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Abstract

We study the problem of differentially private continual counting in the unbounded
setting where the input size n is not known in advance. Current state-of-the-art
algorithms based on optimal instantiations of the matrix mechanism [33] cannot
be directly applied here because their privacy guarantees only hold when key
parameters are tuned to n. Using the common ‘doubling trick’ avoids knowledge
of n but leads to suboptimal and non-smooth error. We solve this problem by
introducing novel matrix factorizations based on logarithmic perturbations of the
function 1√

1−z
studied in prior works, which may be of independent interest.

The resulting algorithm has smooth error, and for any α > 0 and t ≤ n it is
able to privately estimate the sum of the first t data points with O(log2+2α(t))
variance. It requires O(t) space and amortized O(log t) time per round, compared
to O(log(n) log(t)) variance, O(n) space and O(n log n) pre-processing time for
the nearly-optimal bounded-input algorithm of Henzinger et al. [27]. Empirically,
we find that our algorithm’s performance is also comparable to theirs in absolute
terms: our variance is less than 1.5× theirs for t as large as 224.

1 Introduction

Differentially private counting under continual observation [11, 18] refers to the problem of main-
taining accurate running totals over streams of sensitive data. It has attracted a great deal of attention
in recent years [3, 4, 6, 7, 14, 16, 23, 27, 28, 35] for its wide-ranging applications in optimiza-
tion [13, 12, 14, 21, 32, 36], as well as online learning and the private analysis of streaming data more
broadly [1, 10, 30, 38, 40]. It has also been used in many large-scale deployments of differential
privacy, such as Google’s private next-word prediction [34] and Smart Select models [26]. To a
large extent, this flurry of activity has been prompted by recent algorithmic improvements in matrix
factorizations for streaming data [14, 23, 27, 33], which have dramatically improved privacy/utility
tradeoffs compared to classical approaches based on binary trees [11, 18, 29].

One challenge when applying matrix-based algorithms to streaming settings is that they largely
assume access to the input size n as a parameter. While this is a very natural assumption in contexts
like private model training, researchers from the beginning have also motivated their work with
appeals to applications like public health [18] where it is much less clear how the assumption could
hold. In fact, it is known that difficulties related to unbounded inputs have influenced practical
deployments of DP [2]: famously, after Apple announced that it planned to use differential privacy to
collect user data, Tang et al. [39] discovered that their implementation achieved this by guaranteeing
privacy only over a single day while allowing privacy loss per-user to grow without bound over time.

Simple solutions to this problem all carry fundamental tradeoffs. Lifting a bounded-input algorithm
to the unbounded case with some form of doubling trick [11] asymptotically preserves performance,
but it also leads to non-smooth growth in error over time, undermining one of the major selling points
of matrix methods over binary trees [27]. Using a bounded matrix mechanism alongside the classical
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query model [17, 19] and refusing to produce additional outputs once our privacy budget is exhausted
preserves performance and smoothness, but is not truly unbounded and is unlikely to be satisfying
in practice. Finally, simple algorithms like adding independent noise to each data point are trivially
unbounded with smooth noise, but have extremely sub-optimal error. Our main contribution in this
paper is a matrix-based algorithm that overcomes this trilemma: to the best of our knowledge, it is the
first private counting algorithm that is simultaneously smooth and unbounded with almost-optimal
asymptotic error. It is also practical to implement, with essentially the same complexity as the
foundational algorithm of Henzinger et al. [27], and we show empirically that it enjoys small error
for realistic input sizes and not just asymptotically.

2 Background and Related Work

2.1 Background

Continual (Binary) Counting. In continual counting [18, 11], the input consists of a (potentially
unbounded) stream of data x1, x2, . . .. At each time step t, the algorithm receives xt and then
produces an estimate of the partial sum St =

∑t
i=1 xt. For the sake of simplicity, we will assume

that xt is a single bit, but our results are easy to generalize to xt ∈ Rd.

Differential Privacy under Continual Observation. Define two (potentially unbounded) streams
x1, x2, . . . and x′

1, x
′
2, . . . to be neighboring if there is at most one time step t where xt ̸= x′

t. Let Xn

(resp. X ′
n) denote the first n data points in each stream. We say that a mechanismM satisfies (ε, δ)-

differential privacy (DP) [20] in the continual observation model [18] if for all neighboring streams
X,X ′, all n ∈ Z+, and all measurable events S, we have P(M(Xn) ∈ S) ≤ eεP(M(X ′

n)) + δ.
Here,M(X) represents the full sequence of outputs produced byM on input X . This reduces to
the standard definition when the streams are finite; the additional quantification over n is necessary
to make sense of the definition for unbounded streams. The mechanisms we study all use additive
Gaussian noise, and so can readily be shown to satisfy other notions of indistinguishability as well,
such as Rényi DP [37], zCDP [9], or Gaussian DP [15]. By virtue of using Gaussian noise, they also
automatically satisfy DP in the stronger adaptive setting where xt is permitted to depend on earlier
outputs, which is important for learning applications [14].

