

MECHA:다중스레드및효율적인암호화하드웨어액세스
프라타마 데리 1, 락스모노 아구스 마하르디카 아리 2, 이크발 무함마드 2, 김호원 3

1부산대학교 정보융합공학과 박사과정
2부산대학교 정보융합공학과 석사과정

3부산대학교 정보융합공학과 교수

derryprata@gmail.com, agusmahardika@pusan.ac.kr, iqbal@islab.re.kr, howonkim@pusan.ac.kr

MECHA: Multithreaded and Efficient Cryptographic

Hardware Access

Pratama Derry, Laksmono Agus Mahardika Ari, Iqbal Muhammad, Howon Kim

Dept. of Computer Information Convergence Engineering, Pusan National University

Abstract

This paper presents a multithread and efficient cryptographic hardware access (MECHA) for efficient and fast

cryptographic operations that eliminates the need for context switching. Utilizing a UNIX domain socket, MECHA

manages multiple requests from multiple applications simultaneously, resulting in faster processing and improved

efficiency. We comprise several key components, including the Server thread, Client thread, Transceiver thread,

and a pair of Sender and Receiver queues. MECHA design is portable and can be used with any communication

protocol, with experimental results demonstrating a 83% increase in the speed of concurrent cryptographic

requests compared to conventional interface design. MECHA architecture has significant potential in the field of

secure communication applications ranging from cloud computing to the IoT, offering a faster and more efficient

solution for managing multiple cryptographic operation requests concurrently.

1. Introduction

Ensuring secure communication has become an

increasingly important issue in our connected world. The

speed and efficiency of cryptographic operations are crucial

to the success of these endeavors. In this paper, we present a

multithread and efficient cryptographic hardware access

(MECHA), an application programming interface (API)

architecture that significantly improves the performance of

cryptographic operations by managing multiple requests

from multiple applications simultaneously, all while

eliminating the need to switch context between each

cryptographic operation request.

Conventionally, APIs use context switching to share the

usage of a single cryptographic hardware, resulting in slower

processing times. Each of the applications that shares the

same cryptographic hardware needs to wait for other

application requests to be finished. Once finished, the API

will switch the context and acquire the crypto hardware

handle.

We utilize an UNIX domain socket, which enables us to

manage multiple cryptographic operation requests from

various applications at once, without the need for context

switching. This results in faster and more efficient processing

of cryptographic operations.

There are several Parallel Programming Languages and

API models that can be implemented [1]. Our MECHA

consists of several key components, including the Server

thread, Client thread, Transceiver thread, Sender and

Receiver queues. The Server thread is created by the

application requesting cryptographic operations, while the

Client thread is created by the Server thread for each

application that requires cryptographic operations. Multiple

Client threads are saved in a thread pool, which puts the

requested operation and response in a Sender queue and

Receiver queue. The Transceiver thread is inside the Server

thread and schedules the sending of data from the Send

queue to the crypto hardware and puts it into the Receiver

queue.

Since the interfacing layer is designed portable, MECHA

can be used with any communication protocol, including SPI,

UART, I2C, and others. Experimental results demonstrate a

remarkable improvement in performance, with 82.8% times

increase in the speed of concurrent cryptographic requests

compared to conventional interface design. MECHA offering

a faster and more efficient solution for managing multiple

cryptographic operations simultaneously.

2. Theoretical Background

2.1 Hardware Security Module

A Hardware Security Module (HSM) is a specialized

device designed to provide secure key storage, cryptographic

processing, and key management functions. HSM, also

known as cryptographic accelerators, allows for fast

cryptographic operations and secure cryptographic key

management [2]. They employ a range of physical and

logical security mechanisms to prevent unauthorized access,

tampering, and extraction of keys and other sensitive data.

HSMs are widely used in industries such as banking,

government, and healthcare, where data security is of

paramount importance. In this paper, the HSM refers to

Crypto Hardware.

2.2 Multithreading

Multithreading is a programming technique that allows

multiple threads of execution to run concurrently within a

single program. Each thread operates independently,

allowing for efficient use of system resources and faster

program execution. It is commonly used in applications that

require a high degree of parallelism. However,

multithreading also introduces new challenges, such as race

conditions, deadlocks [3], thread safety and security [4]

issues. To fully exploit the benefits of multithreading, a

thorough understanding of the underlying principles and best

practices is essential.

2.2 Unix Domain Socket

A Unix domain socket (UDS) is a communication

endpoint that allows processes to exchange data on the same

host [5]. Unlike network sockets, UDS operates entirely

within the operating system kernel, providing high

performance and low latency communication between

processes. UDS are widely used in Unix-like operating

systems for inter-process communication (IPC), and they are

a popular choice for local client-server architectures. Their

advantages over other IPC mechanisms are pipes and

message queues, including reliability, scalability, and

flexibility.

2.3 Cryptographic Library

A crypto library is a software library that provides

cryptographic functions, such as encryption, decryption,

hashing, and digital signature generation and verification [6].

OpenSSL, mbedTLS, gnuTLS, and wolfSSL are used to

implement secure communication protocols, authenticate

users, and protect data confidentiality and integrity. They

provide a set of standardized algorithms and protocols, such

as AES, RSA, and TLS, and offer a high-level interface for

application developers to use. Crypto libraries can also

provide additional features, such as key management,

random number generation, and password hashing, to

support the development of secure applications.

