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With growing demands for privacy protection, security, and legal compliance (e.g., GDPR), machine unlearning

has emerged as a critical technique for ensuring the controllability and regulatory alignment of machine

learning models. However, a fundamental challenge in this field lies in effectively verifying whether unlearning

operations have been successfully and thoroughly executed. Despite a growing body of work on unlearning

techniques, verification methodologies remain comparatively underexplored and often fragmented. Existing

approaches lack a unified taxonomy and a systematic framework for evaluation. To bridge this gap, this paper

presents the first structured survey of machine unlearning verification methods. We propose a taxonomy

that organizes current techniques into two principal categories—behavioral verification and parametric

verification—based on the type of evidence used to assess unlearning fidelity. We examine representative

methods within each category, analyze their underlying assumptions, strengths, and limitations, and identify

potential vulnerabilities in practical deployment. In closing, we articulate a set of open problems in current

verification research, aiming to provide a foundation for developing more robust, efficient, and theoretically

grounded unlearning verification mechanisms.
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1 Introduction
As global concerns over data privacy continue to grow, particularly with the enforcement of

regulations such as the General Data Protection Regulation (GDPR) [1], managing data throughout

its lifecycle has become a pressing compliance challenge. In response, machine unlearning has

emerged as a key technology for protecting data sovereignty. By selectively removing specific data

from trained models, it allows individuals to meaningfully exercise their right to be forgotten by

enabling models to forget the influence of that data. For example, in facial recognition systems,

when a user invokes their “right to be forgotten," traditional deletion methods merely remove stored

records. In contrast, machine unlearning goes further by erasing the data’s influence from the

model itself. Similarly, in intelligent customer service systems, when a user requests the deletion

of chat history, the unlearning mechanism updates the model to forget the relevant interactions,

ensuring that future responses are no longer shaped by the removed content.

Existing machine unlearning techniques can be broadly classified into exact unlearning [8, 20,

25, 39, 62, 116] and approximate unlearning [14, 31, 42, 82, 95]. Exact unlearning typically relies

on retraining the model to fully eliminate the influence of specific data, which is computationally

expensive. To improve the practicality of unlearning in real-world applications, a range of approxi-

mate methods have been proposed. These approaches strike a balance between effectiveness and

efficiency, enabling models to approximate forgetting at a significantly lower computational cost.

While algorithmic methods for machine unlearning offer mechanisms to erase specific training

data from models, concerns about trust and transparency persist—particularly due to the opaque,

server-side nature of most machine learning services. A central and unresolved question
remains: how can model providers convincingly demonstrate that the targeted data has
been thoroughly and irreversibly removed?

In response, a diverse range of verification techniques has emerged in recent years, drawing from

disciplines such as watermarking and fingerprinting [4, 12, 45, 127], privacy auditing [23, 90, 98],

and performance-based diagnostics [21, 22, 43, 63, 76]. These approaches aim to evaluate whether

a model retains residual information after an unlearning operation. However, the absence of a

standardized verification framework has led to troubling inconsistencies. For instance, Jeon et al.

[55] demonstrate that a model may be deemed “successfully unlearned" under one verification

criterion while simultaneously failing another—revealing a disconnect that undermines confidence

in current practices.

This lack of alignment raises serious security concerns. Service providers may selectively present

verification outcomes to give a false impression of compliance, masking incomplete data removal.

In addition, existing verification mechanisms contain security vulnerabilities [12, 96, 119, 125, 127]

that can be exploited by adversaries to covertly preserve target data while deceiving verification

algorithms into confirming successful unlearning. These issues pose fundamental threats to the

security and reliability of machine unlearning. Therefore, it is essential to establish a unified

verification framework and systematically evaluate existing methods. Despite this need, a structured

analysis of unlearning verification approaches is still lacking.

To address this gap, we present a comprehensive survey of the emerging field of unlearning

verification in machine learning. Based on the source of verification signals, we categorize existing

approaches into behavioral and parametric methods. Behavioral methods assess whether unlearning

has occurred by analyzing the model’s responses to inputs, while parametric methods focus on
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Fig. 1. An overview of our work.

examining the model’s internal parameters or their derivatives to determine whether the target

data has been effectively removed. By structuring our survey around this core distinction, we offer

a coherent framework that not only standardizes the terminology used across different methods but

also provides a clear lens for comparing their theoretical guarantees, applicability, and robustness.

Specifically, our contributions are as follows.

Contributions. 1) We present the first structured survey on unlearning verification, categorizing

existing methods into behavioral and parametric approaches based on their verification signals.

This classification clarifies core assumptions, enables systematic comparison, and highlights key

challenges in building reliable verification systems.

2) We define seven key evaluation dimensions: theoretical guarantees, access requirements,

sample-level verification, verification accuracy, reliance on pre-injected data, efficiency and scalabil-

ity, and method specificity. Based on these evaluation dimensions, we conduct a detailed comparison

to highlight the strengths and limitations of existing verification methods.

3) We further analyze the reliability risks associated with existing methods and outline unre-

solved issues and future directions, aiming to support the development of verifiable and auditable

unlearning systems.

Overview. This paper presents a systematic overview of existing verification techniques for

machine unlearning. The structure of this paper is illustrated in Figure 1. Specifically, Section 2

introduces the formal foundations of unlearning verification, including the definitions of exact and

approximate unlearning, the construction of verification predicates, and the roles and interactions

involved in the verification workflow. In Section 3, we review empirical methods that assess

forgetting based on observable model behavior, while Section 4 focuses on formal techniques

that rely on internal model information and offer theoretical guarantees. Section 5 presents a

comparative analysis of these approaches, examining their respective strengths, limitations, and

applicability. Section 6 discusses key reliability challenges in real-world verification scenarios,
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including training stochasticity, distribution shifts, and adversarial circumvention. Finally, Section 7

outlines open problems in the field and highlights promising directions for future research.

Table 1. A comparative analysis of various research studies in unlearning methodologies, where MU, FU, GU,
LLM-U, and GenAI-U denote Machine Unlearning, Federated Unlearning, Graph Unlearning, Large Language
Model Unlearning, and Generative AI Unlearning, respectively.  indicates full involvement, G# indicates
partial involvement, and # indicates no involvement. It can be observed that existing research methods do
not provide a comprehensive investigation into the verification of machine unlearning, and lack sufficient
discussion on these methods.

Research Main Area

Fingerprint

Verification

Privacy Analysis

Verification

Model Performance

Verification

Differential Privacy

Verification

Reproducibility

Verification

Vulnerability

Analysis

Multi-dimensional

Comparison

[80] Overview of MU G# G# G# G# G# G# #
[67] Privacy Risks in MU G# G# G# G# # # G#
[126] Overview of FU G# G# # # # # #
[89] Overview of MU # G# G# # # # #
[85] Overview of FU G# G# G# G# # # #
[114] Overview of MU

and LLM-U

# G# G# # # G# G#

[64] Overview of MU G# G# G# G# # G# #
[122] Overview of MU G# # G# G# # # #
[86] Overview of GU G# G# G# G# # # #
[34] Overview of LLM-U # G# G# # # G# #
[13] Privacy and Security

in MU

# # # # # # #

[77] Overview of MU # G# G# G# G# # #
[72] Overview of GenAI-U # G# G# # # # #
[104] Overview of MU G# G# G# G# # # #
[54] Overview of MU # # # G# # # #
[66] Overview of MU G# G# G# G# # G# #
[84] Overview of LLM-U # # G# # # # #
[73] Privacy and Security in MU G# G# # # # # #
Ours Overview of MU Verification        

Comparison with Existing Works. In recent years, numerous studies have surveyed the

landscape of machine unlearning (MU), covering foundational frameworks [54, 64, 66, 77, 80,

89, 104, 114, 122], privacy and security risks [13, 67, 73], federated learning [85, 126], generative

models [72], and unlearning in large language models [34, 84, 114]. However, as shown in Table 1,

existing surveys generally lack a systematic and dedicated investigation into unlearning verification.
In most of these works, verification is treated as an auxiliary component of model evaluation rather

than as a standalone research focus. Although some studies touch on verification based on model

performance [34, 64, 66, 126], privacy analysis [13, 67, 86, 104, 122], and principles such as differential

privacy or reproducibility [77, 89, 126], such discussions are often presented as background or

peripheral remarks. They lack a unified framework for systematic categorization or cross-method

comparison. More specifically, these surveys generally do not offer a structured comparison of

different verification approaches across core dimensions such as theoretical foundations and

evaluation accuracy. They also fail to examine practical considerations in real-world deployments,

including feasibility, computational cost, and access constraints. Moreover, potential vulnerabilities

and attack surfaces of existing verification techniques remain largely unexplored. These omissions

hinder a comprehensive understanding of the capabilities, assumptions, and limitations of current

unlearning verification mechanisms.

To bridge these gaps, this work presents the first systematic survey dedicated to verification

methods in machine unlearning. We introduce a unified classification framework that encompasses

both empirical and formal approaches, and assess existing methods across seven key dimensions:

theoretical guarantees, access assumptions, sample-level granularity, verification accuracy, reliance

on pre-injected data, efficiency and scalability, and method specificity. Our objective is to clarify

the applicability and limitations of current verification techniques, and to provide a structured
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foundation for future research on verifiablemachine unlearning in privacy-sensitive and compliance-

driven settings.

2 Background and Problem Formulation
2.1 Notation
To facilitate understanding of the unlearning mechanisms and their verification in this section, the

key notation used are summarized in Table 2.

Table 2. Overview of Key Notation.

Symbol Description

𝐴 Randomized learning algorithm

𝐷 Original training dataset

𝐷 𝑓 Forgotten subset of 𝐷

𝐷𝑟 Retained dataset, 𝐷 \ 𝐷 𝑓

𝑤 ∼ 𝐴(𝐷) Original model

𝑤 ′ = 𝑀 (𝑤,𝐷 𝑓 ) Unlearned model

𝑀 Unlearning mechanism

𝐻 Hypothesis space induced by 𝐴 on 𝐷

𝐻 ′
Hypothesis space after unlearning

𝐻𝑟 Hypothesis space induced by 𝐴 on 𝐷𝑟

𝑄𝐷𝑓
Query set generator based on 𝐷 𝑓

B Model behavior function

𝑇¬𝐷𝑓
Reference behavior set from models unexposed to 𝐷 𝑓

𝑉 (·, 𝐷 𝑓 ) Verification predicate for checking unlearning of 𝐷 𝑓

Remain Data Unlearned Data

Training Dataset

Training

Machine
UnlearningRetraining

Knowledge

Unlearned model

As same as possible

Erasing 
Influence 

Original model

Fig. 2. A framework diagram of machine unlearning

2.2 Machine Unlearning
2.2.1 Definition and Formulation. Machine unlearning refers to the process of removing the

influence of specific training samples from a previously trained machine learning model, while

aiming to preserve the model’s original performance as much as possible, as shown in Figure 2.
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Formally, let 𝐴 be a randomized learning algorithm which, when trained on a dataset 𝐷 , induces a

distribution over model parameters. This defines a hypothesis space:

𝐻 = Range(𝐴(𝐷)),
which contains all models that can be generated by 𝐴 when trained on 𝐷 .

