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Abstract—This paper investigates the integration of quantum
randomness into Verifiable Random Functions (VRFs) using
the Ed25519 elliptic curve to strengthen cryptographic security.
By replacing traditional pseudorandom number generators with
quantum entropy sources, we assess the impact on key security
and performance metrics, including execution time, and resource
usage. Our approach simulates a modified VRF setup where
initialization keys are derived from a quantum random number
generator source (QRNG). The results show that while QRNGs
could enhance the unpredictability and verifiability of VRFs,
their incorporation introduces challenges related to temporal and
computational overhead. This study provides valuable insights
into the trade-offs of leveraging quantum randomness in API-
driven cryptographic systems and offers a potential path toward
more secure and efficient protocol design. The QRNG-based
system shows increased (key generation times from 50 to 400+
µs, verification times from 500 to 3500 µs) and higher CPU usage
(17% to 30%) compared to the more consistent performance of
a Go-based VRF (key generation times below 200 µs, verification
times under 2000 µs, CPU usage below 10%), highlighting trade-
offs in computational efficiency and resource demands.

Index Terms—Quantum Entropy, Verifiable Random Func-
tions, Elliptic Curve Cryptography, Network Security

I. INTRODUCTION

In the rapidly advancing field of cryptography, the integra-
tion of quantum resources represents a profound opportunity
for achieving unprecedented levels of security and robustness.
At the core of this advancement lies true randomness, a funda-
mental requirement for secure key generation in cryptographic
primitives such as Verifiable Random Functions (VRFs) and
Elliptic Curve Cryptography (ECC). The ability to generate
highly unpredictable, high-entropy keys and nonces from
quantum sources is essential for safeguarding cryptographic
systems against a broad spectrum of attack vectors, including
side-channel attacks that exploit indirect information leaks
such as power consumption, timing variations, and electro-
magnetic emissions[1].

Quantum Random Number Generators (QRNGs) offer a
transformative approach to enhancing cryptographic security
by leveraging the intrinsic unpredictability of quantum me-
chanical processes. Unlike classical pseudorandom number
generators (PRNGs), which are inherently deterministic and

vulnerable to various predictive attacks, QRNGs produce ran-
domness that is fundamentally non-deterministic and highly
resistant to replication or prediction. [2]. This quality makes
QRNGs a powerful complementary enhancement tool for
generating cryptographic keys to support the underlying cryp-
tographic algorithms, and additional countermeasures required
to mitigate threats like side-channel attacks and other sophis-
ticated attack methods.
Main Contributions: This paper comprehensively explores
integrating QRNGs within VRF systems, particularly those
based on the Ed25519 elliptic curve, to rigorously assess the
trade-offs between enhanced security and the potential impacts
on performance. By incorporating quantum-generated random-
ness into the key generation process, we aim to demonstrate
the potential for substantial improvements in cryptographic
strength while critically evaluating the practical challenges
associated with latency, execution time, and resource utiliza-
tion in API-driven cryptographic environments. Through this
investigation, we provide a detailed analysis of the optimiza-
tion strategies necessary for deploying cryptographic systems
that harness quantum randomness, thereby paving the way for
developing more secure, efficient, and resilient application-
layer protocols.
Organization: The rest of the paper is structured as follows.
Section II discusses related work on VRF and ECC encryp-
tion methods focusing on advancements in quantum-resistant
cryptography techniques. Section III presents the proposed
system. Section IV provides a comprehensive performance
evaluation of the QRNG model used for the VRF system.
Finally, Section V concludes the paper and suggests potential
directions for future research.

