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Abstract—Underwater target tracking technology plays a piv-
otal role in marine resource exploration, environmental moni-
toring, and national defense security. Given that acoustic waves
represent an effective medium for long-distance transmission in
aquatic environments, underwater acoustic target tracking has
become a prominent research area of underwater communi-
cations and networking. Existing literature reviews often offer
a narrow perspective or inadequately address the paradigm
shifts driven by emerging technologies like deep learning and
reinforcement learning. To address these gaps, this work presents
a systematic survey of this field and introduces an innovative
multidimensional taxonomy framework based on target scale,
sensor perception modes, and sensor collaboration patterns.
Within this framework, we comprehensively survey the litera-
ture (more than 180 publications) over the period 2016-2025,
spanning from the theoretical foundations to diverse algorithmic
approaches in underwater acoustic target tracking. Particularly,
we emphasize the transformative potential and recent advance-
ments of machine learning techniques, including deep learning
and reinforcement learning, in enhancing the performance and
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adaptability of underwater tracking systems. Finally, this survey
concludes by identifying key challenges in the field and proposing
future avenues based on emerging technologies such as federated
learning, blockchain, embodied intelligence, and large models.

Index Terms—underwater acoustic target tracking, commu-
nications and networking, state estimation, deep learning, rein-
forcement learning, data fusion.

I. INTRODUCTION

THE ocean harbors vast resources and energy reserves,
representing both a critical resource reservoir and a vital

domain for sustainable human development, which has at-
tracted growing global attention in recent decades. Simultane-
ously, marine ecosystems provide essential ecological services
to humanity, encompassing gas regulation, nutrient cycling,
and waste treatment. Moreover, maritime control constitutes
a fundamental safeguard for national security and sovereignty
[1]. Consequently, the efficient utilization of marine resources,
the enhanced conservation of marine ecosystems, and the
protection of national maritime interests have emerged as an
international consensus [2].

Accurate and effective tracking of underwater targets is
crucial for both marine resource exploration/protection and
maritime security maintenance. As a pivotal research focus
in marine science and technology, underwater target tracking
technology has gained prominence. Recent advancements in
sensor capabilities, coupled with rapid progress in multi-
source information fusion and artificial intelligence, have sig-
nificantly advanced this technology, enabling its applications
across diverse sectors including national defense security [3],
environmental monitoring [4], and resource exploration [5].

Due to the complexity of marine environments and tar-
get diversity, the development of underwater target tracking
technology faces significant challenges [6]. The propagation
characteristics of signals are substantially influenced by marine
conditions [7], while underwater targets usually demonstrate
high mobility and concealment capabilities [8]. Conventional
terrestrial tracking media, including electromagnetic waves
and lasers, experience severe absorption and attenuation in
seawater, resulting in poor performance for marine applica-
tions [9]. In contrast, acoustic waves remain the sole medium
capable of long-range underwater propagation, making them
the predominant choice for underwater target tracking.

https://arxiv.org/abs/2506.14165v1
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Fig. 1. An illustrative scenario of underwater acoustic target tracking. The primary roles in the scenario are targets and sensors, and the taxonomy framework
based on target scale, perception method, and collaboration mode is identified using them and the connections between them as the taxonomy benchmark.

Figure 1 depicts a typical underwater acoustic target track-
ing scenario, where moving targets emit acoustic signals that
propagate through the aquatic medium. These signals are
detected by an array of spatially distributed sensors deployed
at predetermined oceanic locations. The sensors, equipped
with communication modules, periodically sample sound sig-
nals and exchange both measurement data and computational
results. This scenario analysis reveals three fundamental com-
ponents of underwater acoustic target tracking systems: (1) the
two primary entities (i.e., the underwater acoustic target and
the sensor nodes); (2) the target-sensor interaction mediated by
acoustic signal propagation and reception; and (3) the inter-
sensor relationships established through communication links.

