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Abstract—In the ever-expanding domain of 5G-NR wireless
cellular networks, over-the-air jamming attacks are prevalent as
security attacks, compromising the quality of the received signal.
We simulate a jamming environment by incorporating additive
white Gaussian noise (AWGN) into the real-world In-phase and
Quadrature (I/Q) OFDM datasets. A Convolutional Autoencoder
(CAE) is exploited to implement a jamming detection over vari-
ous characteristics such as heterogenous I/Q datasets; extracting
relevant information on Synchronization Signal Blocks (SSBs),
and fewer SSB observations with notable class imbalance. Given
the characteristics of datasets, balanced datasets are acquired by
employing a Conv1D conditional Wasserstein Generative Adver-
sarial Network-Gradient Penalty(CWGAN-GP) on both majority
and minority SSB observations. Additionally, we compare the
performance and detection ability of the proposed CAE model
on augmented datasets with benchmark models: Convolutional
Denoising Autoencoder (CDAE) and Convolutional Sparse Au-
toencoder (CSAE). Despite the complexity of data heterogeneity
involved across all datasets, CAE depicts the robustness in
detection performance of jammed signal by achieving average
values of 97.33% precision, 91.33% recall, 94.08% F1-score, and
94.35 % accuracy over CDAE and CSAE.

Index Terms—Data augmentation, Deep learning, Jamming
detection, Convolutional autoencoder, 5G NR.

I. INTRODUCTION

In recent years, 5G-NR wireless communication has been
booming with a significant increase in wireless devices, for
instance, smartphones, tablets, IoT, and massive IoT devices.
With the advent of telecommunication infrastructure, wire-
less technologies encompass massive multiple input multiple
output (MIMO) [1], millimeter-wave (mmwave) [2], carrier
aggregation [3], learning-based resource allocation [4] which
provision for end-to-end service connectivity between a 5G
cellular network and end-users. On the contrary, a 5G-NR
wireless cellular network is also susceptible to security attacks,
notably jamming attacks, which intentionally disrupt signal-
to-noise ratio, and bit error rate of the transmitted signals,
degrading the communication quality. Jamming attacks target
physical layer downlink channels and downlink signals of 5G
NR, exploiting the inherent vulnerabilities in Synchronization
Signal Blocks (SSBs), which contain vital components like
Primary and Secondary Synchronization Signals (PSS and
SSS) responsible for cell identification and user association
with gNodeB (gNB) [5].

A critical problem in 5G-NR networks is the heteroge-
neous data distribution from diverse user devices, as data

Fig. 1. Jamming detection in a 5G-NR cellular network within a femtocell

is typically non-independent and identical distributed (non-
IID) due to diverse geographical location. This causes the
user datasets to vary significantly in size and data distribution
across multiple users [6]. As the 5G-NR network expands,
jamming detection necessitates machine learning techniques
[7], [8] and deep learning on physical layer (PHY) to com-
prehend the underlying patterns of a propagated received
signal. Existing deep learning-based detection methods assume
uniform data distribution, which may not perfectly align with
a real world 5G deployments where non-independent and
identical distributed data is prevalent. We propose a jamming
detection paradigm that takes into account for heterogeneous
data obtained from each user while addressing class imbal-
ance issues in real-world datasets. Varotto et al. [9] trains a
convolutional autoencoder (CAE) only on non-jammed signals
and proposes security strategies against attacks in orthogonal
frequency-division multiplexing (OFDM)-based 5G signals.
Additional models, such as the double-threshold deep neural
network (DT-DDNN) [10] enable detection of wider types of
jammers with lower false positive and miss detection rates
by transforming I/Q samples into 2D images. Almazrouei
et al. [11] propose a data-driven deep learning approach
to denoise radio signals of IEEE 802.11 protocols without
relying on expert knowledge by using convolutional denoising
autoencoder and highlight an improvement in classification
accuracy by exploiting both decoder and classifier. Luo et al.
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[12] propose a convolutional sparse autoencoder to sparsify the
feature maps by integrating max-pooling into efficient feature
leaning. These learned features are further used to propose a
image classification strategy using the CSAE by integrating
convolutional neural network.