II. BACKGROUND

Verifiable Random Functions (VRFs), an extension of the
Goldreich-Goldwasser-Micali random functions, are critical
cryptographic primitives that produce publicly verifiable yet
unique outputs[3]. Traditional VRF implementations, which
rely on RSA and elliptic curve cryptography (ECC), base
their security on the hardness of the elliptic curve discrete
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logarithm problem (ECDLP). Among these, the Edwards-
curve Digital Signature Algorithm (EdDSA) [4], particularly
its variant Ed25519 based on Curve25519, has gained promi-
nence due to its high efficiency, performance, and robust
security properties. Congruently, there has been increasing
interest in Post-Quantum Cryptography (PQC), which includes
cryptographic algorithms resistant to quantum attacks. Lattice-
based cryptography [5], hash-based signatures [6], and multi-
variate polynomial cryptography [7] are some of the leading
candidates for PQC. These algorithms are being developed as
part of the NIST Post-Quantum Cryptography Standardization
project [8], which aims to identify quantum-resistant cryp-
tographic methods, with QRNGs remaining highly relevant
in this context. Verifiable Random Functions (VRFs) have
diverse applications across various domains, particularly in
communication systems and internet security. One prominent
use case is in the Domain Name System Security Exten-
sions (DNSSEC) protocol, where VRFs provide cryptographic
proofs for non-existence responses in DNSSEC, preventing
attackers from enumerating valid domain names. For instance,
the NSEC5 protocol[9], [10] leverages VRFs to ensure the
integrity and privacy of domain name responses. Additionally,
VRFs play a crucial role in key transparency systems, such
as Google Key Transparency[11], CONIKS[12], and Yahoo!’s
Coname[13], where they enable users to verify the authenticity
of public keys while preserving privacy. In the blockchain
ecosystem, VRFs are vital for enhancing the fairness and
security of consensus protocols by generating unpredictable
and tamper-resistant random values. For example, Algorand’s
Pure Proof-of-Stake (PPoS) consensus mechanism[14] em-
ploys VRFs to privately and randomly select block proposers
and validation committees, thereby preventing manipulation
and ensuring scalability and security. Similarly, Cardano’s
Ouroboros Proof-of-Stake protocol[15] uses VRFs to securely
determine which nodes are eligible to produce the next block.
Beyond consensus mechanisms, VRFs also find applications
in other areas of blockchain technology. Chainlink[16], for
example, utilizes VRFs to provide tamper-proof randomness
for smart contracts. The security of elliptic curve cryptogra-
phy has been extensively studied, particularly its resilience
against side-channel attacks. For example, in [17], vector
quantization and Hidden Markov Model (HMM) analysis of
cache access times have shown that template attacks [18],
[19] can model the internal state of a system and ultimately
expose private keys. In contrast, quantum randomness, derived
from inherently unpredictable quantum processes, provides
a stronger foundation for secure key generation[20]. Unlike
classical pseudorandom number generators (PRNGs), which
rely on deterministic algorithms and require careful seeding to
ensure unpredictability, Quantum Random Number Generators
(QRNGs) produce true randomness that is fundamentally non-
deterministic. This provides a stronger guarantee of entropy, as
the randomness originates from physical processes governed
by quantum mechanics. Among the established methods, quan-
tum dots offer a robust means of generating entangled photon
pairs, producing high-quality random numbers essential for

cryptographic applications [21], [22], [23]. The security of
a VRF relies on several core properties. One such property
is Domain-Range Correctness [3], [24], which ensures that
for all inputs x ∈ D, the output Fsk(x) ∈ R holds with
overwhelming probability over the choices of the key pairs
(pk, sk). Another key property is Unique Provability [3], [24],
which requires that for every public key pk, input x, and values
v1, v2 with corresponding proofs π1, π2, such that v1 ̸= v2, the
probability that Verify(pk, x, vi, πi) = YES for both i ∈ {1, 2}
is negligible.