Let 𝑤 ∼ 𝐴(𝐷) denote a specific model sampled from the distribution induced by training on

𝐷 . We refer to𝑤 as the original model, as it reflects the full influence of all training samples in 𝐷 .

Given a user request to eliminate the influence of a subset 𝐷 𝑓 ⊆ 𝐷 , we refer to 𝐷 𝑓 as the forgotten
dataset.

To fulfill such a request, an unlearning mechanism 𝑀 is introduced. This mechanism operates on

the original model𝑤 and the forgotten dataset 𝐷 𝑓 , and produces a unlearned model:

𝑤 ′ = 𝑀 (𝑤,𝐷 𝑓 ), 𝑤 ′ ∈ 𝐻 ′,

where 𝐻 ′
denotes a new hypothesis space resulting from applying𝑀 to models in 𝐻 .

Based on the extent to which the influence of 𝐷 𝑓 is removed, existing machine unlearning

methods can be broadly classified into two categories: exact unlearning and approximate
unlearning. Exact unlearning aims to completely forget 𝐷 𝑓 , requiring that the resulting model

be indistinguishable from a model trained from scratch on the retained dataset 𝐷 \ 𝐷 𝑓 , specifically

in terms of its parameters. In comparison, approximate unlearning relaxes this requirement by

allowing the resulting model to approximate the behavior or parameters of the retrained model.

This relaxation enables improvements in computational efficiency, scalability, and real-world

deployability.

2.2.2 Exact Unlearning. Exact unlearning refers to the complete elimination of the influence of the

forgotten subset 𝐷 𝑓 from a trained model. The objective is to produce a model whose distribution

is indistinguishable from that induced by retraining on the retained dataset 𝐷𝑟 = 𝐷 \ 𝐷 𝑓 .

Let𝐴 be a randomized learning algorithm, and let𝑀 be an unlearning mechanism that transforms

a specific model𝑤 ∼ 𝐴(𝐷) into a new model𝑤 ′ = 𝑀 (𝑤,𝐷 𝑓 ). Exact unlearning is satisfied if the

distribution of the unlearned model𝑤 ′
matches that of retraining on 𝐷𝑟 , that is,

𝑤 ′ ∼ 𝐴(𝐷𝑟 ).
Equivalently, the unlearned model𝑤 ′

is required to lie within the hypothesis space

𝐻𝑟 = Range(𝐴(𝐷𝑟 )),
which represents the set of models that can be obtained by training 𝐴 on the retained dataset. This

condition ensures that the influence of 𝐷 𝑓 is eliminated to the same extent as if those samples had

never been included during training.

The most straightforward exact unlearning approach involves full retraining from scratch under

the original training setup, often abbreviated as Scratch. However, due to its high computational

cost, recent work has proposed more efficient exact methods, which can be broadly categorized

into SISA and non-SISA approaches.

SISA Methods. Bourtoule et al. [8] propose the Sharded, Isolated, Sliced, and Aggregated (SISA)
training framework, which partitions the training dataset into disjoint shards 𝐷1, 𝐷2, . . . , 𝐷𝐾 , each

trained independently to produce isolated sub-models 𝑤1,𝑤2, . . . ,𝑤𝐾
. The final model is then

obtained by aggregating these sub-models:

𝑤 = Agg(𝑤1,𝑤2, . . . ,𝑤𝐾 ).
When a deletion request targets data 𝐷 𝑓 ⊆ 𝐷 𝑗 , only the affected shard 𝐷 𝑗 is updated. The

remaining data 𝐷 ′
𝑗 = 𝐷 𝑗 \𝐷 𝑓 is retrained to obtain an updated sub-model𝑤 𝑗 ′

, and the full model is
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re-aggregated as:

𝑤 ′ = Agg(𝑤1, . . . ,𝑤 𝑗 ′ , . . . ,𝑤𝐾 ).

By localizing the influence of each data point to a specific shard, SISA enables exact unlearning

while avoiding full retraining of the entire model.

Subsequent works [3, 20, 25, 39, 62, 116] extend the SISA design to improve unlearning efficiency

and model performance. ARCANE [116] partitions the data by class and applies ensemble learning,

transforming full-model retraining into per-class slice updates. Aldaghri et al. [3] propose a coding-

based sharding protocol, enabling lightweight sub-model recomputation through data-encoded

representations. Modular adapter-based retraining [25, 39, 62] decouples update-sensitive compo-

nents from the backbone model, while Chowdhury et al. [20] introduces sequential slice training

that enables localized fine-tuning. These designs aim to maintain the semantic guarantee of exact

unlearning while minimizing the computational burden.

Non-SISA Methods. Non-SISA methods refer to machine unlearning approaches that do not

adopt the "Sharded, Isolated, Sliced, and Aggregated training" paradigm. Specifically, Cao et al.

[11] propose a method that transforms the learning algorithm into a form dependent on a small

number of summations, allowing training process to be based on these summations rather than

individual data points. During the unlearning process, it only requires subtracting the influence of

the deleted data from the summations and updating the model. Recently, Liu et al. [71] introduce a

fast retraining method using a distributed Quasi-Newton model update algorithm for data erasure,

which is suitable for federated learning scenarios.

2.2.3 Approximate Unlearning. Compared to exact unlearning, approximate unlearning relaxes

the requirement of strict model equivalence. Specifically, it does not require the unlearned model

𝑤 ′
to lie exactly within the hypothesis space 𝐻𝑟 = {𝐴(𝐷𝑟 )}. Instead, the unlearning mechanism

generates a model that approximates this target in one of the following ways:

(1) Parameter-space approximation: The unlearned model𝑤 ′
lies within a hypothesis space

𝐻 ′
that is close to 𝐻𝑟 in terms of model parameters.

(2) Behavioral-space approximation: The unlearned model𝑤 ′
behaves similarly to models in

𝐻𝑟 on inputs related to the forgotten dataset 𝐷 𝑓 , thereby achieving approximate forgetting.

Parameter-space approximation. Parameter-space approximation aims to ensure that the

unlearned model𝑤 ′
remains within a bounded distance from a model obtained via exact retraining.

To achieve such bounded distance, researchers have proposed a range of methods, primarily

including first-order approaches based on noise injection or projected gradients, and second-order

approaches that utilize Hessian-based corrections.

First-order Methods. First-order methods rely on gradient information to control the shift in

model parameters, typically by introducing noise or applying projection techniques to limit changes

during model updates. For instance, studies such as [18, 19] introduce carefully designed random

perturbations in each update step to bound the influence of deleted samples, thereby achieving

approximate unlearning in the parameter space.

Second-order Methods. Second-order methods leverage the Hessian matrix or its approximations

to more precisely adjust model parameters, aiming to approximate the retraining effect in parameter

space. A representative example is the Newton Step correction mechanism proposed in [44], which

updates the model weights using the inverse of the Hessian of the loss function, effectively canceling

out the gradient contributions of the deleted data. Subsequent works [60, 87] build upon this idea

by developing Hessian estimation techniques that do not require access to the original training

data, extending applicability to scenarios such as federated learning and recommender systems.
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Behavioral-space approximation. Behavioral-space approximation refers to ensuring that

the unlearned model𝑤 ′
exhibits similar behavior to a retrained model when evaluated on specific

inputs, even if their parameters differ. Specifically, these methods can be categorized into the

following types.

Fine-tuning (FT)-based methods. These methods construct carefully designed datasets and fine-

tune the model so that it misclassifies the data intended to be forgotten, making the model behave

as if it has never encountered those samples. Several works [14, 31, 43] propose modifying the

labels of the data to be forgotten and fine-tuning the model on the resulting modified dataset. This

process disrupts the association between the forgotten data and its correct label, allowing the

model to gradually forget the data that no longer needs to be retained. Recently, to enhance privacy

protection for forgotten data, some studies explore unlearning methods that do not require access

to the forgotten data. Tarun et al. [95] implement unlearning by fine-tuning using only a subset of

the retained dataset and incorporating a specially constructed noise matrix. Chundawat et al. [22]

extends the method from [95] to apply to scenarios without the original data, further improving

privacy protection.

Gradient Ascent (GA)-based methods. These methods, as demonstrated by Liu et al. [70], Wu

et al. [111], apply gradient ascent to the loss computed on the data to be forgotten. Recently, [61]

leverages the idea of gradient ascent to design an unlearning verification method tailored for text

generation tasks in large multimodal models. This process degrades the model’s performance on

that data, thereby driving its behavior closer to that of a model that has never encountered the

forgotten data, and ultimately achieving approximate unlearning in the behavioral space.

Influence-based methods. These methods aim to assess and eliminate the influence of specific

training samples on model predictions or outputs. By leveraging influence functions to quantify

how the presence of a data point affects the model’s output, they enable fine-grained control over

the retention of training information. Golatkar et al. [37] propose a weight-sanitization approach

that adjusts model parameters using the fisher information matrix (FIM). Golatkar et al. [38]

introduce a neural tangent kernel linearization technique to more accurately estimate the direction

of influence, and combine it with noise injection to mitigate residual effects. Building on influence

function theory, Peste et al. [81] present SSSE, a practical and scalable unlearning method. This

method approximates the Hessian matrix using an empirical FIM and uses the Sherman-Morrison

formula to efficiently compute its inverse, allowing the removal of the deleted sample’s influence

without requiring access to the full training set. It is important to emphasize that these methods are

fundamentally different from parameter-space approximation approaches, as they aim to eliminate

the influence on model behavior rather than constrain differences in parameter space.

Knowledge Distillation(KD)-based Methods. Knowledge distillation [42, 82] is a technique that

improves a student model by transferring behavioral patterns or soft targets from a more complex

teacher model. In the context of machine unlearning, these methods treat the student as the

unlearned model and achieve forgetting by blocking the transfer of behavior patterns from the

teacher that are associated with the data to be forgotten. Chundawat et al. [22] introduce a band-

pass filter to remove data containing forgotten information, ensuring that the student model only

receives the retained information. Chundawat et al. [21] establish a teacher-student framework

with both competent and incompetent teachers, using selective knowledge transfer to enable the

student model to forget certain information. Kurmanji et al. [63] present the SCRUB method, which

effectively achieves forgetting by minimizing KL divergence and task loss on non-forgotten datasets

while maximizing KL divergence on forgotten datasets.

Membership Game-based Methods. These methods focus on aligning membership-related behavior,

aiming to ensure that the final model exhibits membership inference responses on the forgotten

dataset 𝐷 𝑓 that are indistinguishable from those of a model that has never encountered 𝐷 𝑓 . In doing
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so, they seek to eliminate observable behavioral traces of the forgotten data. Recent works [23, 90, 98]

formalize this process as a game between the unlearning mechanism and an adversary, where the

model’s behavior is optimized to evade membership inference attacks. However, these methods

rely exclusively on behavioral signals related to membership privacy over the forgotten dataset,

and their effectiveness heavily depends on the strength of the specific attack strategy used. As a

result, their reliability and generalizability are highly sensitive to the choice and quality of the

underlying inference mechanism.

