
ar
X

iv
:2

50
6.

14
58

2v
1

 [
cs

.C
R

]
 1

7
Ju

n
20

25

Busting the Paper Ballot: Voting Meets Adversarial Machine
Learning

Kaleel Mahmood
University of Rhode Island

Department of Computer Science and
Statistics

Kingston, Rhode Island, United States
kaleel.mahmood@uri.edu

Caleb Manicke
University of Connecticut
Voting Technology Center

Storrs, Connecticut, United States
caleb.manicke@uconn.edu

Ethan Rathbun
Northeastern University

Khoury College of Computer Sciences
Boston, Massachusetts, United States

rathbun.e@northeastern.edu

Aayushi Verma
University of Connecticut
Voting Technology Center

Storrs, Connecticut, United States
aayushi.verma@uconn.edu

Sohaib Ahmad
University of Connecticut
Voting Technology Center

Storrs, Connecticut, United States
sohaib.ahmad@uconn.edu

Nicholas Stamatakis
Stony Brook University

Department of Computer Science
Stony Brook, New York, United States

nikola268345@gmail.com

Laurent Michel
Synchrony Chair in Cybersecurity

University of Connecticut
Voting Technology Center

Storrs, Connecticut, United States
laurent.michel@uconn.edu

Benjamin Fuller
University of Connecticut
Voting Technology Center

Storrs, Connecticut, United States
benjamin.fuller@uconn.edu

ABSTRACT
We show the security risk associated with using machine learning
classifiers in United States election tabulators. The central classifi-
cation task in election tabulation is deciding whether a mark does
or does not appear on a bubble associated to an alternative in a
contest on the ballot. Barretto et al. (E-Vote-ID 2021) reported that
convolutional neural networks are a viable option in this field, as
they outperform simple feature-based classifiers.

Our contributions to election security can be divided into four
parts. To demonstrate and analyze the hypothetical vulnerability of
machine learning models on election tabulators, we first introduce
four new ballot datasets. Second, we train and test a variety of
different models on our new datasets. These models include support
vector machines, convolutional neural networks (a basic CNN, VGG
and ResNet), and vision transformers (Twins and CaiT). Third,
using our new datasets and trained models, we demonstrate that
traditional white box attacks are ineffective in the voting domain
due to gradient masking. Our analyses further reveal that gradient
masking is a product of numerical instability. We use a modified
difference of logits ratio loss to overcome this issue (Croce and Hein,
ICML 2020). Fourth, in the physical world, we conduct attacks with
the adversarial examples generated using our new methods. In
traditional adversarial machine learning, a high (50% or greater)
attack success rate is ideal. However, for certain elections, even a 5%
attack success rate can flip the outcome of a race. We show such an

CCS ’25, October 13–17, 2025, Taipei, Taiwan.
© 2025 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2025 ACM SIGSAC Conference on Computer and Communications Security (CCS ’25),
October 13–17, 2025, Taipei, Taiwan, https://doi.org/10.1145/3719027.3744882.

impact is possible in the physical domain. We thoroughly discuss
attack realism, and the challenges and practicality associated with
printing and scanning ballot adversarial examples.

KEYWORDS
Election Security, Adversarial Machine Learning

ACM Reference Format:
Kaleel Mahmood, Caleb Manicke, Ethan Rathbun, Aayushi Verma, Sohaib
Ahmad, Nicholas Stamatakis, Laurent Michel, and Benjamin Fuller. 2025.
Busting the Paper Ballot: Voting Meets Adversarial Machine Learning. In
Proceedings of the 2025 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3719027.3744882

1 INTRODUCTION
Elections in the United States are decentralized and conducted by
the states. The Help America Vote Act of 2002 prompted all states
to modernize their voting infrastructure and retire lever machines.
States overwhelmingly adopted voter marked paper ballots that
yield a “voter verifiable paper audit tail” or VVPAT [1] and are
scanned and counted by digital tabulators. According to Verified
Voting Database, 69.2% of tabulators are scanners and 25.9% are
ballot marking devices (BMD), leaving only a 4.9% market share for
direct recording devices that do not use paper at all.1 To assess the
voter selection for any contest on a ballot, the tabulator determines
whether bubbles associated to alternatives in the contest are blank
or marked. Namely, the core task is to carry out a binary classifi-
cation on the digital image of a bubble. Barreto et al. argued that

1We exclude ballot marking devices that print two versions of the voter’s preferences:
one readable by the voter and a machine interpretation such as a QR code that is
ingested by the tabulation.

https://orcid.org/0000-0002-7672-4449
https://orcid.org/0009-0007-6409-5343
https://orcid.org/0000-0003-2396-4569
https://orcid.org/0000-0001-6720-0507
https://orcid.org/0009-0000-1440-7192
https://orcid.org/0000-0001-7230-7130
https://orcid.org/0000-0002-5437-2489
https://doi.org/10.1145/3719027.3744882
https://doi.org/10.1145/3719027.3744882
https://www.eac.gov/about/help_america_vote_act.aspx
https://verifiedvoting.org/verifier/#mode/navigate/map/ppEquip/mapType/normal/year/2024
https://verifiedvoting.org/verifier/#mode/navigate/map/ppEquip/mapType/normal/year/2024
https://arxiv.org/abs/2506.14582v1

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Mahmood, Manicke, Rathbun, Verma, Ahmad, Stamatakis, Michel, Fuller

Convolutional Neural Networks (CNNs) [2] are suitable for ballot
mark recognition with up to 99.9% accuracy on manually labeled
ballots. However, machine learning classifiers are vulnerable to ad-
versarial examples [3] where an imperceptible perturbation added
to the input induces a misclassification.

This paper explores the susceptibility of machine learning classifiers
to adversarial attacks when presented with images of bubbles from
the voting domain. Specifically, our paper introduces attacks where
one can implant adversarial machine learning examples [3–5] on
ballots handled by the voter before it is fed to the tabulator. An
adversarial signal is visually imperceptible (to a human), yet alters
the classification results.We focus on attacks that could be conducted
by a compromised vendor that prints ballots. The attacker’s goal is
to print a ballot that appears empty but where some bubbles are
interpreted as marked by the tabulator. We detail our threat model
in Section 4. This voting domain is unique for the following reasons:

(1) It focuses on a deceptively simple binary classification.
(2) Voluntary voting system guidelines (VVSG) 2.0 require pub-

lication by vendors of the mechanisms used to classify a
bubble,2 making white box attacks realistic.

(3) The attacker has to print a signal on paper which is scanned.
Effects such as printer dithering must be considered. Kurakin
et al. [6] previously considered attacks in the physical world.
Our physical world setting differs from prior work.

(4) There are no agreed-upon labeled datasets for mark clas-
sification. Human auditors are expected to capture voter
intent with guidelines that vary by state (see discussion in
Section 3.1).

(5) An attacker can freely reuse adversarial examples; bubbles
printed on a ballot are supposed to be identical.

(6) Election equipment has a long life cycle. Deploying vulnera-
ble models carries lasting risks.

We conduct our attacks on six representative models, a support
vector machine (SVM), a three-layer CNN that we call SimpleCNN,
VGG-16 CNN [7], a ResNet-20 CNN [8], Class Attention in Image
Transformer (CaiT) [9], and the Twins vision transformer [10].

Our Contribution.We demonstrate the hypothetical vulnerability
of using machine learning classifiers in bubble recognition in both
the digital and physical setting. In doing so we make the following
contributions:

(1) New Labeled Voting Datasets: We introduce four new
labeled ballot datasets (two grayscale and two color) for
training machine learning classifiers for ballot mark recog-
nition [11].

(2) Gradient Masking on Voting Datasets: We show that for
the three convolutional models, the conventional application
of white-box attacks (APGD [12], PGD [13] and MIM [14])
does not work. Models show robustness > 0 when the ad-
versary can apply unbounded perturbations. This failure is
attributed to numerical instability causing gradients in back-
propagation to be reported as 0, despite the models achieving
high accuracy during training. To the best of our knowledge,
all previous examples of gradient masking occurred via de-
fensive methods to stop adversarial examples [15].

2Requirement 1.1.6G and accompanying discussion.

(3) Overcoming Gradient Masking:Wemodify the difference
of logits ratio (DLR) proposed by Croce andHein [12] towork
for binary classification (our modification can be viewed as
an untargeted version of Carlini and Wagner’s loss [16]).

(4) Physical Attacks: We show that the printing and scanning
process (using commodity equipment) drastically degrades
the adversarial attack signal. Despite this, some attacks on
some models are effective enough to still impact election
races with small margins where many voters do not specify
a preference.

Disclaimer. We intentionally target common classification models
rather than any model used by a tabulator. No tabulator manufac-
turers has been certified to VVSG 2.0, so details are not yet available
on their classification methods. The purpose of this work is to high-
light the risk in potentially deploying machine learning models in
these systems. As discussed in Appendix C on ethical considera-
tions, our target machine learning models are chosen to cover the
design space. They are not an attempt to recreate choices made
by vendors. Ballot printers are specialized vendors with long-term
relationships with municipalities. We believe an external attack on
a vendor is more likely than an insider intentionally compromising
ballot printing.

Paper Organization. Section 2 details election systems in the
United States. Section 3 present the new datasets and classifiers
under test. Section 4 describes our adversarial threat model and
adversarial example generation methods. Section 5 shows that gra-
dient masking occurs on our datasets after standard training. Sec-
tion 6 how DLR overcomes gradient masking. Section 7 presents
our experimental results and analyses in the digital domain. Sec-
tion 8 details our physical domain attack results. Section 9 con-
cludes and presents open questions. Our Appendix contains fur-
ther experimental details. Classifiers under test and attacks are at
https://github.com/VoterCenter/Busting-the-Ballot.

2 VOTING IN THE UNITED STATES AND
PRIORWORK

This section provides an overview of voting practices and related
security research in the United States. Voting processes are meant
to enforce the 1-voter to 1-vote principle to assure fairness. Voting
by mail and voting in person rely on different processes suitable
to each modality. This work focuses on in-person voting. This
process involves multiple steps 1) checking-in voters, 2) handing
out ballots, 3) voting and casting of a ballot and 4) tabulating the
results. This paper further restricts its scope to the latter steps of
this pipeline: voting, casting and tabulating. Voting systems used
in the U.S. include:34

Ballot Scanners. Take in ballots with bubbles and determine which
bubbles on the ballot have been filled in. The appeal of scanners
(used in 66.6% of the U.S.) is that ballots are typicallymarked directly
by voters and form a VVPAT. The VVPAT can be used for machine
independent audits.

3See an overview at Verified Voting. Observe that smaller categories exist, including
DREs, that create voter-verifiable paper trails.
4Eliding research on Internet [17] and cryptographic [18–20] voting.

https://www.eac.gov/voting-equipment/voluntary-voting-system-guidelines
https://www.eac.gov/voting-equipment/voluntary-voting-system-guidelines
https://github.com/VoterCenter/Busting-the-Ballot
https://verifiedvoting.org/votingequipment/

Busting the Paper Ballot CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Ballot Marking Devices. Provide the necessary means to fill bub-
bles on behalf of the voter based on an alternate (often digital and
computerized) input mechanism instead of a pen. A voter using
a BMD fills in a digital artifact, that creates a printout of a filled
ballot. Some BMDs fill in bubbles and rely on conventional paper
ballots. Others encode the ballot in a machine readable format (like
a QR code, or a barcode) or print the selection in each race as plain
text.5 Selections, conveyed through filled bubbles, are interpreted
primarily by a tabulator as in the previous method. Precincts with
BMDs account for 25.9% of the U.S. electorate.

Direct Recording Equipment. Voters use an interface to state
their preferences and the machine records these preferences and
adds them to a tabulation. The DRE device is used for all 3 stages:
encoding a ballot, casting the ballot and tabulating all the ballots.
There is no paper artifact of the voter’s preferences. These systems
are used in roughly 4% of the U.S.6 Ourwork does not apply to DREs,
but these systems are shunned due to the lack of a VVPAT [21].

