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Abstract. ReDash extends Dash’s arithmetic garbled circuits to pro-
vide a more flexible and efficient framework for secure outsourced infer-
ence. By introducing a novel garbled scaling gadget based on a gener-
alized base extension for the residue number system, ReDash removes
Dash’s limitation of scaling exclusively by powers of two. This enables
arbitrary scaling factors drawn from the residue number system’s mod-
ular base, allowing for tailored quantization schemes and more efficient
model evaluation.
Through the new ScaleQuant+ quantization mechanism, ReDash sup-
ports optimized modular bases that can significantly reduce the overhead
of arithmetic operations during convolutional neural network inference.
ReDash achieves up to a 33-fold speedup in overall inference time com-
pared to Dash. Despite these enhancements, ReDash preserves the ro-
bust security guarantees of arithmetic garbling. By delivering both per-
formance gains and quantization flexibility, ReDash expands the prac-
ticality of garbled convolutional neural network inference.

Keywords: Garbled Circuit · Secure Outsourcing · Inference.

1 Introduction

As the adoption of privacy-preserving machine learning continues to grow, effi-
cient solutions for secure outsourced inference (SOI) remain crucial. From per-
sonalized healthcare to confidential financial analytics, organizations increasingly
rely on outsourcing resource-intensive neural network computations to powerful
but potentially untrusted cloud providers. Yao’s garbled circuits (GCs) [5] ensure
privacy in principle, yet their bitwise approach to arithmetic is often disadvan-
tageous for neural network operations. In contrast, arithmetic garbled circuits
(AGCs) natively handle arithmetic computations over finite rings, making them
far more efficient for deep learning tasks.

Recently, Sander et al. [3] presented the framework Dash which purely lever-
ages AGCs to protect convolutional neural network inference. Dash provides
new optimized scaling operations in the residue number system (RNS) and novel
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memory layouts called LabelTensors for efficient parallelization, leading to sub-
stantial performance improvements. However, their approach is constrained by
scaling limited to power-of-two factors, restricting flexibility and limiting prac-
tical performance.

We present ReDash, an extension to Dash, which removes its power-of-two
restriction by adopting a generalized base extension (BE) algorithm for scal-
ing. ReDash allows using arbitrary scaling factors from the RNS base, enabling
ScaleQuant+, a more efficient and flexible quantization method. The result is a
significant speedup in secure inference, as ReDash eliminates the need to chain
multiple scaling gadgets. In our evaluation, we demonstrate the large perfor-
mance gain achievable through ReDash.

2 Preliminaries

2.1 Secure Outsourced Inference

Compared to Dash, we focus on a scenario without a TEE and only two parties
(the classical GC scenario). We consider a compute provider who whishes to
provide their computational resources to a customer while preserving the cus-
tomer’s data privacy. In ReDash the compute provider takes the role of the
evaluator and the customer takes the role of the garbler. The garbler garbles the
model to be outsourced during an input-independent offline phase and sends it
to the evaluator. When the customer wants to leverage the outsourced model to
perform inference, he uses an Oblivious Transfer to send the garbled inputs to
the evaluator. Finally, the evaluator performs the secure inference and sends the
garbled results back to the customer.

2.2 Number Systems

Residue number systems (RNS) represent integers using a set of pairwise
co-prime moduli p1, p2, . . . , pk. A number x is represented as its residues modulo
a base of moduli: x 7→ ([x]1, ..., [x]k) where [x]i := x mod pi. An RNS with
base p1, p2, . . . , pk has cardinality Pk :=

∏k
i=1 pi. If Pk is the product of the

first k prime numbers, it is referred to as the k-th composite primal modulus
(CPM). The use of RNS enables efficient parallel arithmetic and simplifies the
implementation of arithmetic operations in AGCs.
Mixed radix systems (MRS) represent an integer x using position-dependent
radices ri: x = d1 + d2r1 + d3r1r2 + · · ·+ dk

∏k−1
i=1 ri, where each digit di is non-

negative and smaller than it’s corresponding radix ri. If for a given RNS with
base (p1, ..., pk) it holds that ∀i : ri = pi the MRS is called the associated MRS
of that RNS. An associated MRS has the same cardinality as the corresponding
RNS.
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2.3 Arithmetic Garbled Circuits

AGCs generalize Yao’s original GCs [5] to arithmetic computations over finite
rings Zp. Introduced by Ball et al. [2], arithmetic garbling enables efficient, secure
computation of arithmetic operations. In AGCs, labels consist of components
from Zp and have corresponding semantics. For an input value a ∈ Zp, the
associated wire label is computed as: la = l0 + a · R, where l0 is a random base
label and R is a random offset label used consistently across the circuit.