III. METHODOLOGY

This paper presents a system that integrates Quantum Ran-
dom Number Generators (QRNGs) into the implementation
of Verifiable Random Functions (VRFs) using the Ed25519
elliptic curve, with a primary focus on evaluating perfor-
mance metrics. By replacing traditional pseudorandom number
generators (PRNGs) with quantum-generated entropy sources,
we investigate the impact of this integration on key perfor-
mance factors such as execution time and resource utilization.
This study evaluates the performance implications of using
QRNGs for cryptographic key generation in Elliptic Curve
Cryptography (ECC) and VRF systems. We conduct a series
of simulations to analyze how quantum randomness affects
these performance metrics, particularly in the context of API
designs tailored for application-layer protocols. While classical
cryptographic PRNGs can generate secure random numbers
under well-established assumptions, QRNGs offer a source
of true randomness, potentially providing stronger entropy
guarantees in adversarial settings. However, this may introduce
practical trade-offs, which we evaluate through performance
analysis. Our approach involves using QRNGs to generate
private keys for EdDSA and VRF implementations, with a
focus on assessing the practical performance implications of
integrating quantum randomness. Specifically, we examine the
impact of a QRNG on cryptographic operations in comparison
to a classical PRNG. This section details our methodology for
incorporating QRNGs and provides an in-depth analysis of
their impact on system performance, particularly concerning
API design considerations for application-layer protocols.

A. Ed25519 and its Relevance to VRFs

Ed25519 leverages the elliptic curve Curve25519, which
operates over a prime field and provides approximately 128-
bit security for digital signatures under standard cryptographic
assumptions, which is suitable for modern cryptographic
applications. Designed by Daniel J. Bernstein, Curve25519
offers high security, fast computation, and resistance to side-
channel attacks, making it ideal for environments where both
performance and security are critical.

The Ed25519 signature scheme involves the following
steps[4]:

1. Key Generation: A private key seed is randomly selected
and hashed to derive the scalar s ∈ Zq , where q is a prime
number that defines the order of the base point B on the elliptic



curve. The public key pk is computed as:

pk = sB (1)

where B ∈ G is the designated base point of the group G in
which the discrete logarithm problem is hard.

In the modified VRF system, the selection of the private key
seed s is done using a Quantum Random Number Generator
(QRNG), replacing the traditional pseudorandom number gen-
erator (PRNG). Specifically, the seed s is generated by reading
a stream of high-entropy quantum randomness from external
binary files using a custom BitReader.

2. Signing: To sign a message m, a scalar r ∈ Zq is
deterministically derived from the private key and the message
itself, ensuring that the signature is unique for each message.
The signature σ consists of the pair (R,S), where:

R = rB, S = r +H(R, pk,m)s (mod q), (2)

and H is a cryptographic hash function.
3. Verification: To verify a signature σ = (R,S) on a

message m with public key pk = s ·B, the verifier checks the
following equation:

SB = R+H(R, pk,m)pk, (3)

This verification equation relies on the assumption that com-
puting the discrete logarithm is infeasible, thereby ensuring
the integrity and authenticity of the signed message.

The unpredictability and verifiability of a Verifiable Random
Function (VRF) critically depend on the quality of the entropy
source used to generate the seed s. If the entropy source
is low or biased, the function f(x) = F (s, x) becomes
predictable, compromising security. Therefore, to maximize
entropy, a Quantum Random Number Generator (QRNG) is
recommended, ensuring high randomness and entropy.

The Elliptic Curve Verifiable Random Function (ECVRF)
follows a structured process[25]:

1. Key Generation (Gen): A secret key x ∈ Zq \ {0} is
selected. The corresponding public key is:

X = Bx ∈ G, (4)

where G is a cyclic group of prime order q with generator B.
In the QRNG-modified system, the secret key x is selected

by generating the seed using the BitReader, which extracts
high-entropy randomness from QRNG-derived binary files.
This process replaces the standard PRNG method, ensuring
that the scalar x is generated from an unassailable source of
randomness.

2. Hash to Curve (HTC): Each VRF input α ∈ X is mapped
to a point P ∈ G using a hash function HTC:

P := HTC(X,α) ∈ G. (5)

3. Computation of VRF Output: The prover computes:

Z := P x ∈ G. (6)

A proof π = (Z, c, s) is constructed, where:

- A random value r ∈ Zq is chosen.
- Commitments are calculated:
RB := Br ∈ G, RP := P r ∈ G.

