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Abstract

This paper describes a high-performance, low-latency video surveillance system designed for
resource-constrained environments. We have proposed a formal entropy-based adaptive frame
buffering algorithm and integrated that with MobileNetV2 to achieve high throughput with low
latency. The system is capable of processing live streams of video with sub-50ms end-to-end
inference latency on resource-constrained devices (embedding platforms) such as Raspberry Pi,
Amazon, and NVIDIA Jetson Nano. Our method maintains over 92% detection accuracy on
standard datasets focused on video surveillance and exhibits robustness to varying lighting,
backgrounds, and speeds. A number of comparative and ablation experiments validate the
effectiveness of our design. Finally, our architecture is scalable, inexpensive, and compliant with
stricter data privacy regulations than common surveillance systems, so that the system could
coexist in a smart city or embedded security architecture.

1 Introduction

In real-time surveillance, a vital part of modern public safety infrastructure, especially in urban
areas, transportation systems, and sensitive sites, the problem of high latency and hardware deploy-
ment of conventional surveillance systems limits the ability for real-time response. Edge computing
and lightweight neural networks provide low-power options. Yet, latency, accuracy, and throughput
on constrained devices remains a challenge. This paper presents a new system architecture that
integrates MobileNetV2 and an entropy-driven adaptive frame buffering algorithm to maximize for
the freshness of inference and responsiveness of the system. Deployments ethically and scalability
of the system are also important components.

2 Literature Review

The need for real-time monitoring solutions available on edge devices has strengthened because of
growing applications in smart cities, industrial safety, and privacy-oriented monitoring. Convolu-
tional neural networks show great accuracy with respect to object detection, but they are heavy on
computational requirements which make it impracticable to deploy on resource-constrained devices
[17].

Entropy- based strategies have been a widely used approach to eliminate redundancy at the
frame level in processing pipelines that deal with video. Guo et al. proposed a statistical model
using relative entropy and the Extreme Studentized Deviate (ESD) for keyframes selection [1, 3].
More recently, local foreground entropy was used for summarization of surveillance footage, and
demonstrated usability as informative frames while maintaining integrity of a scene image [2]. Other
methods were also used such as entropy and motion-based steganographic frame selection [4], and
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adaptive thresholding for video edge detection [8], which provide further evidence of applying
entropy in prioritizing essential visual content.

Aside from entropy, adaptive frame sampling has been studied in depth as part of deep learning-
based video understanding. Wu et al.’s AdaFrame framework uses reinforcement learning principles
to select frames to make task-relevant decisions about what to classify [6]. SMART frame selection
[7] proposes a similar task-directed lightweight approach to skip irrelevant frames. Cho et al. also
combined the spatiotemporal attention mechanism with semantic compression to represent very
long videos with a minimal amount of information lost [8].

While minimizing redundancy in the original input is very important, so to is maintaining
and executing edge-based inference that is high speed and low power. MobileNetV2, proposed
by Sandler, is recognized for its inverted residual and depthwise separable convolution structure,
ultimately enabling real-time performance on embedded devices [12].

Lokhande and Ganorkar validated this by using SSD-MobileNetV2 on Raspberry Pi and Jetson,
achieving less than 10 ms inference and good detection accuracy for typical surveillance tasks
[13]. Extending the MobileNetV2 model with confidence-aware detection represents potential edge
detection robustness in difficult illumination and occlusion scenarios [14].

System-level improvements have supported larger and more complex edge deployments. EdgeSync
by Zhao et al. is a continuous-learning framework that selectively chooses model updates after fil-
tering out frame samples for drift when functioning in real-world data streams [10]]. EdgeVision
introduces collaborating edge-based video analyzing systems that break up video workloads at the
camera nodes to perform high-throughput inference [11]. Adaptive model streaming (AMS) im-
proves model performance by dynamically shifting models at runtime between edge and cloud nodes
to optimize inference time [9].

Surveillance systems also bring up issues of privacy and compute efficiency, for example, K.
Singh et al. reviewed an edge architecture that supports data locality and remains compliant
with GDPR by not processing at a central location [15]. Liu et al. used an entropy-aware spatial
filter, called TripleMask, further emphasizing selection based on computational awareness to reduce
computational overhead for forensic surveillance [16].

To summarize, the literature suggests a good foundation for continued experimental testing
of inference architectures and support decision-making that focuses on reducing model load using
entropy-based selection rather than a centralized frame selection process. However, the entropic
policies mentioned in previous work typically see frame selection isolated from the model inference
process. Our work helps to fill this hole by formalizing the use of an entropy-based adaptive
buffering algorithm that is directly implemented into a MobileNetV2 pipeline that was rigorously
tested for throughput, latency, and statistical performance on low-power edge hardware with all
the optimizations available.

