
ar
X

iv
:2

50
6.

14
96

4v
1 

 [
cs

.C
R

] 
 1

7 
Ju

n 
20

25

Narrowing the Gap between TEEs Threat Model and Deployment
Strategies

Filip Rezabek
Flashbots

Technical University of Munich
Germany

Jonathan Passerat-Palmbach
Flashbots

Imperial College London
UK

Moe Mahhouk
Flashbots
Germany

Frieder Erdmann
Flashbots
Germany

Andrew Miller
Flashbots

USA

Abstract
Confidential Virtual Machines (CVMs) provide isolation guarantees
for data in use, but their threat model does not include physical
level protection and side-channel attacks. Therefore, current de-
ployments rely on trusted cloud providers to host the CVMs’ un-
derlying infrastructure. However, TEE attestations do not provide
information about the operator hosting a CVM. Without knowing
whether a Trusted Execution Environment (TEE) runs within a
provider’s infrastructure, a user cannot accurately assess the risks
of physical attacks. We observe a misalignment in the threat model
where the workloads are protected against other tenants but do
not offer end-to-end security assurances to external users without
relying on cloud providers. The attestation should be extended to
bind the CVM with the provider. A possible solution can rely on
the Protected Platform Identifier (PPID), a unique CPU identifier.
However, the implementation details of various TEE manufacturers,
attestation flows, and providers vary. This makes verification of
attestations, ease of migration, and building applications without
relying on a trusted party challenging, highlighting a key limitation
that must be addressed for the adoption of CVMs. We discuss two
points focusing on hardening and extensions of TEEs’ attestation.

Keywords
Cloud, TEE, Attestations, Confidential Virtual Machine

1 Introduction
Many applications require safeguarding sensitive data during pro-
cessing. While traditional security measures protect data at rest
and in transit, data in use remains vulnerable to threats like unau-
thorized access and malicious insiders [8, 14]. This risk is especially
concerning in cloud environments, where multiple tenants share
physical hardware on (ideally) untrusted third-party infrastruc-
ture, heightening data breach chances. Confidential Computing ad-
dresses these challenges by protecting data in use through Trusted
Execution Environments (TEEs). TEEs provide an isolated envi-
ronment where sensitive computations can be executed without
interference, even from higher-privileged software like operating
systems or hypervisors. Recently, technologies such as Intel Trust
Domain Extensions (TDX) or AMD Secure Encrypted Virtualization

This paper was originally accepted to the 8th Edition of the System Software for
Trusted Execution (SysTEX) ’25 Workshop, co-located with EuroS&P ’25.

(SEV)-Secure Nested Paging (SNP) run the whole Virtual Machine
(VM) in such an isolated environment. As part of their Trusted
Computing Base (TCB), they include the guest OS and guest VM’s
privileged users, but can protect against malicious host Operat-
ing System (OS) or hypervisor [8]. External users can request a
hardware-signed attestation report to verify that key components
remain untampered, including code and data inside the TEE. This
combination of isolation and attestation enables secure execution
of sensitive workloads, even in untrusted environments. However,
both AMD [10] and Intel [8] exclude memory integrity [9], side
channels and sophisticated physical attacks e.g., microscope prob-
ing or fault injection, from their threat models. While most side
channels can be mitigated at the application level, physical attack
vectors require users to trust the physical host location of the Con-
fidential VMs (CVMs). This is especially needed for use cases in
the Web3 space, where TEEs could protect millions of dollars in
value [4, 17]. The robustness of CVMs depends on ensuring they
operate in a trusted environment, relying on operators who do
not tamper with nodes and enforce strong access policies. Remote
attestation verifies that communication terminates in a TEE on
an authenticated platform but does not provide details about the
operational environment.