2.1 Types of Ballot Scanners
Ballot scanners are given a page containing several questions, each
with multiple outcomes that can be chosen by filling a bubble.
The scanner classifies each bubble as a blank or a marked bubble.
These determinations are then used with election-specific rules to
determine the votes.

Optical Lens Systems. This analog technology is ubiquitous in
standardized tests where examinees fill bubble sheets that convey
answers. Each page features timing marks (black rectangles) on its
edges to hint at the position of logical rows and columns. All the
bubbles on the page form a matrix and are addressable based on
their row and column indices. Scanners process one row at a time
(when facing a row timing mark), effectively opening an analog
sensor to collect reflected light. The machine has a light sensor in
each column position. If a bubble is filled, it absorbs more light than
a blank bubble. Whether bubbles are read as marked depends on
the thresholds and sensitivity of the sensors. Image segmentation
is a function of timing marks and sensor position.

Full Image Scanners. Off-the-shelves full-image scanners are also
used. Modern hardware can record anything from 100 dots-per-
inch to 1200 dots-per-inch. Given a 8x11 US letter page, a 200 DPI
resolution implies that each row has 1700 = 8.5 · 200 pixels and
a grand total of 2200 = 11 · 200 rows. Sensors typically captures
several rows at a time and the pixels are physically arranged in a so
called Bayer pattern. The firmware of the scanner (or the driver on
the host computer) converts the Bayer matrix of grayscale values
into a matrix of RGB values by reconstructing the missing color
values through interpolation. This process is known as debayering
or demosaicing [22]. The end result is a RGB pixels where each
color channel is grayscale and uses 8 bits per pixel. Pulling the page
over the sensor is a mechanical process subject to acceleration and
deceleration. The sensor sensitivity impacts the color rendition of
the device. Once acquired by a COTS Scanner, an image is analyzed
using the following steps:

5A recent executive order, Preserving and Protecting the Integrity of American Elec-
tions, asks for all preferences to be printed in plain text.
6There are variants not reviewed here so the numbers do not add to 100%.

• Stretching The raw image has an effective DPI rate that varies
with the acceleration of the ballot. A correction inverts this
stretch to bring features closer to their true relative location.

• Registration A constellation of geometric features identified
on a reference ballot are used to align any incoming scan
with the reference image. Once this is done, a bubble at
coordinate (𝑥,𝑦) in the reference image is expected to be at
coordinate (𝑥,𝑦) in the registered scan.

• Chromatic Correction An ICC profile corrects the colors in
the image to bring them as close as possible to the true colors
based on a device specific colorimetry calibration.

• Segmentation The location of the bubbles on the reference
image is used to locate and clip out small RGB bitmaps that
contain the actual bubbles.

• Classification The final step classifies each bitmap as a blank
bubble or a marked bubble.

Once bubbles are classified as blanks or marks, each race on the bal-
lot can be tabulated according to the rules of the race. The ultimate
tabulation stage is not the object of this paper. We also assume that
all stages up to and including segmentation are accurate.

Prior Work. Tabulation security received renewed attention [23–
32] after the Help America Vote Act in 2002. Issues ranged from
unprotected serial ports, manipulation of election definitions, and
exploitation of poorly designed cryptography. Procedures including
risk-limiting audits or RLAs [33–37] were created to deal with these
vulnerabilities. Note that RLAs only detect whether there is an error
in the reported outcome. Detecting the root cause of such errors
can be complicated or impossible. Other classes of vulnerabilities
include lax adherence to policy [38]. Procedures and requirements
are formalized in voluntary voting system guidelines or VVSG [39–
41].

Vulnerabilities persists in modern systems [42] including the
fact that voters do not always inspect the output of BMDs [43, 44].
Imprinting of identifiers on ballots at tabulation time, which enables
more efficient RLAs (see discussion in [36]), also requires careful
use of cryptography [45]. These vulnerabilities have rightly placed
the design of secure ballot tabulation devices as a primary focus for
the community.

3 DATASETS / CLASSIFIER ARCHITECTURES
This section introduces four new datasets of segmented regions on
a ballot for interpretation. These are images of bubbles. For each
dataset, we define its properties and utility for further investigation.
Datasets and the accompanying software are released alongside
this paper. The remainder of the section reviews each ML classifiers
and explains the purpose for inclusion in the analyses.

3.1 New Bubble Datasets
Images are segmented using ballot geometry. We do not consider
image segmentation as an attack target. Mark interpretation is a
supervised binary classification problem, requiring representative
datasets of marks and empty bubbles [2]. The segmented images
are 40 × 50 pixels. Fully darkened bubbles should be interpreted as
marks while empty bubbles should be interpreted as nonmarks. Nat-
urally, one would need some separation oracle to define a boundary
between marks and nonmarks. No matter what oracle is chosen,

https://www.whitehouse.gov/presidential-actions/2025/03/preserving-and-protecting-the-integrity-of-american-elections/
https://www.whitehouse.gov/presidential-actions/2025/03/preserving-and-protecting-the-integrity-of-american-elections/
https://en.wikipedia.org/wiki/ICC_profile
https://www.eac.gov/about/help_america_vote_act.aspx

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Mahmood, Manicke, Rathbun, Verma, Ahmad, Stamatakis, Michel, Fuller

𝐌𝐚𝐫𝐤 𝐍𝐨𝐧𝐌𝐚𝐫𝐤 𝐒𝐰𝐚𝐭𝐜𝐡

Figure 1: Types of examples in our dataset. The swatches are
artificial marks designed to be close to the border between a
mark and a non-mark for an optical scan. The darker back-
grounds are the result of using colored stock paper.

some images will be very close to the boundary. Such images are
called marginal marks [46] and may include samples such as check-
marks, crosses, lightly filled or even accidentally filled bubbles,
see [46, Table 1]. Rules for interpreting marginal marks vary across
municipalities. The desire to account for voter intent7 complicates
the question of what images should be in a training set and how
they should be labeled. In all datasets, labels are produced from an
optical lens scanner. Finally, images may be captured as grayscale
(8 bpp) or color (RGB, 24 bpp) artifacts. We present four datasets.

Gray-B uses 42,679 images (40 × 50, 8 bpp) with blank (35,429
images) and filled (7,250 images) bubbles but no marginal marks.
RGB-B a 24 bpp color (RGB) version of Gray-B.

Gray-C augments Gray-B with a collection of marginal marks
called “swatches” shown in Figure 1. Swatches are images that vary
the position of signal to create samples close to the boundary of
an optical lens scanner. The 423,703 randomly generated swatches
place equal amounts of random noise throughout each image such
that the amount of light is the same. This yields 466,382 labeled
images. RGB-C is a 24bpp color (RGB) version of Gray-C.

Related Voting Datasets. Two other datasets have been used in
voting classification research, these are the Humboldt and Pueblo
County Datasets. TheHumboldt county dataset emerged fromHum-
boldt County Election Transparency Project but it is not labeled
and we did not have access to a ballot geometry file or a scanner
capable of providing labels. Pueblo County allows one to access
individual ballot images along with the tabulator interpretation.
However, we could not access the entire dataset programmatically.

3.2 Machine Learning Classifiers
This section briefly describes each machine learning model and
justifies its inclusion. Details regarding the training and hyper-
parameters are given in our anonymous repository.

Support Vector Machine (SVM). SVMs support linear classifica-
tion [47, 48]. An SVM maximizes the distance between its decision
boundary and inputs of each class label in the training set. We used
standard linear kernels to represent a simple classifier. Our SVM
has 2,001 trainable parameters for Gray-B and Gray-C and 6,001
trainable parameters for the RGB datasets.

Non-linear kernels such as RBF (Radial Basis Function) could
be used to characterize the boundary of non-linearly separable

7Voter Intent Laws Map shows different guidelines, see for example Colorado’s guide-
lines.

regions. A non-linear kernel function maps the original data to a
higher dimensional space where linear separation may occur [49].
Using kernel functions with SVMs is often done on challenging
datasets [50, 51]. Exploring the effectiveness of a non-linear kernel
such as RBF is future work.

Why we selected it: The linear SVM represents one of the simplest
machine learning models that achieves high accuracy on both the
Gray-B and RGB-B datasets. Evaluating the SVM allows us to better
understand how robust low-complexity models are to adversarial
attacks with voting datasets.

SimpleCNN. Convolutional models are commonly used for im-
age recognition and classification [52]. SimpleCNN is a shallow
convolutional neural network that consists of three identical convo-
lutional layers for a total of 28,818 trainable parameters (grayscale)
and 29,394 trainable parameters (RGB).

Why we selected it: SimpleCNN bridges the gap in complex-
ity between the linear SVM and deep convolutional neural net-
works. Its simple architecture provides a lower-bound accuracy for
convolution-based models.

Very Deep Convolutional Network (VGG-16). The VGGNet
is a classic convolutional model made to improve AlexNet [53]. The
VGGNet architecture restricts the filter size in each convolutional
layer to 3× 3. When introduced, VGGNet achieved the largest layer
depth when compared to other convolutional models of its time [54].
Our VGG-16 grayscale model has 14,723,010 trainable parameters.

Whywe selected it: The VGG is the first “deep" convolution-based
neural network. This made the VGG-16 one of the most common
benchmarks in traditional image classification [8, 55, 56].

Residual Networks (ResNets). Vanilla deep convolutional neural
networks are susceptible to accuracy degradation [57, 58]. Residual
Networks (ResNets) [8] offer a solution to this issue. ResNets rely on
skip connections between layers. We test a ResNet-20 with 568,033
trainable parameters (grayscale) and 568,321 trainable parameters
(RGB).

Why we selected it: ResNets are one of the most widely used types
of convolutional neural network. They have been employed in both
traditional image classification [59] and in adversarial machine
learning extensively [60, 61].

CaiT. Vision transformers are an emerging alternative to convo-
lutional neural networks. Vision transformers benefit from pre-
training and their performance excel on image datasets [62]. How-
ever, many deep vision transformers suffer from gradient instability
and poor feature learning. The Class-Attention in Image Transform-
ers (CaiT) is designed to address these issues in vision transform-
ers [62]. First, a learnable scale parameter is added to regularize
residual connections between transformer blocks. Second, CaiT
introduces the Class-Attention layer that extracts discriminative
features from a class embedding and processed patch embeddings.
CaiT has 56,730,626 trainable parameters for our RGB models.

Why we selected it: CaiT is one of the state-of-the-art transformer
models that has shown excellent performance on image classifica-
tion tasks. Therefore, it is a natural choice to use as one transformer
based alternative to convolutional neural networks.

https://electionstransparencyproject.com/
https://electionstransparencyproject.com/
https://county.pueblo.org/clerk-and-recorder-department/ballot-images
https://anonymous.4open.science/r/Busting-the-Ballot
https://www.lgbtmap.org/democracy-maps/voter_intent_laws
https://moffatcounty.colorado.gov/sites/moffatcounty/files/voterIntentGuide.pdf
https://moffatcounty.colorado.gov/sites/moffatcounty/files/voterIntentGuide.pdf

Busting the Paper Ballot CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Model (Trained On) Training Accuracy Validation Accuracy
Bubbles Combined Bubbles Combined

SVM-B 1.0000 .5411 1.0000 .7888
SimpleCNN-B .9999 .5776 .9999 .7779
VGG-16-B 1.0000 .5351 1.0000 .7859
ResNet-20-B .9996 .5346 .9998 .7856
Twins-B 1.0000 .5339 1.0000 .7852
CaiT-B 1.0000 .5363 1.0000 .7862
SVM-C .9473 .7265 .9171 .5953
SimpleCNN-C 1.0000 .9077 1.0000 .9170
VGG-16-C 1.0000 .9224 .9999 .9300
ResNet-20-C .9997 .9896 .9999 .9087
Twins-C 1.0000 .9194 1.0000 .9357
CaiT-C .9995 .9069 .9995 .9198

Table 1: Clean training and validation accuracies on bubble
and combined datasets for grayscale models.