Jamming signals are rare, leading to significant class imbal-
ance that results in poor deep learning performance in clas-
sifying non-jammed and jammed SSB signals. Varying chan-
nel conditions and interference levels alleviate the learning
process. To address this challenge, our framework comprises
Conditional Wasserstein Generative Adversarial Network with
Gradient Penalty (CWGAN-GP) for augmenting minority
class observations and mitigate data imbalance while CAE
enhances feature extractions to improve classification perfor-
mance. Usage of Generative Adversarial Network (GAN) has
been promising in effectively generating synthetic observations
that closely resemble with the real data distribution and
elevating the number of observation in the data. Chapaneri and
Shah [13], [14] discuss a reliable technique to enable data aug-
mentation by exploiting a variant of GAN: Wasserstein GAN
(WGAN) to improve the minority attack classification problem
caused by cyber-attacks in network traffic. Chen et al. [15]
use conditional Wasserstein generative adversarial network
with gradient penalty (CWGAN-GP) based data augmentation
to detect winding deformation in power transformers, and
shows promising improvements over conventional Artificial
intelligence (AI)-based fault diagnosis models. A visual rep-
resentation of femtocells in 5G-NR cellular network is shown
in Fig. 1. The main contributions of the paper are highlighted
below:

1) A two-stage jamming detector tailored for 5G networks
in RF domain is implemented by capturing In-phase
and Quadrature (I/Q) samples collected from over-the-
air real-world 5G signals across multiple locations.

2) Unlike prior works which deal with uniform distribu-
tion and balanced datasets, we adopt CWGAN-GP to
augment limited SSB observations focusing on non-IID
datasets to mitigate the concern of class imbalance and
ensuring more representative training distribution.

3) The augmented datasets are further trained with
CAE, which jointly executes both reconstruction and
classification-based jamming detection, improving de-
tection ability while addressing data heterogeneity across
femtocells.

Our work advances the existing state-of-the-art methods by
adopting proposed framework and assessing the performance
over benchmark models [11], [12] in identifying jammed
signals while training on both non-jammed and jammed
signals of a time domain dataset. The organization of this
paper is as follows. Section II elaborates on CWGAN-GP
data augmentation technique for jamming detection. Section
III discusses about the system model adopted for jamming
detection. Section IV presents the experimental setup with
simulation results in Section V, and Section VI summarizes
the work in this article.

II. CWGAN-GP AUGMENTED-BASED JAMMING
DETECTION

The objective of this work is to define an augmented ML-
based approach which takes into account the dataset hetero-
geneity for each dataset collected at different geographical
locations. This heterogeneity is identified by presence of
non-IID data representing the attribute skewness, difference
in quantity of SSB observations (training samples) across
datasets, and imbalanced class distribution of jammed and non-
jammed signals. The proposed framework deals with the stages
of data collection and preprocessing to simulate a jammed 5G
RF environment.

A. Data collection

Data is obtained with the help of spectrum analyzer which
collects received signal waveform over-the-air, shared be-
tween telecommunication operators: Telus Communication
Inc. and Rogers Communication Inc. Additionally, these re-
ceived waveforms are acquired by setting a specific center
carrier frequency and bandwidth over the available transmis-
sion cellular networks advocating various 5G-NR bands and
bandwidths, respectively.

B. Data preprocessing

The collected received signal is transformed into spectro-
gram which coherently reflects the useful information of chan-
nel resource blocks. Only specific SSBs from resource blocks
is extracted in the form of complex I/Q samples. Given N
different geographical locations, N I/Q datasets are generated,
each containing diverse training SSB observations. We assume
the absolute values for I/Q samples which is effective for
power-based jamming detection, where phase of the signal is
ignored in the computation. Moreover, these absolute values
are normalized across all datasets keeping a high-dimensional
feature space. Furthermore, the incorporation of AWGN as
jammed signal is simulated by varying the signal-to-noise
(SNR) ratio to a suitable range for all the datasets. This
provides information on the training SSBs with imbalanced
class distribution of non-jammed and jammed signals across
all datasets. Our proposed framework is not limited to AWGN
but can also be leveraged for other types of jamming signals.