Table 3. Comparison of unlearning methods. Approx. (Param.) denotes approximate unlearning based on
parameter-space approximation, while Approx. (Behavior) refers to behavioral-space approximation.

Aspect Exact Unlearning Approx. (Param.) Approx. (Behavior)

Goal Achieve a model

unexposed to the

forgotten data.

Similar in parameter

space to a model

unexposed to the

forgotten data.

Similar in behavioral

space to a model

unexposed to the

forgotten data.

Methods

• Scratch

• SISA

• Non-SISA

• First-order

• Second-order

• FT, GA

• Influence, KD

• Membership games

Parameter

Equivalence

Yes Approximate N/A

Behavioral

Equivalence

Yes N/A Approximate

2.3 Machine Unlearning Verification

Request to 
delete data 𝐷𝑓 Unlearning 𝐷𝑓

Model Provider

Original model Unlearned model

Information from 
unlearned model

Information from data 𝐷𝑓

Auditor

Determine whether the 
unlearned model still retains 
information about 𝐷𝑓

Data Provider

Fig. 3. The process of machine unlearning verification

We structure our discussion of machine unlearning verification methods around four guiding

questions: What, Why, Who, and How. These questions collectively outline the fundamental

form, motivation, key participants, and technical landscape of unlearning verification.

What is unlearning verification? An unlearning verification method aims to determine

whether a machine learning model has successfully forgotten a specified subset of its training data.
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To formalize this notion, we express unlearning verification as the evaluation of a binary predicate:

𝑉 (𝑤 ′, 𝐷 𝑓 ) ∈ {0, 1}
where 𝑉 (𝑤 ′, 𝐷 𝑓 ) = 1 indicates that unlearning has succeeded, meaning no residual influence of

𝐷 𝑓 is detectable in the model𝑤 ′
; whereas 𝑉 (𝑤 ′, 𝐷 𝑓 ) = 0 denotes that the unlearning process has

failed to fully remove the impact of 𝐷 𝑓 .

Why is unlearning verification necessary? The necessity of unlearning verification arises

from both regulatory and methodological imperatives. From the regulatory and trust perspective,

unlearning verification provides the foundation for accountability in machine learning systems.

As models increasingly incorporate sensitive or legally protected data such as medical records,

financial transactions, or user activity logs, the ability to verifiably erase such data becomes not only

a best practice but also a legal requirement. Regulatory frameworks such as the GDPR explicitly

mandate the right to be forgotten. However, in the absence of a trustworthy verification mechanism,

any claim of compliance remains unsubstantiated. Unlearning verification addresses this gap by

enabling model providers to generate verifiable compliance artifacts, while allowing users and

auditors to independently assess whether data deletion has genuinely occurred.

From the methodological perspective, unlearning verification is essential for assessing the

soundness and reliability of approximate unlearning. As discussed in Section 2.2.3, approximate

unlearning, in contrast to exact unlearning, involves deliberate trade-offs among performance,

efficiency, and feasibility. It typically aims for the model’s parameters or behavior to converge

toward the state of a model that has never been exposed to the forgotten data. Under this relaxed

semantic assumption, unlearning verification serves as a critical tool for quantifying the extent of

forgetting, helping to answer the question of whether the model has sufficiently forgotten the data.

Thus, unlearning verification is not only a supporting mechanism for regulatory compliance, but

also an indispensable component in the design and evaluation of unlearning methods.

Who participates in the verification process? The unlearning verification process typically

involves three main entities: the data owner, who requests the removal of a specified subset 𝐷 𝑓

from the training data; the model provider, who applies an unlearning mechanism and returns a

model 𝑤 ′
that is claimed to have forgotten 𝐷 𝑓 ; and the auditor, who evaluates whether 𝑤 ′

still

retains information about the forgotten data, as illustrated in Figure 3.

While these roles are conceptually distinct, in practice they may overlap depending on the

deployment context. For instance, in user-centric settings, the data owner may also act as the

auditor. In contrast, in scenarios involving outsourced training or institutional oversight, verification

is often delegated to an independent third party responsible for assessing compliance on behalf of

users or regulatory authorities.

How to perform unlearning verification? The core objective of unlearning verification is

to determine whether a model has successfully removed the influence of a specified data subset.

As discussed in Section 2.2, the purpose of existing unlearning methods is to align the model’s

parameters or behavior with those of a model that has never seen the forgotten data, either

approximately or exactly. Accordingly, we categorize unlearning verification methods into two

types: behavioral unlearning verification and parametric unlearning verification, which evaluate

whether the forgotten data remains in the model from the perspective of external behavior or

internal parameters, respectively.

Behavioral unlearning verification. Behavioral unlearning verification aims to determine

whether an unlearned model has successfully forgotten the target data by evaluating its

behavior on specific inputs. These methods define a model’s behavioral signature and assess

the predicate 𝑉 (𝑤 ′, 𝐷 𝑓 ) based on observable behavioral changes. In particular, the evaluation

focuses on the model’s behavior B(𝑤 ′, 𝑄𝐷𝑓
(𝐷 𝑓 )) over a designated query set𝑄𝐷𝑓

(𝐷 𝑓 ), which
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Verification Methods

Behavioral Unlearning

Verification

Fingerprint Verification

Passive Fingerprint.

[115, 125]

Active Fingerprint [36, 94]

[33, 46, 48, 74, 92, 112, 124]

Privacy Analysis

Verification

Data Inference[23, 61, 98]

[15, 49, 69, 75, 88, 90, 100]

Data Reconstruction

[7, 43, 50, 113]

Model Performance

Verification

Task Quality

[21, 22, 43, 63, 76, 79]

Relearn Time[37, 38, 81]

Model Output

[37, 38, 56, 81, 99]

Model Sensitivity [6, 129]

Parametric Unlearning

Verification

Differential Privacy

Verification

First-order

[18, 19, 52, 78, 101, 107]

Second-order

[44, 60, 83, 87, 120]

[17, 24, 68, 110, 118]

Reproducible Verification

PoUL[96, 119]

PoUL with Cryptography

[27, 109]

Fig. 4. A taxonomy of unlearning verification methods.

consists of inputs related to the forgotten data 𝐷 𝑓 . To verify unlearning, the auditor compares

this behavior to a reference behavior set 𝑇¬𝐷𝑓
, representing the expected behavior of models

that have never seen 𝐷 𝑓 . If B(𝑤 ′, 𝑄𝐷𝑓
(𝐷 𝑓 )) aligns closely with 𝑇¬𝐷𝑓

, the model is considered

to have forgotten the data.

Parametric unlearning verification. These methods evaluate whether unlearning has been

achieved by measuring the difference in parameter space between the target model and a

reference model that has never been exposed to the forgotten data. If the difference falls

below a predefined threshold, the model is considered to meet the unlearning criterion. These

approaches rely on specific theoretical assumptions, as discussed in Section 4. Compared

to behavioral verification, parameter-based verification typically offers greater reliability.

However, it often requires access to internal model parameters or training dynamics, and may

incur higher computational costs.These methods validate forgetting by assessing the difference
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between the parameters of the target unlearned model and the parameter space 𝐻 ′
of models

that have never seen the forgotten data. Representative approaches include differential privacy

verification and reproducibility verification. Compared to behavioral methods, parametric

verification typically provides more reliable results. However, it generally requires access to

internal model parameters or training dynamics, and often incurs higher computational costs.

These two paradigms differ substantially in terms of verification strength, computational effi-

ciency, and deployment feasibility. Figure 4 provides an overview of this taxonomy and serves as a

reference framework for the analysis in the following sections.

3 Behavioral Unlearning Verification.
Existing behavioral verification methods can be classified into three categories: fingerprint methods,

privacy analysis methods, and model performance methods. Their behavioral constructions are

summarized in Table 4.

Table 4. Behavioral Definitions across Behavioral Verification Methods.

Aspect Fingerprint Privacy Analysis Model Performance

Behavior Detection of

fingerprint

Retention of

privacy information

Model

performance

Intuition Models not trained on 𝐷 𝑓

do not show its fingerprints

Models not trained on 𝐷 𝑓

should not leak its privacy

Models trained with and without

𝐷 𝑓 perform differently on 𝐷 𝑓 .

Types of Behavior Passive Fingerprint,

Active Fingerprint

Data Inference,

Reconstruction,

Weight analysis

Accuracy, Relearn Time,

Model Output,

Model Gradient

3.1 Fingerprint
In machine learning, fingerprints refer to a specific response pattern that a model develops as

a result of having been exposed to certain training data. This pattern typically manifests in the

model’s behavior when processing particular inputs.

Fingerprint verification methods construct a query set 𝑄𝐷𝑓
to reveal whether the model still

retains fingerprint information associated with the forgotten data 𝐷 𝑓 . The model’s responses to

these queries are denoted as B, indicating whether any residual fingerprints are exposed during

evaluation. The rationale behind the behavior set 𝑇¬𝐷𝑓
is grounded in a simple intuition: a model

that has never encountered 𝐷 𝑓 should not exhibit distinctive responses (fingerprints) to inputs

related to it. Therefore, if a model that claims to have unlearned 𝐷 𝑓 still exhibits fingerprint-like

behavior on the query set, it suggests that the model has not passed the unlearning verification.

Fingerprint verification methods can be categorized as active or passive, based on whether the

unlearned data has undergone prior proactive intervention.

3.1.1 Passive Fingerprint. Passive fingerprint verification does not rely on any modification to the

training data. Instead, it infers the presence of forgotten information by observing differences in

the model’s behavior under natural conditions or minimally perturbed inputs. A common strategy

in this category is to use adversarial examples as post hoc probes to detect residual responses in

the model parameters, thereby assessing whether the unlearning process has been truly effective.

Adversarial example techniques refer to methods for generating inputs with imperceptible

perturbations that intentionally trigger incorrect or unstable outputs in machine learning models [9,

16, 41, 65, 93, 106, 130–134]. Although originally developed to test model robustness and to design
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attacks, these techniques have increasingly been repurposed for auxiliary objectives such as

unlearning verification. By using adversarially perturbed inputs as diagnostic probes, researchers

can assess whether a model remains sensitive to specific data points that are supposed to have

been erased.

Xuan and Li [115] propose a white-box adversarial verification method for machine unlearning,

termed Unlearning Mapping Attack (UMA), which is applicable to both classification and generative

models. In classification tasks, UMA perturbs known forget samples to check whether the model

still produces the same predictions as before unlearning. If it does, this suggests that the model

retains latent representations associated with the forgotten class, indicating incomplete unlearning.

This residual sensitivity implies that decision boundaries related to the forgotten data have not

been effectively removed. In generative tasks, UMA applies adversarial perturbations to masked

inputs to induce the reconstruction of forgotten content. If the model is still capable of producing

outputs that resemble the original data, it demonstrates that structural knowledge of the forgotten

samples persists, further undermining the effectiveness of the unlearning process.

Similarly, Zhang et al. [125] propose UnlearnDiffAtk, which constructs adversarial prompts

specifically for diffusion models. If the model, after unlearning, still generates forgotten content in

response to these prompts, it is considered to have failed the unlearning verification.

