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PDLRecover: Privacy-preserving Decentralized
Model Recovery with Machine Unlearning

Xiangman Li, Xiaodong Wu, Jianbing Ni, Mohamed Mahmoud, and Maazen Alsabaan

Abstract—Decentralized learning is highly susceptible to poison
attacks, in which malicious participants can manipulate local
updates to degradate of model performance. Existing defense
methods primarily focus on detecting and filtering malicious
models to prevent a certain number of malicious clients from
altering local models and poison the global model. However,
correcting and recovering an already compromised global model
remains a significant challenge. One of direct methods is to
remove the malicious clients and retrain the model with the
remaining clients to restore model performance. However, re-
training needs substantial computational and temporal costs and
cannot guarantee consistency and privacy of the original model.

In this paper, we propose a novel method called PDLRecover
that can effectively recover a poisoned global model by utilizing
historical information and prevent potential local model leakage.
The key challenge is to protect the shared historical models, while
enabling to estimate the parameters of the recovered model for
model reconstruction and recovery by the remaining clients. By
leveraging the linear property of approximate Hessian matrix
computation, we achieve privacy protection of the historical
information based on secret sharing, preventing local model
leakage during transmission and reconstruction. PDLRecover
involves clients performing preparation steps, periodic steps, and
final exact training to guarantee the accuracy and robustness of
the recovered model. Our recovery process performs periodic
exact updates to maintain accurate local curvature information,
followed by a final precise update to ensure convergence quality.
We demonstrate that the recovered global model is comparable to
the retrained model, but with significantly reduced computational
time and cost, while enabling the protection of local model
parameters against privacy leakage. Our experimental results
validate the accuracy of the recovered global model and the
efficiency in global model recovery.

Index Terms—Decentralized Learning, Machine Unlearning,
Privacy Preservation, Poison Attack.

I. INTRODUCTION

Decentralized learning is an emerging distributed machine
learning paradigm that enables multiple clients, such as smart-
phones and IoT devices, to collaboratively train a global
model without sharing their raw local data [1]. It allows
clients to perform local model training and exchange only
encrypted model parameters, thereby preserving data privacy
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and reducing the risk of data breaches. Meanwhile, decen-
tralized learning significantly lowers communication overhead
by eliminating the need to upload large volumes of raw
data, making it well-suited for distributed and bandwidth-
constrained environments. Decentralized learning has demon-
strated practical advantages in real-world applications. For
example, Google’s Gboard uses federated learning for privacy-
preserving text prediction, while autonomous driving systems
leverage decentralized models trained on rich, on-board sensor
data to recognize roads, pedestrians, and traffic signs [2].

However, decentralized learning still faces significant pri-
vacy and security challenges. Although it avoids centralized
data collection, this paradigm relies on the exchange of
intermediate model parameters or updates, which can un-
intentionally leak sensitive information. Two major privacy
attack vectors in this context are model inversion attacks
and reconstruction attacks. Model inversion attacks attempt
to recover original training data by reversing the outputs of
a model, while reconstruction attacks exploit intermediate
parameters to reconstruct a client’s local data [3]. For example,
the structural patterns embedded in shared parameters may
enable partial data recovery by adversarial clients. In addition,
privacy risks persist even when raw data is not explicitly
exchanged. Membership inference attacks [4] can determine
whether specific data records were part of a client’s training
dataset, simply by analyzing the exposed model behavior. As
a result, unprotected decentralized learning systems remain
vulnerable to various forms of information leakage, compro-
mising user privacy during collaborative model training.

Moreover, malicious clients in decentralized learning can
launch poison attacks by tampering with their local train-
ing data or submitting manipulated model updates, thereby
degrading the performance of the global model. These at-
tacks fall into two main categories: data poisoning, where
adversaries inject harmful or misleading data into the training
set; and model poisoning, where clients send crafted updates
to corrupt the aggregation process or mislead the global
model’s behavior [5]. While existing defenses [references]
primarily aim to limit the influence of a small number of
attackers and detect malicious local updates, the problem of
recovering a compromised model has received comparatively
little attention. A conventional solution [6] is to retrain the
entire model from scratch, which is computationally expensive
and time-consuming. Furthermore, in a decentralized setting, it
is often impractical to ensure that all clients remain online and
available for full model retraining. This underscores the need
for efficient and collaborative model recovery mechanisms that
do not rely on complete retraining. However, enabling clients
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to cooperatively restore the global model introduces additional
privacy risks, as the communication and computation required
for recovery may inadvertently expose sensitive information.
Therefore, it is crucial to design recovery approaches that are
not only effective and scalable but also privacy-preserving.

In this paper, we propose PDLRecover, a machine unlearn-
ing based privacy-preserving decentralized model recovery
framework that uses clients’ historical updates to mitigate
the impact of malicious clients on the global model without
evading the privacy of clients. Firstly, PDLRecover lever-
ages the Hessian-vector product (HVP) computation [7] to
approximate model updates using historical gradients and
parameter differences. To enhance the fidelity of the recovered
global model, PDLRecover performs periodic exact updates to
maintain accurate local curvature information, followed by a
final precise update to ensure convergence quality. However,
the exposure of historical updates leads to the potential model
leakage in model recovery, which is a severe but has not been
resolved yet. To prevent potential model leakage from the
historical updates, PDLRecover employs shamir secret sharing
[8] to allow each client to securely encode their local gradi-
ents for model protection. However, the integration of secret
sharing and the HVP is not trivial. According to the linear
property of approximate Hessian matrix computation [9], the
secret shares are aggregated in an encrypted manner and used
to reconstruct global statistics without revealing individual
client updates during training. In the recovery phase, each
client independently computes its local approximated update
direction using only its own private shares. The global di-
rection is then reconstructed collaboratively through Lagrange
interpolation. As a result, PDLRecover enables decentralized
model repair in the presence of partial client dropout, while
preserving client privacy and avoiding directly accessing or
revealing other clients’ model parameters.

Contributions. The main contributions of this paper are
summarized in threefold:

• We propose an efficient unlearning method for decen-
tralized learning that leverages Hessian-vector product
(HVP) computation and clients’ historical updates to
mitigate the impact of malicious or dropout clients. PDL-
Recover provides a technical solution for removing the
influence of poisoned updates and enables the restoration
of a contaminated global model without the need for full
retraining.

• We extend the standard L-BFGS method with secret
sharing to ensure privacy preservation for clients. It
enables the computation of approximate Hessian matrix
computation with the input of secret shares, enabling
clients reconstructing local updates for unlearning during
the recovery process.

• We provide theoretical proofs to demonstrate the fea-
sibility of PDLRecover in recovering the global model
and preserving client privacy. Additionally, experimental
simulations show that PDLRecover can effectively restore
model performance to a high level while maintaining
overall stability.

The remaining of this paper is organized as follows. In

Section II, we introduce the related work about poison attacks
and machine unlearning. Section III proposes an overview of
preliminary knowledge and problem formalization, followed
by PDLRecover background in Section IV. In Section V, we
describe our detailed PDLRecover and the corresponding algo-
rithms. Section VI shows the experimental results, followed by
the security analysis of PDLRecover in Section VII. Finally,
we conclude this paper in Section VIII.

II. RELATED WORK

In this section, we review some designs of machine unlearn-
ing and the novel poison attacks and detection methods.

A. Machine Unlearning

Machine unlearning was originally proposed to “forget"
specific data samples, along with their influence, from a trained
model [10], in order to comply with the “Right to be Forgot-
ten" as mandated by the General Data Protection Regulation
(GDPR) [11]. It offers effective and reliable solutions for
detecting and eliminating training data samples in response
to privacy and regulatory requirements. Machine unlearning
enables the generation of a model that behaves as if it has never
learned the data points or samples designated for deletion
at a client’s request. Machine unlearning techniques can be
broadly categorized into two types: exacting unlearning and
approximate unlearning [12]. Exact unlearning is, for any data
point 𝑥𝑖 ∉ 𝐷, the prediction of 𝑀 (𝑥) = 𝑀 ′ (𝑥) [13]. Retraining
is one of the methods of exact unlearning. This method retrains
the model after removing the required data. However, this
method is expensive and time-consuming, particularly for large
datasets, decentralized architecture, and complex algorithms.
Approximate unlearning aims to balance the cost and the
accuracy of the model in training. Given an acceptable error
threshold 𝜖 , if for all 𝑥 ∈ 𝐷 the difference |𝑀 (𝑥)−𝑀 ′ (𝑥) | < 𝜖 ,
the unlearning is considered accurate [13]. The approximate
unlearning methods include influence function method [14],
gradient modification [15], and re-optimization method [16].
These methods strike a balance between operational costs
and model performance by ensuring that the precision of the
unlearning model remains within an acceptable range, while
substantially reducing resource consumption and processing
time.