Twins. The Twins family [10] refines the base vision transformer ar-
chitecture. We test the Twins-SVT-B architecture. It utilizes locally-
grouped self-attention along with globally sub-sampled attention
to improve the model’s performance while solely relying on ma-
trix operation to produce predictions. The Twins model trained
on grayscale data has 56,067,880 trainable parameters, whereas for
RGB it has 56,070,952 parameters.

Why we selected it: Twins is another representative transformer
architecture (like CaiT) with excellent performance on vision tasks.

To summarize, we chose six models across a variety of architec-
tures, linear, convolutional, and attention-based, and sizes, from 2K
parameters to nearly 57M.

3.3 ML Classifier Performance on Voting
Datasets

We focus on the performance of grayscale models. We do not ob-
serve meaningful variation of trends or results when training on
color models.

All six classifiers were trained on the two gray datasets. Table 1
reports the clean training and validation accuracy for the grayscale
models. Two trends are readily apparent. All models, except the
SVM trained on Combined, achieve a 99% or greater test accuracy
on the easy Gray-B validation sets, regardless of whether they were
trained on Gray-B or Gray-C. When testing on easy marks, all
classifiers are effective, irrespective of their training sets.

Second, high testing accuracy on Gray-C (Combined columns)
is not achieved by only training on Gray-B (-B rows). The testing
accuracies are below 80%. Training on Gray-C (the -C rows) yields
better testing accuracies that range from just 59.6% in grayscale
for the SVM to as high as 93.6% for Twins. The SVM model is an
exception, performance on Combined degrades when trained on
combined examples. We hypothesize the SVM is overfitting its
linear boundary to the swatch examples which we believe are close
to the true “boundary” of the optical scanner.

As mentioned above, an accurate decision boundary for marks
other than fully filled bubbles is crucial in real elections. The phe-
nomenon of needing a deep model for high accuracy on complex
datasets is consistent with Barretto et al. [2].

4 ADVERSARIAL THREAT MODEL AND
ADVERSARIAL EXAMPLE GENERATION

We assume an attacker that compromises ballot printing. The at-
tacker delivers the adversarial examples at the printing stage when
blank ballots are either produced, stored in a warehouse, or shipped.
The attacker creates printed ballots to be filled out by voters and
cast in a tabulator. The attacker has full control of the ballot image
and all bubbles must visually appear to be empty at the onset. As
this “empty” ballot will be inspected and filled by a voter, the goal
is to change the classifier output from non-mark to mark while the
added signal remains imperceptible.

As we discuss in Section 4.2, one does not need to impact tabula-
tor accuracy much to have an impact, Table 2 shows the number of
close state legislative races in battleground states in the 2020 United
States Presidential Election with 15% of races having a margin of
less than 5%. Our attacks are most harmful when a large number of
voters do not specify a preference for the targeted contest. Thus,
our attacks are unlikely to impact a presidential race where almost
all ballots specify a preference.

4.1 Attack Nomenclature
An attacker that compromises ballot printing can only create ex-
amples where a mark appears to be empty but will be classified as
a mark. We call this Over. For completeness, in the virtual domain
we also consider an attacker that perturbs a marked bubble so that
it is classified as a nonmark. This is called Under as it could lead
to a preference being removed and no preference being counted,
known as an undervote.

Virtual. First in Section 7, we consider the idealized (for the at-
tacker) virtual context where the attacker modifies an image with-
out any intervening printing or scanning. Namely, the adversarial
signal cannot be altered (affected) by the steps taken with real
physical ballots. We test both Over and Under in this domain.

Physical. Second in Section 8, the paper considers the more realis-
tic physical context where adversarial examples are organized onto
sheets of paper which are printed and then scanned using COTS
hardware, namely an HP LaserJet-3010 series and a Fujitsu-7600
scanner. The resulting images are registered, color-corrected, and
segmented (see an overview in Section 2). Laser printing is a noisy
process. Laserjet printers use dithering to cope with fewer than 256
greyscale levels and simulate gray intensities. Commercial offset
printing yields less noise. Yet, tabulators must handle images from
commodity printers (such as on-demand ballot printers) as munic-
ipalities print ballots when they run out. In this domain we only
test Over examples. In the stringent and realistic physical settings
where the adversarial signal is printed on paper it is possible to
cause misclassification of non-marks to marks at a high enough rate
to impact close elections. This work offers evidence that tabulators
using machine learning algorithms are susceptible to adversarial
attacks that cause empty bubbles to be interpreted as marks.

4.2 Analyzing Attacks on Voting Systems
Attacking voting systems is distinct from conventional adversarial
machine learning in two facets. First, a high attack success rate is not
required to impact an election. Second, when a misclassification

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Mahmood, Manicke, Rathbun, Verma, Ahmad, Stamatakis, Michel, Fuller

2020 Races 5% 2% 1% Blank %
Arizona 90 16 6 4 -
Nevada 52 12 3 2 11.7%
Georgia 236 14 5 2 8.9%
North Carolina 170 15 4 0 4.7%
Pennsylvania 228 12 3 1 7.0%

Table 2: Number of tight state legislative races in United
States Battleground States in 2020 Presidential Election. We
omit Arizona as each district elects two legislators and many
of these districts have at most 2 candidates.

does occur, several different actions can be taken by the voting
system. We detail differences in this subsection. When the classifier
perceives a Over example one of three things occurs:

(1) If the voter did not fill any bubbles in that race (e.g. a local
race in a presidential election), the attacker has created a vote
for a candidate in that race. The Leon County Post Election
Audit of 2022 found that 19% of voters leave at least one
race blank. In the 2020 Presidential Election in Nevada (a
battleground state), 12% of voters did not vote for their state
legislative race.

(2) If the voter marks the same preference as the adversarial
bubble, the choice is aligned with the attacker and there is
no impact.

(3) If another bubble is filled in by the voter in the same race, the
tabulator should report an overvote. The ballot is returned
to the voter. The voter then decides whether to submit their
ballot anyways or ask for a new ballot to be completed. In an
attack by Bernherd et al. [63] voters do “not know what to
do if they noticed a problem with their paper ballot during a
real election.” In our experience, voters often resubmit their
ballots.

What attack success rate can flip an election? In conven-
tional adversarial machine learning, a high robust accuracy (low
attack success rate) generally indicates an acceptable defense. For
example, one of the most recent state-of-the-art defenses proposed
in [64] achieved a robust accuracy of 70.69% against white-box
adversarial machine learning attacks for the CIFAR-10 dataset. This
robustness would correspond to a 29.31% attack success rate. Elec-
tions are routinely decided by small margins (Table 2). An attacker
can reuse examples globally, though their reused examples would
be subject to scanning noise discussed in Section 2.

We now illustrate how a small attack success rate can impact a
close election. We consider a race with a 2% margin where 12% of
ballots are left blank (the rate for Nevada state legislative races in
2020). We assume a two candidate race. Without an attack, Win will
receive .415 fraction of the vote and Lose will receive .395 fraction
of the vote. The adversary’s goal is for Lose to win over Win by
a margin of .5% (often results under this margin trigger a hand
recount). There are three relevant parameters:

(1) What fraction of ballots carry an adversarial example for the
Lose candidate? We call this parameter deploy.

(2) What fraction of blank ballots with an adversarial example
are misclassified? We denote this as success.

(3) If the ballot has an adversarial example that is misclassified
as a vote for Lose and the voter filled in a vote for Win their
ballot will be marked as an overvote. When this occurs what
fraction of the time does the voter ask for a new ballot? We
call this probability 1 − recast and assume in this case the
ballot is counted for Win. With probability recast, the voter
asks the tabulator to accept the overvoted ballot and the
ballot is not counted for either candidate.

Consider if the parameters are deploy = 1, success = .1, recast =

.3, the votes for each candidate becomes

Lose := .395 + .12 · deploy · success = .407
Win := .415(1 − deploy · success · recast) = .402

Some blank ballots are converted to votes for Lose and some Win
ballots are converted into overvotes which are not counted for either
candidate. Looking ahead to Section 8, we achieve success ≈ .99
on the most vulnerable model (a support vector machine); tested
model’s vulnerability against realistic attacks varies widely (for
more resilient models, success = 0 for imperceptible examples).

In the case when a voter refills their ballot after their ballot is
marked as an overvote, the second ballot obtained by the voter
may also contain an adversarial example that is misclassified as
a vote. The overall fraction of ballots where this occurs for the
parameters discussed is .13% of ballots. Continuing to use Nevada
as an example, in 2020 the average state legislative race had 34K
cast votes, so .13% of ballots corresponds to 43 ballots. Widespread
occurrences of a voter having to request a new ballot multiple times
is likely to arouse suspicion. This creates an incentive for the attack
for deploy · success to be less than 1.

In summary, our analysis of attack success rate for the voting
domain reveals a very important issue. In traditional adversarial
machine learning a defense is successful if robust accuracy is 70%.
As the example above shows, one can change the tabulated margin
of a race by 2.5% even with a robust accuracy of 90%.

4.3 Generating Adversarial Examples
Adversarial examples can be created from clean images for a given
model either through white-box or black-box adversarial attack
methods [65, 66]. In both, an attacker begins with a clean unper-
turbed image and injects noise. Throughout this work, all clean
images used to create adversarial examples are from the Bubbles
datasets, we never use a swatch image as a starting point. This work
focuses on white-box attacks due to VVSG 2.0 requirement 1.1.6G,
which tabulators describe methods for classifying marks.

The most commonmethod [65] to create adversarial images adds
noise based on gradient information from themodel. This is referred
to as a white-box attack [67]. In this formulation, the gradient of the
input with respect to a certain loss function is computed directly
using the target model’s architecture and trainedweight parameters.
This attack is an optimization problem:

max
𝑥𝑎𝑑𝑣

L(𝑥𝑎𝑑𝑣, 𝑦; 𝜃) subject to | |𝑥 − 𝑥𝑎𝑑𝑣 | |𝑝 ≤ 𝜖 (1)

where L is a loss function, 𝑥 is a clean (non-perturbed) image with
true class label 𝑦, 𝜃 represents the parameters of the model being
attacked, 𝜖 is a bound on the magnitude of the perturbation and

https://2022voterdata.lci.fsu.edu/
https://2022voterdata.lci.fsu.edu/
https://www.eac.gov/voting-equipment/voluntary-voting-system-guidelines

Busting the Paper Ballot CCS ’25, October 13–17, 2025, Taipei, Taiwan.

| | · | |𝑝 represents the 𝑙𝑝 norm. The adversarial example is constrained
to be at a distance at most 𝜖 from the original clean example.

We use the 𝑙𝑝 norm with 𝑝 = ∞ in our attacks. This is a widely
used norm in adversarial machine learning [67–69]. We focus on
APGD [12] but some of gradient masking results in the next section
use PGD [13]. APGD is a SOTA white-box attack [64, 68, 69].

5 GRADIENT MASKING
Gradientmasking frequently occurs in adversarial machine learning
when evaluating the robustness of defenses to white-box attacks [65,
70]. Gradient masking is when the gradient of a model is incorrectly
estimated in a white-box attack. This phenomena leads to the model
having a falsely high robustness. Often, defenses are proposed and
tested with attacks like FGSM and PGD, and are later broken by
adaptive attacks which overcome gradient masking [15, 26, 66].
Gradient masking does not make a model secure.

For voting datasets, zero gradients occur when backpropagating
the gradient in the SimpleCNN and ResNet-20 models during the
attack. In addition, we observe non-monotonic behavior of APGD
with increasing 𝜖 on VGG-16. It is important to note this occurs
after the models have been trained. The models often exhibit maxi-
mal predictive confidence of either [1, 0] or [0, 1]. In this section,
we explore the extent of the issue and show that it is rooted in
the numerical instability of floating point and datatypes used by
PyTorch with NVIDIA GPUs. Furthermore, in Section 6, we show
how a modified DLR loss can overcome this issue [12].

5.1 The Repeated Zero Gradient Condition
We demonstrate the occurrence of zero gradients in multiple differ-
entmodels trained on the voting datasets when conducting standard
white-box adversarial attacks.