Two measures of utility are standard in the literature: the expected mean-squared additive error and
the expected maximum additive error, defined respectively as the maximums over Xn of:

err
ℓ22
n (M) :=

1

n
EM

(∑
t≤n

(∥St −M(Xt)∥22
)1/2

errℓ
∞

n (M) := EM
(
max
t≤n

∥St −M(Xt)∥∞
)

WhenM uses additive Gaussian noise, both metrics can be easily derived from V(M(Xt)), the
variance of the noise added as a function of time. This is the main metric we will report when
comparing the performance of different algorithms.

2.2 Related Works

Differential privacy under continual observation was introduced by Dwork et al. [18] and Chan et al.
[11], who independently proposed the binary mechanism. Conceptually, this algorithm computes
partial sums with the help of a binary tree where leaf nodes contain private estimates of individual
data points, and internal nodes contain independent estimates of the subsequences spanned by their
children. The binary mechanism of Dwork et al. [18] used Laplacian noise to satisfy (ε, 0)-DP with
errℓ

∞

n = O(log2.5(n)), which was improved to O(log2.5(t)) by Chan et al. [11]. This was later
reduced to O(log(t)

√
log n) by Jain et al. [30] by using Gaussian noise instead. A straightforward

optimization of the algorithm follows from the observation that at a given time step, it is only necessary
to store log2(n) nodes of the tree in memory. Subsequent work by Honaker [29] additionally showed
that it is possible to reduce the error by roughly a factor of 2 by making efficient use of multiple
independent estimates for the same partial sum.

Both the original binary mechanism and Honaker’s variant have very uneven noise scale across time
steps. Recently, Andersson and Pagh [3] proposed a smooth variant of the binary mechanism which
equalizes the noise distribution across time steps, further improving errℓ∞n by a constant factor.
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Table 1: Asymptotic Comparison of Private Counting Algorithms
Mechanism V(M(Xt)) Time for

t outputs
Space Smooth Unbounded

Binary [11, 30]* O(log(t) log(n)) O(t) O(log t) No No
Hybrid Binary [11]* O(log2 t+ log t) O(t) O(log t) No Yes
Smooth Binary [3] O((log n+ log log n)2) O(t) O(log t) Yes No
Sqrt Matrix [27, 23] O(log(t) log(n)) O(n log n) O(n) Yes No

Hybrid Matrix O(log2 t+ log2+2α log t) O(t log t) O(t) No Yes
Ours O(log2+2α t) O(t log t) O(t) Yes Yes

(*) Originally satisfied ε-DP with Laplacian noise; numbers reported are for the Gaussian variant.
A mechanism is smooth if its variance is a smooth function of t, and it is unbounded if it doesn’t

require n as input. Algorithms with bolded names are original to this work. Constant factors differ
significantly between algorithms — we investigate this more closely in section 5 and Figure 2.

The binary mechanism can be seen as a special case of the general matrix method [33]. Given a
dataset x and a matrix A = LR, the matrix method estimates Ax by L(Rx+ y) = Ax+ Ly. This
satisfies DP when y is a Gaussian scaled to ∥R∥1→2, the maximum ℓ2 norm over the columns of
R. The final error also scales with ∥L∥2→∞, the maximum ℓ2 norm over the rows of L, and so by
choosing L and R carefully we can achieve error depending on the factorization norm γ2(A) =
min{∥L∥2→∞∥R∥1→2 | LR = A}. This is often much more accurate than calibrating y to A
directly. In the case of continual counting, A = Mcount, the all-ones lower-triangular matrix.

This matrix-based approach has rapidly become the standard in the field. Edmonds et al. [22] proved
a lower bound of Ω(log n) on the per-time-step ℓ∞ error of continual counting by lower-bounding
γ2(Mcount). Denisov et al. [14] approached the problem of finding optimal decompositions as a
convex optimization problem, building on earlier work in the offline setting [41]. They proved that,
for lower-triangular matrices like Mcount, it is sufficient to consider only decompositions where L and
R are both lower-triangular. This is a particularly nice result because it implies there is no extra cost
for using the matrix method in streaming settings. Subsequently, Fichtenberger et al. [23] provided an
explicit factorization L = R = M

1/2
count and studied its errℓ∞n error, and Henzinger et al. [27] proved

that the same decomposition is simultaneously nearly optimal in terms of errℓ
2
2
n . More recent work

has investigated various computational modifications of this factorization, trading a small amount
of accuracy for efficiency by approximating the optimal decomposition in more compact ways, e.g.
through finite recurrences [16, 5] or by binning together similar values [4].

