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Abstract
Layer 2 rollups are rapidly absorbing DeFi activity, securing over $40 billion and accounting for

nearly half of Ethereum’s DEX volume by Q1 2025, yet their MEV dynamics remain understudied.
We address this gap by defining and quantifying optimistic MEV, a form of speculative, on-chain
cyclic arbitrage whose detection and execution logic reside largely on-chain in smart contracts. As
a result of their speculative nature and lack of off-chain opportunity verification, optimistic MEV
transactions frequently fail to execute a profitable arbitrage.

Applying our multi-stage identification pipeline to Arbitrum, Base, and Optimism, we find that
in Q1 2025, optimistic MEV accounts for over 50% of on-chain gas on Base and Optimism and 7%
on Arbitrum, driven mainly by “interaction” probes (on-chain computations searching for arbitrage).
This speculative probing keeps blocks on Base and Optimism persistently full. Despite consuming
over half of on-chain gas, optimistic MEV transactions pay less than one quarter of total gas fees.
Cross-network comparison reveals divergent success rates, differing patterns of code reuse, and
sensitivity to varying sequencer ordering and block production times. Finally, OLS regressions link
optimistic MEV trade count to ETH volatility, retail trading activity, and DEX aggregator usage,
showing how Layer 2 protocol parameters uniquely encourage speculative MEV.

2012 ACM Subject Classification Computer systems organization → Distributed architectures;
Applied computing → Electronic commerce; Networks → Network measurement

Keywords and phrases blockchain, MEV, Layer 2, Ethereum

1 Introduction

Ethereum, a decentralized and programmable blockchain, features robust smart contract
functionality that enables trust-minimized applications and value transfer without reliance
on traditional intermediaries. This programmability has cultivated a dynamic ecosystem of
decentralized applications, particularly within the sphere of decentralized finance (DeFi),
which includes decentralized exchanges (DEXes) and lending protocols. As DeFi and other
on-chain activities have grown in scale and value, they have contributed to significant network
congestion on Ethereum Layer 1, driving transaction fees to levels that render smaller-scale
operations economically unviable.

To address these critical scaling limitations, the Ethereum community has strategically
embraced a rollup-centric development roadmap [20, 65, 47]. Layer 2 rollups scale Ethereum
by moving transaction execution off-chain and periodically anchoring summarized results on-
chain. This design preserves security while enabling higher throughput and lower costs [44, 50].
Adoption has been significant: as of April 2025, Layer 2 networks secure around $40 B in
assets and account for a growing share of on-chain transaction volume, highlighting their
central role in the Ethereum ecosystem.
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Figure 1 Monthly Decentralized Exchange (DEX) transaction volume by network from November
2018 to May 2025. The plot highlights the significant rise of Layer 2 networks — such as Arbitrum,
Base, Optimism, and others — in total DEX activity, with Ethereum Layer 1 gradually representing
a smaller share of the overall volume.

As illustrated in Figure 1, a substantial share of DeFi activity now occurs on Layer 2
networks. To be precise, in the first quarter of 2025, roughly 47% of DEX volume in the
Ethereum ecosystem was happening on Layer 2 networks. This figure is up from 35% in the
first quarter of 2024. This migration of DeFi activity to Layer 2 networks has concomitantly
fostered a distinct Maximal Extractable Value (MEV) landscape.

The shift in the MEV landscape has been accelerated by the advent of Layer 2 rollups and
upgrades such as EIP-4844 Proto-Danksharding [37, 38], which have significantly reduced
data availability costs for Layer 2 networks and, in turn, lowered transaction fees on these
networks. These lower costs have allowed for MEV extraction strategies that are less viable
on the Ethereum mainnet. Beyond lower fees, Layer 2s introduce operational characteristics
that further enable MEV strategies previously infeasible on Layer 1. These include differing
transaction ordering policies implemented by sequencers — ranging from simple First-Come,
First-Served (FCFS) to auction-based mechanisms such as Priority Gas Auctions (PGA) —
as well as variations in mempool privacy, and short inter-block times.

The confluence of these features reduces the financial risk and increases the execution
uncertainty of MEV-seeking transactions. As a result, bots can adopt an optimistic approach:
they issue high-frequency, speculative transactions without knowing in advance whether
an arbitrage opportunity exists, relying instead on rapid on-chain state reads and being
sufficiently close in time to the opportunity-creating transaction to back-run it successfully.
This differs from traditional cyclic arbitrage on Ethereum Layer 1, where bots precompute a
guaranteed profit path and bundle all trades into a single atomic transaction. On Layer 2,
optimistic strategies involve repeatedly probing liquidity pools for small gains, despite not
knowing if an opportunity exists, and accepting a high failure rate in exchange for marginal
profits.

We introduce the term optimistic MEV to describe this class of L2-native or L2-amplified
cyclic arbitrage strategies that rely on speculative execution, where MEV bots submit
transactions dependent on on-chain computation to identify profitable opportunities, often
resulting in failed attempts. To the best of our knowledge, this is the first work to formalize
and systematically study optimistic MEV on Layer 2s.

Our contributions. We summarize our main contributions below.
(i) We provide the first formal definition of optimistic MEV, describing it as a class of MEV
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extraction strategies that rely heavily on on-chain logic for opportunity identification
and speculative execution.

(ii) We design and implement a multi-stage pipeline to identify and classify MEV transac-
tions. This includes the construction of a cyclic arbitrage detector, an on-chain behavior
classifier, and a revert/success labeling system to capture speculative dynamics.

(iii) We apply our methodology and present the first large-scale measurement of optimistic
MEV on major Layer 2s to show that optimistic MEV is responsible for roughly 7% of
gas usage on Arbitrum, 51% on Base, and 55% on Optimism in the first quarter of 2025.
Our analysis reveals that a significant share of MEV gas usage arises from transactions
that fail to execute profitable trades, supporting our hypothesis of speculative probing.

(iv) We compare optimistic MEV activity across Arbitrum, Base, and Optimism and find
substantial differences in strategy execution patterns, success rates, and gas usage
concentration. We attribute these to network-specific factors such as transaction
ordering policies and inter-block times.

(v) Using regression analysis, we examine how optimistic MEV activity correlates with
market conditions and user trade behavior. Our findings suggest that volatility, trade
volume, and aggregator usage significantly impact optimistic MEV prevalence.

2 Related Work

Maximal Extractable Value. The study of MEV was commenced by Eskandari et al. [36]
and Daian et al. [26], who first defined MEV and documented phenomena like front-running
and PGAs on Ethereum. In subsequent work, Qin et al. [67] and Torres et al. [73], quantified
various forms of MEV on Ethereum mainnet, including sandwich attacks (i.e., a type of
front-running attack on DEXes), liquidations of positions on lending protocols, and cyclic
arbitrage, providing a baseline understanding of its scale and impact. A subsequent line of
work analyzes various and evolving aspects of the MEV landscape on the Ethereum Layer
1 [82, 81, 73, 79, 64, 68, 22, 69, 57, 80, 46, 84, 48]. While these works have established a
foundation for understanding MEV on Ethereum Layer 1, the Layer 2 landscape remains
comparatively underexplored. Our work builds on this foundation by focusing on the unique
characteristics of Layer 2s, providing a classification and analysis of MEV transactions in
these emerging environments.

A closely related line of work examines MEV in alternative Layer 1 networks, which
operate under distinct architectural and economic conditions. Öz et al. [83] analyze MEV
on FCFS blockchains such as Algorand, identifying latency optimization — rather than
fee bidding — as the dominant extraction mechanism. Further, work done by Umbra
Research [75] has provided valuable insights into the MEV on Solana. They point to the
existence of optimistic MEV on Solana but provide no in-depth analysis of the phenomenon.
In contrast, our work focuses on Layer 2 networks within the Ethereum ecosystem, where
optimistic MEV is both prevalent and, to the best of our knowledge, has not been investigated
in depth.

Maximal Extractable Value in Layer 2 Networks. Recent efforts have begun to examine
MEV on Layer 2 networks. Torres et al. [74] conducted a comparative analysis of MEV across
Ethereum and major Layer 2s (Arbitrum, Optimism, zkSync). Theoretical work has also
addressed cross-domain MEV, with Obadia et al. [59] formalizing MEV across domains such
as different Layer 2s. Complementing this, Gogol et al. [43] empirically analyzed non-atomic
cross-rollup MEV and CEX-DEX arbitrage. Öz et al. [62] present the first systematic study
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of non-atomic cross-chain arbitrage strategies across nine blockchains, including several Layer
2s. Their work highlights the effects of these strategies on network congestion and the
security implications of cross-chain MEV. Our work extends these Layer 2-focused studies
by analyzing MEV bot behavior — particularly in atomic arbitrage — and by including
transactions without token transfers, capturing speculative or unprofitable attempts.

