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Abstract. The integration of AI/ML into medical devices is rapidly
transforming healthcare by enhancing diagnostic and treatment facilities.
However, this advancement also introduces serious cybersecurity risks
due to the use of complex and often opaque models, extensive intercon-
nectivity, interoperability with third-party peripheral devices, Internet
connectivity, and vulnerabilities in the underlying technologies. These
factors contribute to a broad attack surface and make threat prevention,
detection, and mitigation challenging. Given the highly safety-critical
nature of these devices, a cyberattack on these devices can cause the ML
models to mispredict, thereby posing significant safety risks to patients.
Therefore, ensuring the security of these devices from the time of design is
essential. This paper underscores the urgency of addressing the cybersecu-
rity challenges in ML-enabled medical devices at the pre-market phase. We
begin by analyzing publicly available data on device recalls and adverse
events, and known vulnerabilities, to understand the threat landscape of
AI/ML-enabled medical devices and their repercussions on patient safety.
Building on this analysis, we introduce a suite of tools and techniques
designed by us to assist security analysts in conducting comprehensive
premarket risk assessments. Our work aims to empower manufacturers to
embed cybersecurity as a core design principle in AI/ML-enabled medical
devices, thereby making them safe for patients.

Keywords: AI/ML-enabled medical devices · Security assessment ·
Safety assessment · System-theoretic security analysis · AI/ML secu-
rity.
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1 Introduction

Machine Learning (ML)-driven applications are becoming increasingly popular in
the medical field. ML-enabled medical devices (software or software-driven hard-
ware) assist physicians in critical activities such as remote patient monitoring,
controlling surgical equipment, automatic drug administration, and prelimi-
nary/advanced disease diagnosis [110]. These tasks require high accuracy and
reliability, and the loss of either of these can endanger patient safety. However,
the use of ML in interconnected medical devices has expanded the threat surface
of medical systems [22,4,68,80,64,20,81,124,71,24,133,89,78,59,77] making them
more vulnerable to cyberattacks. If an adversary compromises such a device, it
can force the ML engine to make incorrect predictions or decisions, which can
have catastrophic consequences, such as wrong diagnoses and treatments, leading
to severe health complications or even the death of the patient.

Detecting and mitigating cyberattacks in ML-based medical applications is
significantly more challenging than in traditional systems for two reasons. First,
these applications rely on large datasets and often employ complex, unexplain-
able models, making their behavior difficult to interpret even for developers.
Second, they are highly interconnected with third-party devices that collect
patient data for real-time predictions, which are subsequently transmitted to
downstream systems or patients and physicians for clinical decision-making and
treatment. This high degree of connectivity increases the attack surface, while the
complexity of ML models complicates attack detection. Adversaries can exploit
the vulnerabilities in the ML models and interface devices to poison training
data [88], inject erroneous inputs during inference [49], or modify model parame-
ters through compromised configuration files [126]. We are particularly interested
in inference-time false data injection attacks, which are the easiest to execute
and most difficult to detect. A recent study on the FDA adverse event reports
involving ML-enabled medical devices indicated that over 80% of the reported
events were related to data acquisition problems, leading to no data or erroneous
data capture [76]. Several studies have also highlighted the vulnerability of data
acquisition systems to adversarial examples [50,57,20]. The safety-critical nature
of ML-enabled medical devices makes it crucial to identify and address these
security vulnerabilities before deployment.

In this paper, we focus on pre-market security risk assessment, which is the
process of identifying, assessing the severity of, and mitigating potential security
risks in a given medical device before it is approved for market release. This process
is crucial for ensuring patient safety, regulatory compliance, and cyber resilience,
as well as reducing post-deployment threat mitigation costs. We inspected the
publicly available device summaries [118] the manufacturers submitted to the
FDA for pre-market approval to determine whether manufacturers conducted
security risk assessments for ML-enabled devices. Our investigation reveals that
for over 65% of these devices, the manufacturers either do not provide any
information about the assessment method in their documentation, or employ
inadequate assessment methods (see Figure 1). In fact, until 2014, no device
summary mentioned any security risk assessment. Among the remaining devices,
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Fig. 1: Growing number of AI/ML-enabled medical devices and the rise of
security-awareness among device manufacturers (Data as of April 2025)

a few use proprietary mechanisms that make it challenging to assess the adequacy
of their approach, while others utilize existing risk assessment techniques. These
techniques, as we discuss in the subsequent sections, are insufficient for securing
interconnected ML-enabled medical systems. However, on a positive note, there
is a growing security awareness among manufacturers, reflected in the increasing
mention of security risk assessments in recent pre-market summaries.

Security practitioners and researchers have made significant efforts in as-
sessing and ensuring the safety and security of medical devices by developing
advanced methods for qualitative and quantitative risk assessment (e.g., fault
tree analysis (FTA), failure mode and effect analysis (FMEA)) and formal as-
surance case reports [9,62,61]) and security analysis [14], model-based design
and verification [16,95,7], closed-loop validation [63], encryption, and authentica-
tion [65]. However, less attention has been paid to the end-to-end system security
of ML-enabled medical devices by considering the interactions of the ML-enabled
device with other interconnected system components. Current security assess-
ment methods primarily focus on algorithm, hardware, software, and firmware
vulnerabilities, but they often overlook the inherent vulnerabilities of the ML
models used in medical devices, how they can be exploited by first exploiting
vulnerabilities in interconnected devices, and the potential impact of the ML
mispredictions on patient safety. To bridge this gap, it is imperative to perform a
holistic system-theoretic analysis of ML-enabled medical systems.

In this paper, we first present our experience with developing tools and
techniques to automate the extraction of large-scale data on real-world security
vulnerabilities and safety incidents for ML-enabled medical devices from public
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data and knowledge sources. Further, we devise techniques that use this data
to enable security practitioners to perform system-theoretic analysis to identify
potential threats, new attack paths, and their safety impacts. This will help
medical device manufacturers anticipate post-deployment security risks early at
design time, assess the severity of the risks, and implement risk prevention and
mitigation strategies. For instance, a company developing an ML-enabled device
that integrates with third-party commodity off-the-shelf cameras can use our
techniques to identify known security vulnerabilities in compatible camera models,
evaluate the likelihood of their exploitation, and assess potential risks to patient
safety based on previously reported failures and adverse events of both ML-
enabled and non-ML-enabled devices with the same functionality. Based on these
insights, the company can either implement appropriate security measures and
safety mechanisms or provide guidance to users to avoid connecting vulnerable
cameras to the device. We demonstrate our tools and techniques on various ML-
enabled medical devices, particularly blood glucose management systems (BGMS),
as an example of safety-critical personalized devices with a broad and complex
attack surface due to their high levels of connectivity and interoperability.

2 Background and Motivation

This section provides the technical background required to understand the subse-
quent sections and the motivation behind our research.