A. Motivation for Building a Multidimensional Taxonomy
Framework

Underwater acoustic target tracking plays a pivotal role in
marine exploration, attracting significant scholarly attention.
Given its importance in both military and civilian applications,
researchers have conducted comprehensive surveys of these
technologies [10]–[14]. In addition, the integration of artificial
intelligence, big data analytics, and advanced sensor technolo-
gies has created unprecedented opportunities for technological
breakthroughs in this field, positioning it as a key driver
of future marine science innovation. Nevertheless, existing
surveys in this domain exhibit two notable limitations [15]:
• First, while underwater acoustic target tracking encom-

passes diverse research dimensions, current surveys often
adopt narrow perspectives and scenario frameworks. Con-
sequently, these surveys demonstrate limited applicability
across different operational contexts, thereby hindering read-
ers and researchers to form a systematic understanding of
problem scenarios.

• Second, the majority of existing surveys were published
prior to the recent paradigm shift driven by advancements

in deep learning, including the application of deep neural
networks for measurement data analysis and deep reinforce-
ment learning for sensor control coordination. Consequently,
these surveys lack coverage of cutting-edge developments
that are fundamentally transforming methodological ap-
proaches in this field.
This evident research gap underscores the urgent need for

a comprehensive survey that systematically synthesizes both
fundamental methodologies and contemporary innovations in
underwater acoustic target tracking.

B. Scope of the survey
As illustrated in Figure 2, underwater acoustic target track-

ing has garnered increasing research attention in recent years,
with a substantial number of publications emerging in this
field. This survey systematically examines the problem sce-
nario of underwater acoustic target tracking, analyzing its
key components and proposing a comprehensive classification
framework based on three dimensions: (1) underwater target
scale, (2) sensor signal perception methods, and (3) inter-
sensor collaboration modes. Furthermore, we synthesize recent
advancements integrating deep learning, reinforcement learn-
ing, and data processing techniques with conventional tracking
approaches. A systematic comparison between this survey and
existing surveys or reviews is presented in Table I.

C. Contribution of the Survey
To the best of our knowledge, this represents the first sys-

tematic and multidimensional survey of underwater acoustic
target tracking research, comprehensively summarizing both
foundational methodologies and recent technological advance-
ments. The primary contributions of this study are fourfold:
• We propose a novel multi-dimensional taxonomy frame-

work. Different from conventional single-dimensional clas-
sifications, our framework integrates three critical aspects:
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Fig. 2. Results of statistical analysis of literature. According to the number of literature published in this field in the last decade, it can be found that the
research fever in the field of underwater acoustic target tracking has been increasing, while according to the results of the keyword statistics of the literature,
target tracking using different filtering methods is the core research direction.

target scale, perception methods, and collaboration modes.
This innovative approach not only elucidates the diversity
and complexity of underwater acoustic tracking systems but
also establishes a cross-mapping mechanism that enables
researchers to examine methodologies from multiple per-
spectives, thereby overcoming the limitations inherent in
traditional surveys.

• We provide an in-depth analysis of emerging technolo-
gies in tracking algorithms. We examine how deep learn-
ing and reinforcement learning are revolutionizing adaptive
algorithm design for dynamic underwater environments.
This analysis addresses a significant gap in existing sur-
veys by systematically documenting these technological
breakthroughs, offering researchers both a reference for
integrating advanced techniques and a roadmap for future
innovation.

• We present a structured comparative analysis of method-
ological systems. Through meticulously constructed com-
parison tables, technical roadmaps, and case studies, we
distill the fundamental principles, distinctive features, and
performance metrics of various tracking methods. This
structured analytical approach not only facilitates readers’
rapid comprehension of the core methodology but also
provides a practical framework for technological selection
and optimization in real-world applications.

• We identify current challenges and propose future re-
search directions. Our systematic evaluation reveals critical
bottlenecks in ocean environment modeling, low signal-to-
noise (SNR) signal processing, and data sharing. Build-
ing upon this analysis, we develop a multidimensional
research framework encompassing algorithm refinement,
technological convergence, engineering implementation, and
data collaboration - providing both theoretical foundations
for interdisciplinary research and actionable guidance for
subsequent studies.

This survey is structured as follows: Chapter II outlines
fundamental theories of underwater acoustic target tracking.
Chapter III categorizes tracking methods from three per-
spectives: target scale, perception method, and collaboration
mode. Chapter IV explores the role of deep learning and
reinforcement learning technologies in the field of underwater
acoustic target tracking. Finally, Chapter V addresses current
challenges and proposes future avenues and Chapter VI pro-
vides a conclusion. As illustrated in Figure 3, our analysis
systematically categorizes more than 180 publications over the
period 2016-2025 based on these aspects and machine learning
applications.

