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Abstract—The rapid advancements in autonomous vehicle (AV)
technology promise enhanced safety and operational efficiency.
However, frequent lane changes and merging maneuvers con-
tinue to pose significant safety risks and disrupt traffic flow.
This paper introduces the Minimizing Lane Change Algorithm
(MLCA), a state-machine-based approach designed to reduce
unnecessary lane changes, thereby enhancing both traffic safety
and efficiency. The MLCA algorithm prioritizes maintaining lane
stability unless safety-critical conditions necessitate a lane change.
The algorithm’s effectiveness was evaluated through simulations
conducted on the SUMO platform, comparing its performance
against established models, including LC2017 and MOBIL.
Results demonstrate substantial reductions in lane changes and
collisions, leading to smoother traffic flow and improved safety
metrics. Additionally, the study highlights the MLCA’s adapt-
ability to various traffic densities and roadway configurations,
showcasing its potential for wide-scale deployment in real-world
AV systems. Future work aims to validate these findings in more
complex scenarios using the CARLA simulator, which will enable
the testing of the algorithm under more dynamic and high-fidelity
conditions, such as urban traffic environments with diverse
road users. Moreover, the integration of cybersecurity measures
for vehicle-to-vehicle (V2V) communication will be explored to
ensure robust and secure data exchange, further enhancing the
reliability and safety of AV operations. This research contributes
to the broader goal of developing intelligent traffic systems that
optimize both individual vehicle performance and overall traffic
network efficiency.

Index Terms—Autonomous Vehicle (AV), SUMO, Open-
StreetMap, CARLA, Lane Changes, V2V

I. INTRODUCTION

Autonomous driving technologies have witnessed remark-

able strides in recent years, driven by their vast potential

across numerous applications. The synergy between computer

technology and artificial intelligence has propelled significant

advancements in autonomous driving over the last decade.

Owing to the collaborative efforts of scientific researchers,

this theoretical technology has transitioned from the confines

of research labs to practical civilian applications [1]. Un-

like human drivers, AVs offer a promising array of bene-

fits, including enhanced driving safety, comfort, and resource

optimization, enabled by their superior sensing capabilities,

precise behavior prediction [2], and swift execution of control

commands. Widely regarded as the future of transportation,

autonomous cars, or self-driving cars, rely on a sophisticated

blend of sensors, cameras, and AI algorithms to navigate roads

autonomously [3]. With the potential to reduce accidents and

streamline traffic flow, autonomous cars are poised to redefine

the transportation landscape. However, formidable challenges

such as regulatory complexities, ethical dilemmas, and societal

acceptance must be addressed before mainstream adoption can

be achieved. Despite these obstacles, the rapid progression of

AV technology heralds a future in which driving is markedly

safer, more efficient, and more convenient for all road users.

According to Statista [4], the global fleet of AVs reached 31

million in 2019 and is projected to hit 54 million by 2024.

With the rapid advancement and integration of AVs into

modern transportation systems, the potential for enhanced road

safety and operational efficiency has increased significantly.

Despite these advancements, a persistent challenge that must

be addressed is AVs’ frequent and often unnecessary lane

changes and merging maneuvers. These actions pose safety

risks to vehicles and their occupants, disrupt traffic flow, and

reduce overall transportation efficiency. This study addresses

these critical issues by proposing and validating innovative

strategies designed to minimize lane changes and merges

during AV operations. The primary objective was to develop

methodologies that improve both safety and efficiency by

reducing the frequency and necessity of lane changes and

merges, thereby contributing to a safer and more streamlined

driving environment.

This paper presents the MLCA algorithm as an innovative

approach designed to reduce unnecessary lane changes in

autonomous vehicles (AVs). Its performance was evaluated

against existing models, including LC2013 [5], LC2014 [5],

LC2017 [5], the MOBIL Model [6], the IDM/LC Model [7],

and the Continuous Model [8]. Results indicate a notable

reduction in lane-change frequency, with decreases of approx-

imately 50% in one scenario and 33% in another, suggesting

that the MLCA algorithm enhances traffic flow and road

safety by mitigating collision risks. The subsequent sections
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will review related literature to establish the study’s context,

followed by a detailed discussion of the methodologies and

experimental setups used, and finally, the presentation and

analysis of results to offer insights into current practices and

potential areas for further development.