3.1.2 Active Fingerprint. Active fingerprint verification involves constructing or modifying specific

data samples related to the unlearning target before or during training, in order to embed identifiable

fingerprint information. Several active fingerprint methods construct verifiable fingerprints for

unlearning verification by strategically modifying the target data to be forgotten, such that only

models exposed to the data can correctly identify them. For instance, Goel et al. [36] propose

Inter-class Confusion Testing, which generates adversarially perturbed samples during training

and later evaluates the model’s ability to recognize these samples after unlearning. If the model

fails to recognize them, the unlearning is considered successful. In the context of federated learning,

Tam et al. [94] introduce adversarial noise as validation markers to assess whether information

from a specific domain has been effectively removed. Similarly, Gao et al. [33] explore the use of

label flipping and adversarial perturbations to construct verification signals for unlearning.

In addition, several studies have demonstrated the feasibility of using backdoor mechanisms

for unlearning verification. Essentially, a backdoor attack is a form of data poisoning in which

the attacker injects trigger-embedded samples into the training data [46, 51, 105, 121, 123]. Once

compromised, the model behaves normally on clean data but produces targeted incorrect predictions

when presented with inputs containing the trigger. This attack paradigm can be repurposed for

unlearning verification: the model owner deliberately implants backdoor triggers into the model,

and after executing unlearning algorithms, checks whether the model’s predictions on the trigger

inputs have changed. If they remain the same, unlearning is deemed to have failed; otherwise,

it is considered successful. Recently, studies [46, 48] have proposed backdoor-based verification

strategies, in which specific triggers are embedded into target data during training. In the verification

phase, the model’s response to these trigger-embedded queries is monitored to determine whether

it still predicts them as the user-specified target class. This approach enables black-box unlearning

verification without requiring access to the model’s internal parameters. Zhang et al. [124] propose

DuplexGuard, which associates each forget subset with a corresponding emergent subset. The

model exhibits no backdoor behavior before unlearning, but once the forget subset is removed,

the backdoor effect on the emergent subset becomes active, serving as a verification signal. In

study [92], users inject unique backdoor triggers into their own data, and the model’s response to

these triggers after deletion requests is statistically evaluated using hypothesis testing. This provides
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a quantitative and high-confidence verification mechanism that remains robust against state-of-

the-art backdoor defenses and adaptive server behaviors. Xu et al. [108] propose IndirectVerify,

a novel unlearning verification scheme that constructs influential sample pairs, consisting of a

trigger sample and a corresponding reaction sample. By perturbing the trigger sample to influence

the classification of the reaction sample via gradient matching, the method ensures that successful

unlearning modifies the prediction of the reaction sample.

In addition to backdoor,Izzo et al. [53] propose the Feature Injection Test to evaluate unlearning

effectiveness. The method introduces an artificial feature into the target data that is activated for

only a small subset of samples and is highly predictive of the label. During training, the model

assigns a large weight to this feature due to its strong correlation with the output. If the target

samples are successfully deleted, an effective unlearning mechanism should cause the weight

associated with this feature to drop significantly. Lu et al. [74] propose WaterDrum, a black-box

unlearning verification method for large language models that adopts an active fingerprinting

paradigm. It embeds robust text watermarks, parameterized by private cryptographic keys, into

the training data. Models trained on such data emit outputs containing identifiable signals, which

vanish once the data is successfully unlearned. Verification is conducted privately by the data

owner using their key to detect the presence or absence of the watermark.

3.2 Privacy Analysis
Privacy analysis verification methods implement unlearning verification by analyzing whether

the unlearned model retains any privacy information about the forgotten data 𝐷 𝑓 . In this method,

the query set 𝑄𝐷𝑓
consists of data points from 𝐷 𝑓 itself. The behavior B refers to whether the

model retains any privacy information about 𝐷 𝑓 . The fundamental principle behind constructing

the reference behavior set𝑇¬𝐷𝑓
is that models that have never encountered 𝐷 𝑓 data should not leak

any membership information about 𝐷 𝑓 under the privacy analysis module. If the unlearned model

leaks privacy information about 𝐷 𝑓 , it indicates that the model has failed the privacy analysis

verification. This type of verification primarily utilizes the following privacy analysis techniques:

data inference, data reconstruction, and weight analysis.

3.2.1 Data Inference. Existing data inference approaches for unlearning verification can be broadly

categorized into two types: Membership Inference (MI) and Non-Membership Inference (NMI). MI

methods aim to determine whether the target model has encountered a specific data point during

training, and have been widely used to distinguish between training and unseen data [15, 91]. Some

studies further adapt MI to the unlearning verification setting, where a data point is considered

successfully unlearned if it is inferred as a non-member after the unlearning request [23, 69, 88, 90,

98]. Additionally, Kim et al. [61] proposes an implicit membership inference framework tailored

for large vision-language models in text generation tasks, aimed at evaluating whether the model

has truly forgotten sensitive information related to specific entities. In this approach, Wikipedia-

style summaries of target entities are used as proxies for private information. By measuring the

semantic similarity between the model’s generated output and the entity summary, the method

indirectly assesses whether memorization persists. Specifically, if the output shows significantly

higher similarity to the target entity’s description than to that of unrelated entities, it is considered

indicative of residual membership bias, suggesting incomplete forgetting. This method does not

require access to model parameters and is applicable in black-box settings.

In contrast, NMI focuses on identifying data points that were previously memorized by the

model but should have been forgotten following an unlearning operation. Some works [15, 49]

have proposed inference methods that leverage discrepancies between the outputs of the original

and unlearned models. Lu et al. [75] extend this idea to label-only black-box settings, which infer
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unlearning success based on the amount of perturbation required to change predicted labels, even

when only hard labels are accessible. Further, Wang et al. [100] systematically introduce NMI into

the unlearning verification framework, utilizing model state transitions to enhance the reliability of

unlearning validation. To enable more efficient verification, their method operates in a white-box

setting and directly performs inference on the target model, eliminating the need to train multiple

shadow models.

3.2.2 Data Reconstruction. Data reconstruction is a class of privacy analysis techniques that aim

to recover specific features of target data from a given model [10, 32, 47]. Some studies [43, 113]

show that such techniques can be used to evaluate whether a model successfully forgets particular

data. Graves et al. [43] demonstrate that class-level reconstruction reveals whether a model retains

the semantic information of certain categories; however, it lacks the granularity needed to verify

forgetting at the sample level. To address this limitation, Xu et al. [113] propose a parameter-driven

reconstruction framework that formulates an optimization objective based on implicit bias theory.

Their method enables direct recovery of previously seen training samples from model parameters,

without requiring labels or external triggers, making it well-suited for general-purpose unlearning

verification.

The core idea behind these approaches is that a properly unlearned model should no longer be

able to reconstruct information associated with the forgotten data. If such information remains

recoverable, it indicates that the unlearning process is incomplete. Recently, some works [7, 50]

have introduced a more direct verification approach: attempting to reconstruct the specific data

samples that have been requested for deletion. If a reconstructed sample matches one of these

forgotten targets, the data is considered not effectively forgotten. Bertran et al. [7] implement

reconstruction-based verification for unlearned samples in simple models; however, their approach

does not scale well to complex deep neural networks. To address this limitation, Hu et al. [50] apply

gradient inversion techniques to enable the reconstruction of unlearned samples in more complex

architectures, demonstrating improved effectiveness in realistic settings.

3.3 Model Performance
Model performance unlearning verification methods aim to evaluate the effectiveness of unlearning

by assessing the model’s performance on forgotten data. In this method, the query set𝑄𝐷𝑓
consists

of data points from 𝐷 𝑓 . The behavior B represents the model’s performance on the query set

𝑄𝐷𝑓
. The intuition behind constructing the behavioral set 𝑇¬𝐷𝑓

is that models exposed to 𝐷 𝑓

exhibit significantly different performance on tasks related to 𝐷 𝑓 compared to those that have not

encountered it. Existing performance-based metrics for unlearning verification include task quality,

relearn time, model output, and model sensitivity.

3.3.1 Task Quality. Task quality refers to a model’s ability to perform its intended function on

a given dataset. This is typically measured by performance metrics specific to the task, such as

classification accuracy for supervised learning, semantic coherence for text generation, or perceptual

quality for image synthesis. Task quality evaluation on the forgotten dataset is a widely used and

intuitive approach for assessing unlearning effectiveness [21, 22, 43, 63, 76]. The underlying idea is

that if the model’s task quality on the forgotten data significantly decreases, this indicates that the

model has reduced or lost its reliance on those samples, suggesting that forgetting has occurred. In

addition, Nguyen et al. [79] propose comparing the task quality of the unlearned model with that

of a model retrained from scratch on the retained dataset, which has never seen the erased data.

Although this method provides a useful benchmark, it also introduces additional computational

overhead due to the need for retraining. Recently, Kim et al. [61] evaluates forgetting by measuring

task quality in text generation. It assesses the semantic similarity between the model’s output
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and the target entity’s description. If the output closely matches the target while diverging from

non-targets, it indicates that the model retains knowledge and has not effectively forgotten.

3.3.2 Relearn Time. Relearn time refers to the number of training epochs required for a model to

relearn and restore its performance on forgotten data. Studies [22, 28, 37, 38] use a loss function to

evaluate the model’s performance on the target data and set a threshold below which the model’s

loss on the forgotten data points is considered sufficiently low. When the model’s loss falls below

this threshold, it is deemed to have successfully relearned the forgotten data. A higher number of

training epochs generally indicates better forgetting performance by the model.

3.3.3 Model Output. The performance of the model is largely reflected in its output. Some studies

attempt to demonstrate the model’s forgetting effect by measuring the difference in outputs between

the model before and after forgetting. For example, some studies [37, 38] use the distance between

the outputs of two models for forgotten data or forgotten data features. Peste et al. [81] propose

measuring unlearning effectiveness by calculating the 𝐿1 distance between the confusion matrices

of the original and unlearned models, and Wang et al. [103] audit unlearning by analyzing the

posterior difference between the model outputs before and after unlearning on the same data.

Jeon et al. [56] quantify the residual forgotten information retained by the model by measuring

the mutual information between the intermediate layer outputs and the labels of the data to be

forgotten. Recently, Vidal et al. [99] propose an unlearning verification method that leverages

explainability tools to assess whether a model retains memory of target information. By analyzing

differences in the model’s responses before and after unlearning, the method uses attribution

techniques to generate heatmaps based on intermediate activations and model outputs, thereby

quantifying changes in the model’s attention to key input regions.