Experimental Setup. We attack three models (SVM, SimpleCNN,
ResNet-20) trained on the grayscale datasets (Gray-C and Gray-B)
using PGD. We set PGD to run for 20 steps using 𝜖 = 0.031 with step
size 0.00155. We randomly select 500 marks and 500 non-marks
from the Bubbles validation set (no swatches) and 500 marks and
500 non-marks from the Swatches only (no bubbles) validation set
that were correctly classified. At each of the 𝑘 steps of PGD we
check the maximum element of the absolute value of the gradient
matrix. If max𝑖

{���𝜕𝐿/𝜕𝑥 (𝑘)𝑖

���} = 0.0 then this step of PGD exhibits a
zero gradient.

Analysis of Zero Gradient. The number of recorded instances of
zero gradient across 20 steps are reported in Table 3. All 500 marks
encounter a zero gradient for the first step on the SimpleCNN. All
500 marks and 500 non-marks encounter a zero gradient for the
first step on ResNet-20. No example for the SVM encounters a zero
gradient in the bubbles validation set. Note that while fewer swatch
examples express a zero-gradient, only bubbles are considered a
valid starting point for our attacks.

Analysis of Confidence. Our models return a tuple for their con-
fidence in each class, vote then non-vote respectively. We provide
the average confidence tuple (rounded to four decimal places) over
each step for each class. Most notably, for classes and models that
encounter a zero gradient for all 500 examples, the confidence is ei-
ther [1.0, 0.0] for votes or [0.0, 1.0] for non-votes. Since each model

uses a softmax activation layer to normalize their outputs, a 1.0 is
the maximum possible confidence for a class.

5.2 Numerical Instability
We devise an experiment that attributes zero-gradient to numerical
instability arising from 32-bit floating point arithmetic as well as
tensor-float arithmetic in use within the PyTorch implementation.
We first introduce some notation on our target models.

Confidence and Gradient. A machine learning classifier receives
an image as input 𝑥 , forward propagates it through multiple layers
𝐿𝑖 (𝑥) → 𝐿𝑖+1 (𝑥), then outputs a confidence vector at the final layer.
This output is the prediction this image belongs to each class 𝑦. The
loss function L derives how far the prediction 𝑦 is from ground
truth label 𝑦.

White-box adversarial machine learning attacks use gradient
descent on the lossL with respect to the source image8 𝑥 , i.e., 𝜕L𝜕𝑥 , the
gradient at the network input. A zero gradient 𝜕L

𝜕ℎ
= 0 appearing

at some layer during the backpropagation will spread to shallower
layer and induce 0 gradients all the way to the input layer, that is,
all the way to 𝜕L

𝜕𝑥 . We observed zero gradient at the final softmax
layer. We next review the specifics about floating point arithmetic
to help understand the root cause.

Floating point refresher. IEEE-754 is the standard defining 32-
bit floating point numbers. The use of fixed precision (32-bits
𝑏31𝑏30 · · ·𝑏1𝑏0), implies only certain numbers are representable.
The standard calls for 1 bit for the sign 𝑏31, 8 bits for the exponent
𝑏30 · · ·𝑏23 (using a bias representation) and 23 bits for the mantissa
𝑏22 · · ·𝑏0 to encode a normal floating point value:

(−1)𝑏31 · 2(
∑30

𝑖=23 𝑏𝑖 ·2𝑖−23)−127 ·
(
1 +

23∑︁
𝑖=1

𝑏23−𝑖 · 2−𝑖
)

This representation uses an implicit 1 at the start of the mantissa.
The smallest normal floating point is

(−1)0 · 2−126 · (1 + 0) = 2−126 ≈ 1.1754943508 · 10−38 .
The range of representable floats can be extended with de-normalized
representations where the first mantissa bit is zero. This broadens
the range by using 0 bits at the most-significant end of the man-
tissa to boost the exponent at the expense of the number of digits
of accuracy. The smallest de-normalized 32-bit floating point is
1.401298 · 10−45 which, in binary, is all zeroes except the least sig-
nificant bit of the mantissa. To retain accuracy, computed values
should never drop past the smallest normal floating point.

PyTorch Floating Points.Themost popularML framework PyTorch
uses the TensorFloat-32 (TF32 representation for floating point num-
bers supported by the NVIDIA hardware to compute convolutions).

This shorter representation uses only 10 bits of mantissa, 8 bits
of exponents and a sign bit. They are designed for speed (about an
order of magnitude faster) and are considered good enough for the
precision expected by machine learning. The flags are, respectively,
torch.backends.cuda.matmul.allow_tf32 to enable them for
matrix multiplications and torch.backends.cudnn.allow_tf32
to enable them for convolutions. They were introduced in PyTorch

8This differs from gradient descent during training that computes the derivative with
respect to network weights.

https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/#:~:text=TF32%20uses%20the%20same%2010,learning%20and%20many%20HPC%20apps.

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Mahmood, Manicke, Rathbun, Verma, Ahmad, Stamatakis, Michel, Fuller

Bubbles Validation Set Swatches Validation Set
Training 1st Step Average 1st Step Average
Dataset Model Class 0 Grad Conf. 0 Grad Conf.

Gray-B

SVM Mark 0 [0.9939, 0.0061] 0 [0.2871, 0.1408]
Non-Mark 0 [0.1274, 0.8737] 0 [0.1512, 0.8488]

SimpleCNN Mark 500 [1.0, 0.0] 28 [0.8166, 0.0152]
N-Mark 0 [1.3808e-21, 1.0] 0 [7.009e-21, 1.0]

ResNet-20 Mark 500 [1.0, 0.0] 496 [0.9819, 2.2076e-6]
N-Mark 500 [0.0, 1.0] 500 [0.0, 1.0]

Gray-C

SVM Mark 0 [1.0, 1.0989e-09] 0 [0.2985, 0.1097]
N-Mark 0 [0.0977, 0.1466] 0 [0.0658, 0.1112]

SimpleCNN Mark 498 [1.0, 2.4490e-29] 1 [0.4838, 0.0309]
N-Mark 0 [0.0, 9.9425e-06] 0 [0.0258, 0.7107]

ResNet-20 Mark 23 [0.2847, 0.0036] 304 [0.5023, 0.0007]
N-Mark 156 [0.0020, 0.4903] 60 [0.0021, 0.2586]

Table 3: Zero Gradient Condition recorded over 20 steps of PGD. We record the number out of 500 of examples where zero
gradient occurs on the first step, the average number of steps the zero gradient condition occurs in, and the confidence output
out of 500 examples for each class.

version 1.7.9 By default, CNNs use TF32 for key computations dur-
ing forward and backward passes.10

Manual Backpropagation. Models here contain a final linear
layer that feeds into a softmax activation function. A linear layer
accepts a feature vector ℎ, performs matrix multiplication with
weight matrix𝑊 , then adds a bias term 𝑏. The 𝑖𝑡ℎ column in the
output 𝑧 is the confidence the input image 𝑥 belongs to (𝑖−1)𝑡ℎ class.
The softmax layer exponentiates each column in 𝑧 then normalizes
them over their sum, returning the confidence vector 𝑦.

𝑧 = ℎ𝑊𝑇 + 𝑏 → 𝑦 =
𝑒𝑧∑𝐶

𝑖=1 𝑒
𝑧𝑖

This allows to evaluate the CE Loss. Note that 𝑦 is the one-hot
encoding of the image’s class.

L = −
2∑︁

𝑖=1
𝑦𝑖 · log(𝑦𝑖)

Consider the gradient of this loss with respect to a feature vector ℎ.
We can express it w.r.t. the output of the linear layer 𝑧:

𝜕L
𝜕ℎ

=
𝜕L
𝜕𝑧

· 𝜕𝑧
𝜕ℎ

Since 𝑧 = ℎ𝑊𝑇 + 𝑏, the derivative w.r.t. ℎ is just the weight matrix
𝜕𝑧

𝜕ℎ
=𝑊𝑇 and the derivative of the loss w.r.t. 𝑧 is

𝜕L
𝜕𝑧

= 𝑦 − 𝑦. The
product of these terms delivers the full backpropagation equation.

Backpropagation Experiments. Both the accuracy of 32-bit float-
ing point and the reduced accuracy of the TF-32 type contribute to
zero gradients, indeed, the calculations of 𝑧 and 𝑦 involve convolu-
tions in PyTorch.

32-bit Floating point accuracy. Consider two swatches 𝐴 and
𝐵 shown in Figure 2 that are members of the same class (their
9PyTorch TF-32 https://pytorch.org/docs/stable/notes/cuda.html#tf32-on-ampere.
10There is no reason to expect this computation tomatch a sequential CPU computation
as floating points are not commutative. GPUs will group operands differently and
results may change.

(A) (B)

Figure 2: Examples of mark swatches considered for manual
backpropagation. The ResNet-20 produces a zero gradient
for Swatch (A) and a non-zero gradient for Swatch (B).

𝑦 vectors are [1, 0]). We chose mark swatches because of their
visual similarity and they can exhibit zero gradients (see Table 3).
Empirically, 𝐴 triggers a zero-gradient while 𝐵 does not. Given the
fixed weights of the ResNet-20, we can manually compute 𝑧 and 𝑦
using the penultimate layer weights𝑊 and biases 𝑏. Namely:

𝑧 (𝐴) = ℎ(𝐴) ·𝑊𝑇 + 𝑏 , 𝑧 (𝐵) = ℎ(𝐵) ·𝑊𝑇 + 𝑏

as well as

𝑦 (𝐴) = 𝑒𝑧 (𝐴)∑𝐶
𝑖=1 𝑒

𝑧𝑖 (𝐴) , 𝑦 (𝐵) =
𝑒𝑧 (𝐵)∑𝐶

𝑖=1 𝑒
𝑧𝑖 (𝐵)

Those values are used to compute
𝜕L
𝜕ℎ

= (𝑦 −𝑦) ·𝑊 for both 𝐴 and
𝐵. To understand the stability issue, consider the following values
for 𝑧 (𝐴) and 𝑧 (𝐵)

𝑧 (𝐴) = [49.218 − 48.582] , 𝑧 (𝐵) = [18.516 − 18.059]

The last layer contains 2 neurons, so we get two z-values. Comput-
ing 𝑦 (𝐴) produces

𝑒𝑧 (𝐴) = [𝑒𝑧1 (𝐴)𝑒𝑧2 (𝐴)] = [𝑒49.218 𝑒−48.582]
= [2.3720 · 1021 7.9635 · 10−22]

https://pytorch.org/docs/stable/notes/cuda.html#tf32-on-ampere

Busting the Paper Ballot CCS ’25, October 13–17, 2025, Taipei, Taiwan.

To get𝑦 (𝐴), we compute 𝑒𝑧1 (𝐴) +𝑒𝑧2 (𝐴) as 2.3720 ·1021, i.e., 𝑒𝑧1 (𝐴) +
𝑒𝑧2 (𝐴) = 𝑒𝑧1 (𝐴) . The magnitude difference between 𝑒𝑧1 (𝐴) and
𝑒𝑧2 (𝐴) is so large that the second operand is absorbed by the first.
The second ratio

𝑦2 (𝐴) =
𝑒𝑧2 (𝐴)

𝑒𝑧1 (𝐴) + 𝑒𝑧2 (𝐴) = 0

because the division of a very small number by a very large one
underflows the float type. Overall, 𝑦 (𝐴) = [1 0] and the first factor
of the gradient is 𝑦 (𝐴) −𝑦 (𝐴) = [1 0] − [1 0] = [0 0]. Interestingly,
with 𝐵, the 𝑧 values are a bit smaller leading to

𝑒𝑧 (𝐵) = [1.1000 · 108 1.4357 · 10−8]
and 𝑦 (𝐵) = [9.999999 · 10−1 1.305207 · 10−16] which does not
trigger the zero gradient. The gradient expressions above were
manually derived and evaluated with Octave [71] to independently
confirm the observations. With an FP32 representation, the back-
propagation through the last layer can yields a zero gradient. Once
this occurs, the preceding gradients will be 0 as well.