2.1 AI/ML-enabled Medical Devices

As of December 2024, the U.S. Food and Drug Administration (FDA) has
authorized more than 1, 016 ML-enabled medical devices across 17 different
medical disciplines (e.g., Cardiology, Ophthalmology, and Gastroenterology) [110].
These devices can be categorized into two types: Software as a Medical Device
(SaMD) and Software in a Medical Device (SiMD). An SaMD is software that
can be run on general-purpose computers (e.g., d-Nav for predicting insulin
dose for diabetic patients [112]), whereas an SiMD is software that is sold
bundled with hardware manufactured by the same company (e.g., GI Genius
Intelligent Endoscopy Module [115]). Our analysis of the FDA data shows that
while radiological imaging devices are the most common category of FDA-cleared
ML-enabled devices (76.5%), safety-critical devices in clinical chemistry (e.g.,
BGMS), cardiovascular (e.g., arrhythmia diagnosis devices), and neurology (e.g.,
surgical procedures planning systems) have relatively higher numbers of reported
adverse events (see Figure 5). Unlike radiological devices, most personalized
cardiac monitors and BGMS are mobile-based devices used by patients in the
absence of continuous medical supervision. Their compatibility with peripheral
devices from multiple brands and various communication protocols creates a
broad and complex attack surface, making them highly susceptible to false data
injection attacks with potentially severe consequences. These factors make such
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devices a compelling choice for our evaluation. Table 1 shows examples of ML-
enabled BGMS, including d-Nav [112], WellDoc BlueStar [117], Dreamed Advisor
Pro [114], Dario Blood Glucose Monitoring System [113], and the One Drop
Blood Glucose [116] Monitoring System.

Interconnected medical devices. The ML models in these devices typically
receive inputs from multiple sensory devices that collect various physiological
data from a patient’s body to predict their condition. Moreover, they can interface
with third-party software, cloud platforms, and IoT devices, creating a highly
interconnected system. For instance, as shown in Figure 2 (Right), an ML-based
diabetes management app such as d-Nav can be installed on a mobile phone.
It contains two user-interactive software elements - one for the patient and one
for the physician. The system can receive glucose measurement data entered
manually into the patient user software or automatically via the cloud from a
linked blood glucose meter or continuous glucose monitor (CGM). Some backend
components run locally on the phone, while others may be hosted either locally
or in the cloud [112].

Interoperability in AI/ML-enabled medical devices. In recent years,
there has been a growing trend toward enhancing interoperability, particularly in
AI/ML-enabled medical systems. For example, to promote modular integration
across BGMS from different manufacturers, the FDA has introduced a framework
identifying three essential components in Automated Insulin Delivery (AID)
systems, including Alternate Controller Enabled (ACE) pumps, interoperable
CGMs (iCGMs), and interoperable glycemic controllers (iAGCs), that can reliably
and securely communicate with digitally connected devices to send, receive, and
execute drug delivery commands [35]. Motivated by a broader patient movement
towards open and personalized configurations [106,94], several interoperable
AID systems have gained FDA approval. Table 2 shows seven FDA-approved
AID systems among which five incorporate officially designated interoperable
components (ACE pump, iCGM, and iAGC). A recently approved iACG, Tidepool
[106], supports a wide range of compatible CGMs and insulin pumps from different
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Table 1: A study of different FDA-Approved ML-enabled medical devices and
their security vulnerabilities that enable false data injection attacks †: SaMD, ‡:

SiMD, ∗: Best-guessed ML algorithm, $YoA: Year of Approval, L : Only locally
exploitable vulnerability, R : Remotely exploitable vulnerability

Device
Name [110] YoA$ Device

Function

ML
Technique

used

Known
ML

attacks

Possible third-party
attack entry points

{Known vulnerablity}

Potential
impact of

mis-
prediction

d-Nav
System† ’19 Insulin dose

prediction
Reinforcement

learning∗ [34] Android
vulnerabilities [31]

Wrong
treatment
(Fatal)

WellDoc
BlueStar† ’19 Diabetes

management
Light Gradient

Boosting Machine∗ [15] Cloud Service API [29] Wrong
diagnosis

Dreamed
Advisor
Pro‡

’19 Diabetes
management

Reinforcement
learning∗ [75] Blood glucose

meter [27]

Wrong
treatment
(Fatal)

Dario
BGMS‡ ’15 Diabetes

management
k-means

clustering∗ [25] Android
vulnerabilities [31]

Wrong
treatment
(Fatal)

One Drop
BGMS‡ ’16 Diabetes

management
Long short-term

memory∗ [104] Bluetooth
Wrong

treatment
(Fatal)

Mammo-
Screen‡ ’24 Breast cancer

detection Deep learning [74] PACS server {[26]} R Wrong
diagnosis

CardioLogs
ECG

Analysis
Platform†

’17
Cardiac

arrhythmia
detection

Deep Neural
Network (DNN) [22]

Portable ECG

Monitors - {[82]} L ,
Cellular network,
Bluetooth

Wrong
treatment
(Fatal)

GI Genius‡ ’21

Gastro-
intestinal

lesion
detection

Convolutional
neural

networks (CNN)∗
[58]

Endoscope

cameras - {[84]} R ,
Intranet / Internet

Wrong
diagnosis

NuVasive
Pulse

System‡
’18 Neurological

monitoring CNN∗ [58]

Infra-red sensitive

cameras - [125] L ,

{[85]} R , Internet

Mistake
in

surgery
(Fatal)

Air Next‡ ’20 Spirometer CNN∗ [58] Bluetooth, Internet Wrong
diagnosis

BrainScope
TBI‡ ’19 Brain injury

assessment
Regularized logistic
regression model [23] Internet

Wrong
treatment
(Fatal)

IDx-DR
v2.3† ’22

Diabetic
Retinopathy
Detection

CNN [58]

This device uses the
Topcon NW200 Fundus
camera, which comes
packaged with a PC
running Windows 7 OS.
The Windows 7 OS has
known vulnerabilities

- {[86]} R , Internet

Wrong
diagnosis
(loss of
vision)

Iris
Intelligent
Retinal
Imaging
System†

’15

Storage,
management
and display
of retinal
images

Deep Learning [130]
Same as in the case
of IDx-DR v2.3,
Internet

Wrong
diagnosis
(loss of
vision)

Paige
Prostate† ’21 Cancer

diagnosis
CNN + Recurrent
neural networks [53]

Medical scanners

- {[83]} L , Internet

Wrong
diagnosis
(Fatal)

Tissue of
Origin

Test Kit‡
’18

Malignant
Tumor

diagnosis
SVM [77] Internet

Wrong
diagnosis
(Fatal)
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Table 2: Examples of FDA-approved Automated Insulin Delivery (AID) systems
that support interoperability in connected components. Modified from [66].