Decentralized Exchanges. Theoretical frameworks for routing on DEXes and profits of
liquidity providers have provided important context for understanding MEV behavior. Angeris
et al.[10] analyzed optimal routing and arbitrage in CFMMs. Milionis et al.[54, 55] modeled
loss-versus-rebalancing (LVR) under Poisson-distributed interblock times; and Nezlobin et
al. [58] extended this to deterministic block intervals, particularly relevant given the regular
block production in many blockchain networks. Building on these theoretical foundations, our
work provides empirical insights into gas usage, MEV bot behavior, and protocol-level design
factors across Layer 2 networks, focusing on optimistic MEV: a speculative, high-frequency
form of atomic arbitrage.

3 Optimistic MEV

Next, we describe and define optimistic MEV : cyclic arbitrage MEV extraction techniques that
we observe occurring with significant prevalence on low-fee Layer 2 networks, characterized by
reliance on on-chain computation to identify arbitrage opportunities without prior off-chain
verification.

A notable characteristic of these activities is their optimistic or speculative nature —
bots submit transactions without certainty that an arbitrage opportunity exists, relying
instead on low costs to make such speculation viable. This optimistic pattern exhibits
itself in how sophisticated bots construct their transactions. In particular, atomic arbitrage
transactions almost invariably initiate with one or more top-level STATICCALL operations in
Layer 2s investigated as part of our empirical analysis. These read-only calls are directed
at DEX liquidity pools, presumably to ascertain real-time on-chain states (e.g., current
pool reserves and prices). The results of these calls then appear to determine whether to
execute an arbitrage or terminate the attempt if it is unprofitable. This is why we classify
these transactions as optimistic — the bots submit the transactions with the hope that an
arbitrage opportunity exists, without knowing for certain in advance.

This hypothesis (i.e., that these transactions are optimistically submitted) is further
substantiated by the common observation of empty, minimal or replicated calldata fields in
these Layer 2 atomic arbitrage transactions. The minimal or replicated calldata suggest
that critical parameters are determined on-chain rather than passed externally. Importantly,
the preparatory on-chain information-gathering via STATICCALLs consumes significant gas.
Consequently, such explicit on-chain verifications become prohibitively expensive when
transaction fees are high, but are feasible when fees are low.

To better categorize and analyze these phenomena, we introduce the following definition:

▶ Definition 1 (Optimistic MEV). We define Optimistic MEV as a class of MEV extraction
strategies characterized by the following core attributes:
1. Predominance of On-Chain Logic: A significant portion, often the entirety, of the

MEV opportunity identification, parameterization (e.g., calculating optimal trade amounts
or paths), and execution logic is embedded within the MEV bot’s smart contract(s) and
performed on-chain.
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2. Speculative Execution by MEV Bots: MEV bots adopt an optimistic operational
posture: they initiate transactions speculatively, in anticipation of potential MEV oppor-
tunities, often without comprehensive off-chain pre-verification of profitability for each
individual instance. As a result, this type of MEV is characterized by frequent failures,
i.e., transactions where no trade is ultimately performed.

Simple Case Study. To concretely illustrate the observed Layer 2 MEV patterns, partic-
ularly the prevalent use of initial STATICCALL operations for on-chain reconnaissance, we
present a comparative case study of two transactions interacting with the same contract
0xF5fF765b0c1278E54281193d7019281e0e50A8C01: 0x1d977d6867e2868b518a10803d64b-
414e428bd8e639d3c5054b2529cb55d18cb (henceforth TxA) and 0xb67825a6fa60e4bd9892-
076ead93c41f631460a53b8219036a5ace051f139bd7 (henceforth TxB) on Base. Both trans-
actions were initiated with the same function selector, namely 0x00003748, as evidenced
by the identical first 4 bytes in the calldata. This common entry point suggests a shared
execution pathway, likely designed for conditional arbitrage based on real-time market con-
ditions. Despite this identical initiation, the on-chain outcomes of TxA and TxB diverged
significantly. TxA resulted in no token swaps. In stark contrast, TxB successfully executed
a 2-swap atomic arbitrage, cycling value through the path WETH → TY BG → WETH

and realizing a profit. A detailed analysis of the execution trace for TxA reveals that the
contract systematically probed multiple DEX liquidity pools via STATICCALL operations.
These read-only calls occurred before any attempt to execute a trade, and the transaction
subsequently terminated. This sequence of actions is strongly indicative of an on-chain
reconnaissance strategy, where the contract assesses current pool states (e.g., token reserves,
potential slippage, pool’s fee structure, or tick data) to determine the viability of an arbitrage
opportunity before committing to an execution path. A condensed representation of the
initial call sequence within TxA is provided in Example 1.
{
"calls": [

{"input": "slot0()", "to": "UNIV3 ETH-USDC Pool", "type": "STATICCALL" },
{"input": "slot0()", "to": "UNIV3 PLAY-USDC Pool", "type": "STATICCALL" },
{"input": "slot0()", "to": "CL ETH-PLAY Pool", "type": "STATICCALL" }
// ... further calls omitted for brevity

],
"from": "0xdd57...a88",
"to": "0xf5ff...8c0",
"type": "CALL"
}

Example 1 Condensed initial call sequence from T xA, illustrating STATICCALL probes to DEX
pools. Input slot0() retrieves key state variables from Uniswap V3-compatible pools.

4 Data Collection

We collect data for Base [15], Optimism [60], Arbitrum [11] and Ethereum. At the time
of writing, Base, Optimism, and Arbitrum are the three largest Layer 2s based on total
value locked (TVL) according to L2BEAT [50, 44]. For comparison, we collect the same data

1 We marked this contract as one of the top gas consuming atomic arbitrage contracts on Base, which we
will discuss in more details in the later sections.

https://basescan.org/address/0xF5fF765b0c1278E54281193d7019281e0e50A8C0
https://basescan.org/tx/0x1d977d6867e2868b518a10803d64b414e428bd8e639d3c5054b2529cb55d18cb
https://basescan.org/tx/0x1d977d6867e2868b518a10803d64b414e428bd8e639d3c5054b2529cb55d18cb
https://basescan.org/tx/0xb67825a6fa60e4bd9892076ead93c41f631460a53b8219036a5ace051f139bd7
https://basescan.org/tx/0xb67825a6fa60e4bd9892076ead93c41f631460a53b8219036a5ace051f139bd7
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for Ethereum too, enabling us to characterize the differences between Layer 1 and Layer 2,
especially regarding the prevalence of optimistic MEV.

Our empirical analysis relies on a comprehensive dataset primarily sourced from Dune
Analytics [27], a platform offering comprehensive access to raw and decoded blockchain data
across various networks, including all networks of interest for this study. We collect the
respective data spanning from August 2023 to May 2025. This dataset encompasses several
critical types of data sources:
1. Transactional Data: We retrieve high-level transaction details including, but not

limited to, sender and recipient addresses, gas utilized, transaction value, input data,
block numbers, and timestamps. Crucially, we also collect detailed transaction traces,
which include internal transactions, emitted logs (events), and relevant state changes.
This granular data was primarily sourced by querying Dune Analytics’ tables such as
{{chains}}.transactions (e.g. [31]) and {{chains}}.traces (e.g. [30]) for Ethereum
Layer 1 and each respective Layer 2 network.

2. Decentralized Exchange Activity Data: To analyze MEV transactions, we collect
extensive data on trades and liquidity pools from DEX protocols operating on the target
Layer 2s. This includes detailed swap event data and liquidity pool contract addresses,
leveraging curated datasets such as those described in [32].

3. Contract Address Identification: A curated list of smart contract addresses relevant
to DEX activities, such as prominent DEX routers and aggregator contracts on the
studied Layer 2s, is compiled. This is achieved through a combination of leveraging
existing tagged address lists within Dune Analytics [27], cross-referencing them with
on-chain explorers [1, 5, 2, 4], and preliminary heuristic-based identification from our
dataset.

4. Contract Bytecodes: For the contracts that we marked on Layer 2s, we fetch their
bytecodes to be utilized in future steps to measure contract similarity (see Appendix A).
We run our own archive nodes for Base, Arbitrum, and Optimism networks to fetch the
bytecodes using JSON-RPC method eth_getCode.

