at least 1 − 1

n for large enough n the expected costs are bounded by (1 +
2
ε ln

2n
α ln 1

γ lnn )OPT + nδbavg(
2
ε ln

2n
α

1
γ lnn + 4)

Proof. The proof follows from Theorem 10 and 11 in combination with the new
bound proved in Theorem 12.

7 Experimental Results

In this section, we evaluate the private algorithms with various parameter set-
tings on both synthetically generated and real-world datasets, comparing their
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performance against the non-private algorithm. We generate synthetic instances
using two distinct methods. The first employs the Matérn cluster point process [8,
11], which creates clustered instances where each cluster simulates a densely
populated neighborhood. By adjusting the generation parameters, we can con-
trol both the number of neighborhoods (centers) and the number of households
(locations) within each neighborhood. The second method uses a Poisson point
process, where the number of locations is drawn from a Poisson distribution, and
these locations are then uniformly distributed across a simulation window. We
also provide experiments for a dataset based on the city of Chiang Mai, Thai-
land. Our results show that for all instances, there exists a value of δ such that
the private reconnection algorithm outperforms the straightforward approach.

7.1 Synthetic Instances

We generate the locations’ positions using the Matérn cluster point process [8].
The process takes the tuple (n, γ, δgen) as input, where n is the expected total
number of locations, γ is a scaling parameter, and δgen defines the clustering
radius. Let ncenters be the number of centers generated and ni

daughter the number
of locations around center i. We require two conditions:
1. Each center should have at least γ2 ln2 n locations within δgen in expectation,
i.e. E[ni

daughter] ≥ γ2 ln2 n.
2. The total expected number of locations should be n, i.e. E

[∑ncenters
i=1 ni

daughter
]
=

n.
We model ni

daughter as a Poisson random variable with parameter λdaughter
and ncenters as a Poisson random variable with parameter λcenters. Since the ex-
pected value of a Poisson distribution equals its λ-parameter, we set λdaughter =
γ2 ln2 n, so that E[ni

daughter] = γ2 ln2 n. To ensure that the total expected num-
ber of locations is n, we choose λcenters = n

λdaughter
, since then E[ncenters] ·

E[ni
daughter] = λcenters · λdaughter = n.

The process first samples ncenters ∼ Poisson
(

n
γ2 ln2 n

)
and distributes these

centers uniformly at random on a 1 × 1 simulation window. For each center, it
samples ndaughter ∼ Poisson(γ2 ln2 n). Then, for each location, a radial coordi-
nate is drawn uniformly from [0, δgen] and an angular coordinate from [0, 2π],
which are subsequently converted to Cartesian coordinates. Because each loca-
tion lies at most δgen away from its center, the overall simulation window expands
to (1 + 2δgen)× (1 + 2δgen).

We generate the number of clients per location from a Gaussian distribution
with a mean of 2.5 and a standard deviation of 1.5. The resulting bv values are
then rounded to the nearest integer and restricted to the interval [0, 8]. For the
facility costs at each location, we draw values from a uniform distribution over
a specified interval.

Figure 1 depicts example instances generated by the Matérn cluster point
process with varying γ values. The number of centers ncenters depends inversely
on γ. Adjusting γ allows for the simulation of different location distributions.
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(a) γ = 2
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(b) γ = 5

Fig. 1: Clustered instances created by Matérn cluster point process

Our Results Figure 2 shows the normalized costs of the private reconnection
algorithm in comparison with the optimal non-private and straightforward pri-
vate algorithm. In this benchmark δ is increased from 0 to 1 with a step size
of 0.01 for the private reconnection algorithm. For every δ, 1000 instances are
generated with n = 1000, γ = 2, δgen = 0.2. The private algorithms are exe-
cuted with ε = 0.1 and α = 0.1. It can be seen that for clustered instances
the reconnection algorithm outperforms the straightforward approach for any δ.
Furthermore, the reconnection algorithm performs better in comparison to the
straightforward approach if no locations with facility costs close to 0 exist. For
locations with facility costs of almost 0 it is more likely that they connect all of
the other close locations anyways. Therefore, the reconnection part reconnects
fewer locations leading to more similar solutions.