AID
System

FDA
Approval

Date
Pump AGC

(Control Algorithm) CGM

Beta Bionics
iLet Bionic
Pancreas

05/19/2023 iLet iLet
Dosing Decision Software

Dexcom G6,
Dexcom G7

Insulet
Omnipod 5 08/26/2024 Omnipod 5

/ DASH SmartAdjust algorithm Dexcom G6,
Dexcom G7

Tandem Mobi 07/11/2023 Mobi Control-IQ algorithm Dexcom G6,
Dexcom G7

Tandem t:
slim X2 12/13/2019 t:slim X2 Control-IQ algorithm Dexcom G6,

Dexcom G7
Medtronic

MiniMed 770G 09/01/2020 MiniMed 770G SmartGuard technology Guardian Sensor 3,
FreeStyle Libre 2 Plus

Medtronic
MiniMed 780G 04/21/2023 MiniMed 780G SmartGuard technology Guardian Sensor 3,

Guardian Sensor 4

Twiist 04/02/2025 Deka
insulin pump Tidepool Loop algorithm FreeStyle Libre 3 Plus

manufacturers (such as Medtronic, Tandem, Omnipod, and Dexcom) and is used
in a newly FDA-approved AID, called Twiist. Although the current AID devices
on the market are not ML-enabled, some of them adopt smart model-predictive
control (MPC) algorithms (e.g., SmartAdjust in Omnipod 5 [60], Control-IQ
by Tandem t) that are envisioned to use ML in the near future [97]. A similar
trend towards growing interoperability in other ML-enabled diabetes management
systems is also expected to happen.

This shift towards interconnectivity and interoperability underscores an urgent
need for comprehensive system-level security analysis in ML-enabled medical
devices. As interconnectivity increases, potential vulnerabilities such as data
breaches, insecure interfaces, and compromised control integrity must be proac-
tively addressed through secure-by-design architectures.

2.2 Security Vulnerabilities in ML-enabled Medical Devices

The draft guidance containing recommendations for AI-enabled device software
functions, published in 2025 by the U.S. Food and Drug Administration (FDA)
agency, highlights a number of ML risks that are susceptible to cybersecurity
threats [111]. These include data poisoning, model inversion/stealing, model
evasion, data leakage, overfitting, model bias, and performance drift caused
by adversaries. The highly interconnected nature of ML-based medical devices
provides a multitude of attack vectors to adversaries. This is also evident from
an increasing number of reported recalls, adverse events [9], and security vul-
nerabilities [67,128,92,1] and demonstrated attacks on medical devices across
various clinical specialties [56,72,19,7]. A recent study [1] on over 966 medical
devices from 117 vendors found 993 vulnerabilities across medical hardware,
operating systems, and software applications. Further, 160 of these had publicly-
available exploits that could allow the attackers to target patients and healthcare
organizations. The majority of these vulnerabilities were found in health IT
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applications (741) and moderate-risk devices (292) such as medical imaging and
monitoring/telemetry devices and infusion pumps.

2.3 Threat Model

In this work, we focus on false data injection attacks, a significant threat to
interconnected medical devices. An adversary can force an ML engine to generate
incorrect predictions or decisions by injecting carefully crafted malicious data
through the data acquisition system during inference [22,77].

Preventing such attacks in ML-enabled medical devices is particularly chal-
lenging due to their interconnectivity with several other peripheral and sensor
devices and networks. Figure 2 (Left) shows the various components of an ML-
enabled medical system. Adversaries can exploit vulnerabilities in any of the
third-party medical and Internet of Things (IoT) devices on the hospital network
and/or interface and network devices to find their way into a target ML-enabled
device, and inject malicious data into the ML engine even if the ML-enabled
device is not compromised. Therefore, it is not enough to secure only the ML-
enabled devices. A recent notification by the Federal Bureau of Investigation
(FBI) indicated that about 53 percent of connected medical and IoT devices in
hospitals have known critical vulnerabilities [92] that could enable such attacks.
In our prior work [33], we manually analyzed 15 ML-enabled medical devices
across various disciplines to examine their ML models, known vulnerabilities,
and potential attack vectors in peripheral devices for false data injection during
inference. Table 1 summarizes our findings, revealing that 11 of 15 devices were
susceptible to false data injection attacks, with consequences ranging from vision
loss to patient death.

2.4 Systems-Theoretic Safety and Security Analysis

Given the highly interconnected nature of ML-enabled medical devices, ensuring
their security and safety requires a comprehensive, system-level approach that
accounts for complex interactions between components. Modern system-theoretic
approaches to safety and security of interconnected devices, such as STAMP
(Systems-Theoretic Accident Model and Processes) [69], model accidents as
complex processes resulting from safety and security constraint violations due to
inadequate controls. Systems are represented as hierarchical control structures,
with each level constraining the one below and communicating their conditions
and behavior to the upper levels. System-Theoretic Process Analysis for Security
(STPA-Sec) [131] and Causal Analysis using System Theory (CAST) [69], built
upon STAMP, analyze hardware, software, physical systems, and human operators
across control layers to pinpoint threat scenarios, security exploits, unsafe actions,
and their causal factors. To assess ML-enabled device vulnerabilities, analysts
must (i) model the device’s control structure and (ii) identify technologies (e.g.,
protocols, software, OS, firmware) used in each component.

While several tools support STPA and STPA-Sec across various domains,
we assess their suitability for ML-enabled medical systems based on three key
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Table 3: Summary of State-of-the-Art STPA/STPA-Sec tools
(All these tools generate causal scenarios in semi-automated fashion)

Name Focus Application Domain
A-STPA, XSTAMPP Safety General Purpose
SafetyHAT Safety Transportation

WebSTAMP Safety/Security Healthcare, Transportation,
Chemical Industry

SOT Safety/Security Aircraft Systems

features: (i) applicability to security attacks on ML systems, (ii) applicability to
the medical domain, and (iii) automation of causal scenario generation. To this
end, we evaluate four state-of-the-art STPA/STPA-Sec tools: (1) A-STPA [2]
and its enhanced version, XSTAMPP [3] assist in linking unsafe control actions to
safety hazards and provide graphical aids for control structure creation but require
manual causal scenario identification; (2) SafetyHAT [18] is customized for the
transportation sector. This tool offers a graphical interface, data management,
and domain-specific guidewords but lacks automated causal scenario identification;
(3) WebSTAMP [103] is a web application designed for STPA and STPA-Sec,
that provides structured guidance for identifying hazardous control actions and
causal scenarios. It has been applied to Glucose Monitoring and Insulin Pumping
System, transportation applications[105], and chemical reactors[132]; and, (4)
SOT [98] – this tool helps systems engineers conduct safety and security analyses
by leveraging past knowledge to identify causal scenarios.