II. BACKGROUND AND RELATED WORKS

In this section, We delve into recent advancements in the

field, particularly emphasizing ramp merging and efficient lane

change planning using quintic splines. These studies have

captivated my interest, particularly in the realm of minimizing

lane changes in AVs. Given the paramount importance of

safety in AVs, unnecessary lane changes can lead to catas-

trophic outcomes.

Li et al. [9] propose a lane change path planning method

for AVs in structured environments. This method swiftly

generates safe and smooth paths by integrating curvature and

heading angle considerations, ensuring stability during lane

changes. Using quintic splines with second-order geometric

(G2) continuity in a Frenet coordinate system, the method

calculates the optimal prediction time interval to keep the

heading angle within a safe range. It also uses prior road

information to optimize sampling point selection, reducing

the number of candidate paths and improving real-time per-

formance. Additionally, it introduces mid-adjust and target

points for continuous lane changes, enabling AVs to execute

complex maneuvers seamlessly. Experimental validation in an

urban environment with an AV equipped with a modular ROS

architecture demonstrated the efficient generation of complex

motion paths, ensuring continuity in curvature and heading

angle, thereby enhancing the efficiency and stability of path

planning [9].

Liao et al. [10] addressed the challenges posed by ramp

merging in traffic, known for its chaotic nature and signif-

icant contribution to accidents and congestion. This paper

proposes a game theory-based strategy to tackle these issues.

By leveraging the collaborative capabilities of connected and

automated vehicles during merging maneuvers, the strategy

aims to optimize coordination in mixed-traffic environments

that include legacy vehicles.

The effectiveness of the proposed strategy is demonstrated

through simulations conducted on an integrated Unity-SUMO

platform. The results show substantial improvements, includ-

ing up to a 210% increase in traffic flow speed and a reduction

of up to 53.9% in fuel consumption. Additionally, the strategy

helps stabilize driving volatility, ensuring smoother and safer

merging operations in mixed traffic scenarios.

Numerous lane-change algorithms have been developed to

assist AVs in navigating lane changes across various traffic

scenarios. These algorithms utilize a range of methodologies to

simulate driver behavior and make lane-change decisions, each

designed to address specific simulation requirements and ob-

jectives. Each algorithm offers unique features and capabilities

[11], allowing researchers and practitioners to model diverse

traffic conditions and thoroughly evaluate different aspects of

traffic flow dynamics. This versatility enables a comprehensive

analysis and optimization of traffic management strategies.

Rooted in the Krauß and MOBIL models, LC2013 is a

foundational lane change algorithm in SUMO. It assesses

safety gaps and follower benefits to balance safety and traffic

flow. Building on LC2013, LC2014 improves decision-making

with additional safety criteria, enhancing the handling of

various scenarios. LC2017 advances this further by providing

more accurate predictions in complex scenarios with multiple

followers, improving simulation realism in dense traffic.

The MOBIL model prioritizes traffic efficiency by optimiz-

ing lane changes to minimize braking and maximize flow,

making it effective in scenarios focused on traffic optimization.

The IDM/LC model integrates the Intelligent Driver Model

with a lane change algorithm, simulating realistic driver be-

havior by considering factors like desired time gaps and safety

margins. The Continuous Model offers smoother, gradual

adjustments in lane position, simulating more natural and

realistic lane change behavior compared to discrete changes.

III. METHODOLOGY

This section delves deeper into the proposed lane-changing

and merging strategy tailored for AVs navigating through

mixed traffic scenarios and highways. To illustrate, consider

a common scenario in which a ramp merges with a highway.

Typically, the speed limit on the ramp ranges from 40km/h to

50km/h, whereas on a highway, it is approximately 80 km/h.

The primary safety-critical challenge lies in effectively

executing the ramp merging maneuver. The core idea is to

maintain the AV in a specific lane with a safe speed limit

for as long as possible, thereby minimizing unnecessary lane

changes. For instance, envision a scenario where the AV enters

a highway and travels approximately 10 km. Assuming that a

highway comprises five lanes, upon entry, the AV merges with

the traffic flow and positions itself in the middle lane [9], [10].

A. Scenarios

1) Lane Change Considerations for one AV: Consider a

situation where the left lane is relatively empty, allowing the

AV to potentially switch to it and increase its speed by 3km/h.

However, any decision to change lanes triggers the merging

algorithm. This introduces potential risks, such as the failure

of obstacle detection sensors or adverse weather conditions.