C. Data augmentation to tackle the class imbalance

To tackle the data augmentation technique, a CWGAN-GP
is chosen to generate more SSB observations as an oversam-
pling approach. However, the oversampling is employed on
both minority (non-jammed) and majority (jammed) signals to
obtain a balanced binary classification problem. Additionally,
augmentation facilitates CAE from becoming biased towards
one class of signals. GAN consists of two neural networks
(generator and discriminator) as proposed by Goodfellow et
al. [16]. The generator aims to leverage a Gaussian noise to
obtain synthetic observations which resemble to the real data
distribution. The objective function of a GAN follows a min-
max game as formulated as,



min
G

max
D

V(D, G) = Ex∼pdata(x)(log(D(x))

+ Ez∼pz(z)(log(1− D(G(z)))
(1)

The generator LG and the discriminator LD losses are
represented as follows:

LG = −Ez∼pz(z)(D(G(z)))) (2)

LD = −
[
Ex∼pdata(x)

(
logD(x)

)
+ Ez∼pz(z)

(
log(1− D(G(z))

)] (3)

where pdata(x) denotes the real data distribution; pz(z)
represents Gaussian distribution noise z; G(·) represents the
generator function; E(·) represents the expected function; D(·)
represents the discriminator function. The computation of
LD takes into account both real and generated data while
distinguishing between them as in (3). WGAN and WGAN-GP
leverage a metric Earth-Mover (EM) distance as the measure
of the distance between real data distribution and generated
data distribution which is better than Jensen-Shanon (JS)
divergence followed in conventional GANs. WGAN is highly
effective in circumventing the issue of mode collapse. The EM
distance is expressed as,

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥] (4)

where Π(Pr,Pg) denotes the entire joint probability distri-
bution γ(x, y) of real distribution Pr, and generated data dis-
tribution Pg . Moreover, W (Pr,Pg) depicts the minimum cost
required to transfer the mass while converting the distribution
Pr into Pg . Furthermore, EM distance is relatively useful in
obtaining meaningful gradients for gradient descent training.
The objective function between the generator (G) and the critic
(C) (known as the discriminator) for WGAN is defined as,

min
G

max
D

V (D,G) = Ex∼Pr
[logD(x)]

− Ex∼Pg
[log(1−D(x))]

(5)

On the contrary, WGAN still fails to converge due to
the weight clipping factor in WGAN. Therefore, Gulrajani
[17] introduces WGAN-GP, an extension of WGAN which
penalizes the norm of the gradient of the critic concerning its
input. This enables WGAN-GP to be appropriate for stable
training with almost no hyperparameter tuning. The modified
objective function of WGAN-GP is defined as,

min
G

max
D

V (D,G) = Ex∼Pr
[D(x)]− Ex̂∼Pg

[D(x̂)]

− λEx̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)

2
] (6)

where λ is the gradient penalty coefficient x̂ is the sam-
pling distributions between real distribution Pr and generated
distribution Pg shown in (7):

x̂ = ϵx+ (1− ϵ)x̃, ϵ ∼ Uniform[0, 1], x ∼ Pr, x̃ ∼ Pg

(7)

On the contrary, CWGAN-GP ensures auxiliary conditioned
information y; class label to both the critic and the generator.

Fig. 2. Architecture of convolutional autoencoder (CAE).