Therefore, the attestation flow should be extended with addi-
tional information, assuring that the environment where the TEE
platform runs is a trusted cloud data center, thus strengthening
the relation to the provider. This closes the gap between the threat
model of current TEEs and the trust in the infrastructure owner.
A recently proposed solution called LooseSEAL relies on the Pro-
tected Platform Identifier (PPID) to derive keys originating from
CVMs on the same machine [12]. The PPID is generated based on
the Universally Unique Identifier (UUID) [5] of Intel or the CPU_ID
[2] of AMD CPUs that run inside the cloud’s infrastructure. As
this feature is currently not implemented, the provider must en-
hance the attestation capabilities. Besides, each provider and ideally
TEE manufacturers should implement the same flow for ease of
migration, requiring industry standardization. Another option is to
rely on a certification party that certifies the physical location to
ensure the usage of untampered hardware and additional intrusion
detection to detect physical access to the devices, as is the case of
Apple [3]. Another, even more demanding, approach is to extend
the threat model to include physical attacks and tampering with
the chip manufacturer’s supply chain. However, this is less likely
as it requires new TEE designs [7].

https://arxiv.org/abs/2506.14964v1


Rezabek et al.

CVM

Hardware

Hypervisor/VMM

Host
OS

Firm-
ware &
Drivers

Guest
User

&
Kernel
Space

UUID

(a) Bare/CVM Flow

CVM

Paravisor

Hardware

Hypervisor/VMM

Host
OS

Firm-
ware &
Drivers

VTL0 or
VMPL3
VTL2 or
VMPL0

Guest
User

&
Kernel
Space

UUID

(b) Paravirtualization Flow

Figure 1: Simplified TEE Attestation Flow for various Deploy-
ments. The provider controls the grey dotted boxes.

Our work aims to bring discussion points (DPs) about:

DP1 Unification/standardization of PPID & deployments.
DP2 Threat model extension by physical access.

2 TEEs and Attestation Flows
We introduce relevant background information supporting the
DPs. VM-based TEEs, such as Intel TDX [6, 18] or AMD SEV-
SNP [1, 11, 14], enhance VM security through encrypting and iso-
lating guest VMs from the hypervisor and supporting nested vir-
tualization. Users gain confidence in a given TEE enclave via the
request of a remote attestation. For CVMs, Figure 1 presents two
attestation flows varying between bare metal/native virtualization
(1a) and with an additional paravirtualized layer (1b) and how is
UUID available to CVM. The paravisor allows for live migration of
the CVM and provides an additional layer of virtual drivers between
the guest OS and underlying VMManager (VMM). In the bare metal
setup (Figure 1a), the CVM runs directly on the hypervisor, e.g.,
QEMU. Attestation in this scenario involves verifying the firmware,
operating system, and TEE itself. On the other hand, in the paravir-
tualized environment (Figure 1b), the CVM additionally relies on a
paravisor, e.g., OpenHCL [13] or COCONUT [19]. The paravisor im-
plements an access mode present as a Virtual Trust Level (VTL) for
Intel TDX and Virtual Machine Protection Level (VMPL) for AMD
SEV-SNP. Of note, VMPL0 is the highest privilege level, and VTL0
is the lowest, hinting at other implementation approaches. The at-
testation report should include verification of the same components
as in a regular deployment and the paravirtualization stack. This
requires the paravisor’s components to be open-source to enable
reproducible builds and thus obtain the checksum to compare with
the value in the attestation’s fields. This is, however, not always
the case, as was the case of Microsoft Azure’s paravisor before
OpenHCL [16]. Even when using the paravisor approach, the quote
contains the PPID constructed during Intel’s initial platform verifi-
cation. For the case of live migration, the verifier must regularly
be made aware of migration or request attestation, as the PPID is
hardware-dependent.

3 TEE Attestation Extensions & Beyond
Building on top of the background information, we address theDPs
introduced in Section 1. The DP1 focuses on the solution’s reliance
on PPID and DP2motivates physical attacks integration to the TEE
threat model. One way cloud providers can offer assurance that a
given TEE is indeed cloud-based could be to leverage PPID. The
PPID is a unique identifier derived uniquely for each Intel CPUs,
allowing attestation reports to be linked to a known and verifiable
machine or infrastructure for Intel TDX and SGX. In the case of
Data Center Attestation Primitives (DCAP) attestation quotes, the
Platform ID (first 16 B of user data) is either the encrypted PPID or is
derived from it. The PPID is encrypted using Intel’s public key of the
Intel Provisioning Certification Service (PCS), with the private key
being only owned by Intel. Therefore, to modify the PPID, the CPU
manufacturer would have to be involved, serving as a separation
of interests. Overall, the PPID is a consistent identifier that links
attestation quotes to specific physical CPUs. For the solution to
work, the cloud provider must keep a list of its publicly available
hardware identifiers so the users can then validate the provided
PPID. Such a mechanism would ensure that workloads are executed
on certified hardware and within a secure infrastructure. We rely
on cloud providers for physical protection, so enabling the PPID
does not increase the attack surface, and as an operator of CVM, we
can verify the information is correct. Of note, different CVMs on
the same hardware share the same PPID. To ensure privacy, we can
use a Zero-knowledge (ZK) proof of the attestation and the PPID
details proving that our node runs in a particular cloud, without
disclosingwhich. There are already ZK instantiations for DCAP [15]
which can be extended for this setting. The effectiveness of this
solution depends on how cloud providers implement and disclose
such identifiers. Implementing PPIDs should also be unified to allow
easy migration across providers to mitigate possible friction. PPID
is a robust solution considering the current setting and not too
demanding from the cloud provider’s perspective. Nevertheless,
the trust in the cloud provider does not increase, as we rely on the
provider for physical attack protection.