3 Contribution of This Paper

• Entropy-driven buffering algorithm:We provide a formalized adaptive buffering scheme
based on entropy and temporal change rates to balance frame processing according to the
dynamics of the scene, producing higher throughput and reducing staleness.

• Integration with MobileNetV2: For efficient object detection, a buffering algorithm was
integrated with MobileNetV2, allowing an inference system with end-to-end system latency
of only about 50 milliseconds for low power edge devices.

• Benchmark comparisons: We compared our method with existing lightweight models like
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Tiny-YOLOv3 and EfficientDet-Lite, and demonstrated improvements in latency, accuracy
and energy use on distinct embedded platforms for the same use case.

• Ablation and statistical analysis: We conducted complete ablation experiments, and
detailed statistical testing, including a paired t-test, on how the buffering algorithm influenced
the performance and stability of the system.

• Privacy-preserving system design: We ensured the design of our system was aligned with
privacy-by-design principles, using on device encryption and no facial-recognition to ensure
the deployment of the system was carried out ethically and responsibly in surveillance.

4 Methodology

Figure 1: System Flow of the Real-Time Surveillance Pipeline

4.1 Dataset Preparation

To train and evaluate the proposed system, a customized five-class object detection dataset was
developed. The five chosen classes (person, vehicle, fire, weapon, and intruder) were selected with
reference to publicly acknowledged safety and security monitoring situations. We collected a raw
image dataset from three sources: COCO; Open Images; and synthetically generated scenes were
created to reduce the data under representation of target classes, with a focus on balancing classes
by frequency (i.e. fire and weapon). The raw images were all manually annotated using the
LabelImg to confirm that bounding boxes and classes were correct. For computational efficiency
on embedded platforms, all the images were resized to the input resolution size of 320 px by 240 px
and normalized to fit the MobileNetV2 input range. The full dataset was split into three subsets
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to create: a training (70%); validation (15%); and testing (15%) set using stratified sampling to
maintain the class ratio balance. Data augmentations were employed using the Albumentations
library, (i.e. random brightness/contrast transformations, horizontal flips, affine transformations,
etc.) to increase model generalizability to different lighting and orientation scenarios that were
likely to affect real surveillance activities.

4.2 Model Architecture and Training

Our system’s core object detection model is based on MobileNetV2, a fast convolutional network
that balances speed and accuracy across resource-constrained environments. We initialized this
network with pretrained weights from ImageNet, thus using transfer learning to reduce time to
convergence and enhance generalization to our own custom surveillance dataset.

To account for class imbalance (after all, fire and weapon classes are rare) we implemented focal
loss which de-emphasizes easier examples and shifts the learning to more difficult examples which
were misclassified. We also applied mixup data augmentations, which combine pairs of data (both
images and labels) to make new training examples. This reduces overfitting by encouraging the
model to learn a smoother decision boundary.

For benchmarking, we trained and evaluated two other lightweight detection models (Tiny-
YOLOv3 and EfficientDet-Lite) under the same experimental conditions and comparative process
as the MobileNetV2 model. This allowed us to evaluate the efficacy of our approach against other
state-of-the-art methods designed specifically for edge inference purposes. Model performance
was assessed using standard measures, mean Average Precision (mAP) as a measure of detection
accuracy and the F1-score to account for precision and recall.

4.3 Entropy-Based Adaptive Buffering Algorithm

To minimize the amount of frames selected as input to maintain real time processing, we created
an entropy-based adaptive buffering system that identifies the important frames to be processed for
inference based on their informational content. Specifically, we focus on processing only those frames
that have the potential to contain meaningful scene change information, meaning the inference task
being performed does not waste precious computational resources or repeat inferences on redundant
frames.

For each video frame F (that we receive as video content), we compute a Shannon entropy H(F )
from the pixel intensity distribution found in its grayscale histogram. This entropy value represents
the amount of visual complexity or randomness in the frame:

H(F ) = −
∑

pi log pi

where pi represents the normalized frequency of intensity level i. To further capture temporal
dynamics, we compute the change in entropy between consecutive frames, denoted as ∆H(Ft, Ft−1).
This term reflects how much the scene has changed from the previous frame to the current one.