3. Proposed Design

3.1 Design Overview

Figure 1. Crypto Hardware API Stack

In this paper we implement MECHA for alternate crypto

functions by using broker server. In conventional design, the

communication between application with crypto core is done

through crypto library as seen as in Figure 1. In OpenSSL

this part is called crypto engine, while in mbedTLS it is

called as alternate crypto function.

Traditionally, this kind of communication will use a

context switch mechanism through the API for different use

of cryptographic function calls. For example, when an

application #1 (A1) is calling hash function, then another

application #2 (A2) is calling block cipher encryption

function, the API will send the hash instruction first and fetch

the response, while this happens, the A2 will wait until the

context is free. Finally, after the A1 request is done, the

context is free, and API will forward block cipher instruction

from A2 and get the response from crypto core. This sequence

will cause bottleneck in the API context queue.

Figure 2. MECHA Architecture Overview

Therefore, we proposed a multithread and efficient

cryptographic hardware access architecture (MECHA).

Where each of cryptographic request from An will be

received by the Server Thread (ST) created by each of the

applications that uses the crypto hardware module. Only one

ST exist in an operating system, when an application tries to

connect to ST and success, it does not need to create an ST.

3.2 Server Thread

The creation of ST depends on the priority configuration,

we provide a configuration with lists of application with

corresponding priority to use the crypto hardware. The

application that has the most priority will be the one that

creates a server thread. If there is no configured priority, by

default our system will prioritize the first request, first-come-

first-served basis.

The ST consists of a UDS to receive cryptographic

requests from other applications. For each source, a Client

Thread (CT) is created in a thread-pool see Figure 2. When

the request is received, the ST will classify the request from

different applications based on Connection Socket Number

(CSN) by creating CT for each application. The classification

process in CT is done by appending the CSN as prefix of the

Protocol Data Unit (PDU) packet in Figure 4. Once the

packet is appended, server will put the packet into a Send

Queue (SQ). SQ will buffer all the requests from CT0 to CTn.

If Transceiver Thread (TT) finished with the last request /

ready signal from crypto core, it will send all the PDU

packets saved in SQ. This is where our design improves the

transmission efficiency, TT will forward all the packets from

different applications with the currently opened crypto core

context without needing to wait for the context to free from

previous usage.

Figure 3. CSN is appended as PDU prefix

Assuming that the crypto core is ready to retrieve

appended PDU packets, the response is a form of FIFO

packets which are saved in receiver queue (RQ). Each CT

will then pick each of it owns response from crypto core by

CSN matching. If a response is found, CT will pass the

response to corresponding application socket via UDS.

Figure 4. A single cryptographic operation request flow

Using this approach, multiple applications (An) will be

able to access and request cryptographic operation

concurrently without sacrificing bottleneck in context

switching caused by connection re-initiation with crypto

hardware.

4. Result and Analysis

We implement MECHA prototype with an FTDI with

MPSEE SPI mode connection between the application that is

running on Ubuntu Linux and the crypto hardware is FPGA

that has loopback SPI access. Our experiment benchmarks

the performance of multiple n applications requesting

different cryptographic operation concurrently in one

hardware. A set of PDU is sent with fixed length in a loop

and when all responses are received, the request is assumed

to be done.

In Figure 5, we benchmark the performance of MECHA

receiving multiple cryptographic requests concurrently, each

application instance is transmitting data with the length of

64KB at the same time. At first with 5 instances running

concurrently, only 1.91 seconds faster than conventional

context switching API. However, as the instance access

increased, the time that context switch API took to complete

all the request also increased linearly. At 80 instances, which

meant the transferred data is around 5.12MB, MECHA

performs 82.8% faster than the conventional context switch

API, thanks to the PDU management in server thread that

combines the data before batch sending instead of waiting for

each application access context is finished.

Figure 5. MECHA performance benchmark

5. Conclusion

We propose MECHA for cryptographic hardware interface,

by reusing the context to optimize the transmission efficiency

and multithreading architecture for data management,

achieving 82% faster data transmission for cryptographic

operation request than conventional interface in our

experiment. This proves that MECHA is feasible and can

replace the conventional context switching API design for

crypto hardware interfaces, offering a faster and more

efficient solution for managing multiple cryptographic

operations simultaneously in one cryptographic hardware.

6. Acknowledgement

This work is financially supported by Korea Ministry of

Land, Infrastructure and Transport (MOLIT) as

「Innovative Talent Education Program for Smart City」

Reference

[1] Lin, Y. (2006). Multithreaded Programming Challenges,

Current Practice, and Languages/Tools Support. In 2006

IEEE Hot Chips 18 Symposium (HCS).

[2] Köppel, B. (2013). Analysis of a Hardware Security

Module’s High-Availability Setting. In 2013 IEEE

Security & Privacy.

[3] Barthe, G., Crespo, J. M., & Rezk, T. (2007). Security of

Multithreaded Programs by Compilation. In ESORICS

2007.

[4] Giebas, D. (n.d.). Deadlocks Detection in Multithreaded

Applications Based on Source Code Analysis. IEEE

Access.

[5] Stevens, W. R., Fenner, B., & Rudoff, A. M. (1992).

UNIX Network Programming. Volume 1, Networking

APIs: Sockets and XTI (2nd ed.). Prentice Hall.

[6] Schneier, B. (1996). Applied Cryptography: Protocols,

Algorithms, and Source Code in C (2nd ed.). Wiley.