TensorFloat 32-bit Floating point accuracy. Recall that PyTorch
uses convolutions to compute 𝑧 and 𝑦. Given the defaults used by
PyTorch, these convolutions do rely on the numerically weaker
TF32 type (10-bit mantissa). The accuracy of the 𝑧 values and the
𝑦 values are further reduced. This can increase the occurrence of
zero gradients for the same reasons.

Since zero gradients are a direct consequence of the data types
used within PyTorch for our datasets, we believe this phenomenon
is likely to occur on bubble classifiers produced by industry and
researchers. We note that while the problem could be made worse
by the specialized datatypes with less precision on NVIDIA GPUs,
the problem still occurs with classic 32-bit floating point. Turning
off these datatypes has the undesirable effect of causing a 10×
slowdown during training. We have not tested behavior on models
using 64-bit wide floating points.

One potential solution for the attacks is to employ a randomized
start (commonly done in PGD and APGD). However, given that
zero gradients are so frequent, they can still occur after the first
step of the attack. In addition, randomized start does not provide a
deterministic solution to the problem.

6 OVERCOMING THE ZERO GRADIENT
CONDITION

The zero-gradient condition has previously been encountered [70]
when assessing adversarial machine learning defenses. In our work
gradient masking (zero gradients) occurs in the models trained on
the ballot datasets, without any defenses implemented. To the best
of our knowledge, we are the first to observe this phenomenon in
classifiers without defensive mechanisms. We show how to over-
come this issue using a modified version of the difference of logits
ratio (DLR) function proposed in [12].

As an alternative to using cross-entropy (CE) loss, in [16] the
Carlini and Wagner targeted attack was proposed in which the
following loss function was minimized:

𝐹 (𝑥) = max(𝑧 (𝑥)𝑡 −max{(𝑧 (𝑥) 𝑗 : 𝑗 ≠ 𝑡},−𝜅) (2)

where 𝑧 (·) 𝑗 is the 𝑗𝑡ℎ logit output from the model, 𝑧 (·)𝑡 represents
the logit of the target class 𝑡 and 𝜅 represents confidence with

Mark → Non-Mark Non-Mark → Mark

Clean AdvClean Adv

Figure 3: Examples of mark to non-mark and non-mark to
mark adversarial attacks on the SimpleCNN. We abbreviate
mark → non-mark as Under and non-mark→ mark as Over.
The examples above are created with APGD 𝜖 = 8/255.

which the adversarial example should be misclassified. Further
work in [12] proposed the use of DLR loss function:

DLR(𝑥,𝑦) = −
𝑧𝑦 −max𝑗≠𝑦 𝑧 𝑗

𝑧𝜋1 − 𝑧𝜋3
(3)

where 𝑧𝑦 is the logit output corresponding to the correct class
label and 𝜋 is a permutation that orders the elements of the logit
output 𝑧 in decreasing order. It is important to note that the DLR
loss function is for multi-class classification where the number
of classes 𝐶 is greater than 3, since 𝑧𝜋3 is undefined for 𝐶 < 3.
However, the ballot datasets are binary classifications tasks (𝐶 = 2).
Hence we modify the DLR loss function in Equation 3 by only
using the numerator. Effectively this reduces DLR loss function
to the untargeted version of the Carlini and Wagner loss function
introduced in Equation 2, without the outer maximization and
confidence 𝜅 . It is important to note that the denominator 𝑧𝜋1 − 𝑧𝜋3
in Equation 3 was included for scale invariance to prevent gradient
masking [12]. In our experiments, we observe that the binarized
DLR loss operates as expected despite removing the denominator.

7 ADVERSARIAL ATTACKS IN THE VIRTUAL
CONTEXT

The virtual context is a best-case scenario for an adversary. When
crafting perturbations, we ignore artifacts (e.g., noise) introduced by
the physical world. Performance in the more challenging physical
context appears in Section 8.

Figure 3 shows how bubble images yield two different types of
attacks. Recall that Over are adversarial marks that appear empty
yet are classified as marks. Likewise, Under are adversarial mark
that appear to be marks but are classified as blanks. Recall Under
cannot be conducted by an attacker compromising a print vendor
but are presented for completeness. The first set of experiments is
designed to answer fundamental security questions:

(1) Which attacks are most effective?
(2) Does the 𝐷𝐿𝑅 loss overcome the zero-gradient condition?
(3) Does the training dataset impact model resilience?
(4) Does model complexity impact attack success rate?
(5) Do imperceptible 𝜖 alterations flip the classifier output?

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Mahmood, Manicke, Rathbun, Verma, Ahmad, Stamatakis, Michel, Fuller

7.1 White-Box Attack Performance
We first investigate the choice of attack. We use model robustness
at each perturbation magnitude (𝜖 value) to determine the best
performing attack.

Experimental Setup. We attack six models (SVM, SimpleCNN,
VGG-16, ResNet-20, CaiT, and Twins) trained on the grayscale
datasets (Gray-C and Gray-B) using APGD. We consider two versions
of APGD 1) with CE loss, 2) with DLR loss.

We randomly select 500 marks and 500 non-marks from the
Bubbles validation set (no swatches) that were correctly classified
by the target model. The choice of clean initial samples follows
Mahmood, Mahmood, and van Dijk’s methodology [68]. For all
attacks, 𝜖 varies from 4/255 to 255/255. We report the resulting
robust accuracy in Table 4 for the Gray-C and Gray-B datasets.

Analysis of Attack Performance. Model robustness across all
grayscale datasets are reported in Table 4. We additionally tested
prior attacks of FGSM [72], MIM [14], and PGD [13]. In Appendix B,
we show that all attacks on ResNet-20 using CE exhibit a non-zero
robustness with 𝜖 = 255/255 giving indication the zero-gradient
condition occurs for all standard attacks (Table 10).

Training Dataset Matters. Usually, models trained on the Gray-
B dataset deliver more robust accuracies than their counterparts
trained on the Gray-C dataset. The only exception to this is the
VGG-16 model which is much more robust when trained on Gray-C.
The Gray-B SVM and SimpleCNN are completely robust up to
𝜖 = 32/255, CaiT is completely robust until 𝜖 = 16/255, and ResNet-
20 is completely robust until 𝜖 = 8/255.

The more challenging and realistic Gray-C training dataset con-
veys a different picture. Indeed, the SVM classifier accuracy drops
to 50%with the smallest 𝜖 = 4/255while ResNet-20 and Twins drop
much further, even for small values of 𝜖 . SimpleCNN and VGG-16
retain some resilience at small values of 𝜖 (≤ 8/255).

As expected, for the majority of the models, training on a more
complex dataset that forces the classifier to learn marginal marks,
thus moving the decision boundary in a way that makes adversarial
attacks easier. The only exception to this rule is VGG-16 which
we hypothesize is due to the VGG architecture. The literature has
shown the VGG family of models to have other intriguing adversar-
ial properties [73]. It is also worth noting that while VGG-16 trained
on Gray-C is more robust than its bubbles counterpart, VGG-16 is
not the most robust CNN model.

From a functionality standpoint though, tabulators must handle
marginal marks. Recall from the Introduction and Table 1 that
training on Bubbles reduces the clean accuracy of models tested on
Combined by 12 − 15% drastically impacting the accuracy of the
classifier on marginal marks. As a reminder, SVM actually increases
performance on Gray-C by training on Gray-B, but is not accurate
enough for practice when trained using either dataset. One cannot
sacrifice performance on marginal marks for resilience to adversarial
examples.

When compared to the first row of Table 4, all models trained
on RGB-C, except ResNet-20, achieved similar or worse robustness
than their Gray-C counterparts up to 𝜖 = 32/255. We attribute this
to more image channels creating a higher dimension space that is

CE
Over

Under

4/255 8/255 16/255 32/255 64/255 255/255

Under

Over
DLR

Figure 4: Adversarial examples from varying 𝜖 for APGD vari-
ants on ResNet-20 trained on Gray-C dataset. Note that the
Over example in APGD-CE experiences gradient masking.

easier to exploit. As we discuss in Section 8, grayscale images are
the preferred method in modern tabulation equipment.

Analysis of Model Complexity.Madry et al. argued that increas-
ingmodel complexity increases robustness to single step adversarial
machine learning attacks [13]. There does not seem to be a connec-
tion between model complexity and robust accuracy in our results.
Tables 4 shows that Twins and ResNet-20 are the most vulnerable
models while SimpleCNN and CaiT are the most resilient.

7.2 White-Box Perturbation Magnitude
Wenow investigate the choice of 𝜖 . A large 𝜖 yields noticeable adver-
sarial perturbations. In conventional adversarial machine learning
there is generally a monotonic relationship between robustness
and 𝜖 i.e., increasing 𝜖 decreases robustness. However, for the our
datasets, CE APGD does not exhibit monotonic behavior for the CNN
models as shown in Table 4. As discussed above, this is due to the
difficulty in gradient estimation for these datasets. As an extreme
example, VGG-16 on Gray-C with 𝜖 = 64/255 has model robustness
of 0 but 𝜖 = 255/255 increases model robustness to .453. However,
DLR APGD does exhibit monotonic behavior for all models.

Analysis of Attack Perturbation. Figure 4 shows attack images
for varying 𝜖 when considering CE and DLR. The model under at-
tack is ResNet-20 trained on Gray-C. We note the lack of increasing
noise in the first row indicating gradient masking.

We now consider Figure 5 which shows increasing 𝜖 for each
model using the DLR loss. For 𝜖 = 16/255 the attack signal starts
to be noticeable for all of our attacks. It is also worth noting that in
Table 4,Gray-C SimpleCNN has robust accuracy of 0.5 at 𝜖 = 16/255.
At this point Over examples have all flipped class labels (without
any changes of Under labels). Accuracy restricted to Over is shown
in Table 5 as that is the focus of our physical world experiments. All
six models have robustness of 0 for Over examples at 𝜖 = 16/255.
Attacks are easily detectable at the next noise level of 𝜖 = 32/255.
This noise level is when our attacks start creating Under examples
for all models.

We consider attacks under 8/255 unnoticeable in the virtual do-
main and 16/255 unnoticeable in the physical domain, see Section 8.

Visibility of ExamplesAcrossModels. Figure 5 shows the impact
of 𝜖 when attacking models trained on Gray-C using APGD. Only
Over examples are shown since this represents the more successful

Busting the Paper Ballot CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Model Dataset Loss Clean Acc. 4/255 8/255 16/255 32/255 64/255 255/255

SVM

Gray-C CE .9171 .500 .500 .500 .499 0 0
Gray-C DLR .500 .500 .500 .499 0 0
Gray-B CE 1.0000 1.000 1.000 1.000 1.000 .138 0
Gray-B DLR 1.000 1.000 1.000 1.000 .138 0

SimpleCNN

Gray-C CE 1.0000 1.000 .825 .500 .498 .498 .500
Gray-C DLR 1.000 .824 .500 0 0 0
Gray-B CE .9999 1.000 1.000 1.000 1.000 1.000 .500
Gray-B DLR 1.000 1.000 1.000 1.000 .584 0

VGG-16

Gray-C CE .9999 1.000 1.000 .492 .020 0 .453
Gray-C DLR 1.000 1.000 .495 .023 0 0
Gray-B CE 1.0000 .984 .134 0 0 0 0
Gray-B DLR .984 .137 0 0 0 0

ResNet-20

Gray-C CE .9999 .168 .304 .647 .647 .645 .644
Gray-C DLR 0 0 0 0 0 0
Gray-B CE .9998 1.000 1.000 1.000 1.000 1.000 1.000
Gray-B DLR 1.000 1.000 .995 .921 .500 0

CaiT

Gray-C CE .9995 1.000 1.000 .500 .499 .090 0
Gray-C DLR 1.000 1.000 .500 .499 .092 0
Gray-B CE 1.0000 1.000 1.000 1.000 .991 .501 0
Gray-B DLR 1.000 1.000 1.000 .991 .501 0

Twins

Gray-C CE 1.0000 .243 0 0 0 0 0
Gray-C DLR .011 0 0 0 0 0
Gray-B CE 1.0000 .979 .829 .303 0 0 0
Gray-B DLR .979 .828 .282 0 0 0

Table 4: Robust Accuracy Results under APGD attack across models using CE and DLR losses on both Gray-C and Gray-B datasets.