5. Price Data: We additionally obtain daily Open-High-Low-Close (OHLC) data for the
ETH price on Ethereum Layer 1 using Dune Analytics [27], which we use for regression
analysis and volatility calculation.

This multi-faceted data collection strategy was designed to provide the necessary inputs for
our MEV and transaction classification pipeline, enabling a robust identification and empirical
analysis of various MEV activities on the selected Layer 2 networks. We acknowledge Dune
Analytics’ data ingestion processes, including considerations for data freshness (up to a day
of delay) and the support of all major DEXs [32]. The few missing DEXs (such as those
involving 1inch OTC trades) do not impact our results, as they are not relevant to MEV
activity.

5 Data Classification

We systematically analyze MEV activities on Layer 2 networks using a three-stage clas-
sification methodology. The implementation of our classification pipeline, as well as the
classification output (the full list of cyclic arbitrage bots) are made openly accessible [63].

5.1 Algorithmic MEV Contract Detection
Building on the cyclic arbitrage detection heuristic of Wang et al. [79] and the toolkits behind
EigenPhi and libmev [33, 52], we implement an MEV contract detection pipeline in Dune
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SQL, leveraging Dune Analytics’ data tables and the Torino engine. Inspired by the replay
logic of mev-inspect-py [39] and Brontes [70] we adapt our methodology to the Layer 2
circumstances.

We start by computing the set of transactions that, with high likelihood, perform cyclic
arbitrage:

1. Token Path & Balance Reconstruction. We consider all transactions containing
swap events by querying the swap logs from dex.trades [32]. Each transaction’s swap
events are ordered to recover the exact token path and the initiator’s net token balance.

2. Router & Aggregator Filter. Transactions that directly interact with labeled routers
(captured through the metadata of the dex.addresses [28] table) or aggregators (captured
through the dex_aggregator.trades [29] table) are dropped.

3. Cyclic Arbitrage & Profit Filter. A transaction is kept only if it forms a sequence of
at least two swaps, such that (i) the the token bought in the j-th swap is the same as the
token sold in the (j + 1)-th swap, (ii) the sequence begins and ends with the same token
and (iii) yields a strictly non-negative balance change in every token, with at least one
positive gain.

The first callee in any such profitable, cyclic arbitrage transaction is tagged as a candidate
contract, indicating it is likely a cyclic arbitrage bot.

A more detailed and formal description of this classification process can be found in
Appendix C.

5.2 Validation
To verify that the data set does not contain false positives, we manually inspect the candidate
contracts. We perform these validation steps for each chain and the set of respective candidate
contracts until more than 80% of all the gas used in transactions involving these contracts
originates from validated contracts. Our validation process consists of the following three
steps:

Code Verification and Labeling: We investigate whether the contract’s source code
was verified on public block explorers (e.g., Arbiscan and its forks [6, 1, 5, 2]). Verified
contracts that were not proxies and had clear, non-MEV related functionalities, such
as standard token contracts or well-known application logic, were excluded. We further
query Arkham [4] and community-curated datasets [34, 52], and exclude contracts with
labels that are inconsistent with MEV-bot activity.
Transaction Trace Analysis for Non-Trading Activity: For transactions initiated
by a candidate contract that did not result in direct swaps or token transfers, we inspected
their execution traces to see if they interacted with DEX-related contracts (e.g., calling
functions such as getReserves or slot0 on DEXs to read pool reserves, or interacting
with periphery contracts). We exclude all candidate contracts that do not have a clear
majority (60% and more) of such DEX-related interaction. Note that the few candidates
removed all had very low interaction numbers (between 0% and 30%), while the large
majority of candidates have a very high DEX-interaction rate (85% or more).
Caller Profile Analysis: We examined the diversity of callers interacting with the
candidate contract and their frequency. If a candidate contract had (i) more than 3
distinct, and unrelated EOAs interacting with it and (ii) the frequency of interaction
could credibly have been human, we consider the contract to not be an MEV bot. With
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this validation heuristic, we err on the side of caution, as there are cases where specialized
MEV bots are triggered by multiple EOAs.

The few misclassified contracts we find are mainly due to popular mislabeled routers or
public utility contracts. These contracts are removed, and the remaining contracts form our
final MEV bot set Cbot.

5.3 Transaction-Level Classification
We classify each transaction in our study window (obtained through the respective table
{{chain}}.transactions [31]) according to three dimensions.

Transaction purpose (cyclicArb / other). The transaction is marked cyclicArb when
its first callee (the address in the to field) is a member of the validated MEV bot set Cbot;
otherwise it is marked other. This choice ties the label to the entity that originates the
on-chain action rather than to the presence of any particular pattern inside the trace.

DEX involvement (trade / interaction / residual). We scan swaps in dex.trades and
consider the full call trace ({{chain}}.traces). If the transaction itself emits at least one
swap event (e.g. Swap in Uniswap V2/V3 [7] or TokenExchange in Curve [3] as a result of
function calls such as Uniswap V2’s swapExactTokensForTokens, Uniswap V3 pool’s swap
method [7], or a Curve pool’s exchange function [3]), we label it trade. When no swap
is emitted but the trace touches a recognised DEX pool contract, typically via read-only
calls such as getReserves or slot0, the label assigned is interaction. (We use the table
dex.raw_pools to detect the existance of subcalls interacting with DEX-related contracts.)
All remaining transactions, which never enter a DEX contract, are labelled residual. The
three options are mutually exclusive and collectively exhaustive.

Execution outcome (success / revert). Finally, this dimension records the final on-chain
status of the transaction, based on its receipt. The transaction is marked as success when
execution was successful (status=1) and revert otherwise (status=0).

Together, these three categorical tags give each transaction a concise profile. For example,
cyclicArb - trade - success is the profile of a successful cyclic arbitrage transaction, while
cyclicArb - interaction - revert represents a failed probe that merely queried pool
reserves. Aggregating such profiles over time and across roll-ups lets us quantify optimistic
MEV prevalence, success rates, and failure modes under different L2 design choices such as
private mempools, sequencer ordering, low fees, and sub-second blocks.

6 Optimistic MEV Landscape

We commence our analysis of optimistic MEV by providing a broad overview of the landscape.
Our analysis focuses on the period from August 2023 to May 2025 and looks at three Layer
2 networks (i.e., Arbitrum, Base, and Optimism) in comparison to the Ethereum Layer 1.

Figure 6 shows the evolution of daily gas usage on Arbitrum, Base, and Optimism,
broken down by activity from addresses performing cyclicArb MEV and all other
activity. Throughout this work, we use the terms cyclicArb MEV and optimistic MEV
interchangeably. Each category is further subdivided into trade (transactions with executed
token swaps), interaction (on-chain probing or contract calls without token transfers), and
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Figure 2 Daily gas usage by transaction category on Arbitrum, Base, Optimism, and Ethereum
Layer 1. Each area shows gas consumed by cyclic-arbitrage MEV bots (cyclicArb) and all other
activity (other), subdivided into trade (transactions with executed swaps), interaction (on-chain
probing without swaps), and residual segments (see Section 5.3). The vertical green dashed line
marks the Dencun upgrade (EIP-4844), while the black dashed line indicates each network’s target
gas limit (“Gas Target” on Base, Optimism, and Ethereum; “Speed Limit” on Arbitrum).

residual activity (see Section 5.3). Notably, the share of gas consumed by optimistic MEV
bots (yellow, orange, and red) is very large on Base and Optimism in particular. The share of
gas attributed to cyclicArb - interaction transactions rises sharply over time, indicating
a surge in speculative, non-token-transfer, DEX contract probing activity associated with
optimistic MEV. On Base, this category becomes a dominant contributor to gas usage by
early 2025, accounting for 48% of total gas in the first quarter of the year. Overall, these
optimistic MEV bots performing cyclic arbitrage are responsible for 51% of Base’s gas usage
during this period. Further, gas usage from an optimistic MEV bot on Base exceeds the
entire block capacity of Ethereum Layer 1 by an order of magnitude. Optimism exhibits a
similar trend, though with a slightly delayed onset. By the first quarter of 2025, optimistic
MEV bots account for 55% of gas usage on Optimism, with cyclicArb - interaction
transactions specifically contributing 52%. In contrast, on Arbitrum and Ethereum Layer 1,
speculative MEV consumes a much smaller fraction of available blockspace.