In summary, A-STPA, XSTAMPP, and SafetyHAT focus on safety risks from
device failures, not malicious attacks. While WebSTAMP and SOT consider
security concerns, they still rely on users’ knowledge of vulnerabilities and require
significant manual effort. Table 3 shows a summary of these tools.

Recent papers such as the survey by Qi et al. [99] explore the use of STPA in
learning-enabled systems, and introduce DeepSTPA for analyzing ML lifecycle
failures, which is beyond our scope. Other recent papers [100,91,90] explore the
usability of Large Language Models (LLMs) in STPA, highlighting the need
for human intervention in generating prompts and validating LLM responses.
However, none of these studies focus on medical device security.

2.5 Medical Device Databases

The U.S. Food and Drug Administration (FDA) regulates medical devices sold
in the US, and maintains several publicly available databases on premarket and
postmarket data about cleared and approved medical devices, including device
summary information, approval date, user instructions, and information on
Premarket Approvals (PMA), Premarket Notifications (510[k]), Adverse Events,
and Recalls. We analyze the following FDA databases to extract the information
about medical device technologies and their reported safety and security flaws:

AI/ML-Enabled Medical Devices database [110] maintains the infor-
mation about the FDA-authorized medical devices that incorporate AI/ML



10 G. Mitra et al.

across medical disciplines. This data is not comprehensive and only contains re-
leasable information about devices based on information provided in the summary
descriptions of their marketing authorization document.

Premarket Notifications (510(k)s) database [118] contains the releasable
records of premarket notifications submitted by medical device manufacturers
for the devices introduced into commercial distribution for the first time or those
reintroduced with significant changes. Each record includes device classification
and approval information as well as summaries of device functionality and safety
and effectiveness information for more recent submissions.

Recalls database [122] contains records of medical device recalls since
November 01, 2002. A recall is a voluntary action that a manufacturer takes to
correct or remove from the market any medical device that violates the FDA’s
laws. Each record in the database contains the information on a recalled device
such as the product name, manufacturer name, number of devices on the market,
recall class, FDA determined cause, and the human-written textual descriptions
of manufacturer’s reason for recall and recovery actions taken to correct the
device or remove it from the market.

Manufacturer and User Facility Device Experience database [119]
(MAUDE) is a collection of adverse events of medical devices that volunteers,
user facilities, manufacturers, and distributors have reported to the FDA. Each
adverse event report contains information such as device and manufacturer names,
event type (e.g., Malfunction, Injury, or Death), event and report dates, and
human-written event description and manufacturer narratives, which provide a
short textual description of the incident, as well as any comments made or follow-
up actions taken by the manufacturer to detect and address device problems.

2.6 Vulnerability Databases

We analyze the following publicly available vulnerability databases to identify
common threats and security attacks targeting medical devices and peripheral
devices:

ICS-CERT Alerts dataset [108] is developed and maintained by Indus-
trial Control Systems Cyber Emergency Response Team and the United States
Computer Emergency Readiness Team (US-CERT). US-CERT is responsible for
analyzing and reducing cyber threats, vulnerabilities, disseminating cyber threat
warning information, and coordinating incident response activities.

MITRE Common Vulnerability Enumeration (CVE) database [87]is
a publicly accessible registry of known cybersecurity vulnerabilities, maintained
by the MITRE corporation. It provides a comprehensive database of vulnera-
bilities, including those affecting peripheral medical and IoT devices used in
medical systems. The data is contributed by software vendors, security researchers,
penetration testers, as well as independent researchers.

Despite these publicly available databases, the information on ML-enabled
medical devices and the peripheral devices they connect to is only available in a
dispersed and unstructured format. It is particularly challenging to (i) extract
relevant information on security vulnerabilities and safety impacts from the
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dispersed data across millions of records in different databases and (2) analyze
the free-form natural language text, written by the manufacturers and healthcare
professionals, while understanding semantics and the contextual factors involved
in the events. In the subsequent sections, we describe how some of the tools and
techniques we developed alleviate the aforementioned challenges.

3 Methods

This section presents our framework for performing holistic system-theoretic
analysis of ML-enabled medical systems. The framework comprises a suite of
Natural Language Processing (NLP) and LLM-aided tools and techniques to
assist the systems and control-theoretic security analysis of ML-enabled medical
devices. Specifically, we report our experience on the design and validation of tools
for semi-automated device modeling and technology identification, information
extraction, , and systems-theoretic accident causality analysis and attack step
generation.

Figure 3 shows an overview of our framework, which consists of three main
components.

The first component is a device modeling and technology identification tech-
nique. It helps security analysts model the interconnections and communications
between the ML-enabled medical device and third-party peripherals as a control
structure using a generic control structure template for ML-enabled medical
devices. It also assists in identifying all technologies used in connected devices
that could serve as potential attack entry points.

The second component is a set of NLP and LLM-aided web scraping and
information extraction techniques to extract and cross-reference the information
from publicly available databases. Given a natural language description of an
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ML-enabled medical device, it extracts key details, including the ML technique
used, connected peripherals, and device functionality. Using this information, it
scrapes the web for information on relevant ML vulnerabilities that adversaries
could exploit to induce misprediction. Additionally, it interfaces with public FDA
medical device and vulnerability databases to identify vulnerabilities in similar
medical devices and peripheral devices, as well as recalls and adverse events
linked to their malfunctions and safety impacts.

The third component of this framework is an LLM-based tool that can assist
security analysts in systems-theoretic and data-driven safety accident (CAST)
and security (STPA-Sec) analysis. This tool integrates the knowledge of CAST
and STPA-Sec processes with the extracted information on device technology,
control structure, and vulnerabilities and encodes them as customized prompt
templates that can guide LLMs in generating (i) a comprehensive list of safety
issues and causal factors that could lead to patient harm and (ii) attack vectors
that adversaries could exploit to deliberately trigger such safety events.

In the following subsections, we discuss these tools/techniques in detail.
We also illustrate how each tool/technique contributes to the overall security
assessment, by providing examples of their output when applied to ML-enabled
devices, such as the BGMS in Figure 2.

3.1 Device Modeling and Technology Identification

To identify all possible attack vectors in a given ML-enabled medical system,
a security analyst first needs to model the interconnections of the ML-enabled
medical device with the peripheral devices, the data flow between various system
components, and understand the technology used by various system components.
To enable the systems-theoretic security analysis using STPA-Sec (in Section 3.3),
we adopt the hierarchical system control structures from STAMP (see Section 2.4)
for this purpose.