SimpleCNN

4/255 8/255 16/255 32/255 64/255 255/255

SVM

ResNet-20

Twins

VGG16

CaiT

Figure 5: Adversarial examples from varying 𝜖 for APGD with
DLR on models trained on Gray-C dataset.

attack setting in the physical domain. Figure 5 shows that for all
models, 𝜖 ≤ 8/255 produces imperceptible perturbations. These
perturbations become noticeable when 𝜖 ≥ 16/255. The amount of
noise seems to qualitatively be the largest for the SVM and CaiT
models. We also note attention artifacts appear clearly visible in
attacks on the CaiT model. The noise level for the SimpleCNN,
VGG-16, ResNet-20, and Twins models appears similar.

8 ATTACKS IN THE PHYSICAL WORLD
In this section, we consider the Print threat model in the physical
world. This attack scenario uses an adversarial printer to generate
Over examples on printed ballots. We start by reviewing prior work
on physical world adversarial machine learning.

Prior Work.Wei et al. [74] surveyed adversarial machine learning
in the physical world. Sharif et al. [75] designed targeted adver-
sarial perturbations using a modified softmax loss function. They
printed these 224 × 224 pixel images, of which approximately 6%
area is covered by an adversarial patch in question that takes the
shape of glasses. These adversarial glasses were then used to attack
(evade) facial recognition systems. This work can be considered
human-perceptible perturbations. Recall, that in our attacks, one
must produce ballots that are indistinguishable from empty ballots.
Kurakin, Goodfellow, and Bengio [76] use a modified version of
FGSM to design untargeted perturbations at various degrees of 𝜖
and print clean and adversarial images, and classify using a phone
camera. They use the CE loss function. These adversarial images
are human imperceptible. Like our work, they also consider 𝑙∞
distance. However, their work does not consider printer dithering
that we now discuss.

Our Pipeline.We focus onOver examples that can be created by an
adversarial printer. Attacks follow the following physical pipeline:

(1) Adversarial example generation (see Section 7).
(2) Layout on an empty page.
(3) Printing using a commodity laserjet printer.
(4) Scanning using a commodity scanner.

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Mahmood, Manicke, Rathbun, Verma, Ahmad, Stamatakis, Michel, Fuller

(5) Image alignment, color correction, segmentation.
(6) Classification using the target model.

Steps 2-5 are not needed in Section 7. This attack is not perfectly
realistic in the following sense:

(1) A ballot printer could use higher-end printing techniques
(e.g., offset printing, or even photo-realistic printing) instead
of laserjet printing.

(2) We use ad hoc registration and segmentation. Yet, it appears
to not introduce measurable/substantial error.

Vendors have moved away from colored ballots in favor of black
and white ballots where colors are only decorative. This section
further restricts the investigation tomodels trained on theCombined
dataset to understand the impact of the physical world on models
that could realistically serve in place of optical scanners.

8.1 Physical Dataset
All the models are trained as described in Section 3. However, physi-
cally extracted bubbles are first fed through a denoising autoencoder
to remove the noise introduced in the printing process, then fed
through a classifier. Without this denoiser, models had clean accu-
racy of under 90% on bubbles, see Table 8 in the Appendix. The
denoiser is described in Appendix A.1. In comparison to previous
physical attacks, we see substantial noise in classifying clean im-
ages when printing and scanning, due to 1) dithering of the printer
and 2) printing a limited set of pixel values.

Layout. We layout all bubbles (40 × 50 at 200 dpi) in a matrix on a
8.5× 11 inch sheet spread 0.5 inches apart. These sheets are printed
and scanned. Registration corrects misalignment from the scanner,
and extracts each bubble from their exact locations.

Printing.We used an HP LaserJet-3010 printer. It is a monochrome
laser printer with max print speed of 42 pages per minute (ppm). It
prints at 1200 dots per inch (dpi).

Scanner. The scanner is a Fujitsu-7600 with 24bpp and a standard
automatic document feeder. We scanned in grayscale at 200 dpi.
The software used is SANE. The dpi of the printer and scanner are
multiples of each other (6x) to avoid fractional scaling.

Correction.We used Argyll with color calibration sheets (e.g., IT8)
to tune the scanner with an ICC profile for color tonality errors.

The drop in accuracy. Printing and scanning, even with ICC
correction techniques in place, introduces additional challenges.
Images are visibly different from their digital source. LaserJet print-
ers simulate gray by using dithering patterns to trick the human eye
into seeing gray. The net result is that the printed (and re-scanned)
bubbles are darker and noisier than the original material the mod-
els were trained on. As a result, the models classification accuracy
drop from over 99% clean accuracy without printing to under 90%,
see Table 8. To mitigate, we use a denoising autoencoder that we
describe in Appendix A.1. Prepending this denoiser to our models
makes them accurate at classifying images both before and after
printing using the Laserjet printer.

8.2 Physical Attack Results
We run APGD with DLR loss for 𝜖 from 4/255 to 255/255 on all of
our models. The examples are fed through the physical extraction

pipeline, the denoiser, then the classifier. We consider 500 non-mark
bubbles pre-print and post-print. Our attacks only use the classifier
weights. Future attacks could incorporate the denoiser weights as
part of the backpropagation step.

Results are shown in Table 5. For 𝜖 = 16/255 which we judge to
be imperceptible in the physical domain, SVM and CaiT are very
susceptible to post-print Over examples. ResNet-20 and Twins have
some resilience but demonstrate robust accuracy less than 1.000. We
note that ResNet-20 and Twins do not demonstrate monotonically
decreasing robustness as 𝜖 increases. This non-monotonic behavior
is unexpected, but our attacks are “unaware” of the print-scan
noise. Interestingly, digital model robustness appears not to impact
physical world resilience. The highly vulnerable digital models of
VGG-16 and Twins are not especially vulnerable to our physical
attacks. However, SVM is vulnerable in both domains.

Summary. Adversarial ML involving the physical world is more
complicated with several sources of noise that can destroy adversar-
ial signal such as dithering, scanning misalignment, and changes in
intensity ranges. Nonetheless for the SVM, ResNet-20, Twins and
CaiT Over attacks are viable. As a reminder, a printer can reuse a
single attack image.

9 CONCLUSION
Prior work showed that BMDs can alter results and that not all
voters check the printed ballot before tabulation [43, 44]. We show
that a malicious or compromised ballot printing vendor can print
ballots that will be misclassified, even if a voter inspects their ballots.
While this work focuses on the 𝑙∞ norm for adversarial samples,
future work should consider other norms.

Since voting is not an area where one can sacrifice clean accuracy,
four main recommendations emerge:

(1) Transparency from vendors on mark interpretations,
(2) Formalization of voter intent guidelines to allow for stan-

dardized labeled datasets with marginal marks,
(3) Building mark models that mimic human perception, and
(4) Explore user interfaces to privately alert voters whenever

their ballot features marginal marks and catch risks of mis-
interpretation.

In summary, our work makes the following contributions:
(1) We provide four new labeled ballot datasets to the security

community.
(2) We demonstrate that models trained on ballot data suffer

from zero gradients, making standard white-box attacks un-
usable. We analyze this issue thoroughly and show the DLR
loss allows APGD to be effective.

(3) We show that for some models in the physical domain, scan-
ning and printing adversarial examples yields an attack suc-
cess rate high enough to flip the outcomes of elections with
small margins where many voters leave the ballot blank.

ACKNOWLEDGMENTS
We thank the reviewers and Alexander Russell for their detailed
comments and suggestions for improving this manuscript. This
project was jointly funded by grants from the Connecticut Secretary
of State’s Office and Department of Homeland Security on Grant

http://www.sane-project.org/
https://www.argyllcms.com/#:~:text=ArgyllCMS%20is%20an%20ICC%20compatible,displays%20and%20RGB%20%26%20CMYK%20printers.
https://www.silverfast.com/products-overview-products-company-lasersoft-imaging/it8-targets-for-scanner-calibration-profiling-for-predictable-brilliant-colors/
https://en.wikipedia.org/wiki/ICC_profile

Busting the Paper Ballot CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Model Domain Perturbation Magnitude
0/255 4/255 8/255 16/255 32/255 64/255 255/255

SVM Digital .874 0 0 0 0 0 0
Phys. .8480 .984 .226 0 0 0 0

SimpleCNN Digital 1.000 1.000 .450 0 0 0 0
Phys. 1.0000 1.000 1.000 1.000 1.000 1.000 0

VGG-16 Digital 1.0000 1.000 1.000 0 0 0 0
Phys. 1.0000 1.000 1.000 1.000 1.000 .812 0

ResNet-20 Digital 1.000 0 0 0 0 0 0
Phys. 0.9940 1.000 .984 .962 .996 .804 0

Twins Digital 1.0000 .044 0 0 0 0 0
Phys. 1.0000 .842 .842 .844 .842 .836 0

CaiT Digital 1.0000 1.000 1.000 0 0 0 0
Phys. 1.0000 1.000 .974 .136 0 0 0

Table 5: Model robustness against 500 pre/post-print Over and 500 pre-print examples generated using APGD with DLR loss.
𝜖 = 8/255 is deemed imperceptible in the digital domain and 𝜖 = 16/255 in the physical domain. Although Over is the only viable
attack setting in the physical domain, model accuracy is much lower in the digital domain. We exclude the Gray-B dataset as
physical attacks against these models were ineffective. The 0/255 column denotes the clean accuracy on 500 non-vote bubbles
before printing and after the print and scan process.

Number #DHS-UNO 44-0108-1001-502. L. Michel was partially sup-
ported through the Synchrony Endowed Chair. B. Fuller was addi-
tional supported through NSF grants #2141033 and 2232813.

REFERENCES
[1] Ronald L Rivest and Philip B Stark. When is an election verifiable? 2017.
[2] Sameer Barretto, William Chown, David Meyer, Aditya Soni, Atreya Tata, and

J. Alex Halderman. Improving the accuracy of ballot scanners using supervised
learning. In Electronic Voting: 6th International Joint Conference, E-Vote-ID 2021,
Virtual Event, October 5–8, 2021, Proceedings, page 17–32, Berlin, Heidelberg, 2021.
Springer-Verlag.

[3] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[4] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[5] Patrick McDaniel, Nicolas Papernot, and Z Berkay Celik. Machine learning in
adversarial settings. IEEE Security & Privacy, 14(3):68–72, 2016.

[6] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in
the physical world. In Artificial intelligence safety and security, pages 99–112.
Chapman and Hall/CRC, 2018.

[7] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[9] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and
Hervé Jégou. Going deeper with image transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 32–42, 2021.

[10] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei,
Huaxia Xia, and Chunhua Shen. Twins: Revisiting the design of spatial atten-
tion in vision transformers. Advances in Neural Information Processing Systems,
34:9355–9366, 2021.

[11] UConn Voter Center. Uconn voter center - voting bubbles with swatches, May
2025. Available at https://doi.org/10.5281/zenodo.15458710.

[12] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks. In International conference
on machine learning, pages 2206–2216. PMLR, 2020.

[13] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations, 2018.

[14] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 9185–9193, 2018.

[15] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected:
Bypassing ten detection methods. In Proceedings of the 10th ACM workshop on
artificial intelligence and security, pages 3–14, 2017.

[16] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. Ieee,
2017.

[17] Michael A Specter, James Koppel, and Daniel Weitzner. The ballot is busted before
the blockchain: A security analysis of voatz, the first internet voting application
used in {US}. federal elections. In 29th USENIX Security Symposium (USENIX
Security 20), pages 1535–1553, 2020.

[18] Josh Daniel Cohen Benaloh. Verifiable secret-ballot elections. Yale University,
1987.

[19] Ben Adida. Helios: Web-based open-audit voting. In USENIX security symposium,
volume 17, pages 335–348, 2008.