Formally, the objective value function that minimizes the loss
function for the critic and the generator is expressed in (8),
(9) and (10).

min
G

max
D

V (D,G) = Ex∼Pr [D(x|y)]− Ex̃∼Pg [D(x̃|y)]

−λEx̂∼Px̂

[
(∥∇x̂D(x̂|y)∥2 − 1)

2
] (8)

L(D) = −Ex∼Pr
[D(x|y)] + Ex̃∼Pg

[D(x̃|y)]

+λEx̂∼Px̂

[
(∥∇x̂D(x̂|y)∥2 − 1)

2
] (9)

L(G) = −Ex̃∼Pg
[D(x̃|y)] (10)

III. JAMMING DETECTION WITH CONVOLUTIONAL
AUTOENCODER

The CAE is employed for one-class classification or jam-
ming detection. The 2D temporal correlation in the augmented
dataset is useful for undergoing a convolutional operation
of the high-dimensional I/Q samples. Moreover, unlike other
autoencoders where CAE is usually trained as a reconstruction,
we intend to use CAE as both a reconstructor and a classifier.
As illustrated in Fig. 2, CAE takes input array X of dimension
P by Q; where P being SSB observations and Q is high-
dimensional I/Q samples. The output for CAE is Y, which
is the same size as X due to the reconstruction characteristic
of the model. The CAE comprises L layers ℓ = 1,..., L. The
output of the final layer of encoder is obtained as (11). The
decoder comprises transpose Conv1D layers, which form the
reconstructed input from the encoded representation through
compressed latent space. The output of the final layer of
decoder is obtained as (12).

U(ℓ) = f
(
C(ℓ) ∗U(ℓ−1) + b(ℓ)

)
(11)

V(ℓ) = f
(
D(ℓ) ∗V(ℓ−1) + d(ℓ)

)
(12)

where U(ℓ) and V(ℓ) are the outputs of the ℓth layer
of encoder and decoder respectively, f(·) is the non-linear
activation function, typically ReLU in this case. C(ℓ) and
D(ℓ) are the convolutional weights at layer ℓ, convolutional
operation ∗ with U(ℓ−1) and V(ℓ−1), and b(ℓ), d(ℓ) as bias



at layer ℓ. The input of the first layer is X ∈ RP×Q ,and the
output of the last layer L is Y = V(L).

To implement jamming detection, our CAE is trained by
compressing the input X, representing the I/Q features of both
jammed and non-jammed signals, using latent representation.
The goal is to train the model in unsupervised learning to
minimize the mean-square error (MSE) between X and Y as
obtained in (13). However, the reconstructed weights W(ℓ)

e and
biases b(ℓ)

e from the trained encoder of CAE are captured
from the ℓth layer of encoder. These weights and biases
are transferred to the fully connected neural network (FCN);
transforming the CAE to act as a classifier by combining
trained encoder and FCN (added to the head of the encoder)
into a new updated model M as shown in (14) and (15)
respectively.

Γ̄ = E[Γ], Γ = ∥X−Y∥2. (13)

W(ℓ)
M = W(ℓ)

e , ∀ℓ ∈ {1, 2, . . . , L}. (14)

b(ℓ)
M = b(ℓ)e , ∀ℓ ∈ {1, 2, . . . , L}. (15)

The detection ability of M is ensured by taking input X
and ground truth R, train it over 80% train data and evaluate
on 20% test data with a suitable threshold γ.

IV. EXPERIMENTAL SETUP

An experimental setup is implemented within the 5G n71
band. As Per 3GPP specifications, this band spans a downlink
frequency range from 617 MHz to 652 MHz, offering a total
bandwidth of 35 MHz [18]. The frequency range is divided
between two operators, TELUS and Rogers, each allocated 10
MHz of bandwidth. TELUS operates with a center frequency
of 632 MHz, while Rogers operates at 622 MHz. The setup,
depicted in Fig. 3, features a ThinkRF RTSA R5500 spectrum
analyzer serving as the receiver with two different antennas to
capture Over-The-Air (OTA) 5G signal from TELUS network.