However, several challenges must be addressed in designing
and deploying such a solution. One key difficulty is accounting
for hardware diversity, as different processor architectures (e.g.,
Intel TDX, AMD SEV, ARM Confidential Compute Architecture
(CCA)) implement TEEs with varying security models and attes-
tation mechanisms. A standardized solution must accommodate
these differences while maintaining security guarantees. The key
issue of physical and side-channel attacks persists. Therefore, ex-
tending the threat model to include more physical, supply-chain,
and side-channels attacks will improve the potential of TEE as a
technology.

4 Next Steps for TEEs
We highlight the need to extend TEEs’ threat model to include
physical access attacks. Current VM-based TEEs implicitly trust
the cloud provider, which is misaligned with attestation flows that
do not bind the provider to the report. Available solutions such as
PPID can improve TEEs adoption. Strengthening the threat model
and closing the attestation gap requires collaboration among man-
ufacturers, service providers, and researchers.



Narrowing the Gap between TEEs Threat Model and Deployment Strategies

References
[1] AMD. 2022. GitHub - AMDESE/AMDSEV: AMD Secure Encrypted Virtualization.

(Accessed on 10/15/2023).
[2] AMD. 2025. SEV Secure Nested Paging Firmware ABI Specifica-

tion. https://www.amd.com/content/dam/amd/en/documents/epyc-technical-
docs/specifications/56860.pdf [Online; accessed 14. Feb. 2025].

[3] Apple Inc. [n. d.]. Hardware Integrity in Private Cloud Compute. https://security.
apple.com/documentation/private-cloud-compute/hardwareintegrity. Accessed:
2025-04-01.

[4] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform
for Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts.
In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). 185–200.
doi:10.1109/EuroSP.2019.00023

[5] Intel. 2024. Intel TDX DCAP: Quote Generation Library and Quote Verification
Library. https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_
TDX_DCAP_Quoting_Library_API.pdf [Online; accessed 14. Feb. 2025].

[6] Intel. 2024. intel/tdx-module. (Accessed on 05/10/2024).
[7] Quintus Kilbourn. 2024. Zero Trust Execution Environments - TEE - Trusted

Execution Environment / Trustless TEEs - The Flashbots Collective. https:
//collective.flashbots.net/t/zero-trust-execution-environments/3966 [Online;
accessed 15. Feb. 2025].

[8] Dmitrii Kuvaiskii, Dimitrios Stavrakakis, Kailun Qin, Cedric Xing, Pramod Bhato-
tia, and Mona Vij. 2024. Gramine-TDX: A Lightweight OS Kernel for Confidential
VMs. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Com-
munications Security (Salt Lake City, UT, USA) (CCS ’24). Association for Com-
puting Machinery, New York, NY, USA, 4598–4612. doi:10.1145/3658644.3690323

[9] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia che Tsai, and Raluca Ada Popa.
2020. An Off-Chip Attack on Hardware Enclaves via the Memory Bus. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, 487–504.
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-dayeol

[10] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-
escu, and Yinqian Zhang. 2022. A Systematic Look at Ciphertext Side Channels

on AMD SEV-SNP. In 2022 IEEE Symposium on Security and Privacy (SP). 337–351.
doi:10.1109/SP46214.2022.9833768