Arithmetic GCs support the following efficient operations. Addition gates
are ciphertext-free, where output labels are computed directly from input labels
la+b = la+ lb mod p. Multiplication by a public constant c is also ciphertext-free:
lac = c · la mod p. Projection gates for unary functions ϕ : Zp → Zq require p (or
p − 1 with the row-reduction optimization [1]) ciphertexts to securely evaluate
arbitrary unary functions. Subsequently, Ball et al. [1] introduced an efficient
mixed-modulus Half Gate that enables the multiplication of two private (non-
RNS) values and an approximated sign gadget over private values in RNS rep-
resentation. Utilizing these gadgets, ANN layers such as ReLU and MaxPooling
can be efficiently constructed.

2.4 Encoding & Quantization

Dash and ReDash operate on integers within a finite ring ZPk
. To encode

integers, positive numbers are mapped to the lower half of ZPk
, while negative

numbers are mapped to the upper half, e.g., (0, 1, 2,−2,−1) 7→ (0, 1, 2, 3, 4).
Dash supports the following two quantization schemes.
SimpleQuant multiplies all floating-point values (weights, biases, and inputs)
with a small quantization constant α and rounds the result to the nearest integer,
where α balances quantization error and representable range.
ScaleQuant multiplies floating-point weights and inputs with a quantization
constant 2l and subsequently rounds to the nearest integer. The same procedure
is applied to the bias values but using 22l as quantization constant. During
inference-time, outputs of linear layers are scaled by 2−ℓ to limit intermediate
results to practical value ranges. The constant l is chosen model dependent
based on the width of the linear layers. ScaleQuant only supports quantization
constants which are powers of two, as Dash’s scaling gadget is limited to scaling
by two.

3 ReDash

3.1 Threat Model

In this work, we adopt the classical GC scenario involving two parties: a garbler
and an evaluator. The garbler creates the AGC and the corresponding encoding
information, whereas the evaluator evaluates the garbled circuit to compute the
function output. We assume a semi-honest security model, in which both the
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garbler and evaluator follow the protocol honestly but may attempt to infer ad-
ditional information from the messages exchanged. Our scheme guarantees input
privacy, output privacy, and integrity of computation under this semi-honest ad-
versarial assumption. ReDash inherits the security guarantees of Dash [3], we
refer to their security analysis for a detailed discussion.

3.2 Scaling of Residue Numbers

To support ScaleQuant, Dash introduced a garbled scaling operation over the
residues of RNS representations. Scaling a number x by a scaling factor s means
computing y := ⌊x/s⌋. By construction, x = ⌊x/s⌋ · s + (x mod s) and thus
⌊x/s⌋ = (x− (x mod s))/s, which is always a division with remainder zero. We
leverage that when computing x/d mod m for some divider d of x, the equivalent
operation xd−1 mod m can be computed on a per-residue basis as long as the
inverse is well-defined for all pi of our RNS (see also [4]). We can thus create the
division-with-remainder-zero scenario (i.e., that s is a divider) by subtracting
x mod s from each individual residue xi before division. The only s for which
x mod s is known are the moduli of our RNS, limiting s = pi for some i ≤ k.
Without loss of generality, we assume that i = k, i.e., that s is the last modulus
of our RNS base. To scale a residue [x]i down to [y]i = ⌊x/s⌋ for i < k we
compute:

[y]i = ([x]i − [x]k) · p−1
k mod pi.

The equation is not well-defined for i = k. Sander et al. [3] proposed a way
to determine [y]k for s = 2 by leveraging the SignGadget of Ball et al. [1] and
performing a base extension (BE) by computing [y]k = sign([y]2, ..., [y]k−1, 0).
The sign-based method cannot be generalized for other choices of s or for RNS
bases without modulus two. Limiting the scaling operation to s = 2 is the
main bottleneck in Dash when using ScaleQuant as it necessitates the chaining
of multiple scaling layers for larger ℓ, thereby significantly increasing the com-
putational overhead. Especially in larger CNN topologies, scaling makes up a
significant part of the total online runtime [3]. We address this limitation by
introducing a generalized garbled BE algorithm that enables more flexible and
efficient quantization schemes trough scaling by arbitrary moduli from the RNS
base.