3.3.4 Model Sensitivity. Model sensitivity refers to the degree to which a model’s output behavior

or parameter gradients change when exposed to a given input, thereby reflecting the model’s

dependency on that input. This concept is concretely modeled in some works to enable unlearning

verification. Becker and Liebig [6] propose a sensitivity-based evaluation method grounded in Fisher

information to assess the effectiveness of machine unlearning. Specifically, the trace of the Fisher

Information Matrix is used as a core metric to quantify the average gradient response of model

parameters to the target data. A higher sensitivity indicates that the model has stably encoded the

target data, whereas a successful unlearning process should reduce the Fisher information, leading

to decreased sensitivity and increased epistemic uncertainty. This method assumes a white-box

setting, as it requires access to gradient information, and supports efficient estimation through

gradient-based approximations and computable upper bounds. In contrast, Zhou et al. [129] propose

the TruVRF framework, which adopts an alternative definition of model sensitivity by measuring

the magnitude of parameter updates during fine-tuning. The core idea is to infer whether the model

retains memory of the target data based on how much its parameters need to adjust. If the model

has not seen the data before, or has successfully forgotten it, fine-tuning will induce substantial

parameter changes, resulting in high sensitivity. In contrast, if the model remembers the data,

only minimal updates are required, corresponding to low sensitivity. This method also assumes a

white-box setting, as it relies on accessing parameter-level changes during fine-tuning. Although

these methods differ in how they define and interpret sensitivity, they share a common principle:

modeling the response strength of model parameters to input data as a proxy for memory retention.

It is important to note that all such approaches inherently assume white-box access due to their

reliance on internal parameter visibility, which may limit their applicability in certain real-world

scenarios.
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4 Parametric Unlearning Verification

Table 5. Theoretical Comparison of Different Parametric Verification Methods.

Methods Differential Privacy Verification Reproducibility Verification

Core Dependency Based on the indistinguishability of

model parameters under neighboring

datasets, formalized via differential pri-

vacy.

Based on the ability to reconstruct the

training trajectory from recorded up-

dates and batch information.

Verification Logic Compares model distributions trained

with and without 𝐷 𝑓 .

Replays logs to ensure reproducibility

and confirm absence of forgotten data.

Assumptions Often requires additional conditions

on the loss function.

Requires deterministic updates and full

access to training logs.

Table 6. Key Symbols Newly Introduced for Parametric Unlearning Verification

Symbol Description

D′
Adjacent dataset differing from D in one data point

𝑁 (𝑥,𝑦) Nearest retained sample to (𝑥,𝑦) from the same class

𝑥 A single data point to be removed from the dataset

𝑆 ⊆ H A measurable subset of hypotheses

𝜖 a privacy/forgetting parameter that bounds tolerated deviation (smaller 𝜖 implies stronger guarantee)

𝛿 Probability of failure

𝑤𝑡 Model parameters at training step 𝑡

𝑔𝑡 Update function applied at step 𝑡

𝑑𝑡 Training data used at step 𝑡
˜𝑑 (𝑡 )

Replacement mini-batch excluding any forgotten data

𝑤𝑡 Model parameters at step 𝑡

(𝑤𝑖 , 𝑥𝑖 , 𝑔𝑖 ) Training log tuple.

Behavioral verification methods begin by defining a target behavior to be evaluated and then

assess whether the behavior of the unlearned model sufficiently resembles a reference behavior. In

contrast, parametric verification methods operate at the model parameter level, verifying unlearning

by analyzing the difference between the parameters of the unlearnedmodel and those of amodel that

has never seen the forgotten data. To support these analyses, several new symbols are introduced, as

summarized in Table 6. Existing parametric approaches can be broadly categorized into two types:

differential privacy verification and reproducibility verification. Table 5 provides a comparison of

these two paradigms.

4.1 Differential Privacy Verification.
Differential Privacy (DP) [26] is a data privacy protection mechanism that provides strong privacy

guarantees when releasing statistical information, while limiting the impact of individual data

points on the results. The core idea is that even if a sample is added or removed, the algorithm’s

output probability distribution remains nearly unchanged, thus preventing attackers from inferring

whether a specific data point is present. Its mathematical definition is as follows:
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Definition 1 (𝜖-Differential Privacy [26]). Let 𝐷 and 𝐷 ′ be two adjacent datasets (differing in
at most one data point), and let𝑀 be a randomized learning that maps data to a hypothesis space 𝐻 .
For any subset of hypotheses 𝑆 ⊆ 𝐻 , we say that𝑀 satisfies 𝜖-Differential Privacy if:

𝑃 (𝑀 (𝐷) ∈ 𝑆) ≤ 𝑒𝜖 · 𝑃 (𝑀 (𝐷 ′) ∈ 𝑆)

where 𝜖 > 0 is the privacy parameter. A smaller 𝜖 implies stronger privacy guarantees.

By further relaxing the conditions, the following holds:

Definition 2 ((𝜖, 𝛿)-Differential Privacy [26]). Under the same setting as above,𝑀 satisfies
(𝜖, 𝛿)-Differential Privacy if:

𝑃 (𝑀 (𝐷) ∈ 𝑆) ≤ 𝑒𝜖 · 𝑃 (𝑀 (𝐷 ′) ∈ 𝑆) + 𝛿

for all measurable subsets 𝑆 ⊆ 𝐻 , where 𝛿 allows for a small probability of privacy failure.

Inspired by the concept of differential privacy, studies [35, 44] introduce a probabilistic formal-

ization that limits the difference between the model weights returned by the machine unlearning

and retraining algorithms, providing provable guarantees of forgetting for the removed data. The

following definitions are proposed:

Definition 3 (𝜖-Certified Forgetting [44]). Let 𝐴 : 𝐷 → 𝐻 be a randomized learning
algorithm, where the training dataset 𝐷 induces a probability distribution over the hypothesis space 𝐻 .
Define a data removal mechanism𝑀 , which aims to remove the influence of a sample 𝑥 ∈ 𝐷 from the
output of 𝐴(𝐷). If, for all possible training datasets 𝐷 ⊆ 𝑋 , all possible removal samples 𝑥 ∈ 𝐷 , and
all possible hypothesis sets 𝑆 ⊆ 𝐻 , the following inequality holds:

𝑒−𝜖 ≤ 𝑃 (𝑀 (𝐴(𝐷), 𝐷, 𝑥) ∈ 𝑆)
𝑃 (𝐴(𝐷 \ 𝑥) ∈ 𝑆) ≤ 𝑒𝜖

then𝑀 is said to achieve 𝜖-Certified Forgetting.

This property ensures that the model distribution after removing 𝑥 is close to the model distribu-

tion that has never seen 𝑥 , making it difficult for an adversary to distinguish whether 𝑥 was used

during training. Guo et al. [44] further relax the conditions and introduced the following result:

Definition 4 ((𝜖, 𝛿)-Certified Forgetting [44]). For 𝛿 > 0, if the data removal mechanism𝑀

satisfies the following relaxed conditions:

𝑃 (𝑀 (𝐴(𝐷), 𝐷, 𝑥) ∈ 𝑆) ≤ 𝑒𝜖𝑃 (𝐴(𝐷 \ 𝑥) ∈ 𝑆) + 𝛿,

𝑃 (𝐴(𝐷 \ 𝑥) ∈ 𝑆) ≤ 𝑒𝜖𝑃 (𝑀 (𝐴(𝐷), 𝐷, 𝑥) ∈ 𝑆) + 𝛿.

then𝑀 is said to achieve (𝜖, 𝛿)-Certified Forgetting.

Here, 𝛿 controls the upper bound on the probability of failure, allowing for a small divergence

probability, thereby relaxing the strict constraints of 𝜖-Certified Forgetting.

It can be observed that achieving certified forgetting inherently enables verification of the

unlearned model in the parameter space. We refer to this line of work as differential privacy

unlearning verification. Several methods have been proposed in this context, which can be broadly

categorized into first-order approaches based on function gradients and second-order approaches

that leverage Hessian information or its approximations, as outlined below.
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4.1.1 First-order methods. First-order methods rely on gradient-related information to achieve

provable unlearning. For example, Chien et al. [19] combine differential privacy and proposes an

approximate unlearning framework based on projection noise gradient descent. This framework

is suitable for empirical risk minimization problems with smooth objectives, providing provable

forgetting capabilities. Chien et al. [18] propose an approximate unlearning method based on

projected noisy stochastic gradient descent, offering certified unlearning guarantees by tracking the

Wasserstein distance of the parameter distribution. This approach extends to multiple unlearning

requests, including sequential and batch settings, and achieves better loss bounds through tighter

analysis of the𝑊∞ distance. Additionally, Wang and Wang [101] introduce provable forgetting in

federated learning scenarios by adding Gaussian noise to the gradient during both model training

and unlearning, and applying a specific gradient ascent algorithm during the unlearning update.

Huynh et al. [52] propose the CFRU algorithm for provable forgetting in federated recommendation

systems. This method rolls back and removes the target client’s historical updates, uses a sampling

strategy to reduce storage requirements, estimates the deletion bias using Lipschitz conditions, and

compensates for model errors through an iterative scheme without the need for additional training.

Wei et al. [107] provide the first theoretical guarantee for learning in pre-training and fine-tuning

paradigms, focusing on bag-of-words language models, which can be applied to downstream tasks

such as retrieval and classification.

The above methods focus on convex or strongly convex functions. Recently, Mu and Klabjan

[78] propose a provable unlearning method for non-convex functions. This method performs

unlearning by "rewinding" to earlier steps in the learning process before applying gradient descent

on the loss function for retained data points, achieving a better balance between privacy, utility,

and computational complexity. The method is shown to provide generalization guarantees for

non-convex functions that satisfy the Polyak-Lojasiewicz inequality.

4.1.2 Second-order methods. These methods rely on Hessian or approximations of Hessian-related

information to provide certified unlearning. Guo et al. [44] first introduce a provable deletion

mechanism for 𝐿2-regularized linear models, applicable to models trained with various convex loss

functions (e.g., logistic regression). This mechanism significantly reduces the impact of deleted

data points by applying a Newton step to the model parameters, causing the residual error to

decrease quadratically with the size of the training set. To better prove forgetting, they further

introduce a method based on random perturbation of the training loss to mask these residual errors.

This method requires retraining the model, and to reduce computational costs, Sekhari et al. [87]

propose an algorithm that enables sample deletion without accessing the original training data.

The algorithm estimates the impact of deleted data on the model using the Hessian matrix and

adjusts through noise perturbation, ensuring provable forgetting. Recently, Jin et al. [60] introduce

a certified unlearning strategy for federated learning. This strategy performs unlearning using

Newton updates on the server side, simplifying the training process with a linear loss function,

requiring no client participation or additional storage. Thismethod effectively controls the difference

between the unlearned weights and the original optimal weights, enabling efficient and certified

unlearning.

Although the above methods provide proofs for forgetting, they are not practical. They only

consider convexity assumptions, involve costly Hessian matrix computations, and assume the

learning model is in the empirical risk minimization setting. To enhance practicality in deep learning

scenarios, Zhang et al. [120] investigate the problem of certified forgetting without relying on

convexity assumptions. The study shows that bymaking simplemodifications to Newton updates, an

approximation error bound for non-convex functions can be established, and various approximation

unlearning strategies for convex models can be adapted to improve their robustness in deep neural
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networks. Additionally, to improve efficiency, they propose a computationally efficient method

to estimate the inverse Hessian in Newton updates and prove that this method retains bounded

approximation errors. Qiao et al. [83] introduce an innovative Hessian-free second-order unlearning

method designed to overcome the limitations of traditional second-order algorithms, such as high

Hessian computation costs, inability to handle multiple deletion requests online, and reliance on

convexity assumptions. By analyzing each sample’s impact on the training trajectory, this method

avoids explicitly computing the Hessian matrix, enabling efficient online deletion request handling.