A challenge is computed:

c := H(P,Z,RB , RP ) ∈ H. (7)

The response is:

s := r + x · c ∈ Zq. (8)

In the modified implementation, the random scalar r is
generated using input from the QRNG-sourced randomness.
This replaces the conventional randomness generation process
(typically via rand.Reader) with quantum entropy. This
ensures the unpredictability of the scalar r, which plays a
critical role in constructing a secure proof.

4. Verification (Verify): Given public key X ∈ E, input
α ∈ X , and proof π = (Z, c, s), the verifier calculates:

P := HTC(X,α) ∈ G. (9)

The verifier checks:

RB := BsX−c ∈ G, RP := P sZ−c ∈ G. (10)

If:
c = H(P,Z,RB , RP ), (11)

the output is valid; otherwise, it outputs an invalid value.

IV. RESULTS AND DISCUSSIONS

This study aimed to highlight the performance trade-offs of
the QRNG-based system compared to a VRF implemented in
Go, providing insights for future API design. We tested 10 mil-
lion proofs generated from the local random number generator
native to Go(rand), against keys from ANU’s QRNG(qrng).
The VRF implemented is based on a fork of NKN’s full
node implementation [26], and the random keys were sourced
from ANU’s QRNG[27]. The simulations were conducted on
a Ryzen 7 PRO 7840U processor featuring Radeon 780M
Graphics. This CPU has 8 cores and 16 threads, with a base
clock speed of 1.9 GHz and a maximum turbo speed of 5.1
GHz. It includes an L1 cache of 512 KiB, an L2 cache of
8 MiB, and an L3 cache of 16 MiB, with 32 GiB of DDR5
memory, arranged as four 8 GiB modules, operating at an
effective clock speed of 2105 MHz. The system monitored
memory usage using the Go runtime.MemStats function,
which allowed for dynamic tracking of memory allocation and
deallocation during cryptographic tasks such as key genera-
tion, VRF evaluation, and proof generation. Furthermore, CPU
utilization was monitored via the gopsutil library, which
tracked real-time CPU usage, enabling the system to adjust
and balance computational load dynamically. These metrics
were logged every 100 operations, offering granular insights
into system performance.
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Fig. 1: Key Generation Time

A. Latency Estimation

The qrng system showed a broad range in key generation
times, from 50 to 150 µs for smaller datasets, but with spikes
exceeding 400 µs as the dataset size surpasses 8 million
elements (e.g., 420 µs at 8 million elements), indicating
potential inefficiencies at larger scales (Figure 1). In contrast,
rand maintained more stable key generation times, consistently
below 200 µs, even at 10 million elements, demonstrating more
efficient scaling (Figure 1, right).
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Fig. 2: Evaluation Time

qrng evaluation times varied from 500 µs to over 3000 µs,
with increased variance at larger dataset sizes (e.g., 3500 µs
at 10 million elements), suggesting challenges in maintaining
performance (Figure 2). The rand VRF showed a narrower
range (500–2000 µs), with consistent times around 1000 µs
even for large datasets, reflecting better scalability (Figure 2).

Verification times for qrng fluctuated between 500 µs and
3500 µs, with higher values observed as datasets grew (e.g.,
3200 µs at 9 million elements), potentially affecting pre-
dictability (Figure 3). The rand system, however, maintained
verification times mostly below 2000 µs, offering greater
stability (Figure 3).

Total computation time for qrng ranged from 1000 µs to
over 6500 µs, with notable spikes beyond 8 million elements
(e.g., 6100 µs at 9 million elements), suggesting scalability
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Fig. 3: Verification Time
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Fig. 4: Total Computation Time

limitations (Figure 4). The rand VRF maintained a more con-
sistent range (1000–4000 µs), with fewer outliers, indicating
better optimization for larger datasets (Figure 4).