3.3 Generalized Garbled Base Extension

We leverage the generalized BE detailed by Szabo and Tanaka [4] to construct an
efficient and flexible BE gadget for AGCs that allows to realize more versatile and
effective quantization schemes for ANN inference in SOI. The BE exploits the
cardinality equivalence of an RNS and its associated MRS: After scaling down
x to y by scaling factor s = pk, we know from x < Pk that y < Pk/pk = Pk−1,
which is the cardinality of a smaller MRS with radices p1, ..., pk−1. Thus, the
most significant digit of y’s representation in its associated MRS with radices
p1, ..., pk is not needed, hence dk = 0. To determine [y]k, the algorithm follows a
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recursive RNS-to-MRS conversion. Let y′ be ([y]1, . . . , [y]k−1, 0), i.e., the scaled
down RNS representation before the BE. For all j = 1, . . . , k we compute:

di = [zi]i, where [zi]j =

{
[y′]j , for i = 1,

([zi−1]j − [zi−1]i−1)p
−1
i−1 mod pj , otherwise.

The missing residue is given by [y]k = −(
∏k−1

i=1 pi)
−1 · [zk−1]k mod pk. Figure 1

depicts our generalized garbled BE for k = 3. As our only goal is to determine
[y]3, we compute [zi]j only for choices of j that contribute to d3 = [z3]3 and
therefore contribute to computing [y]3, i.e., j = 1, 2 for i = 1 and j = 2 for
i = 2. The garbling of this circuit is really cheap compared to previous work:
All pi are stored as plaintext, thus all multiplications with p−1

i are free. Garbled
subtractions are realized using free modular addition of labels. The garbled BE
thus requires only

∑k−1
i=1

∑k−1
j=i pj ciphertexts per input.

Fig. 1: Circuit of the generalized BE for an RNS base of 3 moduli (P3).

3.4 A generalized Scaling Gadget

Building upon their scaling-by-two operation, Sander et al. [3] constructed a
garbled scaling gadget for Dash. The scaling gadget operates in four subse-
quent steps: First, a constant addition of Pk/2 (shift-up) ensures all values are
positive. Then, these positive values are scaled via Dash’s garbled scaling-by-
two operation, followed by their sign-based BE to determine [y]p1

. Finally, a
subtraction of Pk/4 (shift-down) reestablishes the correct encoding of positive
values to the lower half and negative values to the upper half of ZPk

. As part
of ReDash, we propose a more flexible and efficient generalization of this ap-
proach, enabling scaling by arbitrary moduli of the used RNS base. We developed
a really efficient and scalable garbled implementation a BE algorithm outlined
by Szabo and Tanaka. Where previously each s = 2 scaling step required ded-
icated shift-up and shift-down operations, it suffices to shift up inputs once by
Pk/2 before scaling and down by Pk/2s after scaling. Inspired by the example
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Fig. 2: Cost in terms of ciphertexts for garbled scaling with scaling factor s = 2
in ReDash, and Dash with CPM RNS bases.

given by Sander et al. [3], the four steps of our generalized scaling gadget are
demonstrated exemplary in Table 1. Note that ReDash’s BE approach can, un-
like Dash’s sign-based solution, extend the RNS base by not just one but any
number of moduli, allowing ScaleQuant+ to scale by a product of multiple RNS
base moduli at once. ReDash’s scaling is (independent of s) cheaper in terms of
ciphertexts than Dash’s scaling approach that leverages costly sign-operations.
Figure 2 compares Dash’s garbled scaling cost in terms of ciphertexts to the
cost of our new garbled scaling gadget when scaling with s = 2.