Unlearning has also been explored in federated learning,
where techniques originally designed for centralized settings
are adapted. For example, Su et al. [17] followed the design of
SISA [10], and Liu et al. [18] further extended these concepts
to design federated unlearning architectures. Their methods re-
semble the algorithm in [16], which leverages Fisher informa-
tion [19] for gradient modification. Other federated unlearning
methods are based on knowledge distillation [20] and model
calibration [21] to enable the removal of trained samples from
the global model. However, unlearning in fully decentralized
learning has not been investigated. Achieving efficient un-
learning in a fully decentralized model is challenging for two
main reasons: First, the recovery process is time-consuming, as
each client must communicate with others to exchange model
updates in the absence of a central server. Second, model
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updates provided by malicious or dropout clients can lead to
the failure of model recovery and reconstruction.

B. Poison Attacks and Defenses

Poison attacks compromise the training process of machine
learning models by deliberately manipulating input data, la-
bels, or model updates, with the goal of degrading the per-
formance or altering the behavior of the final model. Assume
there is a clean dataset 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)}
for training a prediction model, where 𝑥𝑖 and 𝑦𝑖 are the data
sample and the corresponding label of the 𝑖𝑡ℎ data in the
training dataset, and 𝑛 is the size of this dataset. The trainer
trains a model 𝐺 based on the dataset 𝐷 and optimizes it
based on a loss function 𝐿. Recently, poison attacks have
been extensively explored, and various poison attacks have
been identified in both centralized learning and decentralized
learning. Zhang et al. [22] highlighted the vulnerability of
EEG signal-based risk assessment systems to data poison
attacks, particularly label-flipping attacks during the training
stages of machine learning models. Similarly, Ovi et al. [23]
emphasized the susceptibility of models to data poison attacks
when malicious clients use tainted training data. In the realm
of cybersecurity, backdoors can be activated by attackers to
manipulate poisoned models, as demonstrated in the study on
deep source code processing models [24].

Additionally, poison attacks in federated learning systems
have been explored, with a focus on generative adversarial
networks (GANs) as a means of attack [25]. These cases
serve as reminders of the potential dangers associated with
poison attacks in various contexts. Moreover, a recent study
[26] delves into more specific types of poison attacks, such
as prompt-specific poison attacks that aim to make poisoned
samples visually identical to benign images with matching
text prompts. This level of detail underscores the evolving
sophistication of poison attack techniques and the difficulty of
their identification and prevention.

To counter these evolving poison attacks, defense methods
typically focus on distinguishing between benign and mali-
cious samples. This is generally achieved by using model
properties or activation statistics to determine if the model,
training data, or test samples have been compromised. Various
statistical methods have been applied to spot anomalies in
poisoned datasets [27], [28]. For example, Hayase et al. [27]
introduced a defense mechanism against backdoor attacks in
machine learning models by leveraging robust statistics to
detect and mitigate the impact of poisoned training samples. Li
et al. [29] proposed a defense against DNN backdoor attacks
using neural attention distillation, which fine-tunes a backdoor-
affected student network with clean data from a trusted teacher
network. Liu et al. [30] assessed pruning and fine-tuning
strategies for defense against backdoor attacks, concluding
that a combined approach, termed “fine-pruning,” effectively
reduced attack success rates without harming the accuracy of
clean inputs.

Erasure techniques have also proven effective, as shown in
works like [31] and [32]. These techniques aim to remove
the influence of poisoned data by directly identifying and

erasing corrupted parameters or activations, thus restoring the
model’s integrity. Additionally, Fang et al. [33] investigated the
vulnerability of Byzantine-robust federated learning systems
to local model poison attacks, showing how attackers can
significantly raise global model error rates by corrupting client
devices and manipulating local parameters. They modeled
these attacks as optimization problems and evaluated them
against various Byzantine-robust methods, highlighting severe
potential performance issues. Li et al. [34] integrated detec-
tion techniques with blockchain technology, using an anti-
Byzantine consensus mechanism called Proof of Accuracy to
validate models and ensure the learning process’s integrity.

However, these methods primarily focus on identifying
malicious samples or differentiating between poisoned and
clean models, without considering the potential to recover
compromised models. Cao et al. [35] introduced the first
model recovery technique that enables the server in federated
learning to recover the global model after a poison attack by
leveraging stored global models and clients’ model updates
from each training round. The server estimates each client’s
model update using historical data and restores the global
model based on these estimations during the recovery process.
Subsequently, Jiang et al. [36] enhanced this approach by
improving recovery speed and reducing memory usage with an
efficient recovery method that employs selective information
storage and adaptive model rollback. However, both methods
present privacy concerns as the server must store clients’ local
models for recovery, thereby exposing all historical data to the
curious server, including clients’ model updates. Additionally,
current designs such as [35] and [36] are tailored for federated
learning, leaving fully decentralized learning unexplored.

III. PRELIMINARY KNOWLEDGE

A. Decentralized Learning

In decentralized learning [37], suppose that 𝑛 clients have
their local dataset 𝐷𝑖 , aiming to train a global model. Their
target is to minimize the loss function 𝑚𝑖𝑛 𝐿(𝐷; w), where
𝐷 is the joint dataset of 𝑛 clients, i.e., 𝐷 =

∑
𝐷𝑖 , w is the

parameter of the global model, and 𝐿 is the loss function,
such as mean square error and cross-entropy loss. Each client
trains its local machine learning model using its own dataset
and receives model updates from other clients to maintain the
global model. The global model is updated iteratively, in each
iteration consisting of three main steps:

• Model Initialization: Clients establish bidirectional com-
munication with their neighboring peers by broadcasting
their availability. All clients start with the same model
parameters w0.

• Model Training: Each client trains its local model us-
ing its own dataset and computes the local update, 𝑔𝑖𝑡 ,
based on an optimization algorithm, such as the steepest
gradient method or stochastic gradient descent, where 𝑖
denotes the client index. A client then updates its local
model parameters, w𝑖𝑡 , using the learning rate 𝛾, according
to the formula w𝑖

𝑡+1 = w𝑖𝑡 − 𝛾 · 𝑔𝑖𝑡 . Afterward, clients
broadcast their local model parameters through secret
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TABLE I: Notations

Notation Description
𝑛 Number of clients

𝑚 Number of malicious clients

𝑡 Iteration index

𝑖 Client index

𝛾 Learning rate

𝑇 Total number of rounds

𝑇𝑝 Number of preparation step

𝑇𝑟 Index of periodic step

𝑇𝑓 Number of final exact training

𝑠 Buffer size of the L-BFGS algorithm

w̄𝑡 Original global model at iteration 𝑡

ŵ𝑡 Recovery global model at iteration 𝑡

∇𝐿𝑖 (w̄𝑡 ) Original local update for client 𝑖 at iteration 𝑡

∇𝐿𝑖 (ŵ𝑡 ) Recovery local update for client 𝑖 at iteration 𝑡

∇𝐿 (w̄𝑡 ) Sum of original local update for client 𝑖 at iteration 𝑡

∇𝐿 (ŵ𝑡 ) Sum of recovery local update at iteration 𝑡

∇𝐿 (𝑥𝑖 ) (�̂�𝑡 ) Sub-secret recovery local update for client 𝑖 at iteration 𝑡

H̃𝑡 Estimated Hessian matrix at iteration 𝑡

𝐺 (𝑥𝑖 ) Local update difference buffer for client 𝑖

𝑊 Global model difference buffer

sharing to their neighbours and receive model parameters
from them.

• Model Aggregation: Each client collects the model
parameters from its neighbors and applies an aggre-
gation rule 𝐴, to update the global model: w𝑡+1 =

𝐴(w1
𝑡 ,w2

𝑡 , . . . ,w𝑛𝑡 ).
Clients conduct these three steps to continuously update

their local models. During the model aggregation step, dif-
ferent aggregation rules offer distinct advantages. In PDLRe-
cover, we employ one of the most popular methods, FedAvg
[38], which efficiently combines local model updates from all
clients to produce a robust global model.