In safety-critical domains such as AV navigation, prioritizing

safety over speed is paramount. Thus, minimizing lane changes

reduces the overall risk of accidents, thereby ensuring the well-

being of passengers and other road users.

Highlighting the cascading effects of frequent lane changes

and mergers in high-speed environments is essential. Each

lane change introduces uncertainty and potential hazards,

particularly when interacting with other vehicles traveling at

varying speeds. The increased complexity of navigation in

such scenarios increases the likelihood of accidents or dis-

ruptions in traffic flow [12]. Moreover, frequent lane changes

affect the efficiency of traffic flow. Each maneuver requires



time and space, contributing to delays and congestion, partic-

ularly during peak hours and in densely populated areas. By

minimizing unnecessary lane changes, the overall efficiency

of the transportation system can be enhanced, leading to a

smoother traffic flow and reduced travel times for all road

users.

The proposed strategy aims to balance safety and efficiency

in AV operations. By prioritizing stable lane positioning and

minimizing unnecessary maneuvers, the risk of accidents can

be mitigated while optimizing traffic flow. This approach

aligns with the broader goals of advancing autonomous driving

technologies toward safer and more efficient transportation

systems.

2) Lane Change Considerations in V2V Communication:

In another scenario, consider the concept of V2V commu-

nication in AVs. Building upon the previous scenario, the

key difference lies in the presence of multiple interconnected

autonomous cars, enabling real-time communication and coor-

dination. However, if one of the vehicles experiences a failure

in obstacle detection, suboptimal lane-changing and merging

decisions may result. Consider a situation in which an AV

fails to detect an obstacle and initiates a lane change. This

action, based on flawed information, can potentially disrupt

the flow of traffic and create a cascade effect. Another AV

intending to change lanes may encounter unexpected obstacles

or sudden maneuvers from neighboring vehicles, leading to a

chain reaction of lane changes and potential accidents [12].
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Fig. 1. State Machine Diagram for AV Movement Decision

Therefore, adhering to maintaining a safe lane becomes even

more crucial in V2V scenarios. Minimizing unnecessary lane

changes can significantly reduce the risk of such cascading

incidents. Rather than prioritizing rapid lane changes for

individual vehicles, the focus shifts toward collective safety

and stability within traffic flow.

Furthermore, the concept of V2V communication opens

avenues for proactive risk mitigation strategies. For example,

if an AV detects an obstacle or hazardous condition, it can

promptly relay this information to nearby vehicles, thereby

enabling them to adjust their trajectories accordingly. This

collaborative approach enhances situational awareness and

promotes safer decision-making among all vehicles in the net-

work. While V2V communication offers tremendous potential

for enhancing traffic safety and efficiency, it also introduces

new challenges related to coordination and reliability. By

emphasizing the importance of staying in a safe lane and

fostering cooperative behavior among AVs, we can mitigate

these challenges and pave the way for safer and more reliable

autonomous driving ecosystems.

B. MLCA Algorithm

An algorithmic workflow can significantly improve the

safety of AVs by offering a structured approach to their

operations. MLCA Algorithm is a roadmap, empowering AVs

to navigate roads with enhanced safety measures. Although

MLCA presents a fundamental algorithm designed for con-

ceptual understanding within a contextual information setting

rather than a practical application, it lays the groundwork for

illustrating its real-time implementation within an experimen-

tal plan section.

The MLCA algorithm, as outlined in the AV movement

decision state machine in Fig. 1 and detailed in Alg. 1, is

specifically designed to regulate the movement behavior of

an autonomous vehicle (AV) in a multi-lane environment.

The algorithm defines four distinct operational states: Idle,

Waiting, Moving Left, and Moving Right. The transitions

between states are dictated by a set of Boolean variables: N

(Need to Move), W (Can Wait), L (Left Side Empty), and R

(Right Side Empty). The AV begins in the Idle state, where

it remains stationary. A transition occurs from the Idle state

to the Waiting state if there is a need to move AND the AV

can wait (N AND W). Similarly, the AV transitions to the

Moving Left or Moving Right states if movement is necessary

AND the respective adjacent lane is clear (N AND L or N

AND R). Upon entering the Waiting state, the AV monitors

lane conditions, allowing it to revert to the Idle state when

movement is no longer required (NOT N AND (L OR R)).