Turning to Figure 3, where we show the relative change in daily gas usage on Arbitrum,
Base, Optimism, and Ethereum Layer 1, we can focus in on the relative usage of the respective
categories. Observe that on Base and Optimism cyclicArb - interaction activity surges
dramatically after Dencun, quickly outpacing executed arbitrages and consuming the majority
of newly available blockspace in 2025. In contrast to the two other Layer 2s, Arbitrum
shows no comparable increase in cyclicArb - interaction gas usage, suggesting differing
strategic dynamics or protocol-level constraints (e.g., transaction ordering, fees, or shorter
interblock times) that may discourage such speculative behavior. Finally, the trade share from
probing on the Ethereum Layer 1 remains flat, with trades by non-MEV actors dominant.
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Figure 3 Relative daily gas usage by transaction category on Arbitrum, Base, Optimism, and
Ethereum Layer 1. Each area shows gas consumed by cyclic-arbitrage MEV bots (cyclicArb) and
all other activity (other), subdivided into trade (transactions with executed swaps), interaction
(on-chain probing without swaps), and residual segments (see Section 5.3). The vertical green
dashed line marks the Dencun upgrade (EIP-4844).

We further observe an additional noticeable difference between the two OP-stack Layer
2s and Arbitrum and the Ethereum Layer 1 on the other side. The proportion of gas
usage related to cyclicArb MEV on Base and Optimism that do probing but do not
execute a trade (shown in orange, cyclicArb - interaction) is the most significant part
of speculative MEV gas usage since the Decun hard fork. To be exact, these transactions
account for 92% of cyclicArb MEV gas usage on Base and 91% of cyclicArb MEV
gas usage on Optimism since the Dencun hard fork. Thus, speculative probes that never
execute profitable trades consume nearly half of all gas on Base and Optimism, effectively
wasting valuable blockspace. In comparison, on Arbitrum, this behavior is far less common
(accounting for 36% of cyclicArb MEV gas usage since the Decun hard fork) and seemingly
non-existent on the Ethereum Layer 1 (accounting for 2.5% of cyclicArb MEV gas usage).
Thus, it appears that the cyclicArb MEV searchers behave more speculatively on Base
and Optimism, as a larger share of gas usage from them results in no successful trades.

Importantly, Figures 6 and 4 display the categorization without taking the last factor
(see success / revert in Section 5.3) in consideration. Since optimistic MEV searchers
often fail to capture arbitrage opportunities, one might expect a high revert rate among their
transactions. However, as shown in Appendix B, the gas consumed by reverted optimistic
MEV transactions is proportionally smaller on Base and Optimism than their share of
total gas usage. Thus, on Base and Optimism failed MEV attempts by cyclicArb bots
primarily show up as interaction-only transactions rather than reverts. By contrast, on
Arbitrum and Ethereum Layer 1, a substantial share of MEV-related gas goes to reverted
transactions, reflecting a higher rate of outright failures. This pattern aligns with the much
smaller proportion of interaction-only gas usage by MEV searchers on those networks. In
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summary, optimistic MEV searchers on Base and Optimism are both more active and more
speculative, as evidenced by their large share of (interaction-only) gas usage.

Next, we discuss possible factors driving the distinct behavior of optimistic MEV searchers
on OP-Stack rollups versus Arbitrum and Ethereum Layer 1. First, Arbitrum’s FCFS
transaction ordering, especially before the Timeboost mechanism,2 turns MEV extraction
into a latency race, disincentivizing on-chain speculative probing. For example, with FCFS
ordering, an optimistic MEV bot cannot specify a low-priority fee to sit at the end of the
block and capture price differences after other transactions execute. Instead, it must carefully
time its transaction submission, resulting in less control over its block position and over the
number of possible preceding transactions that create exploitable price differences.

Second, CEX-DEX arbitrage profits are known to scale with the square root of the
mean interblock time [54, 58]. Given that Arbitrum has shorter block times (approximately
250ms) compared to Base and Optimism (both 2s), the expected profits from CEX-DEX
arbitrage are lower on Arbitrum. This reduction in profitability likely discourages excessive
transaction spam. Conversely, the higher expected profits on Base and Optimism from
CEX-DEX arbitrage may also elevate profitability in DEX-DEX arbitrage, particularly for
pairs not actively traded on centralized exchanges. Once CEX-DEX arbitrage opportunities
are closed, residual price discrepancies can remain between DEX pairs, creating additional
cyclic arbitrage opportunities within the same Layer 2.

Finally, block capacity and transaction fees also appear to shape the prevalence of
optimistic MEV. In Figure 6, we see that immediately following the Dencun hardfork, Base
increased its gas target by roughly an order of magnitude (black dashed line), and Optimism
similarly raised its gas target. In contrast, Arbitrum’s speed limit (the equivalent throughput
cap) remained unchanged throughout our measurement window.
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Figure 4 Relative change in daily gas consumption for three categories — cyclic-arbitrage related,
other, and total — on Base and Optimism, normalized to 1 on the day of Dencun hardfork (i.e., 13
March 2024). Each curve shows how gas usage in each category evolves post-Dencun, highlighting
the divergent growth rates of optimistic MEV activity (i.e., cyclicArb MEV) versus all other
on-chain activity.

To examine this further, Figure 4 shows the relative change in daily gas consumption for
three categories (i.e., cyclicArb, other, and total activity (cyclicArb+other)) on Base

2 TimeBoost, introduced on Arbitrum on April 17, 2025, adds a sealed-bid second-price auction “express
lane” that allows users to submit transactions directly to the sequencer for prioritized inclusion [13].
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(left) and Optimism (right), each normalized to 1 on the day of the Dencun upgrade. In both
networks, cyclic-arbitrage MEV exhibits the largest increase, indicating that the additional
block capacity is largely consumed by optimistic MEV activity. Notably, on Optimism, there
is no consistent rise in gas usage by non-optimistic MEV transactions despite the higher
gas limit. This suggests that the main beneficiary of the additional blockspace is optimistic
MEV, with most of the new capacity consumed by on-chain computations that could be
done off-chain.

Turning to transaction fees, Figure 5 plots the daily median gas prices paid by optimistic
MEV bots on each Layer 2. Notably, Arbitrum enforces a floor of 0.01 GWei on its base fee
when demand falls below its speed limit [12]. In contrast, Base and Optimism follow the
EIP-1559 model, allowing fees to decline arbitrarily when demand is under the gas target.
This difference explains why Base and Optimism blocks appear consistently full (see Figure 6)
in comparison to target utilization, whereas Arbitrum’s blocks often show unused headroom.

Median gas prices paid by optimistic MEV bot transactions (i.e., those labeled as
cyclicArb MEV) starting from Dencun, further underscore these distinctions: Optimism
sees the lowest median price (0.0005 GWei), Base sits in the middle (0.0061 GWei), and
Arbitrum commands the highest median (0.01 GWei). Thus, the median price paid by
optimistic MEV bots on Optimism is a factor of 20 lower than on Arbitrum, while it is nearly
a factor of 2 lower on Base than on Arbitrum.3 Lower fees on Base and Optimism reduce
the cost of speculative probing, making optimistic MEV more profitable, while Arbitrum’s
relatively higher fee floor dampens such behavior. Thus, a final factor driving optimistic MEV
is the comparatively low fees on Base and Optimism. These reduced costs make speculative
probing more profitable on those networks, whereas Arbitrum’s higher fee floor suppresses
such behavior.
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Figure 5 Median gas price paid by optimistic MEV bots (i.e., cyclicArb MEV) on Optimism,
Base, and Arbitrum. For Base and Optimism, the plot show gas_price which includes base_fee +
priority_fee and for Arbitrum, it shows effective_gas_price.

Importantly, even though transactions from optimistic MEV searchers on Base and
Optimism account for more than half the gas usage in the first quarter of 2025. They

3 One reason the gap between Base and Arbitrum is smaller is that there is a short period where fees
on Base are higher than those on Arbitrum. Between late November 2024 and early January 2025, we
see the gas price paid by optimistic MEV bots on Base exceeding Arbitrum. The reason for this is the
congestion in the network during those periods caused by the sniper bots (see Appendix B).
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only account for 23% and 17% of the transaction fees paid, respectively. Thus, there is a
disconnect between the gas used and the fees paid. Optimistic MEV transactions pay less
for their transactions.
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Figure 6 Gas prices per gas unit from optimistic MEV bots (i.e., cyclicArb MEV) versus other
actors on Base (right) and Optimism (left) starting from the day of Dencun hardfork (i.e., 13 March
2024). Solid lines show the daily average gas price per gas unit paid by cyclicArb MEV bots (blue)
and other actors (orange), while dashed lines show the corresponding median fees. Both average
and median gas prices paid per gas unit by cyclicArb MEV bots are lower than those of others.