System Control Structure Modeling. In our previous work (SAM [54]),
we partially automated the construction of the system control structure for
ML-enabled medical devices by developing a template control structure that
contains typical components and interconnections in an ML-enabled medical
system. The security analysts could customize this generic control structure by
adding/removing necessary components and interactions to match the description
of the system under assessment. Once the control structure is built, the security
analyst must manually identify the data flows among various system components
from the device descriptions. We applied this technique on two ML-enabled
medical devices – (1) d-Nav [112], a blood glucose monitoring system, and; (2)
ABMD [109], a bone mineral density calculator. We built the control structure and
inferred the data flow using the system description provided by the manufacturer,
which we obtained from publicly available device summaries submitted to the
FDA during the pre-approval process, as well as from information available on the
manufacturers’ websites. Figure 4 shows the control structure for d-Nav [112], as
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Fig. 4: Control Structure of the d-Nav System. Note that, while setting up the
system, the ML engine can be configured to run either on the smartphone or on

the cloud server.

generated by the technique proposed in SAM. Note that these documents do not
follow a standardized format - the information is often dispersed across multiple
sites, and the transparency varies across manufacturers. Hence, automating the
information retrieval process remains a challenge.

Technology Identification. Once the security analyst builds the control struc-
ture, they must identify the technologies used across system components, such as
the ML techniques, operating systems, firmware, and communication protocols
used by the ML-enabled and connected peripheral devices, to assess the potential
security vulnerabilities associated with each of them.

To identify the ML and peripheral device technologies, we have integrated
two questionnaires [55] into our toolkit [54], which must be completed by the
designers of the ML-enabled device. The first focuses on compatibility conditions
for each peripheral device in the control structure and needs to be answered by
the manufacturer of the ML-enabled device. For example, some blood glucose
management systems use Bluetooth to transmit glucose readings from the glucose
meter to the glucose management smartphone app, while others require a USB
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connection for data transfer. Following this, the security analyst must manually
identify all commercial peripheral devices that meet the compatibility conditions
specified by the ML-enabled device manufacturer. The second questionnaire
helps analysts identify the technologies used in the ML-enabled device, and each
compatible peripheral device by covering key technological and operational factors
relevant to medical devices. These questions ensure a thorough assessment of
potential attack entry points. The factors are categorized into four groups [54]:
(i) Human Interaction – this includes data entry and supervision, data validation,
authentication, and anomaly detection; (ii) Communication Protocol – this
includes the exact protocol name, version, and whether it uses encryption; (iii)
Electromagnetic Susceptibility – this includes whether the device is susceptible to
electromagnetic radiation, and if so, what its repercussions would be, and if they
have any known shielding or mitigation strategy in place; and, (iv) Dependencies
on firmware, hardware, OS, and external libraries. This categorization is based
on known attack vectors targeting ML-enabled medical devices [129].

Note that, for a security analyst working for a medical device manufacturing
company, obtaining the aforementioned information from the device designers
would be straightforward. However, for an analyst working independently or for
a third-party company, the manufacturers might be unwilling to provide this
information either due to reluctance to spend unnecessary time or effort (as
might be the case for peripheral device technologies) or due to confidentiality
concerns (as might be the case for ML technique details). In such cases, the
analyst can infer compatibility conditions, such as communication links, input
devices, and operating systems, from publicly available device descriptions on
the FDA website [110] and publicly available information on each peripheral,
such as product descriptions on the manufacturer’s website. Following this, the
analyst could also retrieve a fairly comprehensive list of compatible peripheral
devices from third-party information repositories such as TidePool [106]. However,
identifying the specific ML technologies used is far more challenging, as most
manufacturers do not declare them on their website or do not disclose them
publicly at all. To assist the analyst under such circumstances, we have developed
NLP- and LLM-aided tools as described in the following subsection.

3.2 NLP and LLM-aided Web Scraping and Information Extraction

Once the security analyst builds the control structure and identifies the tech-
nologies used in the ML-enabled device and its connected components, they
must proceed to identify known vulnerabilities in these technologies that might
serve as an attack entry point. Today, information about security vulnerabilities,
design flaws, and adverse events reported on medical devices is available on the
Internet in an unstructured and dispersed manner. This makes it challenging to
ensure the coverage of all relevant data during the security assessment process.
Our set of NLP-aided web scraping and LLM-aided information extraction tools
and techniques assists the system developers and security analysts in extracting
and integrating data on all known vulnerabilities and safety issues relevant to
the ML-enabled medical device under assessment. This information is also used
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by our subsequent tools for automated systems-theoretic safety and security
analysis.

ML Technology and Vulnerability Identification. In our latest work [32],
we proposed MedAIScout, a semi-automated NLP- and LLM-aided tool designed
to retrieve information on known ML vulnerabilities relevant to ML-enabled
medical devices. MedAIScout works in two steps:
(1) ML technology identification: Given a description of an ML-enabled medical
device, MedAIScout uses NLP techniques to identify key terms related to the
device’s functionality, ML model type, and data characteristics. Often, the device
manufacturers do not publicly disclose the exact ML technique used in their
products. In case the security analyst (MedAIScout user) does not have access
to a document containing the exact details (such as in the case of third-party
analysts), MedAIScout can analyze available information and infer the most likely
ML technique by referencing similar devices documented in existing literature.
In this work, we sourced the device descriptions from the publicly accessible
pre-market device summaries available on the FDA website [110,118] and peer-
reviewed research articles indexed on Google Scholar.
(2) ML vulnerability identification: Next, MedAIScout constructs tailored search
queries to retrieve peer-reviewed research articles on attacks targeting the device’s
ML model. MedAIScout uses local LLMs to differentiate between training-time
and inference-time attacks and provides context and explanations for each re-
trieved article’s relevance.

Throughout the device’s lifecycle, security analysts can use MedAIScout to
track emerging ML vulnerabilities. To the best of our knowledge, it is the first
automated tool to retrieve known ML vulnerabilities specifically for medical ap-
plications. By applying MedAIScout to five FDA-approved ML-enabled medical
devices, we found that MedAIScout successfully uncovered relevant vulnerabilities
in four devices, thereby substantially assisting in security analysis. For example,
when tested on the One Drop blood glucose monitoring system [116], MedAIScout
retrieved a peer-reviewed research paper [107] describing an inference-time attack
on a similar system. In this attack, an adversary manipulates blood glucose read-
ings at mealtime by compromising the radio communication between the glucose
meter and the controller, leading to incorrect insulin dose recommendations. The
paper also proposes an appropriate attack detection technique.

Attack Surface Analysis. To capture a comprehensive attack surface for
ML-enabled medical devices, we have developed tools for automated searching of
public databases and identifying known vulnerabilities in the peripheral and inter-
connected medical devices. Comprehensive attack surface analysis is a prerequisite
for systems-theoretic security analysis

In our recent work [54], we developed a method for capturing all the known
vulnerabilities linked to each technology in every peripheral device used in
a given ML-enabled medical device. This method uses the responses about
the technological and operational factors used in the peripheral devices from
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the questionnaires (see §3.1) as search keywords to find known vulnerabilities
in the MITRE Common Vulnerability Enumeration (CVE) database [87]. For
instance, for the d-Nav BGMS [112], we found that vulnerabilities might exist in
a compatible glucose meter [51], Wi-Fi communication between glucose meter
and the cloud server [28], the communication between the cloud server for glucose
meter and the ML controller [96], Wi-Fi communication between the interface
device and the ML controller [28], and Android OS on the interface [31].