FedAvg is a parameter aggregation process that uses
weighted averaging to update the global model. After each
client collects all the neighbors’ local model parameters w𝑖
and local dataset sizes 𝑛𝑖 , it calculates the weighted average
of the global model parameters, where the weights are the
sizes of the local datasets, following the equation as:

wnew =

∑𝐾
𝑖=1 𝑛𝑖w𝑖∑𝐾
𝑖=1 𝑛𝑖

, (1)

where 𝐾 is the number of participating devices, wnew is the
new global model parameters, 𝑛𝑖 is the size of the 𝑖-th device’s
local dataset, and w𝑖 is 𝑖-th device’s local model parameters.

B. Shamir’s Secret Sharing

In PDLRecover, we employ a secret sharing algorithm to
secure each client’s local update 𝑔𝑖𝑡 , during the collection of the
aggregated model parameters w𝑡 , which are essential for model
recovery. Specifically, we use the Shamir’s secret sharing to
facilitate secure exchange of local updates.

Shamir’s secret sharing [8] is a cryptographic method that
divides a secret into multiple shares, which are distributed
among a group of clients. The secret can only be reconstructed
when a required number of shares are combined, ensuring
that individual client updates remain private. This technique
enables secure aggregation during the model recovery process
while protecting the confidentiality of each client’s data.

The details of Shamir’s secret sharing are as follows:
1) Secret Distribution: A client 𝑗 shares a secret 𝑠 among

𝑛 clients, such that any 𝑡 of 𝑛 clients can reconstruct the secret
𝑠. To achieve this, the client 𝑗 uses a 𝑡 − 1 degree polynomial
to generate the shares.

• Select a random polynomial

𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + · · · + 𝑎𝑡−1𝑥

𝑡−1, (2)

where 𝑎0 = 𝑠 is the secret, and 𝑎1, 𝑎2, . . . , 𝑎𝑡−1 are
randomly chosen coefficients.

• For each client 𝑖, where 𝑖 = 1, 2, . . . , 𝑛, the client 𝑗 selects
a random 𝑥𝑖 and computes 𝑓 (𝑥𝑖).

• The share given to the client 𝑖 is the point (𝑥𝑖 , 𝑓 (𝑥𝑖)).
2) Secret Reconstruction: Any group of at least 𝑡 clients can

reconstruct the secret using their shares. This is done using the
Lagrange interpolation.

• Collect at least 𝑡 shares (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑡 , 𝑦𝑡 ).
• Use Lagrange interpolation to reconstruct polynomial as

𝑓 (𝑥) =
𝑡∑︁
𝑖=1

𝑦𝑖

∏
1≤ 𝑗≤𝑡 , 𝑗≠𝑖

𝑥 − 𝑥 𝑗
𝑥𝑖 − 𝑥 𝑗

. (3)

• Evaluate this polynomial at 𝑥 = 0 to find the secret 𝑠 =
𝑓 (0) = ∑𝑡

𝑖=1 𝑦𝑖
∏

1≤ 𝑗≤𝑡 , 𝑗≠𝑖
−𝑥 𝑗
𝑥𝑖−𝑥 𝑗 .

C. L-BFGS Method

The L-BFGS algorithm [39] plays a crucial role in ef-
ficiently computing the approximate Hessian-vector product
(HVP), significantly reducing the computational complex-
ity of large-scale optimization problems by avoiding direct
Hessian matrix calculations. It achieves this by leveraging
two key buffers: a global-model difference buffer, 𝑊 =

[ΔW𝑏1 ,ΔW𝑏2 , . . . ,ΔW𝑏𝑠 ], which tracks changes in global
model parameters across iterations, and a local update dif-
ference buffer, 𝐺𝑖 = [Δ𝐺𝑖

𝑏1
,Δ𝐺𝑖

𝑏2
, . . . ,Δ𝐺𝑖

𝑏𝑠
], which stores

gradient updates in each iteration, 𝑠 is the buffer size. An
input vector, v, is also used in the computation process. The
L-BFGS algorithm then uses 𝑊𝑡 and 𝐺𝑖𝑡 as inputs to generate
an approximate Hessian matrix H̃𝑖

𝑡 for the 𝑖-th client in the 𝑡-th
iteration. This process is described as B𝑖𝑡 = L-BFGS(𝑊𝑡 , 𝐺𝑖𝑡 ).

IV. BACKGROUND

A. Notation

We first define the notations (shown in Table I ) that are
used to construct PDLRecover.
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Fig. 1: An overview of PDLRecover

B. PDLRecover Background

In decentralized learning, suppose each client has a local
dataset 𝐷𝑖 with 𝑛 samples to train a global machine learning
model. The loss function for a client 𝑖 is defined as

𝐿𝑖 (w) =
1
𝑛

𝑛∑︁
𝑗=1

𝐿𝑖 𝑗 (w), (4)

where w is the local model parameter, and 𝐿𝑖 𝑗 (w) is the 𝑗-th
sample’s loss function for the client 𝑖. The gradient of 𝐿 (w)
for the client 𝑖 is

∇𝐿𝑖 (w) =
1
𝑛

𝑛∑︁
𝑗=1
∇𝐿𝑖 𝑗 (w). (5)

Model parameters are aggregated through FedAvg in each
iteration 𝑡 = 1, . . . , 𝑇 as

w𝑡+1 ← w𝑡 −
𝛾𝑡

𝑛

∑︁
𝑖∈𝑛
∇𝐿𝑖 (w𝑡 ), (6)

where 𝑛 is the number of clients and 𝛾𝑡 is the learning rate at
iteration 𝑡.

If a subset 𝑃 = {𝑖1, 𝑖2, · · · , 𝑖𝑝} of clients drop out or
are identified as dishonest, submitting malicious updates, the
updates from dropped clients can be removed as:

w𝑡+1 = w𝑡 −
𝛾𝑡

𝑛 − 𝑝

[∑︁
𝑖∈𝑛
∇𝐿𝑖 (w𝑡 ) −

∑︁
𝑖∈𝑃
∇𝐿𝑖 (w𝑡 )

]
, (7)

where 𝑝 is the size of 𝑃.
However, computing

∑
𝑖∈𝑃 ∇𝐿𝑖 (w𝑡 ) is impossible since

updates from dropped clients are unavailable. The model
parameters can be updated using only the remaining clients’
updates

w𝑡+1 = w𝑡 −
𝛾𝑡

𝑛 − 𝑝
∑︁
𝑖∉𝑃

∇𝐿𝑖 (w𝑡 ). (8)

Suppose the client 𝑖 caches model pa-
rameters {w̄0, w̄1, · · · , w̄𝑡 } and gradients
{∇𝐿𝑖 (w0),∇𝐿𝑖 (w1), · · · ,∇𝐿𝑖 (w𝑡 )} for each iteration.
Using Cauchy’s Mean Value Theorem, the unlearned local
updated ∇𝐿𝑖 (ŵ𝑡 ) for each iteration can be estimated as

∇𝐿𝑖 (ŵ𝑡 ) = ∇𝐿𝑖 (w̄𝑡 ) +H𝑡 · (ŵ𝑡 − w̄𝑡 ), (9)

where H𝑡 is an integrated Hessian

H𝑡 =

∫ 1

0
H(w̄𝑡 + 𝑥(ŵ𝑡 − w̄𝑡 )) 𝑑𝑥. (10)

This approach enables accurate estimation of updates during
the recovery process while maintaining efficiency and client
privacy.

According to Equation 9, we propose PDLRecover, a novel
method to address the challenges posed by detected malicious
or disconnected clients during distributed training. PDLRe-
cover effectively removes compromised and dropped clients,
reinitialized the global model, and restores its performance
using stored historical data, thereby eliminating the need to
retrain from scratch.

To facilitate efficient model recovery, each client collects
valuable historical data during the training process, including
the global model parameters and client model updates. PDL-
Recover enables each client to gather this information from
neighboring clients during the training process, supporting the
estimation of clients’ model updates during recovery while
ensuring privacy and model performance. The main framework
of PDLRecover is shown in Fig. 1.

In terms of privacy, we employ a secret-sharing mechanism
to protect client data. During training, clients share their local
model updates in a secret-shared manner. During the recovery
phase, each client broadcasts reconstructed model updates
to facilitate global model restoration. While this approach
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imposes certain constraints on our aggregation technique and
introduces some computational overhead, the benefits of main-
taining client privacy outweigh these costs.