B. Computational Resource Estimation
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Fig. 5: Memory Utilization

Memory Utilization: The memory utilization of the qrng-
based system remained relatively stable across most dataset
sizes, averaging around 1.8 to 2.0 MB up to 8 million
elements. However, a sharp drop to approximately 0.5 MB



was observed at 10 million elements, indicating a potential
optimization or anomaly in larger-scale memory management
(Figure 5). In contrast, the Go-based VRF maintained consis-
tent memory usage of around 1.0 to 1.2 MB across the entire
dataset range, reflecting a more predictable memory profile
suitable for applications where stability was critical (Figure
5).
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Fig. 6: CPU Utilization

CPU Utilization: The qrng system demonstrated higher
CPU utilization than rand, ranging from 17% to 30%, with
significant variability as the dataset size increased. This fluc-
tuation suggested that qrng would require more processing
power and exhibited less predictable CPU demand. Con-
versely, the rand maintained a much lower and consistent CPU
usage, typically below 10% (Figure 6), across all dataset sizes,
highlighting its efficiency and suitability for environments with
limited processing resources.

C. Optimization Strategies for QRNG-Enhanced VRF Systems

This section outlines a unified optimization strategy de-
signed to mitigate the performance limitations in the QRNG-
integrated VRF system. By focusing on both reducing I/O
bottlenecks and enhancing concurrency, the proposed solution
leverages advanced data handling techniques and parallel
processing to optimize randomness generation and crypto-
graphic operations. The reliance on external QRNG-based
randomness introduces significant I/O overhead, especially as
the system scales and handles large cryptographic workloads.
The current approach, which synchronously fetches QRNG
data via the BitReader struct, incurs delays due to fre-
quent file system access. This synchronous model, as seen
in the ReadBytes() function, stalls cryptographic opera-
tions while waiting for the required randomness, resulting
in latency spikes in high-throughput environments. To re-
solve these issues, a combined strategy utilizing asynchronous
I/O and multithreading is proposed. First, an asynchronous
I/O model can be implemented by employing non-blocking
file access techniques, allowing cryptographic processes to
continue independently of the QRNG data retrieval. Go’s
concurrency primitives, particularly goroutines [28], can
facilitate parallelism by enabling random data to be fetched

in the background while elliptic curve computations proceed
in parallel. This decouples QRNG randomness fetching from
the cryptographic operations, significantly improving overall
throughput.

Additionally, to minimize the frequency of file accesses,
randomness retrieval should be optimized using a synchronous
temporal merge (STM) strategy [29]. Instead of fetching
small chunks of randomness for each cryptographic operation,
larger blocks of QRNG data should be read and cached for
multiple operations. STM, when applied to random read/write
workloads, has demonstrated a 44% improvement in mixed
random workloads and a 1.25x to 1.44x increase in throughput
under high concurrency (32 threads) compared to single-
threaded approaches. This allows the system to aggregate
multiple QRNG requests and serve them efficiently, mini-
mizing file I/O operations and reducing the overall system
latency caused by frequent disk reads. Simultaneously, el-
liptic curve scalar multiplication—one of the most computa-
tionally intensive operations in the VRF system—should be
parallelized. By leveraging Go’s multithreading capabilities,
both scalar multiplication and randomness retrieval can be
processed concurrently. In environments handling large-scale
cryptographic tasks such as key generation (GenKeyPair)
and proof generation (GenerateVrf), this parallelization
ensures that CPU resources are fully utilized, thereby reducing
system latency and increasing overall throughput.

V. CONCLUSION

This paper has proposed an innovative approach to verifiable
randomness by integrating elliptic curve cryptography with
quantum random number generators (QRNGs). The use of
QRNGs significantly enhances security by providing true,
non-deterministic randomness, making this system particularly
suited for high-security applications, such as those requir-
ing resistance to advanced cryptographic attacks. However,
the integration of QRNGs also introduces challenges, par-
ticularly in terms of scalability and resource consumption
in high-throughput environments, where continuous crypto-
graphic proof generation is required. Future research should
delve deeper into post-quantum cryptography (PQC) to further
enhance the security framework, focusing on the development
of quantum-resistant algorithms. Additionally, exploring alter-
native QRNG techniques, optimizing system integration, and
improving the overall efficiency and scalability of QRNG-
based cryptographic systems will be essential steps toward
making these technologies viable for mainstream use in a
variety of secure, large-scale applications.
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