A distinct line of work has investigated the unbounded case. In their seminal work, Chan et al.
[11] proposed a ‘hybrid’ mechanism which uses a variant of the classic doubling trick to match the
asymptotic errℓ∞n rate of the binary mechanism when n is unknown. Their technique is generic and
can be used to ‘lift’ any fixed-size algorithm into one that works on unbounded streams with the help
of a (potentially inefficient) unbounded algorithm — in section 5 we investigate a version of this
mechanism instantiated with Algorithm 1. An alternative strategy for handling unbounded inputs is to
only permit queries based on sliding windows or decaying sums [8, 40]. The dual approach, proposed
by Bolot et al. [8] and recently extended by Andersson et al. [6], instead relaxes the classical privacy
definition to allow DP guarantees for past data points to gradually expire over time.

Our work is most directly inspired by the rational approximation methods of Dvijotham et al. [16],
and in particular by their use of the equivalence between certain matrix factorizations and generating
functions. While they search for simple approximations of functions to derive computationally
efficient factorizations, we take the opposite approach by searching for more complicated functions
to derive matrix factorizations that are usable in the unbounded setting. Because we are not directly
concerned with reducing computational complexity below O(n) space and O(n log n) time, we will
generally take the M

1/2
count mechanism of Henzinger et al. [27] and Fichtenberger et al. [23] (“Sqrt

Matrix” in Table 1 and Figure 2) as the baseline against which our algorithm is compared.
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3 Overview of Results

3.1 Preliminaries and Notation

The lower-triangular Toeplitz matrix corresponding to a sequence a0, a1, . . . is defined as the square
matrix whose i, j entry is ai−j when i ≥ j and 0 otherwise. For a given sequence, we will denote
the corresponding matrix as LTToep(a0, a1, . . .). All matrices we consider will be infinite, but for
practical computations we will work with [A]n, the leading submatrix formed by the first n rows and
columns of A. The special matrix Mcount is defined as LTToep(1, 1, 1, . . .).

LTToep matrices are closed under multiplication, and LTToep(S) LTToep(S′) = LTToep(S ∗S′),
where S ∗ S′ denotes the convolution of the sequences S and S′. This means that multiplication of
LTToep matrices is commutative and can be performed in O(n log n) time using the Fast Fourier
Transform (FFT). Given an analytic function f(z) with Taylor coefficients an = [zn]f(z), we will
abuse notation and write LTToep(f) for LTToep(a0, a1, . . .). With this notation, applying the
Cauchy product to their Taylor series gives us that LTToep(f) LTToep(g) = LTToep(fg). We
refer the curious reader to the full version of Dvijotham et al. [16] for an excellent and detailed
introduction to LTToep matrices in this context, including proofs of the properties just described.

Throughout, we overload the symbol δ by using it to refer to both a privacy parameter and the
exponent of the log log term in Equation 1. This is done to maintain notational consistency with
related work, and the meaning should always be clear from context.

3.2 Main Result

Our main result is the following theorem and its associated algorithm (Algorithm 1):
Theorem 1. For all α > 0, there exists an infinite lower-triangular Toeplitz matrix factorization
L,R ∈ R∞×∞ with the following properties:

• Joint Validity: For all n ∈ Z+, [L]n[R]n = [Mcount]n

• Bounded Sensitivity: limn→∞∥[R]n∥1→2 = C <∞ for some computable constant C

• Near-Optimal Asymptotic Error: ∥[L]n∥2→∞ = O(log1+α(n))

• Computability: For any vector y ∈ R∞, there exists an unbounded streaming algorithm
that at each time step t outputs (Ly)t using O(t) memory and amortized O(log t) time.

Corollary 1. For all ε, δ, α > 0 there exists an unbounded streaming algorithm for continual
counting, described in Algorithm 1, which has the same complexity as in Theorem 1 and satisfies
(ε, δ)-DP in the continual release model. At each time step t, the algorithm adds Gaussian noise with
scale O

(
log1+α(t)Cε,δ

)
, where Cε,δ = O(ε−1

√
log(1/δ)) is independent of the input.

We prove Theorem 1 in section 4; Corollary 1 then follows from existing results. [33, 14].