The Moving Left and Moving Right states are maintained

through self-loops as long as the need to move AND the

corresponding lane condition persist. If the conditions for

these states change, such as the need to stop or an obstacle

appearing, the AV returns to the Idle state (N AND NOT L or

N AND NOT R). Self-loops are incorporated to maintain the

current state when conditions remain unchanged. Edit points,

represented by filled circles on each state, are included to

facilitate potential modifications or extensions to the state

machine’s behavior. This design ensures a robust and adaptable

decision-making process for AV movement in various traffic

scenarios.

In addition to addressing collision avoidance in these sce-

narios, various strategies and algorithms proposed in academic

papers provide guidelines for mitigating the risk of collisions

[13]. Therefore, efforts were made to implement the algorithm

within a controlled testing environment to conduct thorough



Algorithm 1 MLCA Algorithm for Autonomous Vehicle

Movement Control

Require: Navigation signal: N, Wait command: W, Left com-

mand: L, Right command: R

Ensure: Current state of the vehicle: state

1: Initialize: current_state ← IDLE

2: Define States: IDLE, WAITING, MOVING LEFT, MOV-

ING RIGHT

3: while system is active do

4: if ¬N then

5: current_state ← IDLE

6: continue

7: end if

8: if current_state = IDLE then

9: if N ∧ W then

10: current_state ← WAITING

11: else if N ∧ L then

12: current_state ← MOVING LEFT

13: else if N ∧ R then

14: current_state ← MOVING RIGHT

15: end if

16: else if current_state = WAITING then

17: if N ∧ (L ∨ R) then

18: current_state ← IDLE

19: end if

20: else if current_state = MOVING LEFT then

21: if N ∧ ¬L then

22: current_state ← IDLE

23: end if

24: else if current_state = MOVING RIGHT then

25: if N ∧ ¬R then

26: current_state ← IDLE

27: end if

28: end if

29: Assert: current_state ∈ {IDLE, WAITING,

MOVING LEFT, MOVING RIGHT}
30: Assert: ¬N =⇒ current_state = IDLE

31: Assert: current_state = MOVING LEFT =⇒
(N ∧ L)

32: Assert: current_state = MOVING RIGHT =⇒
(N ∧ R)

33: Output: state ← current_state

34: end while

assessments and compare its performance with and without

implementation. This approach involved meticulously design-

ing the test environment, ensuring controlled variables for

precise comparison and thoroughly evaluating the algorithm’s

efficacy.

IV. EXPERIMENTAL SETUP AND ANALYSIS

In safety-critical embedded systems, the primary concern

is always ensuring safety. Despite AVs’ state-of-the-art tech-

nologies and sophisticated machine learning algorithms, the

fundamental question remains: “Is it safe?” The inherent

risks associated with AVs demand meticulous risk mitigation

strategies to safeguard passengers and other vehicles sharing

the road. One strategy involves minimizing lane changes. By

reducing the frequency of lane changes, potential risks can be

effectively mitigated, enhancing overall safety.

Each lane change introduces uncertainty and vulnerability

because it requires the AV to navigate dynamic traffic condi-

tions and interact with other vehicles. In addition, factors such

as sensor limitations, unpredictable behavior of other drivers,

and environmental variables further compound the risks as-

sociated with lane changes. Therefore, prioritizing stability

and consistency in lane positioning can significantly reduce

risk. By maintaining a steady trajectory within a designated

lane, AVs can minimize their exposure to potential hazards

and mitigate the likelihood of accidents.

Furthermore, limiting lane changes promotes smoother traf-

fic flow and reduces the potential for disruptions or conflicts

with other vehicles on the road. While AVs showcase cutting-

edge technologies and capabilities, ensuring their safety re-

mains paramount. By adopting a proactive approach to risk

management, such as minimizing lane changes, the safety

of AV passengers and other road users can be enhanced,

ultimately advancing the acceptance and integration of au-

tonomous driving technologies into our transportation systems.

To rigorously evaluate the effectiveness of this risk mitiga-

tion strategy, a comprehensive testing environment was created

using SUMO and OpenStreetMap to simulate various scenar-

ios and assess the algorithm’s performance. By incorporating

these advanced simulation tools, real-world conditions can be

closely mimicked, thoroughly assessing the algorithm’s behav-

ior across different scenarios. Through meticulous testing and

comparison, valuable insights into the algorithm’s efficacy and

potential areas for improvement were obtained. This approach

ensures that the proposed strategy not only enhances safety

theoretically but also demonstrates practical effectiveness in

diverse and dynamic traffic conditions.