[20] Josh Benaloh, Michael Naehrig, Olivier Pereira, and Dan SWallach. Electionguard:
a cryptographic toolkit to enable verifiable elections. In USENIX Security, 2024.

[21] National Academies of Sciences Engineering and Medicine. Securing the Vote:
Protecting American Democracy. National Academies Press, 2018.

[22] Chiman Kwan, Bryan Chou, Li-Yun Martin Kwan, and Bence Budavari. Debay-
ering rgbw color filter arrays: A pansharpening approach. In 2017 IEEE 8th
Annual Ubiquitous Computing, Electronics and Mobile Communication Conference
(UEMCON), pages 94–100. IEEE, 2017.

[23] Tadayoshi Kohno, Adam Stubblefield, Aviel D Rubin, and Dan SWallach. Analysis
of an electronic voting system. In IEEE Symposium on Security and Privacy, 2004.
Proceedings. 2004, pages 27–40. IEEE, 2004.

[24] Harri Hursti. The Black Box Report Security Alert: July 4, 2005 Critical Security
Issues with Diebold Optical Scan Design. Black Box Voting, 2005.

[25] David Wagner, David Jefferson, Matt Bishop, Chris Karlof, and Naveen Sastry.
Security analysis of the diebold accubasic interpreter. Technical report, 2006.

[26] Tigran Antonyan, Seda Davtyan, Sotirios Kentros, Aggelos Kiayias, Laurent
Michel, Nicolas Nicolaou, Alexander Russell, and Alexander A. Shvartsman.
State-wide elections, optical scan voting systems, and the pursuit of integrity.
IEEE Transactions on Information Forensics and Security, 4(4):597–610, 2009.

[27] Russell J Jancewicz, Aggelos Kiayias, Laurent D Michel, Alexander C Russell, and
Alexander A Shvartsman. Malicious takeover of voting systems: arbitrary code
execution on optical scan voting terminals. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing, pages 1816–1823, 2013.

[28] Seda Davtyan, Sotiris Kentros, Aggelos Kiayias, Laurent Michel, Nicolas C Nico-
laou, Alexander Russell, Andrew See, Narasimha Shashidhar, and Alexander A
Shvartsman. Pre-election testing and post-election audit of optical scan voting
terminal memory cards. In EVT, 2008.

[29] Seda Davtyan, Sotiris Kentros, Aggelos Kiayias, Laurent Michel, Nicolas Nico-
laou, Alexander Russell, Andrew See, Narasimha Shashidhar, and Alexander A
Shvartsman. Taking total control of voting systems: Firmware manipulations on
an optical scan voting terminal. In Proceedings of the 2009 ACM symposium on
Applied Computing, pages 2049–2053, 2009.

[30] Stephen Checkoway, Ariel J Feldman, Brian Kantor, J Alex Halderman, EdwardW
Felten, and Hovav Shacham. Can dres provide long-lasting security? the case of
return-oriented programming and the avc advantage. EVT/WOTE, 2009, 2009.

[31] Tigran Antonyan, Nicolas Nicolaou, Alexander A Shvartsman, and Therese Smith.
Determining the causes of {AccuVote} optical scan voting terminal memory card

https://doi.org/10.5281/zenodo.15458710

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Mahmood, Manicke, Rathbun, Verma, Ahmad, Stamatakis, Michel, Fuller

failures. In 2010 Electronic Voting Technology Workshop/Workshop on Trustworthy
Elections (EVT/WOTE 10), 2010.

[32] Duncan A Buell, Eleanor Hare, Frank Heindel, Chip Moore, and Barbara Zia.
Auditing a {DRE-Based} election in south carolina. In 2011 Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE 11), 2011.

[33] Mark Lindeman and Philip B Stark. A gentle introduction to risk-limiting audits.
IEEE Security & Privacy, 10(5):42–49, 2012.

[34] Filip Zagórski, Grant McClearn, Sarah Morin, Neal McBurnett, and Poorvi L Vora.
Minerva–an efficient risk-limiting ballot polling audit. In 30th USENIX Security
Symposium (USENIX Security 21), pages 3059–3076. USENIX Association, 2021.

[35] Oliver Broadrick, Sarah Morin, Grant McClearn, Neal McBurnett, Poorvi L Vora,
and Filip Zagórski. Simulations of ballot polling risk-limiting audits. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 351–365.
Springer, 2022.

[36] Abigail Harrison, Benjamin Fuller, and Alexander Russell. Adaptive risk-limiting
ballot comparison audits. In IEEE Security & Privacy, 2023.

[37] Benjamin Fuller, Rashmi Pai, and Alexander Russell. The decisive power of inde-
cision: Low-variance risk-limiting audits and election contestation via marginal
mark recording. In USENIX Security, 2024.

[38] J Alex Halderman. Analysis of the antrim county, michigan november 2020
election incident, 2021.

[39] Election Assistance Commission. Voluntary voting system guidelines, 2005.
[40] Clifford Tatum. The abcs and 123s of the voluntary voting system guidelines.

Scitech Lawyer, 14(3):28–30, 2018.
[41] Whitney Quesenbery and Sharon J Laskowski. Handbook for vvsg 2.0 usability

and accessibility test strategies. 2023.
[42] Matthew Bernhard, Josh Benaloh, J Alex Halderman, Ronald L Rivest, Peter YA

Ryan, Philip B Stark, Vanessa Teague, Poorvi L Vora, and Dan S Wallach. Public
evidence from secret ballots. In Electronic Voting: Second International Joint
Conference, E-Vote-ID 2017, Bregenz, Austria, October 24-27, 2017, Proceedings 2,
pages 84–109. Springer, 2017.

[43] Matthew Bernhard, Kartikeya Kandula, Jeremy Wink, and J Alex Halderman.
Unclearballot: Automated ballot image manipulation. In Electronic Voting: 4th
International Joint Conference, E-Vote-ID 2019, Bregenz, Austria, October 1–4, 2019,
Proceedings 4, pages 14–31. Springer, 2019.

[44] Matthew Bernhard, Allison McDonald, Henry Meng, Jensen Hwa, Nakul Bajaj,
Kevin Chang, and J Alex Halderman. Can voters detect malicious manipulation
of ballot marking devices? In 2020 IEEE Symposium on Security and Privacy (SP),
pages 679–694. IEEE, 2020.

[45] Braden L Crimmins, Dhanya Y Narayanan, Drew Springall, and J Alex Halderman.
DVSorder: Ballot randomization flaws threaten voter privacy. In 33rd USENIX
Security Symposium (USENIX Security 24), 2024.

[46] Andrea Bajcsy, Ya-Shian Li-Baboud, Mary Brady, et al. Systematic measurement
of marginal mark types on voting ballots, 2015. https://nvlpubs.nist.gov/nistpubs/
ir/2015/NIST.IR.8069.pdf.

[47] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20:273–297, 1995.

[48] Bernhard E Boser, Isabelle MGuyon, and Vladimir N Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the fifth annual workshop on
Computational learning theory, pages 144–152, 1992.

[49] Nello Cristianini and John Shawe-Taylor. An introduction to support vector ma-
chines and other kernel-based learning methods. Cambridge university press,
2000.

[50] André Elisseeff and Jason Weston. A kernel method for multi-labelled classifica-
tion. Advances in neural information processing systems, 14, 2001.

[51] Kaleel Mahmood, Pedro Latorre Carmona, Sina Shahbazmohamadi, Filiberto Pla,
and Bahram Javidi. Real-time automated counterfeit integrated circuit detection
using x-ray microscopy. Applied Optics, 54(13):D25–D32, 2015.

[52] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

[54] Karen Simonyan. Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[55] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

[56] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2818–2826,
2016.

[57] KaimingHe and Jian Sun. Convolutional neural networks at constrained time cost.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5353–5360, 2015.

[58] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway
networks. arXiv preprint arXiv:1505.00387, 2015.

[59] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,
Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual representation
learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part V 16, pages 491–507. Springer, 2020.

[60] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and
Mohan Kankanhalli. Attacks which do not kill training make adversarial learning
stronger. In International conference on machine learning, pages 11278–11287.
PMLR, 2020.

[61] Kaleel Mahmood, Phuong Ha Nguyen, Lam M Nguyen, Thanh Nguyen, and
Marten Van Dijk. Besting the black-box: barrier zones for adversarial example
defense. IEEE Access, 10:1451–1474, 2021.

[62] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for im-
age recognition at scale. In International Conference on Learning Representations,
2020.

[63] Matthew Bernhard. Risk-limiting audits: A practical systematization of knowl-
edge. In International Joint Conference on Electronic Voting, 2021.

[64] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan.
Better diffusion models further improve adversarial training. In International
Conference on Machine Learning, pages 36246–36263. PMLR, 2023.

[65] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On
adaptive attacks to adversarial example defenses. Advances in neural information
processing systems, 33:1633–1645, 2020.

[66] K Mahmood, D Gurevin, M van Dijk, and PH Nguyen. Beware the black-box: On
the robustness of recent defenses to adversarial examples. Entropy, 23:1359, 2021.

[67] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin.
On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705, 2019.

[68] Kaleel Mahmood, Rigel Mahmood, and Marten Van Dijk. On the robustness
of vision transformers to adversarial examples. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 7838–7847, 2021.

[69] Ethan Rathbun, Kaleel Mahmood, Sohaib Ahmad, Caiwen Ding, and Marten
van Dijk. Game theoretic mixed experts for combinational adversarial machine
learning. arXiv preprint arXiv:2211.14669, 2022.

[70] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. In
International conference on machine learning, pages 274–283. PMLR, 2018.

[71] John W. Eaton, David Bateman, Søren Hauberg, and Rik Wehbring. GNU Octave
version 9.1.0 manual: a high-level interactive language for numerical computations,
2024.

[72] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. In International Conference on Learning Representations,
2015.

[73] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao.
Is robustness the cost of accuracy?–a comprehensive study on the robustness of
18 deep image classification models. In Proceedings of the European conference on
computer vision (ECCV), pages 631–648, 2018.

[74] Hui Wei, Hao Tang, Xuemei Jia, Zhixiang Wang, Hanxun Yu, Zhubo Li, Shin’ichi
Satoh, Luc Van Gool, and Zheng Wang. Physical adversarial attack meets com-
puter vision: A decade survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[75] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Acces-
sorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’16, page 1528–1540, New York, NY, USA, 2016. Association
for Computing Machinery.

[76] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in
the physical world. In Artificial intelligence safety and security, pages 99–112.
Chapman and Hall/CRC, 2018.

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

A FULL DESCRIPTION OF TRAINING MODELS
We discuss how our classifiers are trained.

Adjusting Training Loader. We have four datasets, Bubbles-
Grayscale, Bubbles-RGB, Combined-Grayscale and Combined-RGB.
All models are trained on grayscale with SVM, SimpleCNN, ResNet-
20, and Twins also trained on RGB. We use an 80-20 training-
validation split. All of these datasets have a disproportional high
amount of non-mark examples compared to mark examples. We

https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8069.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8069.pdf

Busting the Paper Ballot CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Dataset Model Hyperparameters
LR DR Epochs WD BS

Gray-B
SimpleCNN 0.01 0.9 20 0.0 512
VGG-16 0.001 - 20 - 64
ResNet-20 0.1 0.9 20 0.0 64

Gray-C
SimpleCNN 0.001 0.9 100 0.0 256
VGG-16 0.001 - 20 - 64
ResNet-20 0.0005 0.5 300 0.0 128

RGB-B
SimpleCNN 0.01 0.9 20 0.0 512
ResNet-20 0.1 0.9 20 0.0 64

RGB-C
SimpleCNN 0.001 0.9 100 0.0 512
ResNet-20 0.0005 0.5 300 0.0 128

Table 6: Training hyperparameters for convolutional models
SimpleCNN and ResNet-20 across all four datasets. Abbrevia-
tions stand for Learning Rate, Dropout Rate, Epochs, Weight
Decay, and Batch Size respectively.

balance our training loader to have an equal amount of mark and
non-mark examples.