Compared to existing methods, this approach does not require the learning model to be an empirical

risk minimizer and offers better scalability. Furthermore, Liu et al. [68] develop a new certified

machine unlearning algorithm for min-max models, achieving min-max unlearning steps with

fully Newton-based updates using Hessian and incorporating Gaussian noise through differential

privacy. To ensure certified unlearning, this method injects calibrated Gaussian noise by carefully

analyzing the similarity between min-max unlearning variables and retraining variables, applicable

to (strongly-)convex-(strongly-)concave loss functions.

Second-order forgetting methods have not only been widely explored in deep learning but have

also made significant progress in graph neural networks (GNNs). Chien et al. [17] introduce the

first proven theoretical guarantee for approximate graph unlearning, focusing on addressing the

issue of deletion requests for graph-structured data in GNNs. This method handles three types

of unlearning requests: node feature unlearning, edge unlearning, and node unlearning. Through

theoretical analysis of simple graph convolution and its generalized PageRank extension, the study

provides a theoretical guarantee for approximate unlearning. Dong et al. [24] effectively address

unlearning requests by modeling the intermediate state of the optimization objective between

instances with and without the data to be unlearned (such as nodes, edges, and attributes) and

demonstrates a tighter bound in approximating actual GNN parameters. Recently, focusing on edge

unlearning in graphs, Wu et al. [110] introduce a new influence function that efficiently computes

the required updates while accounting for the neighborhood of deleted edges. This method removes

the requested edges from the GNN without requiring retraining, while also providing a certified

unlearning guarantee. Nevertheless, these certified graph unlearning methods still require bounded

model errors on precise node embeddings to maintain their certification guarantees. To address

this challenge, Yi and Wei [118] propose ScaleGUN, the first method to extend certified graph

unlearning to billion-edge graphs. ScaleGUN integrates approximate graph propagation techniques

into certified graph unlearning, offering certification guarantees for three unlearning scenarios:

node feature, edge, and node unlearning.

4.2 Reproducibility Verification.
4.2.1 Proof-of-Unlearning (PoUL). Thudi et al. [96] propose a reproducible unlearning verification

method inspired by the Proof-of-Learning (PoL) [57]. PoL aims to verify whether a machine learning

model, has undergone effective training. It does this by logging the training process, tracking model

checkpoints, the data points used, and the hyperparameters associated with updates. These logs

are typically represented as a series of tuples, such as {(𝑤𝑖 , 𝑥𝑖 , 𝑔𝑖 )}, where𝑤𝑖 represents the model

weights, 𝑥𝑖 represents the data point, and 𝑔𝑖 represents the update rule. Auditors use these logs to

reproduce checkpoints and compute the error between the actual and reproduced checkpoints. If

the error is below a certain threshold, the update is considered valid, ensuring the correctness of

the training process.

Expanding PoL to validate the correctness of "forgetting" specific data points, Thudi et al. [96]

introduce the concept of Proof-of-Unlearning (PoUL), which ensures that certain data points are

successfully excluded during retraining. PoUL uses PoL logs to prove that the data points marked
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for "forgetting" were not used during model updates. Zhang et al. [119] identify two essential

conditions for PoUL: reproducibility and removability.

Reproducibility: This requires that each model update step can be reproduced based on the

update function, and the error is within an acceptable tolerance, expressed as:

∥𝑤𝑡 − 𝑔𝑡 (𝑤𝑡−1, 𝑑𝑡 )∥ ≤ 𝜖

where𝑤𝑡 is the model parameter at step 𝑡 , 𝑔𝑡 is the update function, 𝑑𝑡 is the data used for the step,

and 𝜖 is the tolerated error.

Removability: This ensures that the data points to be "forgotten" were not used in retraining,

expressed as:

𝑑𝑡 ∩ 𝐷 𝑓 = ∅
where 𝑑𝑡 is the dataset at step 𝑡 , and 𝐷 𝑓 is the set of data to be removed. Auditors verify the

correctness of the "forget" operation by checking whether PoUL meets these two conditions.

Although PoUL enables auditors to reproduce the unlearning process, it still faces the risk of

forgery. Attackers can manipulate logs by swapping data points, generating seemingly valid records

that pass verification [96, 119]. This vulnerability arises because PoUL grants model owners full

access to training logs, allowing them to alter specific steps without retraining the model.

4.2.2 PoUL with Cryptography. To mitigate these risks, Weng et al. [109] propose a solution based

on Trusted Execution Environments (TEEs) tailored for SISA unlearning scenarios. This approach

leverages Intel’s SGX (Software Guard Extensions) to ensure the integrity of data tracking and

model training. The solution consists of two layers: the authentication layer, which tracks the

impact of data on submodels and updates them accordingly after data deletion, and the proof layer,

which guarantees the correctness of both the learning and inference processes by verifying that

the designated data has been properly removed.

Additionally, Eisenhofer et al. [27] introduce a cryptographic verifiable machine unlearning

method that employs SNARKs and hash chains for verifiable computation and proof generation.

This framework is compatible with various unlearning techniques and has been validated through

linear regression, logistic regression, and neural networks. The protocol ensures that users can

verify the correctness of the unlearning process while maintaining model security and integrity.

While these TEE- and cryptography-based methods enhance the reliability of unlearning verifi-

cation, their high computational overhead presents a significant challenge for practical deployment.

5 Advantages and Limitations
5.1 Key Dimensions for Evaluation.
To systematically assess the effectiveness and practicality of unlearning verification methods,

we introduce a set of key evaluation dimensions. These dimensions are derived from common

challenges in verification design, practical deployment needs, and observed limitations in current

research. They provide a structured lens through which to compare different methods across both

behavioral and parametric categories.

Q1: Theoretical Guarantee: Does the method provide provable guarantees of forgetting?

Q2: Access Requirement: Can the method operate in a black-box setting, where internal model

parameters are inaccessible?

Q3: Sample-Level Verification: Can the method evaluate forgetting at the level of individual samples?

Q4: Verification Accuracy: Does the method offer high verification accuracy?

Q5: No Pre-Injected Data Required: Is the method effective without requiring specially crafted or

pre-injected data during training?

Q6: Efficiency and Scalability: Is the method computationally efficient and scalable to large models?
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Q7: Method Specificity: Is the method general-purpose, or is it tailored to specific types of unlearning

algorithms?

These dimensions form the basis of our comparative analysis in the following subsections. Each

verification approach, whether behavioral or parametric, is evaluated against these criteria to

highlight its strengths, limitations, and suitable application scenarios.

To facilitate comparison across different categories of methods, we use symbolic indicators to

represent the level of support for each criterion:

✓: The methods in this category fully satisfy the requirement.

✗: The methods in this category do not satisfy the requirement.

▲: The majority of methods in this category satisfy the requirement.

●: Others.

5.2 Behavioral Unlearning Verification
Behavioral unlearning verification relies on analyzing the model’s responses to specific data. This

section explores the strengths and limitations of different behavioral verification methods.

5.2.1 Fingerprint Verification. Fingerprint verification methods, including adversarial example

fingerprints, backdoor fingerprints, and dataset watermarking.

Q1: Theoretical Guarantee and Q2: Access Requirement. All existing fingerprint verification meth-

ods lack formal theoretical guarantees regarding the effectiveness of the unlearning process. Con-

sequently, they are inherently empirical in nature, and their results can only serve as indicative

evidence rather than providing definitive assurance (For All: Q1: ✗). As for access requirements,

all existing passive fingerprint methods require white-box access (Q2: ✗). In contrast, most active
fingerprint methods support black-box verification, with the exception of Tam et al. [94], which

operates under a white-box setting (Q2: ▲).

Q3: Sample-Level Verification. Active fingerprint verification typically evaluates forgetting effec-

tiveness by analyzing the collective activation patterns of a group of embedded samples, which

makes it difficult to determine whether a specific data point has been successfully unlearned. To

address this limitation, recent work [112] introduces a backdoor-based verification mechanism

that constructs dedicated sample pairs for each target data point, thereby enabling sample-level

unlearning verification. Although this approach provides fine-grained verification capabilities,

it relies on uploading a substantial amount of non-forgettable data, which may complicate its

integration into privacy-sensitive or constrained application settings (●).

Passive fingerprint verification, on the other hand, has been shown to support single-sample-level

unlearning verification in classification models [115]. However, in generative models, existing

studies [115, 125] do not assess whether a specific data point has been forgotten, but instead focus

on evaluating the model’s ability to forget an entire semantic concept (●).

Q4: Verification Accuracy. The accuracy of fingerprint verification methods largely depends on

factors such as the quality of the injected fingerprints and the specifics of the model’s training

process (For All: Q4: ✗). For example, active fingerprint methods can be sensitive to changes in

model architecture or security defenses (e.g., backdoor removal techniques). In contrast, passive

fingerprint methods often rely on adversarial examples, whose effectiveness may significantly

degrade in the presence of adversarial defense strategies, thereby undermining the reliability of the

verification.

Q5: No Pre-Injected Data Required. Active fingerprint methods rely heavily on pre-injected data

(Q5: ✗). This means that special samples must be embedded during training to enable subsequent

verification, which limits their applicability in scenarios where post-hoc verification on arbitrary

user data is required. In contrast, passive fingerprint methods offer greater flexibility, as they
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typically support verification through post-training queries without requiring any intervention

during the training process (Q5: ✓).

Q6: Efficiency and Scalability and Q7: Method Specificity. Fingerprint verification methods are

generally efficient and highly scalable. Since they do not require retraining the model, these

methods can be deployed quickly and are applicable to large-scale models and datasets (For All:
Q6: ✓). Moreover, fingerprint does not depend on any specific unlearning strategy, making it

broadly compatible with a wide range of unlearning approaches. This generality enables fingerprint

methods to maintain strong adaptability and practical utility across diverse application scenarios

(For All: Q7: ✓).

5.2.2 Privacy Analysis Verification. Privacy analysis verificationmethods can be broadly categorized

into data inference and data reconstruction approaches. Q1: Theoretical Guarantee and Q2: Access
Requirement. Privacy analysis verification methods lack formal theoretical guarantees for the

unlearning process, as their validation relies primarily on empirical evaluations via privacy analysis

and does not offer rigorous theoretical support (Q1: ✗).
In terms of access requirements, privacy analysis methods exhibit a range of access assumptions.

For example, data reconstruction techniques vary in their requirements, with some relying on

black-box access [43, 113] and others on white-box access [7, 50](Q2: ●). Mainstream data inference

methods also frequently operate under black-box settings, although recent studies [100] propose

white-box variants to improve inference accuracy, thus they are rated as ▲ in Q2.

Q3: Sample-Level Verification andQ4: Verification Accuracy. Data inferencemethods enable sample-

level verification by assessing whether the target model retains privacy-relevant information

associated with specific data samples (Q3: ✓). While most data reconstruction methods are capable

of recovering information at the sample level, the study [43] only supports class-level reconstruction

and lacks the granularity required for single-sample verification (Q3: ▲).