The core of PDLRecover lies in enabling clients to com-
municate and collaborate in estimating global model updates
during recovery in decentralized learning. Clients store not
only their own training history but also global model updates,
including corrupted updates introduced by malicious clients.
During recovery, we estimate the model updates for each
client in each iteration using Cauchy’s Mean Value Theorem.
Although calculating the integrals required by this theorem
is complex, we overcome this challenge by estimating the
Hessian matrix using the extended L-BFGS technique. While
this approach necessitates certain computational and storage
capabilities from clients, the benefits in terms of recovery
accuracy outweigh the associated costs.

C. Threat Model
Attacker’s Goals. The primary objective of an untargeted

poison attack is to indiscriminately increase the global model’s
test error rate across a significant number of test inputs. In
contrast, a targeted poison attack aims to manipulate the global
model to produce inaccurate predictions specifically for certain
target labels chosen by the attacker, while still maintaining
accuracy for other test inputs. Backdoor attacks are a form of
targeted attack that involve inserting a unique trigger, such as
a specific feature pattern, into the target test inputs.

Attacker’s Capabilities. An attacker has controled over
specific malicious clients while maintaining the integrity of
honest clients. Malicious clients can either be fabricated en-
tities introduced by the attacker or compromised legitimate
clients within the decentralized learning system. They possess
the ability to send arbitrary model updates to the server,
thereby impacting the overall learning process.

Attacker’s Background Knowledge. The attacker’s back-
ground knowledge can be classified into two distinct settings:
partial-knowledge and full-knowledge settings [33].
• Partial-Knowledge Setting: An attacker possesses knowl-

edge of the global model, the loss function, and has access
to local training data and model updates on the malicious
clients only.

• Full-Knowledge Setting: An attacker possesses a thor-
ough understanding of the local training data and model
updates from all clients, as well as knowledge of the
aggregation rules. This level of insight significantly en-
hances the effectiveness of poison attacks compared to
a partial-knowledge scenario, enabling the attacker to
devise more potent strategies for corrupting the model.

In summary, the effectiveness of poison attacks depends on
the attacker’s objectives, the degree of control over malicious
clients, and the depth of knowledge about the decentralized
learning system. Understanding these factors is essential for
developing robust defense mechanisms.

D. Design Goals
Our goal is for PDLRecover to perform comparably to the

drop client retraining method while significantly outperform-
ing the historical information retraining method. Additionally,

PDLRecover should minimize computational and communi-
cation overhead for clients and protect the privacy of honest
participants. The key design goals include:

Accuracy: PDLRecover must recover an accurate global
model from poison attacks, maintaining performance similar to
the drop client retraining method. The accuracy should remain
high, with minimal impact from the number of malicious
clients up to a certain threshold.

Efficiency: PDLRecover should lower the computational
and communication load on clients, requiring minimal rounds
for clients to compute local updates while effectively adjusting
their models. The server’s processing and storage overhead
should also be kept within practical limits.

Privacy: The privacy of clients must be safeguarded during
the recovery process, even when local updates are shared for
aggregation. We aim to design a privacy-preserving scheme
that can be integrated with the recovery method to ensure that
clients’ privacy is maintained during the recovery process.

Independence from detection methods: PDLRecover should
be a versatile recovery method compatible with various ma-
licious client detection techniques. It should leverage existing
models that identify client behavior to facilitate recovery
and remain resilient, ensuring accuracy and stability even if
some malicious clients go undetected or honest clients are
mistakenly flagged.

V. PDLRECOVER

In this section, we present our PDLRecover, as shown
in Algorithm 1, including prepareation, recovery, periodic
step, and final exact update. The proposed design integrates
exact training, gradient recovery through the extended L-BFGS
algorithm, and secure reconstruction of model updates through
secret sharing. This hybrid strategy ensures resilience in the
face of partial client dropout while preserving privacy and
maintaining high recovery fidelity.

Preparation. In the preparation phase, all remaining clients
actively participate in federated training. At each iteration 𝑡,
client 𝑖 computes the local gradient ∇𝐿𝑖 (�̄�𝑡 ) and engages
in a secret sharing protocol to ensure privacy of its update.
Specifically, client 𝑖 generates a random polynomial of degree
at most 𝑛:

𝑓 𝑡𝑖 (𝑥) = 𝑎𝑡𝑖,0 + 𝑎
𝑡
𝑖,1𝑥 + 𝑎

𝑡
𝑖,2𝑥

2 + · · · + 𝑎𝑡𝑖,𝑛𝑥𝑛, (11)

where the constant term encodes the private local gradi-
ent, i.e., 𝑎𝑡

𝑖,0 = ∇𝐿𝑖 (�̄�𝑡 ), and the remaining coefficients
𝑎𝑡
𝑖,1, 𝑎

𝑡
𝑖,2, · · · , 𝑎

𝑡
𝑖,𝑛

are selected uniformly at random from a
finite field Z𝑞 .

To construct shares, each client 𝑗 computes 𝑓 𝑡
𝑖
(𝑥 𝑗 ) and

sends it securely to client 𝑖. After receiving shares from all
other clients, client 𝑖 aggregates the sub-secret gradient values:

∇𝐿 (𝑥𝑖 ) (�̂�𝑡 ) =
𝑛∑︁
𝑗=1

𝑓 𝑡𝑗 (𝑥𝑖). (12)

Then, each client reconstructs the global gradient using
Lagrange interpolation:

∇𝐿 (�̄�𝑡 ) =
𝑛∑︁
𝑖=1
∇𝐿 (𝑥𝑖 ) (�̂�𝑡 ) ·

∏
1≤ 𝑗≤𝑛
𝑗≠𝑖

0 − 𝑥 𝑗
𝑥𝑖 − 𝑥 𝑗

. (13)
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Algorithm 1 PDLRecover

Require: Clients 𝐶𝑟 = 𝐶𝑖 | 𝑚 + 1 ≤ 𝑖 ≤ 𝑛; initial
model �̄�0; learning rate 𝛾; original global models
ŵ0, ŵ1, . . . , ŵ𝑇 ; sub-secret of client 𝑗’s local model
∇𝐿 (𝑥𝑖 ) (�̄�0),∇𝐿 (𝑥𝑖 ) (�̄�1), . . . ,∇𝐿 (𝑥𝑖 ) (�̄�𝑡 ); periodic step
interval 𝑇𝑟 ; final exact steps 𝑇 𝑓 ; SS-L-BFGS buffer size
𝑠; share points 𝑥𝑖; total rounds 𝑇 .

Ensure: Final recovered model �̂�𝑇
1: �̂�0 ← �̄�0
2: for 𝑡 = 0 to 𝑇𝑝 − 1 do
3: �̂�𝑡+1 ← EXACTUPDATE(𝐶𝑟 , �̂�𝑡 , 𝛾) ⊲ preparation step
4: end for
5: for 𝑡 = 𝑇𝑝 to 𝑇 − 𝑇 𝑓 − 1 do
6: if (𝑡 − 𝑇𝑝 + 1) mod 𝑇𝑟 = 0 then ⊲ Periodic step
7: ∇𝐿 (𝑥𝑖 ) (�̂�𝑡 ), �̂�𝑡+1 ← EXACTUPDATE(𝐶𝑟 , �̂�𝑡 , 𝛾)
8: for each client 𝐶𝑖 do
9: Δ𝐺

(𝑥𝑖 )
𝑡 = ∇𝐿 (𝑥𝑖 ) (�̂�𝑡 ) − ∇𝐿 (𝑥𝑖 ) (�̄�𝑡 )

10: Δ𝑊𝑡 = �̂�𝑡 − �̄�𝑡
11: 𝐺

(𝑥𝑖 )
𝑡 ← 𝐺

(𝑥𝑖 )
𝑡 ∪ {Δ𝐺 (𝑥𝑖 )𝑡 }

12: 𝑊𝑡 ← 𝑊𝑡 ∪ {Δ𝑊𝑡 }
13: end for
14: else
15: for each client 𝐶𝑖 do
16: 𝐻𝑡

𝑖
v← SS-L-BFGS(𝑊𝑡 , 𝐺

(𝑥𝑖 )
𝑡 , �̂�𝑡 − �̄�𝑡 )