Next, we examine this fee discrepancy in more detail in Figure 5, which plots median and
mean gas price per unit gas paid by optimistic MEV bots (i.e., those classified as cyclicArb)
versus all other transactions on Base and Optimism over time.

On Base, in Q1 2025, the average gas price per gas paid by optimistic MEV bots is
0.0209 GWei, compared with 0.0710 GWei for all other transactions — a factor of 3.5
difference. When we consider the median instead of the mean, the gap narrows: MEV bots
pay a median of 0.0047 GWei, while the rest pay 0.0057 GWei. Notably, between April
and September 2024, there was a period when MEV bot transactions actually paid higher
average fees than other users. This shows that, although optimistic MEV bots tend to pay
less overall, the difference is smaller and more nuanced than one might expect.

On Optimism, the pattern is similar. In Q1 2025, the average gas price per gas for
MEV bots is 0.0042 GWei, versus 0.0252 GWei for other actors — a factor of 5 difference.
Median gas prices are 0.0003 GWei for MEV bots and 0.0007 GWei for the rest. Again, the
smaller median gap and occasional fee spikes by MEV bots in mid-2024 confirm that on-chain
probing does not always seek the absolute cheapest gas. Nonetheless, the high prevalence of
optimistic MEV correlates with periods of low gas prices after the Dencun hardfork, as we
saw previously.

We conclude by highlighting that in contrast to all three Layer 2s, Ethereum Layer 1
shows almost no significant gas usage in the cyclicArb - interaction category. Instead,
gas usage related to DEXes remains dominated by other - trade activity. Activities
resembling speculative probing, so prominent on Layer 2s, are largely negligible on Layer 1,
reinforcing the fundamental distinction in MEV dynamics between the two environments.
Overall, these findings support our core premise: optimistic MEV strategies are uniquely
fostered by the low-cost, high-throughput conditions of Layer 2 architectures.
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6.1 Characteristics of the Largest Cyclic Arbitrage Bots
We now turn our attention to the behavior and structure of the most active cyclicArb bots
on each network. Specifically, we analyze the top 10 bots by gas usage on Base, Optimism,
and Arbitrum, focusing on execution outcomes, code similarity, and operational architecture.

The statistics relevant to the top 10 bots (based on gas usage) are presented in the
following tables for Base (Table 1a), Optimism (Table 1b), and Arbitrum (Table 1c). The
primary metrics in the tables are defined as follows:
Swaps This metric represents the total number of individual swap operations executed as a

result of calls to the given MEV bot contract. Notably, a single on-chain transaction may
include multiple distinct swap operations.

Transactions With Trades This value represents the total number of unique transactions
that called the MEV bot contract and included one or more swap operations. It counts
transactions rather than individual swaps.

Non-Reverted Transactions This denotes the total number of transactions that called the
MEV bot contract and were successfully executed and committed on-chain.

Reverted Transactions This denotes the total number of transactions that called the MEV
bot contract but failed during execution (i.e., were reverted), and therefore did not result
in the intended state changes, although they still consumed gas.

Cumulative MEV Bot Gas (%) This value indicates the cumulative percentage of total
transaction gas consumed by MEV bot contracts. The percentage is calculated relative
to the total gas used by a defined set of contracts (i.e., all identified MEV bots within
the dataset C′

bots,chain) and is rounded to two decimal places.

Execution Outcomes and Bot Behavior Across Networks

A principal finding of our analysis concerns the execution outcomes of cyclic arbitrage
attempts by MEV bots. Across all three Layer 2 networks — Base, Optimism, and Arbitrum

— we observe that a large proportion of cyclic arbitrage attempts do not result in profitable
outcomes. However, the way unsuccessful attempts are handled differs substantially between
networks.

On OP-Stack-based networks (Base and Optimism), many unprofitable MEV transactions
still conclude successfully from the perspective of the Ethereum Virtual Machine (EVM);
that is, they do not revert (on Optimism revert rate is 0.01%, on Base 0.005%), even though
they fail to execute a profitable arbitrage. These transactions typically make no substantive
state changes apart from incurring transaction fees. This behavior implies that the primary
disincentive for speculative probing on these chains is economic (i.e., fees), not technical
failure. Despite their technical success, our analysis shows that the actual success rate
(defined as executing an arbitrage) is exceptionally low among the top contracts on Base
(0.58%) and Optimism (1.49%). This indicates a high volume of ultimately unsuccessful,
speculative execution.

In contrast, Arbitrum displays a different pattern. When transactions initiated by the top
cyclic arbitrage bots do not revert, they are overwhelmingly likely to result in a successful
arbitrage. There, the success rate of non-reverted transactions is 77%, while the overall
success rate (i.e., including those transactions that revert) is 56%. This suggests a more
selective or precise execution strategy. However, this high success rate for non-reverted
transactions is accompanied by a significantly higher incidence of reverts, relative to Base
and Optimism. Thus, Arbitrum-based bots appear to favor failing fast (via reverts) over
speculative probing.
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contract swaps
txs with
trades

non-reverted
txs

reverted
txs

cum. MEV
bot gas (%)

0xf5ff...a8c0 175,301 60,315 23,173,896 1 6.71
0xbff6...73e9 411,376 152,046 24,379,515 3700 11.76
0xaa87...fb84 128,100 65,074 14,680,490 535 15.16
0xddfa...abd3 42,715 15,948 9,032,099 84 17.90
0xdade...6084 148,186 51,864 5,338,322 28 19.42
0xe91c...96af 56,531 18,637 6,880,362 379 20.50
0x4e85...0cea 125,575 45,586 1,765,057 25 21.56
0x2b24...446f 65,548 22,627 3,542,945 9 22.58
0x826f...b5f5 343,999 106,016 5,009,861 3 23.58
0xbba9...3cf9 68,352 25,976 2,737,139 14 24.56

(a) Base

contract swaps
txs with
trades

non-reverted
txs

reverted
txs

cum. MEV
bot gas (%)

0x8872...6324 676,753 156,634 11,966,203 0 33.06
0xabf4...017c 29,586 8251 7,979,548 0 41.94
0xcdcc...5c8f 247,308 68,040 6,382,847 0 49.08
0xd3dc...f2ac 214,741 60,522 6,901,973 5 55.96
0x4d43...987f 208,002 47,459 2,322,899 10 62.34
0x3955...74c2 422,807 107,201 1,992,783 0 64.56
0x9d1b...f96f 37,920 9531 825,165 40 66.62
0x0daf...a7dd 398,174 105,069 2,299,930 0 68.51
0x2642...39e6 73,322 26,656 1,387,723 242 69.98
0xf261...c883 242,058 51,232 928,822 4004 71.44

(b) Optimism

contract swaps
txs with
trades

non-reverted
txs

reverted
txs

cum. MEV
bot gas (%)

0x0000...98bd 9,198,081 3,332,997 3,338,353 1,241,384 10.42
0x60ca...294b 4,678,101 1,712,054 4,355,290 26,968 18.68
0x6893...151c 4,042,223 1,699,855 1,708,167 1,087,474 24.28
0x9e52...5867 2,339,656 1,050,049 1,067,478 1,317,339 29.22
0xa9ff...d82f 426,428 347,885 348,021 51,732 32.67
0x0000...2e43 2,819,669 1,124,186 1,125,162 338,202 35.34
0x0000...fb51 1,291,025 500,639 503,320 290,686 37.53
0xf238...e145 273,136 114,445 585,063 2796 39.28
0xe98b...d87c 864,752 509,024 516,379 413,451 40.87
0x84f1...b7cf 349,243 225,913 252,743 251,681 42.46

(c) Arbitrum

Table 1 This table reports statistics for the top 10 MEV bot contracts (ranked by cumulative gas
usage) on Base (Table 1a), Optimism (Table 1b), and Arbitrum (Table 1c). For each contract, we
report: the total number of individual swap operations executed (swaps), the number of transactions
that included at least one swap (txs with trades), the number of transactions that executed without
reverting (non-reverted txs), and the number of transactions that reverted during execution (reverted
txs). The final column (cum. MEV bot gas (%)), indicates the cumulative share of gas consumed by
each contract, relative to all identified MEV bots on that chain.
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These findings were further validated through cross-referencing with a curated dataset
prepared by Entropy Advisors, an official partner of the Arbitrum Foundation [35, 34],
strengthening our confidence in the observed execution dynamics across networks.