A. Tools and Environment Setup

1) OpenStreetMap: Provides free geographic data, includ-

ing roads, buildings, and other infrastructure. These open

datasets were imported into SUMO and CARLA to recreate

real-world landscapes for testing.

2) Simulation of Urban Mobility [14]: SUMO is an open-

source, highly portable, microscopic traffic simulation pack-

age. This allows the importation of OpenStreetMap data and

the simulation of real-world traffic flows. SUMO enables

the configuration of vehicles, routes, and mobility models,

providing a robust platform for simulating traffic scenarios.

B. Simulation Scenarios

SUMO was used to test various scenarios with a small

population of cars (100 cars on the road) before and after

implementing the proposed algorithm over a total distance of

20 km. This approach facilitates the evaluation of the effec-

tiveness and practical utility of the algorithm. By conducting

these simulations, the goal was to quantify the improvements



brought about by the algorithm and assess its value in opti-

mizing the traffic flow and enhancing overall road safety.

C. Simulation Setup

The first step involved setting up the simulation environ-

ment based on the scenarios provided. SUMO utilizes XML

to define simulation scenarios, network configurations, and

various parameters. To align the simulation to minimize lane

changes, the attributes for each vehicle and road configuration

were customized [15]. This ensured that the simulation was

appropriately tailored to meet specific objectives.

In the simulation, several key attributes were incorporated

to enhance realism, including:

• departLane: Specifies the lane on which the vehicle

should be inserted into the network.

• departPos: Defines the position at which the vehicle

will enter the network.

• departEdge: Determines the initial edge along the

route where the vehicle enters the network.

• arrivalLane: Indicates the lane at which the vehicle

will exit the network.

• arrivalPos: Specifies the position at which the vehi-

cle will leave the network.

• arrivalEdge: Specifies the final edge along the route

where the vehicle exits the network.

• departPosLat: Specifies the lateral position on the

departure lane at which the vehicle enters the network.

These attributes, along with other elements and configu-

rations, were carefully selected and implemented to create a

more realistic simulation environment.

D. Simulation Execution and Data Collection

In this simulation, the green-colored vehicle acted as the

primary source from which data were gathered. After exe-

cuting scenarios A and B as outlined in the methodology

section, 100 iterations were conducted to gather data before

the implementation of the algorithm and features. This iterative

approach ensures the creation of a comprehensive dataset,

facilitating a detailed analysis of the impact of the algorithm.

Post-simulation graphs were generated to visualize the

results obtained from each scenario. These visualizations

facilitated an understanding of the algorithm’s effectiveness

in minimizing lane changes and enhancing overall traffic

flow. Improvements in safety and efficiency were quantified

by comparing pre-and post-implementation data, providing

valuable insights into the algorithm’s performance.

This detailed experimental plan aimed to rigorously test and

validate the proposed lane-changing and merging strategy for

AVs. The insights gained from these simulations can contribute

to developing safer and more efficient autonomous driving

technologies.

E. Results

The analysis of lane change data was conducted using three

distinct charts, each representing different model algorithms

over a cumulative distance of 20 kilometers.

1) LC2017 and MOBIL Algorithms: Based on demon-

strated sample outcomes in Fig. [2], in one AV Scenario,

the number of lane changes in the LC2017 Model is initially

low and gradually increases, reaching approximately five lane

changes by the 20-kilometer mark. However, in the MOBIL

Model Algorithm, the number of lane changes peaking around

four lane changes at 20 kilometers.

In addition, in the Three AVs Scenario, more lane changes

are observed in the LC2017 Model Algorithm compared to the

one AV scenario, reaching around fourteen lane changes by

20 km. The MOBIL Model Algorithm consistently increases

in lane changes, reaching approximately thirteen lane changes

by 20 km.
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Fig. 2. Comparison of the Number of Lane Changes at 5, 10, 15, and 20
Kilometers Using LC2017 and MOBIL Algorithms Over 100 Iterations

2) IDM/LC and Continuous Algorithms: The IDM/LC

model algorithm exhibited low initial lane changes based on

depicted sample results in Fig. [IV-E2] , slightly increasing

to about six changes at 20 KM in the one AV scenario. For

three AVs, lane changes increased more noticeably, peaking

at around thirteen. This indicates that the IDM/LC model

promotes cautious driving behavior but adapts to optimize

traffic flow with more AVs.