17: �̂�
(𝑥𝑖 )
𝑡 = ∇𝐿 (𝑥 𝑗 ) (�̄�𝑡 ) + 𝐻𝑡𝑖 v

18: end for
19: �̂�𝑡 =

∑𝑡
𝑗=1 �̂�

(𝑥𝑖 )
𝑡 ·∏1≤𝑖≤𝑡

𝑖≠ 𝑗

0−𝑥𝑖
𝑥 𝑗−𝑥𝑖

20: �̂�𝑡+1 ← �̂�𝑡 − 𝛾

𝑛
· �̂�𝑡

21: end if
22: end for
23: for 𝑡 = 𝑇 − 𝑇 𝑓 to 𝑇 − 1 do ⊲ Final exact recovery
24: �̂�𝑡+1 ← EXACTUPDATE(𝐶𝑟 , �̂�𝑡 , 𝛾)
25: end for
26: return �̂�𝑇

27: ExactUpdate:
28: Client 𝑖 computes and share local updates:
29: 𝑔𝑖 = ∇𝐿𝑖 (w) = 1

𝑛

∑𝑛
𝑖=1 ∇𝐿𝑖 𝑗 (w)

30: Generate polynomial for local updates ∇𝐿 (w̄𝑖𝑡 )
31: Compute secret shares (𝑥𝑡

𝑖
, 𝑓 𝑡
𝑗
(𝑥𝑖)) for each client 𝑖

32: Client 𝑖 aggregates received shares:
33: Upon receiving shares {(𝑥𝑖 , 𝑓 𝑡𝑗 (𝑥𝑖))} from all clients,
34: Compute polynomial sum ∇𝐿 (𝑥 𝑗 ) (�̄�𝑡 ) =

∑
𝑗∈𝑛 𝑓

𝑡
𝑗
(𝑥𝑖)

35: Client 𝑖 reconstructs local model update:
36: ∇𝐿 (ŵ𝑡 ) =

∑𝑡
𝑖=1 𝑙

𝑡
𝑖

∏
1≤ 𝑗≤𝑡 , 𝑗≠𝑖

𝑥− 𝑗
𝑖− 𝑗

37: Client 𝑖 updates model:
38: ŵ𝑡+1 = ŵ𝑡 − 𝛾 ·∇𝐿 (ŵ𝑡 )

𝑛

The reconstructed gradient is used to update the reference
model:

�̄�𝑡+1 = �̄�𝑡 −
𝛾

𝑛
· ∇𝐿 (�̄�𝑡 ). (14)

This involves calculating the precise global gradient and
updating the exact model parameters, while simultaneously
constructing local buffers that store global model differences
and sub-secret gradient differences, denoted by 𝑊𝑡 and 𝐺 (𝑥𝑖 )𝑡 .

Algorithm 2 SS-L-BFGS

Require: Local model difference buffer 𝑊 (𝑥 𝑗 ) =

[Δw(𝑥 𝑗 )1 , · · · ,Δw(𝑥 𝑗 )𝑠 ], Local gradient difference buffer
𝐺 (𝑥 𝑗 ) = [Δg(𝑥 𝑗 )1 , · · · ,Δg(𝑥 𝑗 )𝑠 ], A direction vector v

Ensure: Local approximated HVP H̃(𝑥 𝑗 )v
1: A = (𝑊 (𝑥 𝑗 ) )𝑇𝐺 (𝑥 𝑗 )
2: D = diag(A)
3: M = lower-triangular(A)
4: 𝜌 = (Δg(𝑥 𝑗 )𝑠 )𝑇Δw(𝑥 𝑗 )𝑠 /(Δw(𝑥 𝑗 )𝑠 )𝑇Δw(𝑥 𝑗 )𝑠

5: p =

[
−D M𝑇

M 𝜌(𝑊 (𝑥 𝑗 ) )𝑇𝑊 (𝑥 𝑗 )
]−1 [

𝐺 (𝑥 𝑗 )v
𝜌(𝑊 (𝑥 𝑗 ) )𝑇v

]
6: H̃(𝑥 𝑗 )v = 𝜌v −

[
𝐺 (𝑥 𝑗 ) 𝜌𝑊 (𝑥 𝑗 )

]
· p

7: return H̃(𝑥 𝑗 )v

Because the recovery process spans multiple iterations, the
buffers initialized during the early stages of training may be-
come stale. Stale buffers can lead to inaccurate approximations
of the Hessian matrix, erroneous model update estimates, and
ultimately compromise the accuracy of the recovered global
models. To address this limitation, we require each client to
repeat the preparation step every 𝑇𝑟 iterations. This regular
refresh of the buffer state ensures that second-order informa-
tion remains representative of the current model landscape,
thereby improving both the quality and stability of the recovery
process.

To support approximate second-order recovery, each client
𝐶 𝑗 independently constructs local buffers. At each periodic
iteration, the client stores its share of the gradient difference
and the corresponding model difference:

Δ𝐺
(𝑥 𝑗 )
𝑡 = ∇𝐿 (𝑥 𝑗 ) (�̂�𝑡 ) − ∇𝐿 (𝑥 𝑗 ) (�̄�𝑡 ), Δ𝑊𝑡 = �̂�𝑡 − �̄�𝑡 ,

and updates:

𝐺
(𝑥 𝑗 )
𝑡 ← 𝐺

(𝑥 𝑗 )
𝑡 ∪ {Δ𝐺 (𝑥 𝑗 )𝑡 }, 𝑊

(𝑥 𝑗 )
𝑡 ← 𝑊

(𝑥 𝑗 )
𝑡 ∪ {Δ𝑊𝑡 }.

Recovery. In the recovery phase, each client computes a
local approximated update direction:

�̂�
(𝑥 𝑗 )
𝑡 = ∇𝐿 (𝑥 𝑗 ) (�̄�𝑡 ) + 𝐻 (𝑥 𝑗 ) (�̂�𝑡 − �̄�𝑡 ), (15)

where 𝐻 (𝑥 𝑗 ) is computed from
(
𝑊 (𝑥 𝑗 ) , 𝐺 (𝑥 𝑗 )

)
using SS-L-

BFGS, an extended version of the classical L-BFGS algorithm
designed to support Hessian-vector product (HVP) computa-
tion over secret shares. This ensures that the approximated
update direction can be securely reconstructed from distributed
shares, without revealing any client’s private information. The
detailed procedure is described in Algorithm 2.

Once each client has computed its private direction esti-
mate �̂� (𝑥 𝑗 )𝑡 , the full global direction �̂�𝑡 is reconstructed using
Lagrange interpolation:

�̂�𝑡 =

𝑛∑︁
𝑗=1
�̂�
(𝑥 𝑗 )
𝑡 ·

∏
1≤𝑘≤𝑛
𝑘≠ 𝑗

0 − 𝑥𝑘
𝑥 𝑗 − 𝑥𝑘

. (16)

Using this aggregated update, the recovered model is up-
dated as:

�̂�𝑡+1 = �̂�𝑡 −
𝛾

𝑛
· �̂�𝑡 . (17)
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During recovery, the buffers (𝑊 (𝑥 𝑗 ) , 𝐺 (𝑥 𝑗 ) ) are not modi-
fied.

Periodic Step. To maintain the accuracy of the SS-L-BFGS
approximation, a periodic exact step is performed every 𝑇𝑟 iter-
ations. In this step, each client re-evaluates its gradient share
at the current model state �̂�𝑡 , computes the corresponding
gradient difference Δ𝐺

(𝑥 𝑗 )
𝑡 = ∇𝐿 (𝑥 𝑗 ) (�̂�𝑡 ) − ∇𝐿 (𝑥 𝑗 ) (�̄�𝑡 ) and

model difference Δ𝑊𝑡 = �̂�𝑡 − �̄�𝑡 , and subsequently refreshes
its local buffers by updating 𝐺 (𝑥 𝑗 )𝑡 ← 𝐺

(𝑥 𝑗 )
𝑡 ∪ {Δ𝐺 (𝑥 𝑗 )𝑡 } and

𝑊
(𝑥 𝑗 )
𝑡 ← 𝑊

(𝑥 𝑗 )
𝑡 ∪{Δ𝑊𝑡 }. To limit memory usage and maintain

relevance, the oldest entries are discarded, preserving a fixed
buffer size 𝑠. This periodic update guarantees that the curvature
information used for Hessian approximation remains fresh and
accurately reflects the evolving optimization landscape.