In addition, the accuracy of these methods largely depends on factors such as model architecture,

training dynamics, and the effectiveness of the attack design. For instance, the quality of the attack

model, shifts in the training data distribution, and model updates can all affect the stability of

the verification results. Due to these uncertainties, the verification accuracy of privacy analysis

methods is generally unstable (Q4: ✗).
Q5: No Pre-Injected Data Required,Q6: Efficiency and Scalability, andQ7: Method Specificity. Privacy

analysis verification methods generally do not require pre-injected special samples (Q5:✓), making

them more flexible and applicable for post-hoc evaluations. However, computational efficiency

varies depending on the attack type used. Data reconstruction methods do not require retraining

the model and rely on optimization or analytical techniques, making them relatively lightweight

with good efficiency and scalability (✓Q6). In contrast, data inference methods usually require

training multiple auxiliary models, which incurs significant computational overhead in large-scale

applications (Q6:✗). Additionally, privacy analysis methods are broadly applicable and can be used

to assess various types of unlearning processes, so they score ✓ on Q7.

5.2.3 Model Performance Verification. Model performance verification focuses on evaluating as-

pects such as accuracy, relearn time, model output, and model sensitivity.

Q1: Theoretical Guarantee and Q2: Access Requirement model performance serves as an intuitive

indicator but does not offer formal theoretical guarantees for the unlearning process, and is thus

rated as (Q1: ✗). In terms of access requirements, methods based on accuracy and relearn time

typically require only black-box access, without the need for internal model parameters or training

data, which greatly enhances their flexibility and applicability (Q2: ✓). Output methods also mostly

relies on black-box outputs, although some studies [56, 99] suggest that using intermediate layer

outputs can yield more effective verification results (Q2: ▲). In contrast, model sensitivity methods
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depend on a white-box setting, as they require access to model parameters to compute gradients

(Q2: ✗).
Q3: Sample-Level Verification and Q4: Verification Accuracy Methods based on task quality and

relearn time generally focus on overall performance on the unlearned dataset and cannot directly

evaluate individual samples (Q3: ✗). In comparison, model output and model sensitivity methods

assess the model’s response to specific samples and can thus provide more fine-grained, sample-

level verification (Q3: ✓). However, since these methods rely on model behavior, they are sensitive

to factors such as data distribution shifts and hyperparameter tuning, leading to performance

fluctuations and making their verification accuracy and stability unreliable (Q4: ✗).
Q5: No Pre-Injected Data Required, Q6: Efficiency and Scalability, and Q7: Method Specificity Model

performance methods do not rely on pre-injected data for verification (Q5: ✓). Methods based on

relearn time, model output, and model sensitivity are efficient and scalable, as they do not require

retraining the entire model. This makes them suitable for large models and datasets (Q6: ✓). For task

quality , most approaches allow efficient evaluation by measuring howwell the model completes the

task. Recently, Nguyen et al. [79] propose a method that retrains a separate model and compares its

task quality with that of the unlearned model, which results in significant computational overhead

(Q6: ▲). As for method specificity, performance methods apply to various unlearning mechanisms

(Q7: ✓).

5.3 Parametric Unlearning Verification
Parametric verification relies on theoretical proofs and mathematical guarantees to assess whether

a model has truly forgotten specific data. This section explores the strengths and weaknesses of

different parametric verification methods.

5.3.1 Differential Privacy Verification. The differential privacy verification is a validation mecha-

nism that provides strong theoretical proof, ensuring that after data deletion, the model cannot

leak the existence of the removed data points.

Q1: Theoretical Guarantee. Differential privacy verification methods are supported by a strong

theoretical foundation, based on rigorous mathematical definitions. These methods provide quan-

tifiable guarantees for the forgetting process through mathematical proofs and privacy protection

algorithms (Q1: ✓).

Q2: Access Requirement. Differential privacy methods typically rely on white-box access to the

model’s internal parameters. This is because to verify whether the model satisfies differential

privacy conditions, auditors must have access to the model’s parameters (Q2: ✗).
Q3: Sample-Level Verification and Q4: Verification Accuracy. Differential privacy methods offer

fine-grained control over each data point, enabling sample-level verification (Q3: ✓). Additionally,

since they are based on solid theoretical guarantees, these methods are more trustworthy than

behavioral approaches (Q4: ✓).

Q5: No Pre-Injected Data Required, Q6: Efficiency and Scalability and Q7: Method Specificity. Dif-
ferential privacy methods do not rely on pre-injected specific samples; instead, the verification

process only requires the use of existing data (Q5: ✓). While these methods offer strong theoreti-

cal guarantees, their computational efficiency and scalability are limited. Specifically, first-order

methods necessitate the verification of each model parameter and gradient, whereas second-order

methods involve costly Hessian matrix calculations, resulting in significant computational over-

head. Additionally, most of these methods rely on strong assumptions, such as convexity or strong

convexity, which further restrict their scalability (Q6: ✗).
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Moreover, differential privacy methods can only enable effective unlearning verification when

used in conjunction with their corresponding training mechanisms or algorithmic frameworks,

which limits their applicability in certain unlearning scenarios (Q7: ✗).

5.3.2 Reproducible Unlearning Verification. Reproducible unlearning verification methods such as

PoUL and its cryptographic variants aim to provide rigorous and verifiable guarantees that a model

has genuinely forgotten specific data points during the unlearning process.

Q1: Theoretical Guarantee & Q2: Access Requirement These methods offer strong theoretical

guarantees by ensuring that model updates and checkpoints can be validated against expected

changes, making the verification process theoretically sound (Q1: ✓). However, they typically

require access to internal model parameters, weights, and training logs—resources often unavailable

in commercial settings—thus limiting their practical applicability (Q2: ✗).
Q3: Sample-Level Verification & Q4: Verification Accuracy. Reproducible methods support fine-

grained verification at the individual sample level, ensuring that forgotten data is excluded during

retraining (Q3: ✓). PoUL achieves high verification accuracy through its repeatability and precise

tracking of model updates (Q4: ✓). Cryptographic extensions, such as those using Trusted Execution

Environments (TEEs) or SNARKs, further enhance trust by providing tamper-proof proofs of

unlearning (Q4: ✓).

Q5: No Pre-Injected Data Required, Q6: Efficiency and Scalability, & Q7: Method Specificity. These
methods do not rely on specially crafted or pre-injected data; as long as relevant training and

update records are maintained, they can be applied across various unlearning scenarios with

flexibility (Q5: ✓). Nonetheless, reproducing model checkpoints and verifying updates can be

computationally expensive, especially for large models or datasets, which limits scalability (Q6: ✗).
Moreover, while the PoUL method exhibits broad applicability across various unlearning algorithms

(Q7: ✓), its cryptographic variants, despite enhancing verification reliability, may reduce generality.

For instance, the approach proposed in [109] is primarily limited to SISA-based settings (Q7: ●).

Table 7. Comparison of unlearning verification methods.The table presents the evaluation of fingerprint
verification methods across seven key dimensions:Q1-Q7. Each method category is scored using the following
symbols: ✓ (fully satisfies), ✗ (does not satisfy), ▲ (mostly satisfies, with some caveats), ● (Others). The seven
dimensions evaluated are as follows: Q1: Theoretical Guarantee, Q2: Access Requirement, Q3: Sample-
Level Verification, Q4: Verification Accuracy, Q5: No Pre-Injected Data Required, Q6: Efficiency
and Scalability, and Q7: Method Specificity.

Category Method Q1 Q2 Q3 Q4 Q5 Q6 Q7

Fingerprint

Passive Fingerprint ✗ ✗ ● ✗ ✓ ✓ ✓

Active Fingerprint ✗ ▲ ● ✗ ✗ ✓ ✓

Privacy Analysis

Data Reconstruction ✗ ● ▲ ✗ ✓ ✓ ✓

Data Inference ✗ ▲ ✓ ✗ ✓ ✗ ✓

Model Performance

Task Quality ✗ ✓ ✗ ✗ ✓ ▲ ✓

Relearn Time ✗ ✓ ✗ ✗ ✓ ✓ ✓

Model Output ✗ ▲ ✓ ✗ ✓ ✓ ✓

Model Sensitivity ✗ ✓ ✗ ✗ ✓ ✓ ✓

Differential Privacy Verification

First-order Methods ✓ ✗ ✓ ✓ ✓ ✗ ✗

Second-order Methods ✓ ✗ ✓ ✓ ✓ ✗ ✗

Reproducible Verification

PoUL ✓ ✗ ✓ ✓ ✓ ✗ ✓

PoUL with Cryptography ✓ ✗ ✓ ✓ ✓ ✗ ●
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5.4 Comparison with Different Verification
Table 7 presents a systematic comparison of existing unlearning verification methods, evaluated

across the key dimensions introduced earlier (Q1 to Q7). Based on this foundation, we further

analyze the respective strengths and limitations of behavioral and parametric approaches.

Behavioral methods are generally effective in practical deployment due to their low access

requirements and high computational efficiency, making them particularly suitable for black-box

environments such as commercial APIs. However, they lack formal guarantees, offer limited support

for sample-level verification, and often exhibit instability in real-world scenarios. For instance,

fingerprint techniques, such as adversarial fingerprints or backdoor watermarking, may fail to

reliably activate the embedded signals whenmodel architectures or data distributions shift, resulting

in false positives or negatives. Privacy analysis methods also vary significantly in performance

across different models and tasks, with inference accuracy often degrading after model updates.

Similarly, performance methods, including relearn time, are sensitive to factors such as random

initialization and hyperparameter tuning, leading to inconsistent results and reduced reproducibility.

In contrast, parametric verification methods provide provable guarantees and support fine-

grained, sample-level evaluation. Nonetheless, they typically require full access to the model’s

internal parameters, incur substantial computational overhead, and often rely on specific assump-

tions or customized protocols designed for particular unlearning mechanisms.

This comparison highlights a core trade-off between practicality and rigor. While behavioral

methods are easier to deploy and more amenable to external auditing, they lack theoretical sound-

ness. Parametric methods, by contrast, offer strong guarantees but face limitations in scalability and

general applicability. Addressing this gap through hybrid verification frameworks that combine

practical accessibility with formal robustness presents a promising direction for future research.

6 Threats to Verification Reliability.
6.1 Threat Model
We consider a setting where the unlearning protocol has been invoked, and an external verifier is

tasked with determining whether a machine learning model has successfully forgotten a designated

subset of data, denoted 𝐷 𝑓 . Depending on the verification framework, the auditor may access the

final model parameters, intermediate training logs, or behavioral outputs in response to specific

queries. Our threat model assumes that the model provider may act dishonestly. That is, the provider

may claim to have unlearned 𝐷 𝑓 while the model still retains knowledge or influence from the

supposedly forgotten data. We assume that the provider has full control over the training pipeline

and can manipulate training data, modify update trajectories, alter audit logs, or fine-tune the final

model to pass verification checks.

Under this adversarial assumption, the central research question becomes:

How can a dishonest model provider mislead the verifier into falsely believing that the
model no longer retains any influence from the forgotten data?