3.3 Technical Overview

The matrix decompositions we consider are of the form L = LTToep(f(z;−γ,−δ)), R =
LTToep(f(z; γ, δ)), where:

f(z; γ, δ) := f1(z)f2(z; γ)f3(z; δ) (1)

f1(z) :=
1√
1− z

, f2(z; γ) :=
(1
z
ln

( 1

1− z

))γ

, f3(z; δ) :=
(2
z
ln
(1
z
ln

( 1

1− z

)))δ

As motivation for why one might study such matrices, recall that the first column of Mcount corre-
sponds to the Taylor coefficients of (1 − z)−1. This implies that for any pair of functions g1, g2
analytic on the open unit disc with product (1− z)−1, we have Mcount = LTToep(g1) LTToep(g2).
Conversely, any non-pathological decomposition of Mcount into LTToep matrices will correspond to
such a pair of functions. So, rather than searching for arbitrary sequences of real numbers (which are
complicated to represent and reason about), we can instead take the approach of searching for nice
analytic functions with the hope of translating their functional properties into statements about the
sequences we’re ultimately interested in.

4



Algorithm 1 Logarithmic Matrix Method

Require: Matrix parameters γ < −1/2 and δ, privacy parameter Cε,δ

Compute ∆← ∥LTToep(f(z; γ, δ)∥1→2 ▷ See ’Bounded Sensitivity’ in section 4
for t = 1, . . . , n do

Receive input xt ∈ [0, 1]

Set St ←
∑t

i=1 xt

if t = 2m for some integer m then
Sample ys ∼ N (0, C2

ε,δ∆
2) for t ≤ s ≤ 2t− 1

Compute next t coefficients of L = LTToep(f(z;−γ,−δ)) in O(t log t) time
▷ See ’Computability’ in section 4

Compute next t terms of the sequence Ly in O(t log t) time with an FFT
Output St + (Ly)t

To understand why these functions in particular are good candidates, consider the special case where
γ = δ = 0. This gives us R = LTToep((1− z)−1/2), which is exactly M

1/2
count [16]. The key issue

that makes this sequence inapplicable to unbounded inputs is that it is not square-summable. By
Parseval’s theorem, this is equivalent to the statement that the function f is not square-integrable. To
fix this, we would like to ‘nudge’ f so that it becomes square-integrable while still being as ‘close’
to the original function as possible. A plausible first attempt in this direction would be to choose
R = LTToep((1 − z)−1/2+α) for some α > 0, but this gives O(tα) error; the key issue is that
(1− z)−α diverges very quickly as z → 1− even when α is small. To obtain logarithmic overhead,
we require functions like ln(1/(1− z)) that diverge more slowly. Multiplying by f2 turns out to be
sufficient to prove Theorem 1, but we show in section 5 that incorporating f3 can further improve our
variance by a constant factor. Finally, the inclusion of the 1/z and 2/z terms in Equation 1 ensures
that f is always analytic with f(0) = 1.

To study the asymptotic growth of ∥[L]n∥2→∞ and ∥[R]n∥1→2, we draw on the classic work of
Flajolet and Odlyzko [24], whose Theorem 3B provides the following asymptotic expansion for the
coefficient of zn in the Taylor series of f :

[zn]f(z; γ, δ) ∼ 1√
nπ

(lnn)γ(2 ln lnn)δ ·
(
1 +O(ln−1(n))

)
In particular, this implies that if γ = −1/2−α for some α > 0, then the series

∑∞
n=0([z

n]f(z; γ, δ))2

converges, which is equivalent to R having bounded column norm. This is the crucial step that
allows us to operate on unbounded time streams without the use of doubling tricks — by calibrating
our noise scale to this limit, which can be computed exactly by integrating |f(z; γ, δ)|2 over the
unit circle using Parseval’s theorem, we can guarantee privacy for all finite inputs. Using the same
asymptotic expansion, we can also show that the row norm of the corresponding L matrix grows like
O(log1+α(n)) when δ ≥ 0 or O(log1+α+o(1)(n)) when δ < 0.

Finally, we can compute the first t coefficients of fL and its convolution with z in O(t log t) time
and O(t) space using FFTs. Algorithm 1 combines all of these ideas together alongside a standard
doubling trick on t, which allows us to achieve O(n log n) time complexity even when n is unknown.

4 Proof of Theorem 1

We will begin by fixing α > 0, and choosing fR(z) = f(z;−1/2 − α, δ), fL(z) = f(z; 1/2 +
α,−δ) with f defined as in Equation 1. Our goal is to show that the matrix decomposition L =
LTToep(fL), R = LTToep(fR) satisfies all four properties listed in Theorem 1.

Joint Validity. We have that LR = LTToep(fLfR) = LTToep( 1
1−z ) = Mcount.