Final Exact Update. To further stabilize the training pro-
cess and eliminate accumulated approximation errors, PDLRe-
cover concludes with 𝑇 𝑓 final exact update steps. These steps
mirror the standard decentralized training procedure but omit
the secret sharing step. The final exact updates restore full
precision to the model and ensure that it reaches a stable and
accurate final state.

VI. EXPERIMENT RESULTS

In this section, we first introduce the datasets, the PDL-
Recover implementation details, and the baseline methods we
compare with. Next, we illustrate the results that implement
PDLRecover. Then, we demonstrate the performance of round
number of preparation and exact training. Finally, we discuss
the comparison between PDLRecover and existing methods.

A. Datasets

We use the following three datasets to implement PDLRe-
cover.

MNIST. The MNIST dataset is a classic computer vision
dataset widely used for image classification tasks. It contains
70, 000 grayscale images of handwritten digits, each 28𝑥28
pixels in size. Of these, 60, 000 images are used for training
and 10, 000 for testing. Each image corresponds to a numerical
label from 0 to 9. In this study, we used the ResNet50
model for the classification task on the MNIST dataset. To
accommodate the input requirements of ResNet50, we con-
verted the 28𝑥28 pixel grayscale images into 224𝑥224 pixel,
three-channel images suitable for the model. We randomly
distributed the MNIST dataset to 200 clients for training,
where the independent homogeneity is set to 0.5, which
usually ranges from 0.1 to 1.

FashionMNIST. The FashionMNIST dataset contains im-
ages of 10 different types of clothing and accessories. This
dataset serves as an alternative to the MNIST dataset for more
challenging image classification tasks. It consists of 70, 000
grayscale images, each 28𝑥28 pixels in size, with 60, 000 used
for training and 10, 000 for testing. We also trained the model
using 200 clients with the same method as MNIST.

HAR. The HAR dataset is a standard dataset used for
human activity recognition tasks. It consists of signals captured
by accelerometers and gyroscopes on a smartphone and is
used for recognizing 6 different activities, including walking,

walking up and down stairs, sitting, standing, and lying down.
The dataset contains a total of 10, 299 samples from 30
volunteers. We used 80% of the data as the training set for
the clients and the remaining 20% as the test set.

B. Implementation Details

The fully decentralized learning model operates as a syn-
chronized training and fully connected system. The clients
utilize the stochastic gradient descent method to train local
models, and each client employs the FedAvg algorithm to
aggregate weight information for subsequent training rounds.
After completing local training, clients must wait for neighbor-
ing nodes’ iterations to synchronize with their own, ensuring
that all clients train in unison.

For the model parameter set up, we utilize specific pa-
rameters tailored for each dataset because of the varying
characteristics of different datasets. For example, MNIST and
FashionMNIST are trained over 1000 rounds with a learning
rate of 1.5 × 10−4 and a batch size of 32, whereas HAR is
trained over 1000 rounds with a learning rate of 1× 10−4 and
a batch size of 16.

We also set up malicious clients to build a backdoor attack.
We assume the number of participating clients is 𝑛 = 200,
and the number of malicious clients is 𝑘 , where 𝑛 = 3𝑘 − 1.
Therefore, we set the number of malicious clients to be 10,
20, 30, 40, 50, and 60. In MNIST and FashionMNIST, we
add red stripes as the trigger to the original images, and we
expect the model to recognize all image data with red stripes
as birds. In HAR, we set every 20th feature value to 0 as the
trigger value, where 0 is the target label.

During the recovery step, the first 25 iterations are desig-
nated as the setup step, calibration is processed every 30 itera-
tions, and the last 25 rounds are considered as the stabilization
step. We set the SS-L-BFGS buffer size to 4.

C. Baseline

To evaluate the performance of PDLRecover, we setup two
baseline methods:
• Drop client retrain: The malicious clients are removed, the

remaining clients initialized and retrain the whole model
with the default model parameters and rounds.

• Historical information: The malicious clients are removed
and the remaining clients use historical information stor-
ing in the cache to reconstruct the global. They default a
same initialized model, and recovery the model directly.

D. Experiment Results

Fig. 2 shows the accuracy of poison attacks, Drop Client
Retrain, Model Before Recovery, and PDLRecover for the
MNIST, FashionMNIST, and HAR datasets. It can be observed
that the Drop Client Retrain and PDLRecover methods can
recover the poisoned model, and PDLRecover achieves a
similar effect as the Drop Client Retrain method. However,
the Model Before Recovery results in lower accuracy, around
50%. To confirm the efficiency of PDLRecover, we also show
the running time for different methods in Table II, where it
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Fig. 2: Accuracy of the recovery strategy under attack on MNIST, FashionMNIST, HAR datasets

Fig. 3: Accuracy of the recovery strategy under client drop on MNIST, FashionMNIST, HAR datasets

Fig. 4: Model accuracy under different recovery strategy with different mumber of malicious clients

Number of clients
Dataset Name 10 20 30 40 50 60

MNIST
Client
Retrain 679 682 703 695 682 607

PDLRecover 439 441 449 404 419 417

FashionMNIST
Client
Retrain 707 706 707 711 708 710

PDLRecover 433 423 438 416 462 465

HAR
Client
Retrain 1235 1212 1227 1217 1246 1250

PDLRecover 875 887 867 893 886 901

TABLE II: Running Time (seconds) for MNIST, FashionM-
NIST, and HAR with attack

can be noticed that PDLRecover saves 33% of the running
time on average compared to the Drop Client Retrain method.

Fig. 3 show the accuracy of Model Before Recovery , Drop
Client Retrain, and PDLRecover for the MNIST, FashionM-
NIST, and HAR datasets when all clients are honest. When the
dropped clients are removed and the remaining clients apply
Drop Client Retrain and PDLRecover, both methods maintain

Number of clients
Dataset Name 10 20 30 40 50 60

MNIST
Client
Retrain 682 686 694 691 675 672

PDLRecover 447 435 454 413 422 416

FashionMNIST
Client
Retrain 702 712 704 705 707 718

PDLRecover 426 414 428 426 461 461

HAR
Client
Retrain 1241 1249 1223 1218 1248 1263

PDLRecover 871 879 876 897 876 902

TABLE III: Running Time (seconds) for MNIST, FashionM-
NIST, and HAR only drop clients

better performance, with accuracy similar to the Model Before
Recovery result. However, Table III shows that the running
time of PDLRecover is 35% lower on average compared to
the Drop Client Retrain method.

Fig. 4 shows the effect of different numbers of malicious
clients on the models. It can be observed that the accuracy
of the poisoned model linearly decreases with the increase
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Fig. 5: Model accuracy under different recovery strategy with different drop client number

Datasets Retrain [14] [40] [35] Ours
MNIST 95.4 95.2 95.3 94.7 93.9

FashionMNIST 94.9 86.5 87.4 85.8 93.2
HAR 94.6 84.4 86.5 87.2 93.4

TABLE IV: Accuracy(%) of unlearning methods comparison

in the number of malicious clients. When the number of
malicious clients reaches its maximum, the training accuracy
of the MNIST and FashionMNIST training sets stays around
24%, while the HAR training set accuracy is around 13%,
indicating that the increase in malicious clients greatly impacts
the model’s performance.

At the same time, the number of malicious clients does
not affect the model’s final performance when we recover the
poisoned model using retraining and PDLRecover methods.
The accuracy of the Drop Client Retrain method stays around
93% in the MNIST and FashionMNIST datasets, while it
remains around 94% in HAR. PDLRecover stays around 91%
in the MNIST and FashionMNIST datasets and around 92% in
HAR. However, according to Table II, PDLRecover can save
35% of the running time.

Fig. 5 show all the clients are honest, maximum 60 clients
want to dropped out, the remaining clients use the methods
of drop client retrain, historical information, or PDLRecover
to remove the impact of the dropped clients. Our experiments
show that the drop client retrain and PDLRecover can keep
the performance of the model, but the historical information
method decreases the accuracy of the model to around 75%.
At the same time, Table III shows the running time of drop
client retrain and PDLRecover, and PDLRecover still can save
around 30% of the running time. Therefore, PDLRecover can
more efficiently eliminate the impact of dropped clients on the
whole model and maintain the performance.