Figure 3a depicts the performance of the private reconnection algorithm on
instances generated by a Poisson point process [11]. The generation process first
samples the number of locations nlocations according to a Poisson distribution
with parameter λ = n and then generates nlocations locations uniformly at ran-
dom distributed on a 1× 1 simulation window.

In Figure 3b the algorithms are compared for an varying privacy budget ε
from 0.01 to 1 with a step width of 0.001. For every ε, 100 instances are gener-
ated with n = 1000, γ = 2, δgen = 0.2, fv ∈ [0.1, 0.3]. The private algorithms are
executed with α = 0.1 and the reconnection algorithm uses δ = 0.2. The out-
come aligns with the theoretical results. A smaller ε leads to a larger coefficient
2
ε in the multiplicative approximation ratio. The reconnection algorithm keeps
the influence of this coefficient small by shifting the impact of ε into the small
additive error.

Figure 4 shows the costs depending on the size of the instances. For n ∈
[100, 5000] with a step size of 100, 500 instances with δgen = 0.2, γ = 2 and
fv ∈ [0.1, 0.3] are generated. The private algorithms are executed with ε = 0.1
and α = 0.1. Furthermore, the reconnection algorithm is also executed with
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(b) fv ∈ [0.1, 0.3]
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(c) fv ∈ [0, 0.2]

Fig. 2: Normalized costs for varying δ and facility cost ranges on clustered in-
stances

δ = 0.2. In alignment with the previous results, the reconnection algorithm
outperforms the straightforward algorithm.

Figure 5 presents the algorithm costs as the average number of clients per
location, bavg, increases. For this analysis, 100 instances are generated with pa-
rameters n = 1000, δgen = 0.2, and γ = 2. In each instance, every location is
assigned the same number of clients, bavg. The algorithms are executed for values
of bavg ranging from 1 to 100, and the costs are averaged across all instances.
The private algorithms are run with parameters α = 0.1, ε = 0.1, and δ = 0.2.

The results illustrate the impact of bavg on the additive costs of the private
reconnection algorithm 3. Additionally, they indicate that for scenarios where
the average number of clients is below 75 (e.g., individuals within a household),
our algorithm outperforms the straightforward approach.

7.2 Real-World Instances

For an application of the algorithm to the real world we generate a set of data
according to the technique described in “Submodularity Property for Facility
Locations of Dynamic Flow Networks” [16]. It uses data from the project “Urban
Observatory and Citizen Engagement by Data-driven and Deliberative Design:
A Case Study of Chiang Mai City” to generate a set of locations with clients.
We expand this data by first normalizing the position of the locations to a 1× 1
window and then uniformly at random assign facility costs from the interval
[0.1, 0.3]. The dataset consists of 431 different locations. Figure 6 depicts the
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Fig. 3: (a) Normalized costs against varying δ for Poisson point process instances
(b) Impact of different privacy budgets ε on clustered instances
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Fig. 4: Costs for varying n on clustered instances

Chiang Mai location and client distribution. Over 100 instances, the private
algorithms were executed with ε = 0.1 and α = 0.1.

Our Results Figure 7 shows that for δ = 0.1 the reconnection algorithm outper-
forms the straightforward approach. With this we can conclude that by executing
the reconnection algorithm with a correctly chosen δ our private reconnection
algorithm outperforms the straightforward approach.

8 Conclusion and Future Works

Without the super-set assumption, releasing results for the facility location prob-
lem under LDP leads to large errors because the noise added to each location is
significant relative to its original value. In this work, we introduce an algorithm
called “re-connection” that aggregates several values. This approach ensures that
the aggregated original value is sufficiently large, so that the relative impact of
the noise is reduced. As a result, our algorithm achieves a constant approxima-
tion ratio with only a small additive error. In the next version we plan to include
further experiments on real-world datasets. We believe that this technique can
be extended to other algorithms operating under LDP, and we are currently
exploring its application to additional combinatorial optimization problems.
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Fig. 5: Costs for varying bavg on clustered instances
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Fig. 6: Chiang Mai instance normalized to a 1× 1 window
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Fig. 7: Normalized costs for varying δ on real-world instances
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