Sampling occurs at a frequency of 15.36 MHz across
various environments, including indoor locations and outdoor
scenarios (encompassing both Line-of-Sight (LOS) and Non-
Line-of-Sight (NLOS) conditions). The gathered samples are
saved in CSV format using the PyRF4 API and are subse-
quently processed. To obtain accurate information from the
SSB, it is essential to estimate both the time offset (TO)
and carrier frequency offset (CFO). Since the exact center
frequency is unknown, a blind search approach is required.
To precisely determine the TO and CFO, we leverage the
PSS correlation properties and the cyclic prefix from the
Cyclic Prefix Orthogonal Frequency Division Multiplexing
(CP-OFDM) 5G waveform to align with the gNB signal.

The optimization problem for estimating the CFO is ex-
pressed as,

ω̂CFO = argmax
ωi

[∑
τ

y(τ)ej
ωi
fs

τxpss(t− τ)

]
, (16)

where xpss is the primary synchronization signal, the first
OFDM symbol in SSB and fs is the sampling frequency. For
obtaining time offset to the SSB, Schmidl & Cox approach
[19] is used. Hence, the following optimization problem (17)

Fig. 3. Experimental set-up for jamming detection.

TABLE I
INFORMATION ON DATASETS

Dataset ID Location & propagation conditions SSB observation count Class Imbalance
1 Banchory (Outdoor, NLOS, LOS) 826 (1) : 793 (0) : 33
2 Legget (Outdoor, LOS) 544 (1) : 518 (0) : 26
3 Indoor 2 (Indoor, LOS) 971 (1) : 933 (0) : 32
4 Indoor 3 (Indoor, NLOS) 1038 (1) : 998 (0) : 40
5 Indoor 4 (Indoor, NLOS) 877 (1) : 839 (0) : 38
6 Indoor 5 (Indoor, NLOS) 989 (1) : 945 (0) : 44
7 Neighbor 2 (Outdoor, LOS, NLOS) 805 (1) : 771 (0) : 34
8 Neighbor 3 (Outdoor, NLOS) 923 (1) : 886 (0) : 37
9 Neighbor 1 (Outdoor, LOS) 749 (1) : 719 (0) : 30

10 Park Shirley (Outdoor, LOS, NLOS) 833 (1) : 799 (0) : 34
11 Shirin Market (Outdoor, LOS) 664 (1) : 638 (0) : 27
12 Stop Sign (Outdoor, LOS) 978 (1) : 937 (0) : 41

is solved numerically where P(t) and R(t) are represented as
(18) and (19), where L̂ is one-half of the number of samples
in one OFDM symbol.

T̂off = argmax
t

M(t) =
|P(t)|2

R(t)2
, (17)

P(t) =

L̂−1∑
n=0

y∗(t+ n)y(t+ n+ L̂), (18)

R(t) =

L̂−1∑
n=0

|y(t+ n+ L̂)|2 (19)

V. EXPERIMENTAL RESULTS

The simulation is performed on 12 heterogeneous datasets,
each comprising fewer SSB observations with a significant
class imbalance of jammed (1) and non-jammed (0) signals.
The information on each dataset is summarized in Table I.

A. Data augmentation using CWGAN-GP

We adopt CWGAN-GP, which handles heterogeneity on
each dataset by augmenting the number of observations to
a fixed amount, for instance, 5000 observations; enforcing
2500 jammed and 2500 non-jammed signals. The entire class
imbalance for each dataset is assumed to be the training set
prior to oversampling using CWGAN-GP. The architecture of
CWGAN-GP follows a five-layer Conv1D neural networks for
C and two Conv1D neural networks for G. CWGAN-GP is
trained over a few epochs with a fixed batch size [20] to

TABLE II
CWGAN-GP PARAMETERS AND HYPERPARAMETERS

Parameter/Hyperparameter Value/Details
Model Architecture C: 32-512 units, G: 128-64 units

Latent Vector Dimension 128
Dropout C: 0.5, G: None

Batch Normalization C: None, G: Yes
Activation Functions C and G hidden: LeakyReLU, G output: tanH