E. Round of Recovery Preparation and Exact Training

Fig. 6 illustrates the accuracy variations of the final model
across different epochs during the preparation step and the
final training step. As shown in Fig. 6, the accuracy curves
for both steps are close in most epochs, fluctuating between
90% and 95%. While the accuracy during the preparation
step shows minor fluctuations, it remains generally sTable The
accuracy during the final training step is slightly more stable,
but the difference is minimal. Overall, the model maintains
high accuracy throughout the training process, indicating that

Fig. 6: Effect of preparation Step and final training step in
PDLRecover
both the preparation step and the final training step enable
the model to effectively learn and sustain high predictive
performance.

Furthermore, the number of epochs in both steps has little
impact on overall model performance, with excessive epochs
merely increasing memory usage, computational resources,
and time. Thus, only minimal additional training is required to
achieve optimal performance, making it unnecessary to set a
large number of epochs to ensure model stability. PDLRecover
sets both the preparation step and the final training step to
25 epochs each, ensuring model performance stability while
optimizing resource and time efficiency.

F. Comparisons

Table IV provides a comparative accuracy analysis for
various unlearning methods across three datasets: MNIST,
FashionMNIST, and HAR. It can be seen that our PDLRecover
demonstrates significant improvement in accuracy, particularly
on the FashionMNIST and HAR datasets. Specifically, for
FashionMNIST, PDLRecover achieves an accuracy of 93.2%,
which is markedly higher than the accuracies reported by
[14] (86.5%), [40] (87.4%), and [35] (85.8%), and closely
matches the retrain method’s accuracy of 94.9%. Similarly,
for HAR dataset, PDLRecover achieves an accuracy of 93.4%,
significantly surpassing the accuracies from [14] (84.4%),
[40] (86.5%), and [35] (87.2%), and closely matching the
retrain method’s accuracy of 94.6%. For MNIST dataset,
PDLRecover attains an accuracy of 93.9%, which is slightly
lower than the retrain method (95.4%) and comparable to the
accuracies of [14] (95.2%) and [40] (95.3%).
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These results indicate that PDLRecover is highly effective
in restoring model performance, achieving accuracies that
are competitive or superior to existing methods. Moreover,
PDLRecover demonstrates robustness against poison attacks,
ensuring stable and accurate model recovery across different
datasets. This highlights the efficacy and reliability of PDLRe-
cover in practical scenarios, making it a valuable contribution
to decentralized learning.

VII. SECURITY ANALYSIS

A. Correctness

Theorem: Let there be 𝑘 clients, each holding a secret 𝑎𝑖,0
encoded as the constant term of a degree-(𝑡th − 1) polynomial
𝑓𝑖 (𝑥) = 𝑎𝑖,0+𝑎𝑖,1𝑥+ . . .+𝑎𝑖,𝑡th−1𝑥

𝑡th−1 defined over a finite field
F𝑞. Each client 𝑖 generates 𝑛 shares 𝑠𝑖, 1, . . . , 𝑠𝑖,𝑛 by evaluating
𝑓𝑖 at 𝑛 ≥ 𝑡th mutually distinct nonzero points 𝑥1, . . . , 𝑥𝑛 ∈ F𝑞 .

We prove that the result of aggregating all clients’ secret
shares followed by Lagrange interpolation is equal to the sum
of the individually reconstructed secrets

Lagrange

(∑︁
𝑖

shares𝑖

)
=

∑︁
𝑖

Lagrange(shares𝑖). (18)

Step 1: Reconstructing Each Client’s Secret: Each client’s
secret can be recovered via Lagrange interpolation at 𝑥 = 0

𝑎𝑖,0 = 𝑓𝑖 (0) =
𝑛∑︁
𝑗=1

𝑠𝑖, 𝑗 · ℓ 𝑗 (0), (19)

where ℓ 𝑗 (0) =
∏

1≤𝑚≤𝑛 𝑚≠ 𝑗
−𝑥𝑚
𝑥 𝑗−𝑥𝑚 denotes the 𝑗-th Lagrange

basis polynomial evaluated at zero.
Step 2: Aggregating Before Reconstruction: Define the

pointwise sum of all clients’ polynomials as

𝐹 (𝑥) =
𝑘∑︁
𝑖=1

𝑓𝑖 (𝑥) =
𝑡th−1∑︁
ℓ=0

(
𝑘∑︁
𝑖=1

𝑎𝑖,ℓ

)
𝑥ℓ . (20)

Evaluating 𝐹 at 𝑥 = 0 yields the aggregate secret

𝐹 (0) =
𝑘∑︁
𝑖=1

𝑎𝑖,0. (21)

Step 3: Verifying Linearity of Interpolation: Rewriting the
expression for the total reconstructed secret:

𝑘∑︁
𝑖=1

𝑎𝑖,0 =

𝑘∑︁
𝑖=1

©«
𝑛∑︁
𝑗=1

𝑠𝑖, 𝑗 · ℓ 𝑗 (0)
ª®¬ =

𝑛∑︁
𝑗=1

(
𝑘∑︁
𝑖=1

𝑠𝑖, 𝑗

)
· ℓ 𝑗 (0). (22)

This matches the result of interpolating the aggregated
shares

∑𝑘
𝑖=1 𝑠𝑖, 𝑗 evaluated at 𝑥 = 0, that is,

𝐹 (0) =
𝑛∑︁
𝑗=1

(
𝑘∑︁
𝑖=1

𝑠𝑖, 𝑗

)
· ℓ 𝑗 (0). (23)

Therefore, Lagrange interpolation is linear with respect to
share aggregation.

Extension to SS-L-BFGS Approximation: In PDLRecover,
each client 𝐶 𝑗 computes a local directional gradient approxi-
mation using SS-L-BFGS, the extended L-BFGS method,

�̂�
(𝑥 𝑗 )
𝑡 = ∇𝐿 (𝑥 𝑗 ) (�̄�𝑡 ) + 𝐻 (𝑥 𝑗 ) (�̂�𝑡 − �̄�𝑡 ), (24)

where 𝐻 (𝑥 𝑗 ) denotes the local approximation HVP, computed
using the client’s curvature buffer (𝑊 (𝑥 𝑗 ) , 𝐺 (𝑥 𝑗 ) ).

Each component of �̂� (𝑥 𝑗 )𝑡 is secret-shared across clients.
The server aggregates these shares and performs Lagrange
interpolation to recover the global gradient approximation

�̂�𝑡 =

𝑛∑︁
𝑗=1
�̂�
(𝑥 𝑗 )
𝑡 ·ℓ 𝑗 (0) =

𝑛∑︁
𝑗=1

[
∇𝐿 (𝑥 𝑗 ) (�̄�𝑡 ) + 𝐻 (𝑥 𝑗 ) (�̂�𝑡 − �̄�𝑡 )

]
·ℓ 𝑗 (0).

(25)
By linearity of interpolation,

�̂�𝑡 =

𝑛∑︁
𝑗=1
∇𝐿 (𝑥 𝑗 ) (�̄�𝑡 ) · ℓ 𝑗 (0)︸                       ︷︷                       ︸

∇𝐿 (�̄�𝑡 )

+
𝑛∑︁
𝑗=1

𝐻 (𝑥 𝑗 ) (�̂�𝑡 − �̄�𝑡 ) · ℓ 𝑗 (0)︸                             ︷︷                             ︸
𝐻 (�̂�𝑡−�̄�𝑡 )

,

(26)
which produces

�̂�𝑡 = ∇𝐿 (�̄�𝑡 ) + 𝐻 (�̂�𝑡 − �̄�𝑡), (27)

where the global Hessian approximation is defined as 𝐻 =∑
𝑗 = 1𝑛𝐻 (𝑥 𝑗 ) · ℓ 𝑗 (0).
Remarks on Quantization and Field Arithmetic: To enable

arithmetic over a finite field, all real-valued vectors are quan-
tized locally into fixed-point integers using 𝑘-bit precision
and subsequently mapped into the finite field F𝑞 . Both secret
sharing and Lagrange interpolation are then performed over
F𝑞 to ensure algebraic consistency.

Conclusion: Both scalar secrets and vector-valued approx-
imations, such as those produced by SS-L-BFGS, preserve
the linear homomorphism of shamir secret sharing and the
linearity of Lagrange interpolation at 𝑥 = 0. Therefore, we
have

Lagrange

(∑︁
𝑗

shares 𝑗

)
=

∑︁
𝑗

Lagrange(shares 𝑗 ). (28)

This confirms that the secure aggregation of local SS-L-
BFGS approximations within the PDLRecover framework is
mathematically sound and preserves gradient fidelity, without
requiring the clients to disclose their individual updates.