Bounded Sensitivity. We begin by showing that the column norm of R is finite, or equivalently
that fR ∈ L2. Recall that ∥R∥21→2 =

∑∞
n=0([z

n]fR)
2. By Theorem 3B of Flajolet and Odlyzko

[24], we know that ([zn]fR)2 = O(n−1 log−1−2α(n) log2δ(log n)) = O(n−1 log−1−α(n)), and the
series therefore converges by the integral test.
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To actually compute this sensitivity, we make use of Parseval’s theorem, a classic result in Fourier
analysis which relates square-summable sequences to functions that are square-integrable over the
unit circle. Specifically, it gives us:

∞∑
m=0

([zm]fR)
2 =

1

2π

∫ 2π

0

|fR(eiθ)|2 dθ

In Appendix A, we simplify the right-hand side into two integrals over smooth, real-valued functions
that can be integrated numerically to high precision.

Near-Optimal Asymptotic Error. We first consider the case when δ ≥ 0. Once, again Theo-
rem 3B of Flajolet and Odlyzko [24] tells us that ([zn]fL)2 = O(n−1(lnn)1+2α(ln lnn)−2δ) =
O(n−1(lnn)1+2α). So, for sufficiently large n > n0 and some constant C, we have∑n

m=n0
([zm]fL)

2 ≤ C
∑n

m=n0

1
m (lnm)1+2α ≤ C

∫ n

n0−1
1
x (lnx)

1+2α dx = C
2+2α (ln(n)

2+2α −
ln(n0 − 1)2+2α). Therefore,

√∑n
m=0([z

m]fL)2 = O(ln(n)1+α) as desired.

The case where δ < 0 is similar, except we have −2δ > 0 and so it is no longer true that our
coefficients are O(n−1(lnn)1+2α). But for any α′ > α, (ln lnn)−2δ = o((lnn)α

′−α), and so by
the same basic argument we can derive an asymptotic error bound of O(ln(n)1+α+o(1)) instead.

Computability We formalize the problem we are trying to solve as a game: first, an adversary
secretly fixes some integer n > 0, as well as an arbitrary vector y ∈ R∞ whose elements can be
queried in constant time. At each time step t = 1, . . . , n, we are asked to output (LTToep(fL)y)t,
and our goal is to achieve an optimal asymptotic dependence on the unknown value n with respect to
the total memory and computation used. We will model computation in units of M(t), the cost of
multiplying two polynomials of degree t, with the assumption that M(kt) ∼ kM(t) for any k > 0.

Initially, we disregard the challenge of not having access to n and consider the intermediate problem of
computing [LTToep(fL)]t for some constant t that we choose for ourselves. As a preview of our even-
tual doubling trick, we assume that we have access to a pre-computed solution of size t/2. From here,
we observe that LTToep(f(z;−γ,−δ)) = LTToep(f1(z)) LTToep(f2(z; γ)) LTToep(f3(z; δ)).
So, it suffices to compute each of these component matrices in isolation, at which point the full matrix
can be computed using 2M(t) (or just M(t) if δ = 0).

For the first matrix, it is known that f1(z) =
∑∞

m=0(−z)m
(−1/2

m

)
. This can be used to derive the

recurrence relation [z0]f1 = 1, [zm]f1 = (1 − 1
2m )[zm−1]f1 presented in prior works [27, 23].

Using this recurrence, we can compute the coefficients of this matrix in O(t) time and space.

For the second matrix, we have that [zm]f2(z; 1) = 1
m+1 , which can be derived from the Taylor

expansion of ln(1 + z). This intermediate sequence can also clearly be computed in linear time
and space. To account for the power of −γ, we use the identity f2(z;−γ) = exp(−γ ln(f2(z; 1))).
To compute the logarithm, we use the fact that ln′(f2(z; 1)) =

f ′
2(z;1)

f2(z′1) . The coefficients of f ′
2(z; 1)

are easily computed with term-by-term differentiation, and using the division algorithm of Hanrot
and Zimmermann [25] lets us compute the ratio f ′

2(z; 1)/f2(z) using 2.25M(t). Term-by-term
integration then allows us to recover all but the constant term of ln(f2(z; 1)) in linear time, which
is sufficient because we know ln(f2(0; 1)) = ln(1) = 0. To compute the exponential, we use the
algorithm also presented in [25] that takes an order t/2 approximation of exp(h) as input and
produces an order t approximation using 2.25M(t). The same technique can then be applied to the
third matrix using an additional 4.5M(t) by reusing our earlier computation of ln(f2(z; 1)). We
can improve this to just 2.25M(t) if δ = −γ by computing the quotient f2(z; 1)/f3(z; 1) before
applying the power operation. Doing so also saves us an extra M(t) by removing the need to multiply
the second and third matrices at the end.