Table 1: Step-by-step outputs of ReDash’s generalized scaling gadget with scal-
ing factor s = 3 for all inputs in Z6. x: Input value to the scaling function. x±:
Sign information of x. x↑ and x↓: Output of the ShiftUp and ShiftDown opera-
tions. b: Scaling operation after the ShiftUp and before the base extension. φ(x):
Maps x to its residue representation in P2 base. y: Output of our generalized
base extension algorithm.
x x± φ(x) x↑ x±↑ φ(x↑) y′ = [b(φ(x)), 0] φ−1(y′) φ−1(y′)± y φ(y) φ(y↓) y↓ y±↓

0 0 [0, 0] 3 -3 [1, 0] [1, 0] 3 -3 1 [1, 1] [0, 0] 0 0
1 1 [1, 1] 4 -2 [0, 1] [1, 0] 3 -3 1 [1, 1] [0, 0] 0 0
2 2 [0, 2] 5 -1 [1, 2] [1, 0] 3 -3 1 [1, 1] [0, 0] 0 0
3 -3 [1, 0] 0 0 [0, 0] [0, 0] 0 0 0 [0, 0] [1, 2] 5 -1
4 -2 [0, 1] 1 1 [1, 1] [0, 0] 0 0 0 [0, 0] [1, 2] 5 -1
5 -1 [1, 2] 2 2 [0, 2] [0, 0] 0 0 0 [0, 0] [1, 2] 5 -1

3.5 ScaleQuant+

ScaleQuant is limited by Dash’s scaling support. Function-wise, ScaleQuant in
Dash is restricted to quantizing with powers-of-two: 2ℓ. Performance-wise, Dash
has to chain ℓ scaling gadgets to perform a single down-scaling needed on the
outputs of each linear layer.
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We propose ScaleQuant+ to overcome these limitations. ScaleQuant+ de-
ploys our improved garbled scaling gadget, allowing arbitrary moduli of the
RNS base as quantization constants. Furthermore, the sign-gadgets used in
Dash’s ScaleQuant implementation require the used RNS base to contain mod-
ulus pk = 2. In ReDash, quantization via ScaleQuant+ allows us to omit this
requirement, enabling more optimized RNS bases. The correct quantization con-
stant for any scheme is determined by the value range one must cover for a
given inference computation. As the gap between 2ℓ and 2ℓ+1 becomes increas-
ingly large in realistic inference scenarios, the minimum required choice of ℓ may
overshoot the scenario’s value range significantly. The potential runtime perfor-
mance and ciphertext overhead of suboptimal large value ranges are mitigated
by leveraging ScaleQuant+ where RNS with more fine-grained cardinality are
possible.

3.6 Implementation Tweaks

We identify two optimization angles in Dash’s implementation of linear oper-
ations. First, we replace the naive implementation of dense and convolutional
layers on LabelTensors with BLAS-supported Eigen functions. Second, Dash
deploys 16-bit integers to represent garbled residues. The 16-bit value range ne-
cessitates frequent modular reduction, especially in multiplication-heavy linear
layers, creating a runtime bottleneck. We leverage 32-bit data types to perform
operations over residues and significantly reduce the number of expensive mod-
ular reductions. Experiments with 64-bit data types (both everywhere and in
linear layers only) that necessitate even less modular reductions yielded no fur-
ther performance benefit.

4 Evaluation

We implemented our new scaling gadget and the ScaleQuant+ mechanism on
top of Dash1. As in the evaluation of Dash we focus on the time critical on-
line phase, omitting the input-independent offline phase in our evaluation. All
measurements of both Dash and ReDash were conduced on a server equipped
with a single Intel Xeon Gold 5415+ CPU and a base clock of 2.90 GHz. For
simplicity, we omit the online communication costs of Dash and ReDash as
they are the same.

To evaluate the performance achieved by ReDash, we run an isolated micro-
benchmark of our new scaling gadget. We used the CPM with the first 8 prime
numbers as RNS base and replaced p8 = 2 with 2ℓ for ReDash. Figure 3 shows
the scalability of our scaling gadget compared to Dash’s scaling gadget in terms
of runtime with growing numbers of compute-threads and inputs. ReDash beats
Dash in both cases strictly and by a large margin. Dash requires over 6 or over
11 threads to achieve the same runtime as a single-threaded ReDash for ℓ = 3,

1 https://github.com/UzL-ITS/dash
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Fig. 3: Online runtime comparison of the scaling gadgets in ReDash and Dash.
Left shows the runtime with growing thread count and fixed input size of 128.
Right shows the runtime with growing input size and a fixed number of 16
compute-threads.

respective ℓ = 5. For an input of size 214 Dash requires over 6x more time
compared to ReDash to evaluate the scaling gadgets.