The overall priority score P (Ft) for each frame Ft is calculated using a weighted sum of spatial
entropy and temporal entropy variation:

P (Ft) = αH(Ft) + β∆H(Ft, Ft−1)

where α and β are empirically tuned hyperparameters that control the relative importance of
static complexity versus temporal change. Frames that are assigned priority scores lower than some
threshold are identified as redundant and rejected prior to the inference pipeline.
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We were able to implement mutex locks in our buffer read and write operations to enforce
concurrency safety when running in multi-threaded execution environments. This ensures high-
priority frames are neither overwritten nor delayed throughout processing cycles and eliminates
race conditions.

4.4 Deployment Optimization

Several hardware-specific optimizations were made to facilitate efficient running on resource-constrained
embedded platforms (Jetson Nano and Raspberry Pi 4). In the case of the Jetson Nano, for exam-
ple, inference was sped up by using NVIDIA’s TensorRT in FP16 (half-precision floating point),
enabling dramatic memory usage reduction and improved throughput without a loss in detection
performance.

For the Raspberry Pi 4, ONNX Runtime was used as the inference engine, which allows deep
learning models to be deployed in a lightweight, agnostic manner. Both platforms were run with a
batch size of one to minimize latency, which is typical of the real-time requirements of a surveillance
system.

To expect minimal computation cost, quantization-aware training (QAT) was included in model
development. QAT pre-trains the model to reduce the precision of operations so that the model
can be quantized without a dramatic loss in performance, and reduced inference time and memory
footprint when producing/ deploying the model to edge devices.

In addition to the performance and time limitations, we also assessed energy efficiency through
inference per watt on each platform. This is a pragmatic way to view the system performance
during real-world deployments (i.e. we were interested in battery operational, battery solar-powered
and/or battery-constrained surveillance units and power consumption is a limiting factor).

5 Results and Evaluation

Platform Model Accuracy Latency (ms) FPS Power (W)

Jetson Nano MobileNetV2 92.5% 38.7 32.4 9.5
Jetson Nano Tiny-YOLOv3 91.3% 41.2 30.8 11.0
Raspberry Pi 4 MobileNetV2 90.1% 47.3 28.9 7.2
Raspberry Pi 4 EfficientDet-Lite 88.4% 51.6 26.1 8.3

Table 1: Performance Metrics Across Platforms

Statistical Analysis: To assess if the performance of the system was relatively consistent,
we computed the standard deviation of latency over multiple runs of the protocol. The variations
in latency exhibited a consistent standard deviation of less than 1.2 milliseconds in the three
condition tests, demonstrating that we could provide stable real-time performance even under
changing conditions. As an additional analysis, we also completed paired t-tests comparing the
system with an entropy-based buffer and the condition without buffering based on entropy. These t-
tests confirmed a statistically significant difference to support latency and throughput performance
comparisons for the system that incorporated entropy, with p < .01. This indicated a level of
confidence we could associate with both latency and throughput.

Ablation Study: An ablation study was performed in order to measure the isolated effect of
the buffering algorithm based on entropy. The throughput of processing as measured in frames per
second dropped by 18.2% when the entropy module was switched off, confirming that the buffering
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component provided performance value. In addition to this, the experiments with varying entropy
threshold parameters showed that tuning the thresholds improved the stability of processing by
optimizing both responsiveness and computational workload.

6 Applications and Ethical Considerations:

The potential application of the proposed system encompasses a number of real-world surveillance
applications (e.g. monitoring traffic patterns, perimeter monitoring of controlled access areas,
or monitoring safety issues in industrial settings). The system has been designed with growing
concerns around surveillance ethics and data privacy in mind and does not contain facial recognition
functionality. The system was designed with a similar principles as the GDPR regulations by
adopting privacy by design principles. This means that all recorded data is stored on-site in an
encrypted format which serves to minimizes the potential impacts of a data breach or unintended
access. A risk matrix that outlines the system’s risk of false positive and false negative faults across
several scenarios is included in the supplemental material to assist a risk aware deployment and
assessment.

7 Conclusion:

This study has introduced a new form of entropy-driven adaptive buffering framework that empha-
sizes performance improvements in real-time object detection for resource-constrained embedded
devices. By implementing the buffering mechanism into the lightweight MobileNetV2 architecture,
the proposed system achieves a good trade-off between detection accuracy, processing latency, and
computational efficiency. As elaborated upon in our experimental evaluation and subsequent sta-
tistical validation and comparisons to other existing lightweight model alternatives, we believe the
approach presented is performant. Future work includes establishing federated anomaly detection
for privacy and scalability options, orchestrating the related edge-cloud architecture to support
distributed processing, and devising an extended system to handle multi-camera inputs for a larger
surveillance area and spatial reasoning.
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