In total, we require 11M(t) to compute [L]t, plus O(t) time and space to query the first t coefficients
of y and one more M(t) to compute their product. To extend to the case of general n, we initialize
t=2 and double it when we are asked to output the t+ 1st estimate. This gives us a total cost over the
entire input of 12

∑⌈log2 n⌉
k=1 M(2k) ∼ 12

∑⌈log2 n⌉
k=1 2−k+1M(n) ≤ 24M(n), which can be cut down

to 17.5M(n) if δ = −γ, or 13M(n) when δ = 0. When polynomial multiplication is implemented
with FFTs, we arrive at O(n log n) time and O(n) space complexity, asymptotically matching the
algorithm of Henzinger et al. [27]. But note that because we have to adjust t on the fly, our algorithm
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requires amortized O(log t) time at each step, compared to O(n log n) pre-processing and O(1) time
per step for Henzinger et al. [27].

5 Implementation and Extensions

In this section, we investigate various practical considerations in the implementation of Algorithm 1.
We also consider relaxing the assumption that n is completely unknown by giving the algorithm
access to (possibly unreliable) side information on its value, and propose an approximate variant
(Algorithm 2) which sacrifices some theoretical rigor for a greater than 5× improvement in running
time for large inputs. Finally, we show that Algorithm 1 can be used as a subcomponent of the
hybrid mechanism of Chan et al. [11] to achieve exactly O(log2 t) variance with improved constants
compared to their original approach.

Choosing the value of α. While it is in principle possible to set α arbitrarily small, this would be
unwise. To see why, observe that for the purposes of bounding sensitivity, there is a stark qualitative
gap between the matrix LTToep(f(z;−1/2− 10−100, δ)), which has finite column norm, and the
matrix LTToep(f(z;−1/2, δ)) whose column norm diverges. But at the same time, the row norms
of the matrices LTToep(f(z; 1/2+10−100,−δ)) and LTToep(f(z; 1/2,−δ)) both diverge at pretty
much the same rate. This asymmetry implies that reducing α past a certain point does little to improve
our actual error while inviting numerical instability.

So, how should α be chosen? We observe that, as of mid-2025, the world’s population is estimated to
be about 8.2e9. If every single one of those people contributed 100 data points to our algorithm, then
we would have ln0.01(n) ≈ 1.03. We conclude that setting α = 0.01 is likely a safe and practical
choice for most applications.

Choosing the value of δ. There are three natural choices for setting the value of δ, representing
different tradeoffs in speed and accuracy. Setting δ = 0 is the fastest option computationally, but leads
to a sub-optimal rate of growth in error. Choosing δ = −γ is roughly 1.5× slower, but substantially
improves error when n is greater than 1,000 or so. Finally, the special value δ = −6γ/5 is notable
because it causes the first two Taylor coefficients of both fL and fR to match the function (1−z)−1/2

exactly. For a fixed γ, this gives us the L and R matrices that are closest to M
1/2
count, subject to the

intuitively reasonable constraint that L ⪰ R. This option is the most expensive, but empirically leads
to improved error for n greater than 220, which is shown in Figure 2.

Exploiting imperfect information about n. Up to this point we have assumed that n is unknown
and impossible to predict, but in practice, history or expert knowledge might suggest a range of
plausible values. We model this side information with the double-inequality n0 ≤ n ≤ Cn0 for some
n0, C > 0, which is given to the algorithm. We allow these bounds to be unreliable in two senses —
the upper bound might be loose, or it might be entirely wrong. We show that our algorithm can make
efficient use of this information when it is reliable without incurring any additional error when it isn’t.

Our basic strategy is to simply pre-compute Lz out to Cn0 terms. Provided that the upper bound
is true, we recover the same O(n log n) pre-processing time and O(1) work per-iteration as the
M

1/2
count algorithm. Moreover, we suffer no performance cost if the upper bound turns out to be loose

because our error at each round depends only on t. In contrast, if we used the M
1/2
count algorithm

with input Cn0, we would be forced to calibrate its noise scale to the sensitivity of the larger matrix
[M

1/2
count]Cn0

. In the unlucky event where it turns out that n = n0, this would produce a uniform
∼ 1 + logC/(1 + log n0) multiplicative scaling of variance across the entire input.

In the other direction, if the upper bound turns out to be false then our algorithm can recover gracefully
using the same doubling trick described in section 4. But by that point, the M

1/2
count algorithm will

have completely exhausted the privacy budget of the first data-point, forcing it to either weaken its
privacy guarantees post-hoc or restart entirely with a new estimate for the input size! Even if this new
estimate is perfectly correct, the initial mistake will still lead to O(log(Cn0)) additive error.