Code Similarity and Cloning Behavior

To explore potential relationships among MEV-performing contracts, we conducted a bytecode
similarity analysis inspired by prior work on Ethereum contract topology by Kiffer et al. [49].
This revealed meaningful differences in code reuse and cloning behavior across networks.

Contracts deployed on Optimism and Base show a moderate degree of bytecode similarity,
suggesting some shared tooling or deployment patterns. In contrast, MEV contracts on
Arbitrum appear more structurally distinct, with fewer instances of directly shared or closely
related implementations. Among the three networks, Optimism exhibits the highest level
of intra-network code similarity, pointing to a relatively concentrated MEV ecosystem with
repeated use of identical or near-identical contracts — potentially indicating lower competitive
diversity.

We also identified clear examples of contract cloning behavior, particularly on Base (see
Appendix A). For instance, contracts deployed at addresses 0x2b24... and 0xdade... share
identical bytecode not only with each other but also with 48 additional contracts. All 50 of
these contracts engage in atomic arbitrage and are classified as MEV bots in our dataset [16].
Although none of these clones individually ranked among the top 10 gas consumers, their
collective presence underscores the widespread use of standardized MEV bot implementations.
This pattern may reflect coordinated deployments by a single actor or group.

On-Chain Logic and Execution Architecture

Further analysis of these cloned contracts reveals another striking pattern: the transaction
calldata passed to them is often minimal or non-informative (e.g., 0x0001), suggesting
that key arbitrage parameters are not set off-chain. As an example 0xdade... executed
51864 transactions with trade of which 50861 had 0x0001 as calldata. Instead, the contract
logic itself likely handles opportunity identification, path selection, and trade sizing through
real-time on-chain computation. This architecture relies heavily on internal heuristics and
on-chain state queries (e.g., via STATICCALLs), contrasting with more traditional MEV bots
where critical parameters are calculated off-chain and passed in via calldata.

Concentration of Gas Usage

We also compared the concentration of MEV bot activity across networks in terms of gas
usage. On Optimism, the top 10 MEV bots account for a disproportionately large share
of gas consumed by atomic arbitrage, suggesting a more concentrated and potentially less
competitive landscape. Arbitrum shows a slightly more distributed gas usage among top
bots, while Base has the most diffuse distribution. These trends align with recent shifts in
dominance across Layer 2s, with Base emerging as the most active MEV network, followed
by Arbitrum and then Optimism.

7 Drivers of Optimistic MEV

To move beyond descriptive patterns and develop a quantitative understanding of the drivers
of MEV activity on Layer 2 networks, we employ an OLS regression framework. The goal is
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to assess the statistical significance and direction of influence of various market and network-
level metrics on daily MEV fluctuations. By systematically analyzing these relationships, we
aim to identify the conditions under which MEV activity is amplified or suppressed across
evolving Layer 2 ecosystems.

Our analysis focuses on two dependent variables: the daily change in the total number
of transactions associated with cyclicArb bots (∆CyclicArbTxt) and the subset of those
transactions that execute trades (∆CyclicArbTxWTradet), described in detail below:

∆CyclicArbTxt (Change in Cyclic Arbitrage Transaction Count) The daily change in the
total number of transactions classified as cyclicArb (see Section 5.3) within our dataset
is measured by this variable.

∆CyclicArbTxWTradet (Change in Cyclic Arbitrage Trade Transaction Count) This vari-
able measures the daily change in the total number of transactions that are classified as
cyclicArb-trade.

This dual perspective allows us to distinguish between general cyclicArb activity and
the subset of transactions involving explicit on-chain value extraction through token trades,
cyclicArb-trade. Understanding these dynamics is crucial for assessing the efficiency of
Layer 2 markets and informing the design of potential mitigation strategies.

The regression equation is then specified as:

∆yt = β0 + β1 ·∆Pricet + β2 ·∆Volatilityt + β3 ·∆RetailTxst

+ β4 ·∆RetailAggFract + ϵt

where ∆xt = xt − xt−1 denotes the first difference of variable x at time t, and ϵt is the
error term. The independent variables are defined as follows:
∆Pricet (Change in ETH Price) This variable represents the daily change in the price of

ETH (denominated in US$).
∆Volatilityt (Change in ETH Volatility) This variable captures the daily change in intraday

volatility of ETH. Intraday volatility is computed using the Garman-Klass estimator [42,
51], defined for a given day as:

σOHLC =
√

0.5 · (ln H − ln L)2 − (2 ln 2− 1) · (ln C − ln O)2

where O, H, L, C are the Open, High, Low, and Close prices for ETH within the day,
respectively.

∆RetailTxst (Change in Retail Trade Count) This variable measures the daily change in
the total number of on-chain trades — defined as transactions involving at least one
swap — initiated by entities not classified as cyclicArb bots in our curated dataset,
i.e., other-trade.

∆RetailAggFract (Change in Retail Aggregator Usage) With this variable, we measure
the daily change in the fraction of trades by non-cyclic arbitrage bot addresses that are
routed through DEX aggregators:

RetailAggFract = RetailAggregatorTradest

RetailTxst

A lower value indicates a greater share of direct-to-pool trades, which may reflect routing
inefficiencies and create arbitrage opportunities [10, 72, 71]. However, not all direct trades
are necessarily exploitable, some may avoid introducing new arbitrage opportunities and
thus remain economically efficient, even without using an aggregator.
This metric excludes trades routed via standard Uniswap routers, which differ in function
and behavior from third-party DEX aggregators [8, 53, 40, 76, 77].
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We now turn to the empirical results of our regression analysis, presented in Table 2. The
models examine how the previously defined variables relate to daily fluctuations in cyclicArb
activity across Layer 2 networks. Specifically, we report results for two dependent variables:
the daily change in overall cyclicArb-related transactions (∆CyclicArbTx) and the daily
change in cyclicArb-related transactions involving DEX trades (∆CyclicArbTxWTrade).

∆CyclicArbTx
(1, Base)

∆CyclicArbTxWTrade
(2, Base)

∆CyclicArbTx
(1, Optimism)

∆CyclicArbTxWTrade
(2, Optimism)

∆CyclicArbTx
(1, Arbitrum)

∆CyclicArbTxWTrade
(2, Arbitrum)

const 2445.7691 173.5872 372.2486 44.9657 82.2414 32.3800
(6290.7125) (582.2378) (1066.6453) (152.2307) (437.4133) (177.3206)

∆Price -12608.7057 -1881.3146∗∗ -1156.6053 -454.8404 -25.9810 -357.1149
(10629.4760) (897.7109) (1421.6869) (298.1963) (706.7666) (264.1559)

∆Volatility 34112.7533∗∗∗ 8919.1607∗∗∗ 1323.4766 1289.5335∗∗∗ 2265.7813∗∗∗ 299.0799
(11474.9164) (913.0034) (1722.3345) (375.0010) (707.9527) (307.2508)

∆RetailTxs 23175.6525∗∗ 4172.5237∗∗∗ 2956.2109 3276.7001∗∗∗ 16024.0033∗∗∗ 8097.8011∗∗∗

(10917.7060) (1245.3633) (1837.3891) (532.7932) (904.0916) (360.9759)
∆RetailAggFrac 12230.8890∗∗ 1883.1927∗∗∗ -1785.4280 -1264.8155∗∗∗ -1524.6186∗∗∗ -1319.3665∗∗∗

(4756.1076) (442.2920) (1253.4087) (369.1399) (475.3803) (289.9207)

Obs 654 654 700 700 700 700
Adj. R2 0.0736 0.3399 0.0240 0.5818 0.7143 0.7898
F-stat 6.8461 31.7334 2.7295 57.8104 208.3965 265.6485

Table 2 OLS regression results for Base, Optimism, and Arbitrum. The dependent variables
are the daily change in cyclicArb-related transactions (∆CyclicArbTx) and the daily change
in cyclicArb-related transactions involving DEX trades (∆CyclicArbTxWTrade). Independent
variables include changes in ETH price, intraday volatility, the count of non-cyclicArb (other,
see Section 5.3) trades, and the fraction of those routed via DEX aggregators. Robust standard
errors are reported in parentheses. Significance levels: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

A consistent pattern across all three networks is that the model explains daily changes
in cyclicArb-trade transaction count (Model 2) substantially better than changes in
the broader cyclicArb transaction count (Model 1), as indicated by higher adjusted R2

values. This suggests that the chosen market variables are more directly associated with
cyclicArb behaviors involving on-chain value extraction (i.e., swaps, trade), rather than
speculative probing.