In another study [128], we examined cyberattacks targeting hospital networks
and interconnected clinical environments. For this purpose, we used two publicly
available vulnerability databases – the Common Vulnerabilities and Exposures
(CVE) Database [87] and the Industrial Control Systems Cyber Emergency
Response Team (ICS-CERT) Alerts database [108]. To automate the collec-
tion of information on medical device-related vulnerabilities from ICS-CERT,
we developed a tool for crawling the whole US-CERT website and extracting
all vulnerability records that contain any medical-related keywords, including
generic medical keywords and those describing the common categories and spe-
cialties of medical devices, as classified by the FDA Product Code Classification
Database [121]. Using this tool, we extracted the vulnerability records reported
from 1999 to 2018 that were potentially related to medical devices. We then
manually parsed the HTML documents of a final set of 140 extracted records to
extract information such as the corresponding CVE IDs, affected product names,
and manufacturer or vendor names of products, as well as vulnerability details
and backgrounds. Our analysis revealed that the most common vulnerabilities in-
cluded improper credential management and authentication, weak access control,
privilege escalation, and buffer and stack overflows. Furthermore, we found that
18 retrieved vulnerabilities had publicly available exploits. These vulnerabilities
were widespread across various medical devices, including insulin pumps, from
multiple manufacturers, thereby underscoring the need to consider them in the
security analysis of interconnected ML-enabled devices.

Analysis of Recalls and Adverse Events in Medical Devices. In our
early work [9,8,11], we developed a suite of NLP tools (called MedSafe [13,12])
for automated extraction, cross-referencing, and classification of records from
two public FDA databases: the Medical Device Recalls [122] and the MAUDE
(Adverse Event Reports) database [119]. We used these tools to identify all the
recalls and adverse events caused by failures in computer-based medical devices,
and categorized them by fault class, failure mode, device type, recovery action,
and the number of recalled devices. This study was the first automated and large-
scale analysis of FDA data on computer-based medical devices and highlighted
the key causes of computer failures impacting patient safety. Our findings showed
that while software failures continue to be the leading cause of medical device
failures, hardware, battery, and I/O issues are also major contributors. Many
recalled devices either lacked proper safety considerations during design or their
safety mechanisms were inadequately implemented. Later, using these tools we
extracted all the recalls and adverse events related to BGMS [135,134] and
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Table 4: Examples of recalls of AI/ML-enabled medical devices due to software
issues that could result in misdiagnosis or wrong treatment (Class II recalls).

∗ indicates that the recalls are in Open state as of April 2025, meaning that not all the
units have been corrected or removed yet.

Device
Name

Approval
Panel

Recall
#

Reason for
Recall

Action
Summary

No. of
units

affected

BodyGuardian
Heart

Remote
Monitoring

Kit

Cardio-
vascular

Z-
2479-
2020
[42]

The device data
being collected and
transferred to the
monitoring center may
not be accurate due
to non-validated
association between
the phone software
and the heart
monitors, leading to
inaccurate evaluation
of the patients’
condition.

The recalling firm contacted
all patients and physicians
that had potentially
impacted devices. Patients
that agreed were sent new
devices to replace the
affected one to finish their
study.

8

Dario
BGMS

Clinical
chemistry

Z-
0260-
2020
[40]

The Dario Android
App v4.3.0-4.3.2 may
experience duplicate
logging of a blood
glucose level reading.

The firm released Android
App v4.3.3. Users were
informed about the issue via
multiple push notifications
and email, asking them to
update to the new version.

126,271

Bioplex
2200 ANA

Screen

Clinical
toxicology

Z-
1159-
2008
[36]

False negative results
due to reagent packs
exhibiting low signal.

The firm contacted its
consignees, informing them
of the issue, recommended
that they perform QC
testing daily with each
reagent pack, and updated
the usage instructions.

8,804

Sight
OLO

CBC Test
Kit

Hematology

Z-
2173-
2024∗

[46]

The kit shows a bias
in the platelet count
due to bacterial
contamination, which
can result in elevated
counts with a bias,
that results in the
test kit performing
outside of the device
specification.

The manufacturer issued an
urgent recall notice to their
customers, asking them to
discontinue the use of
the affected test kits, return
the unused kits, and dispose
of the used ones.

7,450

UniCel
DxH 600
Coulter
Cellular
Analysis
System

Micro-
biology

Z-
2158-
2017
[37]

A possible data
acquisition disruption
may cause some
unusual events, that
may be incorrectly
removed from analysis,
which can result in
erroneous diagnosis.

The manufacturers sent an
Urgent Medical Device Recall
letter to customers to inform
them of the issue, impact,
action, and resolution.

1,408

Incisive
CT,(728143,

728144),
Software
v5.0.0.

Radiology

Z-
0640-
2024∗

[45]

Multiple software
issues have the
potential to lead to
misdiagnosis due to
image artifacts or
incorrect image
orientation labels, or
need for a CT rescan.

The manufacturer
communicated specific details
regarding the issue to their
customer, as well as advice on
actions to be taken. They also
promised to install a software
upgrade.

828
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Table 5: Examples of adverse events of AI/ML-enabled medical devices with
data, interface device, and software related problems that could result in

misdiagnosis or wrong treatment (Event Types: Malfunction).
∗ indicates several similar adverse events reported for the same device over 2018-2024.

Device
Name

Device
Function

Approval
Panel

Adverse
Event #
(Year)

Device
Problem

Summary
Event Description

Zio AT
ECG Monitoring
System (ZEUS)

Arrhythmia
detector

and alarm

Cardio-
vascular

8356453
[41]

(2019)

Application
Network
Problem

False negative results
(missed detection of
asymptomatic arrhythmia)
due to a BLE (bluethooth
low energy) issue.

LINQ II
Cardiac Monitor,
Zelda AI ECG
Classification

System

Arrhythmia
detector

and alarm

Cardio-
vascular

20916084
[48]

(2024)

Program or
Algorithm
Execution
Problem

An atrial fibrillation
episode was adjudicated
as false by the artificial
intelligence (ai) algorithm.

Dario
BGMS

Glucose
Test

System

Clinical
chemistry

18904273
[44]

(2022)∗

Incorrect,
Inadequate,
or Imprecise

Result or
High Readings

Inconsistent and high
blood glucose readings,
different from other meters
or hospital measurements.

HeartFlow
FFRCT

Coronary
Vascular

Physiologic
Simulation
Software

Cardio-
vascular

8269286
[38]

(2018)∗

False
Negative
Result

Potential false negative
results in FFRCT
(Fractional Flow Reserve
derived from CT) analysis
of coronary arteries due to
image quality issues and
anatomy uncertainty.