Constant-factor speedups through asymptotic expansions. Flajolet and Odlyzko [24] derive the
following asymptotic expansion for the Taylor coefficients of f , which we used earlier in a weaker
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Algorithm 2 Approximate Logarithmic Matrix Method

Require: γ, δ ̸∈ {0, 1, . . .}, approx. order K, tolerance η, privacy parameter Cε,δ , sensitivity ∆
for t = 1, . . . , n do

if t = 2m for some integer m then
Sample ys ∼ N (0, (1 + η)2∆2C2

ε,δ) for t ≤ s ≤ 2t− 1

rt ← [zt−1]fR using section 4 (’Computability’)
r̂t ← Degree K approximation of [zt−1]fR from Equation 2
if |rt−r̂t|

rt
> η then

Use section 4 to compute next t entries of LTToep(fR)
else

Use Equation 2 to approximate the next t entries of LTToep(fR)
Save computed sequence as [R̂]2t
Compute [R̂]−1

2t [Mcount]2ty

Output (R̂−1Mcounty)t

form to derive the asymptotic error rate of our mechanism:

[zm]f(z; γ, δ) ∼ 1√
mπ

(lnm)γ(ln lnm)δ
(
1 +

∑
k≥1

e
(γ,δ)
k (ln lnm)

(ln(m) ln(ln(m)))k

)
(2)

where e(γ,δ)k (x) is a polynomial of degree k, e(γ,δ)k (x) =
√
π dk

dsk

(
1

Γ(−s)

)∣∣
s=−1/2

·Ek(x), and Ek(x)

is the kth Taylor coefficient of the function g(u) = (1 − xu)γ
(
1 − 1

x ln(1 − xu)
)δ

. While this
expression is messy, the cost of computing it is independent of m: for fixed approximation order K,
the derivatives of the reciprocal gamma function can be precomputed and the remaining terms can be
calculated in O(K logK) time using the same techniques described in section 4. This idea naturally
suggests Algorithm 2, which switches from exact computations to order K approximations once the
relative error of the approximation falls below some threshold η. We plot relative error as a function
of t, δ and K in Figure 1.
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Figure 1: Plots the relative error |r̂t− rt|/rt
from Algorithm 2 as a function of t when
γ = −0.51. The asymptotic expansion con-
verges much more quickly when δ = 0.

We highlight a potential pitfall with this approach,
which is that if we approximate L̂ ≈ L directly, then
we are implicitly choosing R̂ = McountL̂

−1 and can
no longer calibrate our noise to ∥R∥1→2 as normal.
Ideally we would like to be able to prove a bound
like ∥McountL̂

−1∥1→2 ≤ (1 + O(η))∥R∥1→2, but
this appears to be non-trivial. We therefore take the
opposite approach, which is to directly approximate
R̂ ≈ R and calibrate our noise to (1 + η)∥R∥1→2

with L̂ = R̂−1Mcount. This version of the algorithm
is provably valid and private, and for large enough in-
puts it reduces the computational cost at each power
of 2 from 12M(t) to 2.25M(t) (the cost of one se-
ries division), closing over 80% of the computational
gap between our algorithm and a standard doubling
trick. The tradeoff is a multiplicative (1+η) increase
in error prior to the switch, and the loss of tight, prov-
able bounds on error after the switch. In Figure 1, we
compare the performance of the two algorithms, and
find that after switching around t = 211, the performance of Algorithm 2 remains indistinguishable
from Algorithm 1 out to t = 224.

Asymptotic improvements through hybrid mechanisms. In their seminal paper, Chan et al. [11]
propose a generic ‘Hybrid Mechanism’ for continual counting of unbounded streams. The schema
requires one (possibly inefficient) unbounded counting algorithm, which operates on the condensed
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Figure 2: Left: Comparison of the exact variance of different algorithms and parameter choices.
Contrast with asymptotics in Table 1. The Hybrid mechanism using Algorithm 1 for the unbounded
component outperforms the variant using independent noise as in Chan et al. [11], but both variants
exhibit very erratic performance when t is close to a power of 2. For Algorithm 1, the parameters
δ = −γ and δ = −6γ/5 give similar performance, but the latter is slightly better once t > 220, and
both outperform δ = 0 when t > 210. Note that the performance of Algorithm 2 with δ = 0 is
visually indistinguishable from that of Algorithm 1. Right: Coefficients of the matrices LTToep(fL)
(upper) and LTToep(fR) (lower) for various choices of δ. The choice δ = −6γ/5 produces lines
that are as close as possible to that of M1/2

count without crossing it, which we hypothesize explains its
good performance.

sequence yk =
∑2k+1−1

t=2k xt, and a bounded algorithm, which is restarted whenever t is a power of 2.
The privacy budget is divided between these two algorithms, and the partial sum at time t = 2k + r

is given by adding together estimates for
∑k−1

i=0 yi and
∑2k+r

t=2k xt. The resulting hybrid mechanism is
unbounded and typically preserves the exact asymptotic error rate of the chosen bounded algorithm.