We compare ReDash to Dash on the two CIFAR-10 model architectures
(f, F) proposed by Sander et al. [3] to be used with ScaleQuant. Model details
are listed in appendix A. For measurements of Dash we used ScaleQuant with
ℓ = 5, for ReDash we deployed our new quantization scheme ScaleQuant+ with
s = 32. We compare three different setups for ScaleQuant+: In the ReDash
setup, we used the same bases as in our isolated scaling gadget benchmark.
In ReDash∗, we used the following two optimized short RNS bases, which
were previously not possible without ScaleQuant+: (32, 167, 173) for model f
and (32, 97, 107) for model F. The final setup ReDash∗

E extends ReDash∗ by
deploying the implemenation-specific tweaks outlined in Section 3.6. While the
scaling operation of Dash’s ScaleQuant scheme covers up to 28% of total infer-
ence runtime, our new approach reduces scaling runtime contribution by 21%
to a total of 8% in ReDash∗ for model architecture f, as seen in Table 2. The
total inference runtime and the relative cost of each NN operation with and
without optimized bases compared to Dash is visualized in Figure 4. Overall,
our new quantization scheme that deploys the optimized and generalized scal-
ing gadget is up to seven times faster in deep CNN architectures compared to
Dash’s state-of-the-art solution. In a second inference benchmark, we evaluate
the online runtime performance impact of our improved implementation of lin-
ear operations in ReDash. Figure 4 shows a further 70-80% speedup achieved
via Eigen integration and 32-bit garbled RNS labels. When combining the new
scaling features of ReDash with these implementation tweaks, we achieve an
up to 33-fold speedup compared to Dash.



ReDASH: Fast and efficient Scaling in Arithmetic Garbled Circuits 9

Table 2: Per-layer online runtimes (ms) for ReDash and Dash. ReDash∗ means
ReDash uses optimized short RNS bases. ReDash∗

E uses optimized short RNS
bases, Eigen operations and 32-bit garbled label residues.

Operation Model f Model F
Dash ReDash ReDash∗ ReDash∗

E Dash ReDash ReDash∗ ReDash∗
E

Dense 0.6 0.5 0.2 0.1 0.6 0.6 0.2 0.1
Conv2d 6771 5135 997 71 17660 13393 2742 193
ReLU 538 529 197 197 981 982 433 346
Scaling 2841 437 99 97 5274 763 455 179∑

10150.6 6101.5 1293.2 365.1 23915.6 15138.6 3630.2 718.1

5 Conclusion

We introduced ReDash, an extension of Dash that enables efficient scaling by
arbitrary RNS moduli in AGCs. By replacing Dash’s [3] sign-based scaling
with a generalized BE, ReDash supports more flexible quantization through
ScaleQuant+, eliminating the restriction to power-of-two scaling. Our evalua-
tion shows that our solution improves runtime performance in the SOI setting by
up to 33 times compared to Dash. These improvements make secure outsourced
inference with AGCs more practical, scalable, and adaptable to real-world tasks.
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(a) Comparison between ReDash∗ with short RNS bases (I),
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Fig. 4: Online inference runtimes and runtime distributions. (a) Baseline compar-
ison of ReDash vs. Dash. (b) Effect of further implementation optimizations
on ReDash. Notably, ReDash elimiated both the rescaling and the linear layer
performance bottlenecks.

A Model Architectures

Like Sander et al. [3] we used their models f and F for the evaluation (see Table 3).
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Table 3: Model architectures. R: ReLU, (a): dense layer with a outputs,
(a, b, c, d): 2d convolution with a input-channel, b output-channel, filter size c
and a stride of d.

Modelf: (3, 32, 3, 1), R, (32, 32, 3, 1), R, (32, 32, 2, 2), (32, 64, 3, 1), R, (64, 64, 3, 1), R,
(64, 64, 2, 2), (64, 128, 3, 1), R, (128, 128, 3, 1), R, (10)

ModelF: (3, 64, 3, 1), R, (64, 64, 3, 1), R, (64, 64, 2, 2), (64, 64, 3, 1), R, (64, 64, 3, 1), R,
(64, 64, 2, 2), (64, 64, 3, 1), R, (64, 64, 1, 1), R, (64, 16, 1, 1), R, (10)
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