Batch Size 64
Training Epochs 20

Optimizer α: 0.0001, β1: 0.5, β2: 0.9
Gradient Penalty Coefficient 20

Critic Training 7



TABLE III
PARAMETERS AND HYPERPARAMETERS OF AUTOENCODERS

Parameter/Hyperparameter Value/Details
CAE CDAE CSAE

Number of Layers (Encoder) 3 3 3
Number of Layers (Decoder) 3 3 3
Sparsity probability - - 0.05
Sparsity factor - - 0.01
Noise factor - 0.3 -
Activation ReLU ReLU ReLU
Dropout 0.2 0.2 0.2
Batch size 200 200 200
Learning rate 0.0001 0.0001 0.0001
Epochs 30 (Autoencoder & Classifier) 15 (Autoencoder), 30 (Classifier) 15 (Autoencoder), 30 (Classifier)
Optimizer Adam (Autoencoder & Classifier) Adagrad (Autoencoder), Adam (Classifier) SGD (Autoencoder), Adam (Classifier)
Loss function MSE and BCE MSE and BCE MSE and BCE

TABLE IV
JAMMING DETECTION OUTCOME COMPARISON ON 80:20 TRAINING SET/TESTING SET

Dataset ID CAE CDAE CSAE
Precision Recall F1-Score FAR MDR Precision Recall F1-Score FAR MDR Precision Recall F1-Score FAR MDR

1 100 82 90 0 17.8 83 98 90 19.9 2 97 95 96 2.7 5
2 97 92 95 2.5 8 64 88 74 47.6 12 88 98 93 12.5 2
3 97 81 88 2.7 19 85 96 90 15.5 4 93 92 92 7 8
4 97 95 96 3.1 5 91 97 94 10.6 3 93 89 91 7.2 11
5 100 99 99 0.4 1 84 98 91 18 2 94 97 96 6 3
6 92 95 94 8.1 5 98 82 90 1.8 18 87 88 87 14.1 12
7 100 99 99 0.4 1 94 90 92 6.2 10 98 98 98 2 2
8 99 92 95 1.1 8 97 84 90 2.7 16 90 94 92 9.9 6
9 92 68 78 6.4 32 97 95 96 2.6 5 95 97 96 5.1 3

10 98 97 98 1.6 3 99 86 92 1 14 51 65 57 68.6 35
11 100 99 100 0.1 1 92 91 91 7.6 9 98 95 96 1.9 5
12 96 97 97 4.3 3 92 96 94 9.5 4 95 93 94 5.21 7

Fig. 4. Training Loss Curves in CWGAN-GP.

generate 250 generated observations i.e. 5000 observations;
which comprise 2500: jammed and 2500: non-jammed SSB
observations. We choose the default values for optimizer
Adam, set gradient penalty coefficient, and train critic a
few times unlike the default values used in [17]. Table II
presents the details on parameters and hyperparameters for
CWGAN-GP. The CWGAN-GP model shows convergence
over the training epochs (see Fig. 4), depicting critic loss
stabilizes along with Wasserstein loss. However, generator loss
spikes during the early stages of training, highlighting that the
generated samples are far from real samples, and gradually
stabilizes over time to generate more realistic samples.

B. Training with CAE, CDAE and CSAE

CAE is trained on each dataset ID to showcase detection
performance in terms of classification metric precision, recall,
F1-score, and accuracy of the model. However, jamming
detection requires other metrics, for instance, False Alarm Rate
(FAR) and Missed Detection Rate (MDR) to comprehend the
real-world deployment effectiveness. FAR and MDR metrics
are critical for measuring false alarms and potential indications
of compromising network security. Moreover, CAE is first
trained in an unsupervised learning algorithm while assuming
8:2 as training and validation sets. During the first training
process, CAE captures the weights and biases of the trained
encoder and is transferred to the fully connected layer; act-
ing as a classifier, and subsequently trained in a supervised
learning manner. The parameters and hyperparameters for the
CAE model are highlighted in Table III. The jamming detec-

tion performance of the classifier using the trained weights
showcases promising accuracy, precision, recall, and f1-score
obtained for each dataset ID while considering γ = 0.5.
However, Dataset ID 9 achieves lower recall and F1-score of
68% and 78% respectively as compared to other datasets. This
signifies that a larger proportion of true jammed signals are
incorrectly detected as false negatives or non-jammed signals.
In addition, the missed detection rate is 0.32 which depicts that
32% of jammed signals are identified as non-jammed signals.
Moreover, the false alarm rate is 0.064 or 6.4% of true non-
jammed signals are incorrectly identified as jammed signals.