Clarius
Ultrasound

Scanner

Ultrasonic
pulsed
doppler
imaging
system

Radiology 20471171
[47]

(2024)

Misconnection

A connectivity issue with
ultrasound scanner during
diagnostic evaluation in
an emergency room, which
could potentially lead to
significant adverse outcomes.

surgical robots [11] and identified most common device malfunctions, examples of
security vulnerabilities in different components and device interfaces (e.g., CGMs,
insulin pumps, cameras), and the safety impact of device failures and potential
harm to patients (e.g., hyperglycemia or injury). For example, we found a Class
1 recall (highest risk level) due to a potential security vulnerability related to the
use of the remote controller accessories with the insulin pumps, which affected
over 90,000 users on the market [39]. Another Class 2 recall, affecting over 64,000
insulin pumps, indicated the possibility of an unauthorized person connecting
wirelessly to a nearby insulin pump to change settings and control insulin delivery
due to potential cybersecurity vulnerabilities [43].

More recently, we have applied our techniques to extract and analyze the
recalls and adverse events reported on ML-enabled devices and AID systems. Our
analysis found over 1,460 adverse events reported for ML-enabled devices over
2015-2024, of which about 92% involved device malfunctions and 7.8% injuries.
Although understanding the root causes of the reported events requires an in-
depth investigation and consideration of all causal and contextual factors 3.3,
these reports provide valuable insights on real problems encountered during the
use of devices and how they impacted patient safety. Figure 5 shows the device
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39.1%

24.6%

21.3%

12.4%

1.2% 1.2% 0.1% 0.1%

Radiology Clinical Chemistry

Microbiology Cardiovascular

Neurology Hematology

General Hospital General and Plastic Surgery

Reported Device Problem Freq.
Poor Quality Image 421
Not Available (N/A) 295
False Negative Result 103
High Readings 73
Incorrect, Inadequate, or
Imprecise Result or Readings 45

Computer Software Problem 42
Inaccurate Information 25
Application Program Problem:
Parameter Calculation Error 17

Low Readings 7
Intermittent Program or
Algorithm Execution 6

Program or Algorithm
Execution Failure 4

Failure to Transmit Record 3
Low Test Results 3

Fig. 5: Left: Adverse Events by Device Category (FDA Approval Panel),
Right: Top Reported ML-enabled Device Problems (Data as of April 2025)

categories with the highest number of adverse event reports and the top device
problems reported over the years. A major part of reported problems (about
60.7%) were related to poor quality and inaccurate inputs/readings and false
negative results, which, even if not directly caused by an ML technology, could
still impact the ML decision-making results and patient safety. Some examples
of safety-critical recalls and adverse events across different device categories are
shown in Tables 4 and 5.

In summary, this set of tools and techniques would help a security analyst
cover known vulnerabilities in ML models, peripheral medical devices, as well
as attack vectors in connected peripheral devices and communication channels,
while designing a secure ML-enabled medical device. Additionally, it will also help
security practitioners design efficient attack prevention and detection techniques.

3.3 Data-Driven Systems-Theoretic Safety and Security Analysis

To predict and proactively mitigate the occurrence of future attacks, it is crucial
to not only consider the known vulnerabilities and exploits reported in existing
data on past safety and security incidents, but also anticipate for the potential
new attacks by considering a more comprehensive attack surface of unknown
vulnerabilities or vulnerabilities in other connected devices and the potential
attack steps and their safety impacts on patients. To do this, we adopt an
LLM-aided and data-driven approach to the systems-theoretic security analysis
(STPA-Sec) that incorporates the information extracted from public databases
and results from CAST analysis on devices with similar functionality (e.g., a
non-ML-enabled device predicate with the same functional specification and use
cases as the ML-enabled device) to generate potential attacks steps and their
impacts in ML-enabled devices.
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Fig. 6: Example Accident Causality Analysis using STAMP for an
FDA-Authorized ML-enabled Medical Device

Systems-Theoretic Accident Causality (CAST) Analysis. Analysis of
real-world safety incidents, including medical device recalls [122] and adverse
events [119] can provide valuable insights into how device flaws and security
vulnerabilities could lead to system hazards and negatively impact patients and
caregivers. However, these incidents are mainly reported by the device users and
manufacturers in free-form natural language text, and their analysis requires a
semantic understanding of the underlying causal factors. Several previous stud-
ies [17,10,93,79,21,70] have shown the advantage of Causal Analysis using System
Theory (CAST) [69] in identifying causal and contextual factors contributing to
medical adverse events. However, these papers solely focus on the manual causal
analysis of single incidents and do not consider security-related hazards and
safety-critical vulnerabilities. Such an approach cannot provide a comprehensive
understanding of all potential causal factors, including vulnerabilities in IoT
and peripheral devices, nor can it yield statistically significant measures of their
importance. Additionally, it is not easily scalable to thousands of unstructured
adverse event reports on a single device due to the significant human effort
required. Therefore, techniques and tools for automated semantic analysis of
these reports are needed to extract both safety and security-related causal factors,
and summarize key information for CAST analysis.

To facilitate an aggregated CAST analysis, we leverage our NLP techniques
for automated classification, summarization, and cross-referencing of large-scale
FDA data on recalls and adverse events [9,8,11,135,33]. This information can
assist in systems-theoretic analysis of several similar adverse events reported on
the same medical device or devices with the same functional specification using
CAST to identify the distribution of causal factors and potentially inadequate
safety mechanisms in both system design and operational practices [5,6]. Given a
natural language description of an adverse event and the control structure model
for a medical device, we first map different sections of the text into different
control loops in the system control structure. Then, for each control loop, the
set of violated safety constraints is identified. These steps are done through
device and medical entity and relation extraction from the text and semantic
analysis of causal factors using rule-based parts of speech analysis [5]. Finally, the
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similar causal factors and safety violations across multiple adverse event reports
of the same device can be identified and aggregated for statistical analysis. In
[11,6] we performed such an aggregated causality analysis of over 10,000 adverse
event reports on tele-operated surgical robots. This analysis identified the most
critical causal factors for safety incidents in different models of the same device
over a period of 14 years. To further reduce the manual cost of this analysis
method, we have recently explored an LLM-aided technique based on customized
prompt templates and chain-of-thought prompting [52,127] to decompose the
tasks of entity and relation extraction and semantic analysis of causal factors into
sub-tasks that can be performed using LLMs and be later manually validated by
security analysts. Figure 6 shows an example of the key causal factors extracted
by this LLM-aided technique from an adverse event report [120] for an FDA-
authorized ML-enabled cardiac event detection software [123]. The insights on
the causes and patient impacts of past incidents can be used for analyzing and
specifying the safety impact of the device vulnerabilities.