Training SVM. SVMs are linear classifier which maximize the
distance between the decision boundary and each class in the la-
tent space. They are much simpler than other models. We trained
linear SVMs, meaning the linear, or “identity”, kernel was used. For
grayscale datasets, examples were flattened from image size 1 ×
40 × 50 to a 2000 element tensor as the SVM’s input. Likewise, for
color datasets, examples were flattened from 3 × 40 × 50 to 6000.
To match these input dimensions, grayscale SVMs consisted of a
single fully-connected layer with 2000 input neurons to a single
output neuron. Color SVMs had 6000 input neurons.

All SVM models were trained using the LinearSVC module from
sklearn [77] with the same hyperparameters. We use a linear kernel
with ℓ2 penalty and balanced class weight. We use a regularization
parameter of 1𝑒 − 8, a tolerance of 1𝑒 − 7, and an intercept scaling
factor of 1000. We use primal instead of dual optimization and set
the random state to 0.

Training CNNs. Training hyperparameters for the SimpleCNN,
VGG-16, and ResNet-20 are listed in Table 6. Models are trained
using CE loss and an Adam optimizer. VGG-16 was not trained on
the color datasets.

Table 7 outlines the architecture layer-by-layer for the shallow
convolutional neural network SimpleCNN. The entire model con-
sists of three convolutional layers that send a one or three channel
input (for grayscale and RGB respectively) to 32, to 48, then to
32 channels. The SimpleCNN use in-place ReLU operations with
convolution, max pooling, or transposed convolution layer have a
padding of 0. (We do the same on the denoiser.)

Training CaiT. We train the Gray-B and Gray-C datasets on CaiT
from scratch. The same set of hyperparameters was used for train-
ing each dataset for 20 epochs each. Other hyperparameters include:
patch size of 5, embedding dimension of 512, 16 transformer lay-
ers, 8 attention heads, MLP dimension of 2048, and dropout and
embedding dropout rates of 0.1, along with a layer dropout of 0.05.
The models are trained using CE loss and Adam optimizer with
learning rate of 5e-5 and batch size of 128.

Training Twins. The Twins-B model was originally pre-trained
on ImageNet with RGB images of size 224 × 224. We leveraged this
pre-training to more quickly fine-tune the models trained on the
RGB-C and RGB-B datasets. Transfer learning is not possible for
the Gray-C and Gray-B datasets, however, as grayscale images only
have one channel. Thus, these models were trained from scratch.

Twins was trained with the same set of hyperparameters for
each dataset. Each Twins model was trained for 300 epochs with
a batch size of 64. All images were upscaled to a resolution of 224
× 224 during training, evaluation, and attacks. We use an AdamW
optimizer with an epsilon of 1𝑒−8, no beta term, gradient norm clip
of 5, a momentum term of 0.9, and a weight decay of 0.05. Dropout
was not used during training or evaluation.

Additional Adjustments.We list some important optimizations
used here:

(1) We trained our self-attention model, the Twins, on a data
range of 0-255 whereas our CNNs (SimpleCNN, VGG-16, and
ResNet-20) and linear model, the SVM, were trained on a
data range of 0-1. This is because the original Twins model,
trained on ImageNet, was trained using a 0-255 range. This
allowed us to transfer the model’s weights from ImageNet
to the RGB-C and RGB-B datasets.

(2) Adding a dropout layer before the final fully-connected lay-
ers of each convolutional model and using a high dropout
rate helped our combined models achieve high validation
accuracy.

(3) Training on bubbles across all models was significantly easier
than training on the combined dataset. Combined models
required many epochs to reach a certain accuracy threshold,
whereas bubble-only models required a few epochs to reach
100% training accuracy.

(4) To perform CE attacks on the SVM, we add a two-node fully
connected layer. The first neuron in our new output FC layer
has a weight of -1 and a bias of 1, and the second neuron has
a weight of 1 and a bias of 0. This ensures that if the output
of our first FC layer is 𝑝 , the output of our second FC layer
is [𝑝, 1 − 𝑝].

(5) Downsizing 224 × 224 images to 40 × 50 then upscaling back
to 224 × 224 removes most of the adversarial signal added to
the original images. We need to downsize 224 × 224 images
from Twins for printing and scanning. We run attacks on
40 × 50 images using Twins by performing an upscaling
transformation in Twins’ forward pass.

Results.Our fine tuning has allowed almost all of ourmodels across
all of our datasets to achieve a > 99% clean validation accuracy
on the bubbles dataset for all models except the SVM. Similarly,
except the SVM, all combinedmodels achieve a combined validation
accuracy above 90%.

A.1 Training Denoiser

We used 100 training epochs with a fixed learning rate of 0.001
and Mean Squared Error loss. To learn the mapping, we train on
10,000 pairs of examples of pre-print/post-print bubbles. We also
include 10,000 digital/digital identity pairs in training to ensure

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Mahmood, Manicke, Rathbun, Verma, Ahmad, Stamatakis, Michel, Fuller

𝐃𝐢𝐠𝐢𝐭𝐚𝐥 𝐏𝐡𝐲𝐬𝐢𝐜𝐚𝐥 𝐃𝐞𝐧𝐨𝐢𝐬𝐞𝐝

Figure 6: Comparison of examples in digital domain, physical
domain, and denoiser output. To mitigate the darker tones
and dithering in the physical domain, the denoiser adds a
blurring effect.

Layer Type Parameters
Input (Num Channels, 40, 50)
Convolution + ReLU 32×3×3, stride 1
Max Pooling 2 × 2, stride 0
Convolution + ReLU 48 ×3×3, stride 1
Max Pooling 2 × 2, stride 0
Convolution + ReLU 32 ×3×3, stride 1
Max Pooling 2 × 2, stride 0
Dropout 0.5
FC + Softmax 2

Total Parameters Grayscale: 28,818
RGB: 29,394

Table 7: SimpleCNN Architecture. Note the grayscale dataset
has one input channel whereas the RGB dataset has three.
This causes the total number of training parameters to vary.

Sec. 3.2 Model Post-Denoiser
Digital Physical Digital Physical

SVM 0.937 0.806 0.913 0.924
SimpleCNN 1.000 0.750 1.000 1.000
ResNet-20 1.000 0.764 0.998 0.996
Twins 1.000 0.855 1.000 1.000

Table 8: Accuracy of all models trained on theGray-C dataset
on 1000 random classwise balanced Gray-B examples pre-
print and post-print. Our models achieve a higher clean ac-
curacy in the post print domain when using a denoiser.

Layers Parameters

Encoder

Convolution + ReLU 32 × 3 × 3, pad 0, stride 1
Max Pooling 2 × 2, stride 0
Convolution + ReLU 16 × 3 × 3, stride 1
Max Pooling 2 × 2, stride 0
Convolution + ReLU 8 × 3 × 3, stride 1
Max Pool 3 2 × 2, stride 0

Decoder

Transpose + ReLU 8 × 3 × 3, pad 0, stride 2
Transpose + ReLU 16 × 2 × 2, stride 2
Transpose + ReLU 32 × 2 × 2, stride 2
Transpose 1 × 3 × 3, stride 0

Table 9: Denoising Autoencoder Architecture. The images
produced have dimension 42 × 50, the forward function re-
moves the first and last row.

that the denoiser can handle images that have not been printed. No
adversarial examples were involved in training.

Results are shown in Table 8, with the denoiser-augmented mod-
els demonstrating high 99% accuracy (on three of the models) when
given printed or digital examples. SVM pre-print accuracy is lower
with an accuracy of 91.3%. We print and scan 1000 random classwise
balanced Gray-B examples.

Figure 6 illustrates how the denoiser reverses the darkening and
dithering induced by printing. This carries a cost as images loose
some sharpness. Denoiser-prepended models have high accuracy
on both digital and physical samples. In the rest of this section,
post-print adversarial examples are fed through the denoiser first
before classification.

B ALTERNATIVE ATTACK RESULTS: PGD,
MIM, FGSM

For ResNet-20, we believe gradient masking occurs on APGD [12],
PGD [13], MIM [14], and FGSM [72]. Attack results using CE loss are
shown in Table 10. We highlight a few results. First, as previously
stated in the literature [67], unbounded attacks should always pro-
duce a robustness of 0%. This does not happen for any of the attacks
with 𝜖 = 255/255 (except FGSM on ResNet-20 Gray-B). Every it-
erative attack (MIM, PGD and APGD) suffers from gradient
masking when the CE loss function is used for ResNet-20. For
example, the MIM attack is 16% robust for 𝜖 = 255/255 for ResNet-
20 Gray-C when we would expect this number to be 0. Therefore
when working to overcome gradient masking, we focused on refin-
ing the APGD attack.We choose to focus on APGD for the following
two reasons. First, previous experimental findings [12, 68] showed
that APGD offers superior attack performance in most cases when
attacking CNNs and transformers. Second, the literature [67] clearly
states using multiple iterative white-box attacks is not a useful form
of analysis. Therefore, we did not further develop MIM, PGD and
FGSM and instead focused on the APGD attack in our paper. We
leave it as an open future work to see whether these attacks could
be improved through alternative loss functions.

C ETHICAL CONSIDERATION
This paper addresses the susceptibility of machine learning models
trained on voting bubbles to adversarial examples. To the best
of our knowledge, none of the models we have trained and
attacked in this paper are used in real tabulating machines.
These models are also not chosen to be similar to models in use by
vendors. Models were chosen to represent different possible design
choices.

The marginal marks used in this dataset are designed to explore
the boundary of an optical lens scanner and do not result from
any election related data. The empty bubbles are bubbles that were
printed by a commercial vendor. They have undergone registration
and segmentation using predetermined coordinates. Marks are on
paper printed by the same vendor. There are no obvious indica-
tions of the relevant election, ballot type, or what preferences were
selected in the processed dataset.

Busting the Paper Ballot CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Metric APGD PGD MIM FGSM
Dataset Gray-B/ Gray-C Gray-B/ Gray-C Gray-B/ Gray-C Gray-B/ Gray-C
Clean Acc. 0.9998 / 0.9999 0.9998 / 0.9999 0.9998 / 0.9999 0.9998 / 0.9999
4/255 1.000 / 0.168 1.000 / 0.166 1.000 / 0.166 1.000 / 0.721
8/255 1.000 / 0.304 1.000 / 0.166 1.000 / 0.166 1.000 / 0.751
16/255 1.000 / 0.647 1.000 / 0.166 1.000 / 0.166 0.995 / 0.668
32/255 1.000 / 0.647 1.000 / 0.166 1.000 / 0.166 0.924 / 0.652
64/255 1.000 / 0.645 1.000 / 0.166 1.000 / 0.166 0.500 / 0.642
255/255 1.000 / 0.644 1.000 / 0.166 1.000 / 0.166 0.000 / 0.480

Table 10: ResNet-20 Robust Accuracy on FGSM, PGD, MIM, and APGD, using Cross-Entropy loss.

	Abstract
	1 Introduction
	2 Voting in the United States and Prior Work
	2.1 Types of Ballot Scanners

	3 Datasets / Classifier Architectures
	3.1 New Bubble Datasets
	3.2 Machine Learning Classifiers
	3.3 ML Classifier Performance on Voting Datasets

	4 Adversarial Threat Model and Adversarial Example Generation
	4.1 Attack Nomenclature
	4.2 Analyzing Attacks on Voting Systems
	4.3 Generating Adversarial Examples

	5 Gradient Masking
	5.1 The Repeated Zero Gradient Condition
	5.2 Numerical Instability

	6 Overcoming the Zero Gradient Condition
	7 Adversarial Attacks in the Virtual Context
	7.1 White-Box Attack Performance
	7.2 White-Box Perturbation Magnitude

	8 Attacks in the Physical World
	8.1 Physical Dataset
	8.2 Physical Attack Results

	9 Conclusion
	References
	A Full Description of Training Models
	A.1 Training Denoiser

	B Alternative Attack Results: PGD, MIM, FGSM
	C Ethical Consideration