Based on how the verifier evaluates the model, threats can be broadly categorized into two types:

those that exploit the parameter space, and those that target the behavioral space. The following

sections analyze how each category of threat undermines the reliability of unlearning verification

mechanisms.

6.2 Threats from the Parameter Space
Parametric unlearning verification methods often rely on assessing similarity in the model’s

parameter space—such as comparing final model weights or replaying training logs to verify

whether forgotten data was used. However, recent studies have revealed that such mechanisms face

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Towards Reliable Forgetting: A Survey on Machine Unlearning Verification, Challenges, and Future Directions 111:27

fundamental security vulnerabilities when the model provider is considered untrusted. The core

issue stems from the stochastic nature of modern training pipelines, which leads to a non-unique

mapping between training data and model parameters, thereby enabling adversarial forgeries.

Thudi et al. [96] introduced the notion of a forging map, which allows an attacker to bypass

verification by simulating the removal of an entire subset of data 𝐷 𝑓 without actually deleting it.

Formally, let 𝑑𝑡 denote the mini-batch used at training step 𝑡 , where 𝑑𝑡 ⊆ 𝐷 . If 𝑑𝑡 contains any

forgotten data, i.e., 𝑑𝑡 ∩ 𝐷 𝑓 ≠ ∅, the attacker aims to find a replacement batch
˜𝑑 (𝑡 ) ⊆ 𝐷 \ 𝐷 𝑓 such

that the resulting parameter update closely matches the original:𝑔(𝑤𝑖 , 𝑑𝑡 ) − 𝑔(𝑤𝑖 , ˜𝑑 (𝑡 ) )
 ≤ 𝜀.

When 𝜀 is sufficiently small (empirically as low as 10
−6
), the forged unlearning record can easily

pass verification. This strategy can also circumvent differential privacy verification, as the resulting

parameter difference is negligible from the perspective of a model that has never encountered 𝐷 𝑓 .

To further improve attack efficiency, Zhang et al. [119] propose an input-space nearest neighbor
substitution strategy. Rather than minimizing the gradient deviation, this approach directly replaces

each forgotten sample in a minibatch with the most similar retained sample from the same class,

based on Euclidean distance. For each forgotten point (𝑥,𝑦) ∈ 𝐷 𝑓 , the attacker selects:

𝑁 (𝑥,𝑦) = arg min

(𝑥∗,𝑦∗ ) ∈𝐷\𝐷𝑓 , 𝑦
∗=𝑦

∥𝑥∗ − 𝑥 ∥.

This method avoids the cost of gradient alignment or retraining while preserving update similarity,

significantly improving attack efficiency. Experiments show that the forged trajectories produced

in this way can reliably bypass verification mechanisms under practical tolerance thresholds (e.g.,

𝜀 = 10
−3
).

In summary, the success of such attacks stems from the non-invertibility of the parameter space:

the same parameter trajectory can be produced by different training datasets. As long as the

model provider controls the training process, they can construct forged logs that exclude 𝐷 𝑓 while

remaining verifiable under existing parametric approaches.

To mitigate these risks, some recent works [27, 109] propose incorporating cryptographic en-

hancements into the PoUL framework, such as trusted execution environments or zero-knowledge

proofs. While these techniques improve integrity and tamper-resistance, their significant compu-

tational and deployment overhead limits their practicality in large-scale or resource-constrained

settings.

6.3 Threats from the Behavioral Space
Behavioral unlearning verification methods primarily rely on observable model behaviors, rather

than on cryptographic or formally grounded guarantees. While this design facilitates deployment

in black-box environments and offers practical engineering flexibility, it inherently lacks robust-

ness and exposes a broad and weakly protected attack surface. Recent research [96] has shown

that, compared to parametric verification, behavioral approaches are more vulnerable to forgery

attacks in the parameter space. However, the risks extend beyond parameter-level manipulation.

Behavioral verification also faces credibility threats from behavioral-space forgery, where adver-

saries deliberately manipulate model behavior to appear compliant during audit, while covertly

retaining information about the supposedly forgotten data. We categorize the primary risks in

behavioral-space verification as follows:

Suppressing Behavioral Fingerprints. Verification methods based on fingerprint detection rely on

the model’s distinctive responses to crafted probes to determine whether remnants of forgotten data
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persist. However, such behavioral signatures can be neutralized. Adversaries may train the model

adversarially to suppress fingerprint activation [5, 59], or apply input filtering and sanitization

mechanisms to block suspicious fingerprint queries [2, 102]. Targeted fingerprint removal tech-

niques [45, 127] can eliminate verification triggers while preserving memorized content, thereby

invalidating the behavioral cues relied upon by the auditor.

Obfuscating Privacy Leakage Signals. Privacy analysis verification relies on the success of infer-

ence attacks to infer whether forgotten data still influences the model. However, these signals can

be intentionally obfuscated. For instance, retraining with differential privacy [58], injecting noise

into gradients, or clipping model outputs [40, 108] can reduce attack effectiveness. Consequently,

models may appear to have forgotten certain data while covertly retaining sensitive information in

internal representations or decision boundaries.erhead limits their scalability in real-world settings.

Spoofing Performance Degradation. Model performancemethodsmonitor metrics such as accuracy

decline, relearn time, or loss recovery to infer whether unlearning has occurred. Yet these indicators

can be spoofed by adversaries. Through data poisoning [29, 97], the model’s performance can

be manipulated to mimic the expected degradation or improvement patterns. In such cases, the

model passes the performance check without performing actual data removal, undermining the

verification’s trustworthiness.

In all cases, the root vulnerability lies in the decoupling between observable behavior and true

memory state: behavioral signals can be engineered independently of actual forgetting. Without

tighter coupling between external behavior and internal data provenance, behavioral verification

remains vulnerable to strategic manipulation. This calls for the integration of behavioral modules

with stronger formal or cryptographic guarantees to ensure robustness against behavioral forgery.

7 OpenQuestions and Future Directions
Unified Definition of Forgetting. A fundamental challenge in unlearning research is the absence

of a unified and operational definition of forgetting. Current approaches rely on diverse criteria,

including fingerprint [36, 94, 125], privacy analysis [23, 90, 98], and model performance [43, 76].

This definitional fragmentation creates a critical ambiguity: if a model passes certain verification

protocols but fails others, can it still be considered to have truly forgotten the data? Without a

common standard, service providers may selectively adopt favorable verification strategies and

claim compliance without achieving the intended privacy guarantees. The lack of formal consensus

not only impedes fair comparison across methods but also opens the door to unverifiable or

misleading claims. Future research should aim to establish a rigorous, interpretable, and widely

applicable definition of forgetting that accommodates various verification paradigms and practical

deployment needs.

Reliable Unlearning Verification Methods. Beyond definitional ambiguity, the reliability of existing

verification methods remains a pressing concern. Many empirical approaches, such as those based

on privacy inference or performance degradation, depend heavily on model outputs and the effec-

tiveness of auxiliary attack modules. When these modules are poorly calibrated or overly sensitive

to distributional shifts, the resulting verification can become unstable or misleading. At the same

time, theoretically grounded methods, including differential privacy verification and reproducibility

verification, also suffer from fundamental limitations. For instance, reproducibility verification

assumes that if a model trained with and without a specific data point yields identical parameters,

then the data has been successfully forgotten. However, as shown in [96], it is possible to construct

datasets that differ by a single point 𝑥 yet result in nearly indistinguishable models. This allows for

false claims of forgetting without any actual data removal. Although recent work has explored the
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integration of cryptographic primitives into reproducibility verification to enhance its trustworthi-

ness, these techniques remain computationally intensive and difficult to scale. This underscores

the need for verification methods that combine theoretical rigor with practical feasibility. Such

methods should provide reliable forgetting guarantees without imposing excessive computational

or access requirements.

Limited Robustness under Practical Constraints. Despite growing interest in unlearning verifica-

tion, many existing methods are developed under overly idealized assumptions. It is often presumed

that data distributions are stationary [15, 28], model internals are fully accessible [44, 120], and the

training process is entirely reproducible [27, 96]. These assumptions rarely hold in real-world de-

ployments, where models are subject to stochastic training dynamics, evolving input distributions,

and limited access due to privacy policies or API restrictions. Such constraints introduce substantial

uncertainty that current methods are ill-prepared to handle. For instance, small perturbations in ini-

tialization or mini-batch order can significantly affect model outputs, undermining the reliability of

behavior signals. Similarly, black-box environments make gradient-based or log-based verification

infeasible. This gap between theoretical design and deployment reality remains one of the least

addressed yet most impactful challenges. Without explicitly accounting for these constraints, veri-

fication results may become unstable, misleading, or fundamentally inapplicable. Future research

must incorporate robustness into the core design of verification protocols, including tolerance to

randomness, adaptability to shifting distributions, and operability under partial or noisy access.

Otherwise, verification will remain a fragile component that functions only in controlled settings

and silently fails in practical use.

Generalization Across Different Samples. Another insufficiently explored limitation is the inconsis-

tency of verification effectiveness across different data samples. Many existing methods, particularly

those based on membership inference, perform exceptionally well on atypical or poorly generalized

samples, which are the most likely to be memorized by the model [30, 128]. However, they often

underestimate the forgetting failure rate on well-generalized samples, leading to incomplete or

biased assessments. This inconsistency reflects a deeper issue: current verification techniques

often implicitly assume that all samples are equally verifiable, ignoring the heterogeneous learning

dynamics inherent to modern models. Without accounting for sample-specific factors such as

gradient influence, model sensitivity, or generalization difficulty, these methods risk producing

misleading evaluations of unlearning effectiveness. Future work should aim to develop verification

strategies that support consistent and fair assessments across a broad spectrum of data instances.

Verification in the Duplicate data. Real-world datasets are rarely composed of unique or indepen-

dent samples. Instead, they often contain duplicates or semantically similar instances originating

from different users or data sources. In such cases, deleting a particular sample may not remove

its semantic influence if similar data remains in the training set. This creates a critical blind spot

for current verification methods: systems may technically fulfill a deletion request while still

retaining equivalent information elsewhere, thus rendering the forgetting claim misleading [117].

Designing verification frameworks capable of detecting and quantifying residual memorization in

the presence of redundancy or correlation is a significant open challenge. Future research should

explore verification mechanisms with similarity-awareness or representation-level sensitivity to

ensure that claims of forgetting reflect the model’s true information retention status.

8 Conclusion
Machine unlearning is a process that enables machine learning models to forget specific training

data through specialized techniques. While these techniques provide algorithm-level forgetting
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or approximate forgetting, the honesty of the service providers offering unlearning APIs often

remains questionable. Therefore, verification becomes a crucial element to enhance the reliability

of machine unlearning. However, existing work lacks a comprehensive and thorough survey of this

field. To fill this gap, we present the first survey on machine unlearning verification. We classify

existing verification methods into empirical and formal types, analyzing their respective advantages

and limitations. Additionally, we examine the associated vulnerabilities and threats and identify

several open research questions. We believe that our work can advance the study of the reliability

and security of machine unlearning, thus enabling machine learning systems to more reliably

handle the forgetting of sensitive data.
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