The Continuous model algorithm showed a steady rise in

lane changes. The one AV scenario reached approximately

four changes by 20 KM, while the three AV scenarios

indicated a higher frequency of lane changes, peaking at

around twelve. This pattern suggests that the Continuous

model balances and adapts lane-changing behavior based on

traffic conditions and AV presence.

3) MLCA and Without Applied Algorithm: The sample re-

sults shown in Fig. [4] demonstrate that the MLCA Algorithm

exhibited a significant difference in performance between one

AV and three AVs. The one AV scenario reached about

four lane changes, whereas the three AV scenarios peaked at

approximately thirteen. This indicates that MLCA effectively

leverages multiple AVs for optimized lane-changing decisions.

In the absence of any applied algorithm, lane changes were

minimal in the one AV scenario, reaching about eight changes

at 20 KM. The three AVs scenario, however, demonstrated the

highest number of lane changes among all scenarios, peaking

at approximately twenty. This highlights the potential impact
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Fig. 3. Comparison of Lane Changes at 5, 10, 15, and 20 Kilometers Using
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of algorithmic control on traffic dynamics and the necessity

of applied algorithms for efficient traffic management.

4) Comparative Analysis of Collision: The Fig. [5], which

shows the average number of accidents per algorithm over

100 trials within a 20 km range, highlights significant perfor-

mance differences. Without an algorithm, collisions average

about seven per 100 trials, underscoring the importance of

algorithmic intervention for vehicular safety. Among the tested

algorithms, MLCA has the lowest average number of colli-

sions, proving its superior effectiveness. The IDM/LC Model

also performs well, with the second-lowest collision average.

The MOBIL Model and LC2017 Model show moderate perfor-

mance with slightly higher collision averages. The Continuous

Model’s performance is either not provided or negligible.

Implementing algorithms significantly enhances safety, with

MLCA reducing accidents the most.
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V. LIMITATIONS AND FUTURE WORK

This study focused on minimizing lane changes without

addressing collision avoidance, time considerations, or travel

duration. Future work should incorporate these aspects and ex-

plore alternative scenarios for a more comprehensive analysis.

The study’s limitations include the lack of high-level simu-

lator testing. Future research will leverage CARLA, an open-

source simulator for autonomous driving, to create realistic
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Fig. 5. Comparison of average number of accidents for different algorithms
over 100 trials in a 20 km range

driving scenarios for testing and refining perception and

control algorithms. Integrating the proposed algorithm with

advanced control systems is expected to enhance its effec-

tiveness, while CARLA’s collaborative features may foster

innovative approaches.

Future work will also explore cybersecurity in V2V com-

munication to ensure secure, reliable connections that enhance

safety and reduce lane changes. Addressing cybersecurity vul-

nerabilities is essential for developing robust systems that are

resistant to threats. Additionally, the research will examine the

algorithm’s performance under diverse environmental condi-

tions, including adverse weather, varied lighting, and complex

traffic patterns, to evaluate its robustness and adaptability.

Incorporating insights from these studies and developing ro-

bust techniques for secure V2V communication will contribute

significantly to creating dependable and safe autonomous sys-

tems. This comprehensive approach will expand expertise and

prepare professionals to tackle emerging challenges and seize

new opportunities in the rapidly evolving field of autonomous

driving technology. The integration of these advancements will

pave the way for more resilient and intelligent autonomous

systems that can operate effectively in real-world conditions.

CONCLUSION

The analysis of the charts and data from the simulations has

indicated that the proposed algorithm substantially improves

the stability and efficiency of AVs. Specifically, the algorithm

achieved a reduction in lane changes by approximately 50%

in the first scenario and 33% in the second scenario. This

significant decrease in lane changes not only enhances traffic

flow but also lowers the likelihood of collisions, thereby

improving overall road safety. Additionally, the reduction in

collisions further confirms the algorithm’s effectiveness in

enhancing AV safety within complex traffic environments.

Despite these promising results, there are considerable op-

portunities for further refinement. Future research will focus on

integrating the algorithm with more advanced control systems

and testing it in a broader range of realistic scenarios using

platforms like CARLA. In summary, while the proposed algo-

rithm has demonstrated significant improvements in simulated

environments, ongoing advancements and extensive testing are

crucial to validate its effectiveness and reliability for real-

world applications. Addressing these challenges will be key

to advancing safer and more efficient autonomous driving

technology.
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