The original hybrid mechanism used a simple unbounded algorithm that adds independent noise
to each input (corresponding to the matrix decomposition L = Mcount, R = I). Our work enables
a more powerful instantiation using Algorithm 1 as the unbounded algorithm instead, which we
compare against the original. For both implementations, we improve on their original presentation
by using M

1/2
count for the bounded algorithm and allocating 75% of the privacy budget to the bounded

learner, which reduces the constant of the leading O(log2 t) term. In the spirit of Honaker [29], we
also reuse the outputs of the bounded mechanism on earlier subsequences to optimize the variance of
the final estimate. Our results are visualized in Figure 2.

6 Conclusion

We have shown for the first time that the classic matrix factorization method [33] can be efficiently
extended to online settings with unknown input size without the use of doubling tricks. The resulting
algorithm is the first that we are aware of that is simultaneously unbounded and smooth with
almost-optimal asymptotic error. Empirically, we have also shown that it enjoys excellent constants
when its parameters are set correctly, with variance that is uniformly less than 1.5× that of Henzinger
et al. [27] for inputs as large as n = 224.

Many interesting questions remain unanswered, however. For instance: the only algorithms we are
aware of that exactly achieve asymptotically optimal O(log2 t) variance in the unbounded setting
rely on some form of doubling trick, and despite a great deal of effort, we were not able to find a
LTToep decomposition with this property. Our suspicion is that no such decomposition exists, and
that this is related to the classic result that the sequence an = (n · log n · log log n · . . . · log◦k n)−1

diverges for any k. We believe that a formal proof of this conjecture would be very interesting as
it would constitute a clean separation between the power of LTToep and general lower-triangular
matrices in online learning. We therefore conclude by posing the following open question:

Open Question 1. Do there exist LTToep matrices L,R such that [L]n[R]n = [Mcount]n,
limn→∞∥[R]n∥1→2 <∞, and ∥[L]n∥2→∞ = Θ(log2 n)?
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A Technical Details for Computing Sensitivity

To actually compute the sensitivity, we make use of Parseval’s theorem, which gives us:
∞∑

n=0

([zn]fR)
2 =

1

2π

∫ 2π

0

|fR(eiθ)|2 dθ

=
22δ

2π

∫ 2π

0

(2 sin
(θ
2

)
)−1

(
ln2(2 sin

(θ
2

)
) +

(π − θ)2

4

)−1/2−α
[
1

4
ln2

(
ln2(2 sin

(θ
2

)
) +

(π − θ)2)

4

)

+
(
atan2

(π − θ

2
,− ln

(
2 sin

(θ
2

)))
+ atan2(− sin θ, cos θ)

)2
]δ

dθ

Where atan2(y, x) = arctan(y/x), possibly shifted by ±π to fall within (−π, π]. With the change
of variables ω = (π − θ)/2, this simplifies to:

22δ

π

∫ π/2

−π/2

(2 cosω)−1
(
ln2(2 cosω) + ω2

)−1/2−α
[
1

4
ln2

(
ln2(2 cosω) + ω2

)

+
(
atan2(ω,− ln(2 cosw)) + atan2(− sin(2ω),− cos(2ω))

)2
]δ

dω

From here, we define the functions:

I1(ω) = 2 cosω I2(ω) = ln2(I1(ω)) + ω2 I3(ω) =
1

4
ln2(I2(ω)) I4(ω) = arctan

(
− ω/ ln(I1(ω))

)
+ 2ω

)
By using symmetry and splitting the interval based on the offset of atan2, we finally arrive at:

∥R∥21→2 =
21+2δ

π

[∫ π/3

0

I1(ω)
−1I2(ω)

−1/2−α(I3(ω) + I4(ω)
2)δ dω

+

∫ π/2

π/3

I1(ω)
−1I2(ω)

−1/2−α(I3(ω) + (I4(ω)− π)2)δ dω

]

Expressed in this way, both integrands are sufficiently smooth to be numerically integrated to high
precision. We use mpmath [31] for this purpose in our experiments, which supports arbitrary-precision
floating point computations and numerical integration.
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