B. Privacy Analysis

In our security analysis, we categorize attackers into two
types. The first type is an external attacker. External attackers
may attempt to attack buffers stored by clients, which they
are not authorized to access. This type of attacks concerns
the confidentiality of client content. We will demonstrate that
external attackers gain no advantage from such attacks, as
they cannot access complete local update information. The
second type is an internal attacker, who is authorized to
know the subsecrets of other clients. Internal attackers may
attempt to attack local updates from honest clients or tamper
with the recovered data. Since any client can request data
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reconstruction, we must ensure that internal attackers cannot
access the personal local update information of other clients.

The following theorems prove that our protocol meets the
security goals.

Theorem 1 (External Attacks). Suppose an attacker steals
the local update subsecret stored by a client. In that case, the
attacker cannot obtain complete local update information nor
can they reconstruct the local information with any client.

Proof. An attacker can target the local update sets stored
by individual clients, only a collusion attack involving the
compromise of buffers from 𝑘 clients would allow them to
recover the sum of the local updates. However, they cannot
recover the individual local updates of any single client. This
security feature theoretically ensures the security of local
updates.

Theorem 2 (Internal Attacks). Suppose malicious clients
attempt to attack local updates from other honest clients or try
to tamper with the recovered data. In that case, the malicious
clients cannot obtain complete local update information nor
they can reconstruct the local information with any client.

Proof. Although any client can attack the local update sets
stored by other clients, only if more than 𝑘 malicious clients
collude by separately sending the local update subsecret of
individual clients can they compute the local updates of honest
clients. For the local update secret sharing algorithm in this
method, each client saves the local update set {(𝑥𝑖 , 𝑓 𝑗 (𝑥𝑖))}
during training. However, during the reconstruction of local
update information, each client calculates the sum of the
subsecrets of the remaining clients 𝑓 (𝑥𝑖) =

∑
𝑗∈𝑛 𝑓 𝑗 (𝑥𝑖),

without revealing the subsecret 𝑓 𝑗 (𝑥𝑖) shared by an individual
client. Therefore, even though a client can reconstruct the
polynomial 𝑓 𝑗 (𝑥) to obtain the personal local update of client
𝑗 , it requires the collusion of more than 𝑘 malicious clients.

C. Computation and Communication Costs for Clients

Updating the client computational model incurs both com-
putational and communication costs. These costs can be con-
sidered fixed unit expenses, as they do not vary based on
the specific round in which the client calculates the model
update. In the drop client retraining scenario, the average
computational and communication cost is 𝑂 (𝑇), where 𝑇

represents the total number of iterations. This is due to the
requirement for each client to retrain and update the model
during every iteration round.

The number of preparation rounds 𝑇𝑝 , the periodic round
𝑇𝑟 , and the number of final training rounds 𝑇 𝑓 determine the
cost of the method we propose. It can be deduced that the
average computation and communication cost per client in
PDLRecover is 𝑂 (𝑇𝑝 + 𝑇 𝑓 +

⌈
𝑇−𝑇𝑝−𝑇𝑓

𝑇𝑟

⌉
).

1) Bounding the Difference between PDLRecover and Drop
Client Retrain in Global Model Recovery: We outline the
assumptions that guide our theoretical evaluation. Next, we
display the bound on the difference between the global model
that our technique recovered and the drop client retrain model.

Assumption 1: The loss function is 𝜇-strongly convex and
L-smooth. Formally, for each client 𝑖, and for any w and w′,
we have the following inequalities:

⟨w − w′,∇𝐿𝑖 (w) − ∇𝐿𝑖 (w′)⟩ ≥ 𝜇∥w − w′∥2, (29)

⟨w−w′,∇𝐿𝑖 (w)−∇𝐿𝑖 (w′)⟩ ≥
1
L ∥∇𝐿𝑖 (w)−∇𝐿𝑖 (w

′)∥2, (30)

where 𝐿𝑖 is the loss function for client 𝑖, ⟨·, ·⟩ denotes the
inner product of two vectors, and ∥ · ∥ represents the ℓ2 norm
of a vector.

Assumption 2: The approximation error of the Hessian-
vector product in SS-L-BFGS algorithm is bounded. Formally,
each approximate Hessian-vector product satisfies the follow-
ing condition:

∀𝑖,∀𝑡, ∥H̃𝑖
𝑡 (ŵ𝑡 − w̄𝑡 ) + ∇𝐿𝑖 (ŵ) − ∇𝐿𝑖 (w̄)∥ ≤ 𝑍, (31)

where 𝑍 is a finite positive value.
Theorem 1: Assume the following two conditions are met:

all malicious clients have been identified, FedAvg is utilized
as an aggregation rule, and the learning rate 𝛾 fulfills 𝛾 ≤
min

(
1
𝜇
, 1
L

)
. The global model recovered by our method and

the global model obtained by deleting clients for retraining can
therefore be distinguished at any iteration 𝑡 > 0 as follows:

∥ŵ𝑡−w̄𝑡 ∥ ≤ (
√︁

1 − 𝛾𝜇)𝑡 ∥ŵ0−w̄0∥+
1 − (

√︁
1 − 𝛾𝜇)𝑡

1 −
√︁

1 − 𝛾𝜇
𝛾𝑀, (32)

where ŵ𝑡 and w̄𝑡 are the global models recovered by PDLRe-
cover and drop client retrain, respectively, in iteration 𝑡.

Proof: PDLRecover is to recursively bound the difference
in each iteration.

According to Theorem 1, we have

lim
𝑡→∞
∥ŵ𝑡 − w̄𝑡 ∥ ≤

𝛾𝑍

1 −
√︁

1 − 𝛾𝜇
. (33)

Additionally, we derive the following corollary:
Corollary 1: When the SS-L-BFGS algorithm can accu-

rately compute the Hessian-vector product , the bound on the
difference between the global model recovered by PDLRe-
cover and the one recovered by drop client retrain is given
by

∥ŵ𝑡 − w̄𝑡 ∥ ≤ (
√︁

1 − 𝛾𝜇)𝑡 ∥ŵ0 − w̄0∥. (34)

Therefore, the global model recovered by PDLRecover
converges to the one recovered by drop client retrain, i.e.,
lim𝑡→∞ ŵ𝑡 = lim𝑡→∞ w̄𝑡 .

2) Trade-off between Difference Bound and Computa-
tion/Communication Costs: Based on Corollary 1, we have

∥ŵ𝑇 − w𝑇 ∥ ≤ (
√︁

1 − 𝛾𝜇)𝑇 ∥ŵ0 − w0∥, (35)

when PDLRecover runs for 𝑇 rounds. As 𝑇 increases, the
difference bound decreases exponentially. The computation
and communication costs of PDLRecover are linear with 𝑇 .
Therefore, as costs increase, the difference bound decreases
exponentially. In other words, we observe an accuracy-cost
trade-off for PDLRecover: The recovered global model be-
comes more accurate (i.e., closer to the drop client retrain
model) if more computational and communication cost are
spent, that is, the computation and communication costs for
clients increase accordingly.



13

VIII. CONCLUSION

In this paper, we proposed PDLRecover, a novel decentral-
ized unlearning framework that enables secure and efficient
recovery from poison attacks without requiring clients to
access or reveal each other’s model updates. PDLRecover
reconstructs the global model via Lagrange interpolation while
ensuring complete local privacy. Each client independently
computes its contribution to the recovery direction using
only private gradient and curvature information, and the
global model update is collaboratively reconstructed with-
out exposing any individual values. Our theoretical analysis
and empirical results demonstrate that PDLRecover not only
preserves the confidentiality of historical updates but also
enables accurate reconstruction of the global model in the
presence of malicious or dropped clients. Unlike traditional
detection-based defenses, PDLRecover provides a proactive,
privacy-preserving solution to mitigating poison attacks in
decentralized environments.

In future work, we will extend PDLRecover with advanced
secure aggregation techniques to better address a wider variety
of attack types and operating environments. We will also focus
on developing multi-layered defense mechanisms to further
bolster the security and recoverability of the global model.
Additionally, we aim to investigate the potential for model
recovery with reduced dependency on historical data, which
could lower storage requirements and enhance the efficiency
of model updates.
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