[11] Rujia Li, Qin Wang, Qi Wang, David Galindo, and Mark Ryan. 2022. SoK: TEE-
assisted Confidential Smart Contract. arXiv:2203.08548 [cs.CR] https://arxiv.
org/abs/2203.08548

[12] Moe Mahhouk. 2024. Loose SEAL: Enabling Crash-Tolerant TDX Applications by
Utilizing SGX Sealing Provider Sidecar - TEE - Trusted Execution Environment
- The Flashbots Collective. https://collective.flashbots.net/t/loose-seal-
enabling-crash-tolerant-tdx-applications-by-utilizing-sgx-sealing-provider-
sidecar/4243/1 [Online; accessed 14. Feb. 2025].

[13] Microsoft. 2025. openvmm. https://github.com/microsoft/openvmm [Online;
accessed 14. Feb. 2025].

[14] J. Ménétrey, C. Göttel, M. Pasin, P. Felber, and V. Schiavoni. 2022. An Ex-
ploratory Study of Attestation Mechanisms for Trusted Execution Environments.
arXiv:2204.06790 [cs.CR]

[15] Automata Network. 2025. Automata DCAP Attestation. https://github.com/
automata-network/automata-dcap-attestation Accessed: 2025-04-03.

[16] Caroline Perezvargas. 2023. Confidential VMs on Azure. https://techcommunity.
microsoft.com/blog/windowsosplatform/confidential-vms-on-azure/3836282.

[17] Karanjai Rabimba, Lei Xu, Lin Chen, Fengwei Zhang, Zhimin Gao, and Weidong
Shi. 2021. Lessons Learned from Blockchain Applications of Trusted Execution
Environments and Implications for Future Research. InWorkshop on Hardware
and Architectural Support for Security and Privacy. ACM, 1–8. doi:10.1145/3505253.
3505259

[18] M. U. Sardar, S. Musaev, and C. Fetzer. 2021. Demystifying Attestation in Intel
Trust Domain Extensions via Formal Verification. IEEE Access 9 (2021), 83067–
83079. doi:10.1109/ACCESS.2021.3087421

[19] SUSE. 2025. svsm. https://github.com/coconut-svsm/svsm [Online; accessed 14.
Feb. 2025].

Accepted to the 8th Edition of the System Software for Trusted Execution
(SysTEX) ’25 Workshop, co-located with EuroS&P ’25.

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://security.apple.com/documentation/private-cloud-compute/hardwareintegrity
https://security.apple.com/documentation/private-cloud-compute/hardwareintegrity
https://doi.org/10.1109/EuroSP.2019.00023
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf
https://collective.flashbots.net/t/zero-trust-execution-environments/3966
https://collective.flashbots.net/t/zero-trust-execution-environments/3966
https://doi.org/10.1145/3658644.3690323
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-dayeol
https://doi.org/10.1109/SP46214.2022.9833768
https://arxiv.org/abs/2203.08548
https://arxiv.org/abs/2203.08548
https://arxiv.org/abs/2203.08548
https://collective.flashbots.net/t/loose-seal-enabling-crash-tolerant-tdx-applications-by-utilizing-sgx-sealing-provider-sidecar/4243/1
https://collective.flashbots.net/t/loose-seal-enabling-crash-tolerant-tdx-applications-by-utilizing-sgx-sealing-provider-sidecar/4243/1
https://collective.flashbots.net/t/loose-seal-enabling-crash-tolerant-tdx-applications-by-utilizing-sgx-sealing-provider-sidecar/4243/1
https://github.com/microsoft/openvmm
https://arxiv.org/abs/2204.06790
https://github.com/automata-network/automata-dcap-attestation
https://github.com/automata-network/automata-dcap-attestation
https://techcommunity.microsoft.com/blog/windowsosplatform/confidential-vms-on-azure/3836282
https://techcommunity.microsoft.com/blog/windowsosplatform/confidential-vms-on-azure/3836282
https://doi.org/10.1145/3505253.3505259
https://doi.org/10.1145/3505253.3505259
https://doi.org/10.1109/ACCESS.2021.3087421
https://github.com/coconut-svsm/svsm

	Abstract
	1 Introduction
	2 TEEs and Attestation Flows
	3 TEE Attestation Extensions & Beyond
	4 Next Steps for TEEs
	References