Systems-Theoretic Security (STPA-Sec) Analysis. In this final step,
we analyze consolidated data on the ML model, its functionality, peripheral
technologies, and associated safety and security risks to identify how an adversary
could inject false data during inference. We developed STPA-Sec for ML-enabled
Medical Devices (SAM), a technique for conducting STPA-Sec on AI/ML-enabled
medical devices [54]. SAM first assesses the attack surface by identifying all
potential attack entry points (Section 3.2). Thereafter, it performs STPA-Sec
analysis to determine the attack steps. This information would help the ML-
enabled device manufacturer design appropriate security measures or devise
advisories for the users.

In the attack step generation step, SAM performs an LLM-aided STPA-Sec
analysis to generate the attack steps for a given hazard and an exploitable pe-
ripheral device vulnerability. To overcome a human security analyst’s limited
cross-domain knowledge, we leverage LLMs to automatically identify causal sce-
narios based on the latest vulnerabilities in the system’s underlying technologies.
A key challenge in using LLMs is the design of effective prompts to generate
optimal task-specific responses. For SAM, the ideal response outlines detailed
attack steps exploiting a peripheral vulnerability to inject false data during infer-
ence on a given ML technique. To achieve this, we developed the following prompt.

“Act as a security engineer who has the task of identifying the steps that
an adversary follows to cause a security breach in an ML-enabled medical
system. <Description of an ML-enabled medical system>. <Definition
of security breach>. You are given a system description, an ML attack,
a targeted input peripheral component, and a known vulnerability in
the input component. Give a list of steps to show how an adversary can
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exploit the vulnerability to mislead the ML-enabled component and how
that affects the action of the output device on the patient.
System Description: <The SAM user manually writes this description
by inspecting information disclosed by the manufacturer.>
Data flow: <This can be derived from the control structure constructed
using the Control structure builder in §3.1.>
ML attack: <The ML attack identified in §3.2>
Targeted input peripheral component: <One of the peripheral input
devices in the control structure built in §3.1>
Targeted technology: <One of the underlying technologies in the input
device, as identified by the technology identifier (§3.1)>
Known vulnerability: <Description of the known vulnerability in the
targeted technology, as retrieved from the CVE database during attack
surface analysis>”

We observed that explicitly assigning the LLM the role of a security analyst
before giving it additional information improves the readability and relevance of
the generated results - this is in line with other work in this area [102,73,101].
Similarly, mentioning the data flow provides clarity to the LLM regarding the
sequence of data transmission between different components in the system.

By running this prompt for each vulnerable point in the system and each
vulnerability uncovered at that point, SAM, regardless of the existence of
safety/security margins, generates a comprehensive set of steps an adversary
might take to compromise the security of an ML-enabled medical device. Device
manufacturers or security analysts can then disregard those that have already
been mitigated and develop design recommendations for the remaining ones.

For d-Nav, we selected hypoglycemia as the hazard, and injecting excess
insulin as the control action that causes it. We consider an adversary who
conducts a model inversion attack (identified by MedAIScout [32] in a previous
step described in §3.2) on the ML engine to infer sensitive details about a targeted
patient, followed by false data injection. This attack would make the ML engine
mispredict the insulin dose. To execute this attack, the adversary injects false
glucose readings into the Wi-Fi channel that transmits the patient’s glucose
readings from the glucose meter to the ML engine running in the cloud server.
We assume that the patient uses a Wi-Fi router with an unpatched known
vulnerability, CVE-2023-35836 [30], that the adversary exploits for injecting the
malicious glucose readings. SAM outputs a list of nine steps for this attack, which
are summarized in Table 6. By following these steps, an adversary could inject
false data into the BGMS to make it miscalculate the insulin dose.

4 Future Directions and Conclusion

Based on the capabilities of our tools and techniques demonstrated in this paper,
and the insights obtained from the experimental results, we would like to expand
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Table 6: STPA-Sec output produced by SAM for the attack scenario on d-Nav
BGMS, described in $3.3

Step # Step name Description

1 Reconnaissance Identifying the targeted patient’s Wi-fi
network and its router vulnerabilities

2 Exploitation Exploitation of router vulnerability to
infiltrate the target’s network

3 Wi-fi network infiltration Compromising the connection between
glucose meter and cloud server

4 Data interception Interpreting the data in transit

5 Data tampering
Manipulating the data in transit with a
value that would make the ML model

mispredict a future blood glucose value

6 Model inversion attack Compute the manipulated value such
that the patient becomes hypoglycemic

7 ML Controller manipulation
Expected reaction of the ML model:

Misprediction of patient’s future blood
glucose level

8 Output device manipulation

Expected reaction of the insulin dose
calculator: Computing an insulin dose

higher than that required by the patient
and sent to the insulin pump or displayed

on the d-Nav app

9 Insulin pump misadministration
Expected end result: Wrong insulin dose

administered to the patient, either
manually or by an automated insulin pump

the scope of our research in the following directions, with a high-level goal of
ensuring the security of ML-enabled medical devices by design and efficient
post-market security surveillance.

1. Early prediction of vulnerabilities based on existing events - The domain
of ML-enabled medical devices has become increasingly competitive, with
manufacturers developing ML-enabled devices that offer similar core function-
alities as existing non-ML-enabled devices, but with enhanced performance
and features such as greater interoperability. As a result, newer devices may
inherit existing vulnerabilities in connected devices or similar or more severe
vulnerabilities than their predecessor devices. To address this, we plan to
develop an LLM-aided technique that analyzes the design of an ML-enabled
medical device and, based on known vulnerability data, predicts potential
security risks specific to the new device, even without performing STPA-Sec
on it. Furthermore, we would expand the scope of our tools and techniques
to cover other types of ML-specific attacks in addition to false data injection
attacks.

2. Real-time post-market security risk assessment - Our tools and techniques can
be extended to support near real-time post-market security surveillance by
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continuously monitoring large-scale vulnerability databases and performing
on-demand risk assessments whenever new vulnerabilities are reported.

3. Designing efficient defense techniques - The output of our STPA-Sec technique
can be leveraged to identify the most efficient defense technique in terms of
reliability, patient convenience, and cost of implementation.

This paper presents a suite of tools and techniques developed for holistic
security risk assessment of ML-enabled medical devices, with a focus on false data
injection attacks. We demonstrated the effectiveness of these tools and techniques
across multiple ML-enabled blood glucose management systems. The novelty
of our tools and techniques are in (i) identifying attack vectors that require
exploiting vulnerabilities in third-party connected components to practically
execute known attacks on the ML models and (ii) anticipating for the potential
safety impacts of such attacks based on the analysis of past incidents on similar
devices. This helps security analysts (working for the device manufacturers) assess
the feasibility and impact of such attacks more accurately. In the future, we
aim to extend our tools to support additional types of ML-specific attacks and
facilitate post-market security risk assessments.
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