Arbitrum exhibits the best overall model fit, particularly for ∆CyclicArbTx category.
This likely reflects a tighter correlation between cyclicArb-trade transaction count and
total cyclicArb transaction count on that chain.

Comparative Analysis of Independent Variables

∆Price (Daily Change in ETH Price). The effect of ETH price fluctuations on cyclicArb
activity appears weak and inconsistent across networks:

Model 1: No statistically significant association between daily ETH price changes and
overall cyclicArb transaction count on any network.
Model 2: A statistically significant negative effect is observed on Base (−1881.31,
p < 0.05), suggesting that a sharp decrease in ETH price may increase the number of
cyclicArb-trade executions. The coefficients for Optimism and Arbitrum are also
negative but fall short of significance thresholds.

These findings suggest a higher prevalence of arbitrage opportunities on days marked
by ETH price declines. We propose two primary hypotheses for this observation. Firstly,
diminished market liquidity during price downturns [23] may lead to increased slippage and
suboptimal trade execution, thereby fostering greater price discrepancies [9]. Secondly, the



O. Solmaz, L. Heimbach, Y. Vonlanthen and R. Wattenhofer 19

predominance of long leverage in DeFi protocols [45] could result in a higher frequency of
liquidations on days with negative price movements. Such liquidations can trigger significant
price swings, which in turn may create further price disparities [66].

∆Volatility (Daily Change in ETH Volatility). Volatility, by contrast, plays a more signi-
ficant role:

Model 1: A strong and significant positive effect on Base (34112.75, p < 0.01) and
Arbitrum (2265.78, p < 0.01), indicating that volatility increases overall cyclicArb
transaction activity. No significant effect is observed on Optimism.
Model 2: A similarly strong positive effect is found for cyclicArb-trade transactions
on Base (8919.16, p < 0.01) and Optimism (1289.53, p < 0.01). On Arbitrum, however,
the coefficient is small and not statistically significant.

The widely held expectation that increased volatility fuels MEV activity is supported by
our results for cyclicArb-trade transactions on Base and Optimism [54, 48], as well as
for overall cyclicArb counts on Base and Arbitrum. However, the absence of a significant
volatility effect on the change of cyclicArb-trade on Arbitrum deserves special attention.
In a high-throughput setting with very short block times, an efficient CEX–DEX arbitrage
layer can continually realign each DEX price to its CEX counterpart, effectively erasing
intra-DEX cyclic arbitrage opportunities, regardless of volatility. Under such a “hierarchical
arbitrage” regime, volatility may drive cross-venue trades but leave purely on-chain cycles
unprofitable. This provides a possible explanation for why we observe little volatility-driven
cyclicArb trading on Arbitrum.

∆RetailTxs (Change in Retail Trade Count). Retail activity (used here as a proxy for
organic user flow) is consistently important for MEV trade behavior:

Model 1: Significant positive effects on Base (23175.65, p < 0.05) and Arbitrum
(16024.00, p < 0.01); not significant on Optimism.
Model 2: Strong and significant on all three networks (i.e., Base, Optimism, and
Arbitrum) all at p < 0.01.

These findings reinforce the idea that user-driven flow is the foundation for MEV extraction
via arbitrage. This is because user transactions, such as trades on DEXs, are the primary
actions that perturb market prices. These perturbations create transient price discrepancies
across different venues or asset pairs. cyclicArb bots then capitalize on these temporary
imbalances by executing arbitrage trades, effectively profiting from the price impact of the
initial user-driven activity. Thus, without the initial flow from users, the opportunities for
this form of MEV extraction would be significantly diminished. On the other hand, the lack
of significance for total cyclicArb transaction count on Optimism suggests that probing
or spam-like transactions may be more prevalent there, reducing the signal from genuine
trade-driven activity.

∆RetailAggFrac (Change in Aggregator Usage by Retail Users). This variable reveals
the most striking network divergence:

Model 1: Base shows a positive and significant effect (12230.89, p < 0.05); Arbitrum, a
significant negative effect (−1524.62, p < 0.01); Optimism shows no significance.
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Model 2: Base again shows a significant positive effect (1883.19, p < 0.01), while both
Optimism (−1264.82, p < 0.01) and Arbitrum (−1319.37, p < 0.01) show significant
negative effects.

Increased aggregator usage is generally indicative of more efficient transaction routing,
which we hypothesized would lead to fewer price discrepancies. However, the Base results
present a counterintuitive finding, as higher aggregator utilization did not correspond with a
reduction in naive arbitrage opportunities. Several hypotheses may explain this observation:

Many tokens on Base may have only one active pool, making direct-to-pool trades effect-
ively MEV-optimal (i.e., they do not open up an arbitrage opportunity) — undermining
the aggregator efficiency signal.
Aggregator usage may correlate with increased activity in major token pairs (e.g., ETH-
stables), especially during volatile periods, making RetailAggFrac a latent proxy for
volatility.

Thus, our use of RetailAggFrac as a proxy for the ratio between MEV-optimal Trades
and Total Trades, where MEV-optimal trades are those that do not introduce new arbitrage
opportunities, may be misaligned on Base due to its unique market structure.

On Optimism and Arbitrum, the expected pattern emerges: increased aggregator usage
correlates with reduced cyclicArb-trade activity, consistent with the role of aggregators
in mitigating simple arbitrage opportunities by improving trade routing.

Summary of Insights

The regression results demonstrate that some drivers of cyclicArb (such as user trade
count) are robust across networks. In contrast, other factors like volatility and aggregator
usage show strong network-specific effects, reflecting differences in market structure and
protocol design. These findings underscore that cyclicArb dynamics are not uniform across
Layer 2s, but are shaped by their unique configurations, including block times, mempool
behavior, and execution environments.

8 Outlook and Conclusion

In this work, we investigate the significant and large-scale impact of optimistic MEV on
Layer 2 networks, particularly within OP-Stack ecosystems where it accounts for more than
50% of gas usage. Our findings reveal that a confluence of factors, namely low transaction
fees, extended interblock times, and PGA ordering mechanisms prevalent on OP-Stack chains,
contributes to this extensive MEV activity.

The ramifications of this activity are substantial, manifesting as a phenomenon akin to
network spam. This spam-like behavior inundates the network with low-value transactions,
leading to inefficient resource allocation, wasted chain space, and potential degradation of
user experience. Critically, this also limits the network’s capacity to scale for higher-value or
user-driven activity, as blockspace is increasingly consumed by speculative probing.

Addressing this challenge is essential for the long-term sustainability of these networks.
A shift in network dynamics is necessary, either through the emergence of organic demand
willing to pay higher fees, thereby crowding out low-value MEV attempts, or through direct
interventions such as raising minimum transaction costs. Arbitrum, where different design
choices have demonstrated some efficacy in curbing similar behaviors, serves as a pertinent
case study for the latter approach.
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Further differentiating the network dynamics, our analysis uncovered that most unsuc-
cessful MEV attempts do not revert on OP-Stack Layer 2s, a stark contrast to Arbitrum,
where such reversions are common. This divergence is likely attributable to Arbitrum’s
FCFS transaction ordering, approximately tenfold shorter interblock times, and a distinct
fee market. These elements collectively appear to incentivize more deterministic behavior
from MEV bots on Arbitrum, as evidenced when comparing the strategies of top bots across
platforms, unlike the more speculative attempts observed on Optimism and Base. This
underscores how architectural and fee-market designs can significantly influence the strategies
of MEV bots and overall network congestion.
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A Contract Similarity

For every address4 that survives the manual audit, we retrieve the bytecode directly from
the nodes using the JSON–RPC call eth_getCode( <address>, "latest"). Next, we use
the Heimdall disassembler [17] to convert this bytecode into a sequence of EVM opcodes.
Following the method used by Kiffer et al. [49], we remove all operand data so that only the
opcode mnemonics remain. We then slide a five-opcode window over the cleaned stream
and count the occurrences of each unique chunk, producing a high-dimensional frequency
vector for each contract. Finally, we compute the cosine similarity between any two vectors
to quantify how closely their opcode patterns match. The key steps are summarized in the
following pseudocode:

Algorithm 1 Compute Contract Similarity Between Two Contracts

1: function Similarity(bytecode1, bytecode2)
2: dis1, dis2 ← disassemble(bytecode1), disassemble(bytecode2)
3: opcs1, opcs2 ← strip_opcodes(dis1), strip_opcodes(dis2)
4: freq_vec1,freq_vec2 ← compute_freq_vecs(c1=opcs1, c2=opcs2, N=5)
5: return freq_vec1·freq_vec2

∥freq_vec1∥∥freq_vec2∥
6: end function
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Figure 7 Cosine similarity scores between MEV bot contracts on Arbitrum, Base, and Optimism.
Each block along the diagonal (e.g., Arbitrum-1 through Arbitrum-X, Base-1 through Base-X,
Op-1 through Op-X) shows intra-network similarity, while off-diagonal blocks reveal inter-network
code reuse. High similarity values (closer to 1.0) indicate shared or cloned implementations, with
particularly tight clusters visible among Base contracts.