On the contrary, CDAE [11] and CSAE [12] are trained
unsupervised and compute reconstruction errors between the
input samples and the decoded output. Only the reconstruction
errors are used at the input to the trained encoder and fully
connected layer to obtain the classification performance with
the same threshold unlike the similar training followed for
CAE. However, the weights/biases are captured by CDAE and
CSAE and forwarded to FCN similar to CAE. The detection
ability of CDAE shown in Table IV highlights promising
performance across all datasets but Dataset ID 2; achieving
a precision, recall, and F1-score of 64%, 88%, and 74%,
respectively. The low value of precision depicts the presence
of high false positives. The lower false negative provides a
direct hint of obtaining a higher recall. In addition, the missed
detection rate for Dataset ID 2 shows that 12% of jammed
signals are identified as non-jammed signals and the false
alarm rate of 47.6% of non-jammed signals are incorrectly
identified as jammed signals; causing more false positives.
On the contrary, CSAE performs satisfactorily well across
all the datasets but Dataset ID 10 with precision, recall, F1-
score, and accuracy are shown in Table IV. The poor detection
performance coherently indicates high false negatives and high
false positives responsible for acquiring low precision and
recall, respectively. In terms of missed detection rate and false
alarm rate, 35% of the jammed signals are distinguished as
non-jammed signals, and 68.6% of the non-jammed signals
are mistaken as jammed signals. The performance differences
across all datasets are evident due to varying propagation and



Fig. 5. Accuracy comparison of each dataset.
TABLE V

AVERAGE CLASSIFICATION PERFORMANCE METRICS OF MODELS

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
CAE 97.33 91.33 94.08 94.35

CDAE 89.67 91.75 90.33 89.93
CSAE 89.92 91.75 90.67 89.92

channel conditions of jamming power at different locations.
In addition, the accuracy comparison for the models across all
the datasets highlights CAE outperforms CDAE and CSAE
shown in Fig. 5. Moreover, a comparison showcases notable
performance differences by assuming the proposed CAE over
the other benchmark models: CDAE and CSAE. The average
of precision, F1-score, and accuracy highlight that the pro-
posed CAE model outperforms the benchmark models with a
significant difference shown in Table V.

VI. CONCLUSION AND FUTURE WORK

We have proposed an augmented-based jamming detection
against 5G-NR networks while assuming various factors: data
heterogeneity across multiple femtocells, limited SSB observa-
tions, and the presence of class imbalance across all datasets.
Our approach employs the exploitation of CWGAN-GP to
generate more synthetic SSB observations and obtain balanced
datasets; comprising an equal amount of jammed and non-
jammed signals. To ensure high classification performance and
detection of jammed attacks, we employ CAE and train the
model in both unsupervised and supervised learning on IQ
signals of a 5G-NR cellular network. The results depict that
the detection ability of CAE outperforms other benchmark
models: CDAE and CSAE in terms of metrics: precisions,
acceptable recall, F1-score, and accuracy. However, a detailed
comparison of CAE model over benchmark models across
all datasets showcases that the proposed approach performs
better by achieving an accuracy of at least 90% without the
involvement of reconstruction errors in the training process
unlike CDAE and CSAE. The detection performance of CAE
relies on the quality of augmented samples of CWGAN-
GP, which might impact the performance if there is frequent
fluctuation of generator loss without converging over time.
Our ongoing work aims to address computational complexity
and optimization strategies to improve scalability by assuming
more femtocells in a 5G-NR network.
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