4 Although we focus only on the primary contracts, many arbitrage transactions also invoke auxiliary,
non-DEX “helper” contracts during execution.
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Figure 7 visualizes the pairwise cosine similarity between MEV bot contracts on Arbitrum,
Base, and Optimism using 5-opcode frequency vectors derived from each contract’s disas-
sembled bytecode. Along the diagonal, intra-network comparisons reveal that Base contracts
form tight clusters, indicating many bots share nearly identical implementations, while
Optimism shows a moderate level of code reuse and Arbitrum exhibits the greatest internal
diversity. Off-diagonal blocks show inter-network similarity: Base and Optimism share some
common code patterns, likely reflecting shared bot frameworks, but Arbitrum contracts
remain largely distinct from those on the other two chains. The prominent high-similarity
bands on Base confirm widespread cloning or redeployment of identical bot logic, whereas
the lighter, more sporadic similarities elsewhere suggest more heterogeneous or independently
developed MEV implementations.

B Reverts

Contrary to common assumptions [56], we find that most transaction reverts on Base are not
driven by failed atomic arbitrage attempts but by event-driven“liquidity-sniping” strategies
[21, 25]. In these cases, MEV bots monitor the on-chain pool for new token listings and
submit purchase transactions in the same block that liquidity is added. The first significant
surge in revert rates on Base coincided with bots back-running FriendTech share listings
as soon as new accounts launched [41]. Although Base’s mempool is private, a transient
transaction-pool leak enabled MEV bots to execute same-block back-runs [14] until the
vulnerability was patched [61]. MEV bots exploited the sequencer’s ordering by matching
user gas bids and spamming identical transactions; any duplicate that landed before the
user’s own transaction reverted, yet the low gas prices on Base made this spray-and-pray
approach profitable, as illustrated in block 2930614 [18, 19].
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Figure 8 Daily share of reverted transactions on Arbitrum, Base, Optimism, and Ethereum Layer
1, split between cyclic-arbitrage MEV bots (“Cyclic Arb. (Revert)”) and all other activity (“Other
(Revert)”).

Figure 8 shows that, although optimistic-MEV bots account for a large share of total
gas usage on Base and Optimism, they represent a substantially smaller fraction of reverted

https://basescan.org/block/2930614
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transactions. This disparity indicates that most reverts on these networks stem from non-
optimistic-MEV activity, chiefly liquidity-sniping, rather than failed arbitrage attempts.

Additionally, around late November 2024 and early January 2025, we see the most increase,
in absolute terms, in reverts on Base, which causes network fees to increase. These are
once again caused by sniper bots interacting with applications such as Clanker [24, 25] and
Virtuals [78]. Importantly, we note that these drive the median gas price paid by MEV bots
in our dataset during those periods as can be seen in the Figure 5.

C Algorithmic MEV Contract Detection (Extended)

This section explains the full MEV contract detection process shown in Section 5.1 in more
detail. This classification stage aimes to identify smart contracts exhibiting strong on-chain
signs consistent with atomic arbitrage activities.

The classifier was implemented entirely in Dune SQL, leveraging Dune Analytics’ data
tables and Torino engine. The core tables utilized are described in the following way:
dex_aggregator.trades [29] Utilized to identify and subsequently filter out known DEX

aggregator and router contract addresses, as these primarily act as intermediaries rather
than originating MEV actors, thereby reducing noise.

dex.trades [32] Provided swap events from DEXs, including essential fields such as tx_hash,
event index within the transaction (evt_index), transacted tokens, and amounts involved
in each swap.

dex.addresses [28] Served as a label database, crucial for identifying contract types (e.g.,
routers, liquidity pools, factories) and distinguishing them from potential MEV bot
contracts.

This process is formalized as follows:

Let A be the set of all externally owned accounts (EOAs), K the set of contract addresses, a
swap event, denoted as s, is defined as a 5-tuple:

s = (tokensold, tokenbought, amountsold, amountbought, idx) ∈ K×K× R+ × R+ × N

where:
tokensold is the contract address of the token sold.
tokenbought is the contract address of the token bought.
amountsold is the quantity of tokensold.
amountbought is the quantity of tokenbought.
idx is the intra-transaction index of the emitted swap log, preserving execution order.

Let S be the set of all possible swap events. A trade transaction, denoted as tr, associated
with a single blockchain transaction, is the set of all swap events s ∈ S that occurred within
that transaction. Thus, tr ∈ P(S).

A transaction is represented by a 4-tuple:

(hash, to, from, tr)

, where
hash is the transaction hash.
to ∈ K is the contract address that the transaction invoked first.
from ∈ A is the EOA that initiated the transaction.
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tr is the trade (set of swap events) executed within this transaction.
Let Traw be the set of all such transactions containing at least one swap event. We define a
feature extraction function f : P(S)→ Seq(K)×Map(K,R), where Seq(K) is the space of
sequences of token addresses and Map(K,R) is the space of mappings from token addresses
to real-valued balance changes. For a given trade tr = {s1, . . . , sk}, these swaps are first
ordered by their idx value, yielding an ordered sequence t̃r = ⟨ś1, ś2, . . . , śk⟩, where śj =
(tokensold,j , tokenbought,j). The function f(tr) then produces a pair (Π, ∆B):
1. Π = ⟨tokensold,1, tokenbought,1, . . . , tokensold,k, tokenbought,k⟩. This is an ordered sequence

of token addresses reflecting the actual path of token conversions in the transaction.
2. ∆B = {(κ, δκ)|κ ∈ K, δκ ∈ R}. This is a map representing the net balance changes

after the transaction from the initiator’s perspective across all tokens involved in the
trade tr. Specifically, for each token κ, δκ =

∑k
j=1(amountbought,j · I(tokenbought,j =

κ)− amountsold,j · I(tokensold,j = κ)), where I(·) is the indicator function.
Let T ′ be the set of transactions transformed by f :

T ′ = {(hash, to, from, f(tr)) | (hash, to, from, tr) ∈ Traw}

An element in T ′ is of the form (hash, to, from, (Π, ∆B)). Then, we apply three sequential
filters (α1, α2, α3) to T ′:
1. Filter α1 (Router/Aggregator Exclusion): Let Rcontracts and Acontracts be the sets

of known router and aggregator contract addresses, respectively. This filter removes
transactions directly interacting with these intermediary contracts.

T (1) = α1(T ′) = {(hash, to, from, (Π, ∆B)) ∈ T ′ | to /∈ (Rcontracts ∪ Acontracts)}

2. Filter α2 (Cyclic Swap Detection): This filter identifies transactions whose sequence
of token swaps Π = ⟨π1, π2, . . . , π2k⟩ forms a cycle. The predicate isCyclic(Π) holds true
if:

k ≥ 1 (i.e., there is at least one swap).
π1 = π2k (the first token sold is the same as the last token bought).
For all j ∈ {1, . . . , k − 1}, π2j = π2j+1 (the token bought in the j-th swap is the same
as the token sold in the (j + 1)-th swap, ensuring path continuity).

T (2) = α2(T (1)) = {(hash, to, from, (Π, ∆B)) ∈ T (1) | isCyclic(Π)}

3. Filter α3 (Profitability Assessment): This filter retains transactions that result in a
net profit for a token without incurring losses in any other token. It evaluates the balance
changes map ∆B . The predicate isProfitable(∆B) holds true if:

There exists at least one token κ such that its balance change δκ is strictly positive
(δκ > 0).
For all token balance changes δκ′ , δκ′ ≥ 0 (i.e., there are no negative balance changes).

T (3) = α3(T (2)) = {(hash, to, from, (Π, ∆B)) ∈ T (2) | isProfitable(∆B)}

Combining these filters, the set of transactions identified as high-probability atomic arbitrage
is Tfinal = T (3). As the final step of the algorithmic pre-filter, the set of contract addresses
marked as high-probability atomic arbitrage bots, Cbot, is derived from these transactions:

Cbot = {to | (hash, to, from, (Π, ∆B)) ∈ Tfinal}

These contracts are then passed to the subsequent validation stage.
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