II. BACKGROUND AND FUNDAMENTAL MODELS

Underwater acoustic target tracking is a technique that
identifies and tracks the position and trajectory of a target
using underwater acoustic signals. This process estimates the
target’s current state (primarily including position, velocity,
and other kinematic parameters) by analyzing data from mea-
surement sensors. The collected measurement data typically
include direct range estimation, direction-of-arrival (DOA),
received signal strength (RSS), time-of-arrival (TOA), and
time-difference-of-arrival (TDOA). These measurements are
then associated with the target’s state through filtering methods
for estimation. As an integrated process, underwater acoustic
target tracking combines signal propagation and processing,
target motion modeling, position estimation, and tracking [12].
This section systematically presents the theory of underwater
acoustic target tracking from three perspectives: (1) propa-
gation of underwater acoustic signals, (2) construction of
underwater acoustic target models, and (3) state estimation
of underwater acoustic targets. Prior to this introduction,
Table II lists the symbols used in this chapter.
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TABLE I
THE SUMMARY AND COMPARISON OF RELATED SURVEYS

Literature Description

Underwater
acoustic
Sensors

Underwater
acoustic
Target

Tracking
methods

Perception
method:
passive
tracking

Perception
method:
active

tracking

Cooperative
mode:

centralized

Cooperative
mode:

distributed

Single
target

Multi
target

Machine
learning
assisted

[10]

Perspective: system architecture,
tracking models, energy efficiency

optimization, single target and
multi target tracking techniques

✘ ✘ ✔ ✔ ✔ ✔ ✘

[11]
Reviews concept of randomized

finite set (RFS) and its
application to multi-target tracking

✘ ✘ ✘ ✘ ✘ ✔ ✘

[12]
Perspective:instrument-assisted methods,

model-based methods, and
tracking optimization methods

✔ ✔ ✘ ✘ ✔ ✘ ✘

[13]
Reviews the application of target

tracking techniques in aeronautical
and underwater acoustics

✔ ✔ ✘ ✘ ✔ ✘ ✘

[14]

Reviews the research progress of
azimuth tracking technology for

underwater acoustic targets based
on passive sonar systems

✔ ✘ ✘ ✘ ✔ ✔ ✘

Ours

New taxonomy framework:
target characteristics,

perception methods, collaboration modes,
and machine learning-driven methods

✔ ✔ ✔ ✔ ✔ ✔ ✔

* The table describes the differences between the surveys in the field of underwater acoustic target tracking in recent years and this survey, and
compares in detail the coverage of the survey contents from the perspectives of sensors, targets, and tracking methods.

A. Propagation of Underwater Acoustic Signals

Underwater acoustic signal propagation can be characterized
using either RSS [64] or wave equation modeling. Without
accounting for the complexity of the marine environment, RSS
magnitude can be expressed as a function of the straight-line
distance between the transmitter and receiver [65].

Recent studies have increasingly emphasized the marine
environment as a critical factor in underwater acoustic signal
propagation. To accurately characterize sound propagation in
water, researchers now strive to comprehensively account for
the propagation medium. As mechanical waves propagating
through fluids, sound waves obey fluid dynamics principles,
with their propagation governed by Equation 1:

∇2P =
1

C2(r, t)

∂2P

∂t2
. (1)

Assuming the sound source generates a harmonic signal
with frequency ω i.e., P = p·exp(−j·ω·t) . The wave equation
simplifies to the time-independent Helmholtz equation, as
shown in Equation (2):

∇2p+K2(r)p = 0, (2)

where K(r) = ω
C(r) is wave number, ω = 2πfc.

The majority of fundamental theories addressing underwater
acoustic propagation problems-including ray theory, normal
mode theory, and parabolic equation theory-are derived
from wave fluctuation equations. These theoretical frameworks
provide distinct approaches to modeling sound propagation in
underwater environments, each with specific advantages and
limitations.

1) Ray Theory: It is a high-frequency approximation
method derived from geometrical optics for describing wave
propagation. While originating from the wave equation, this
approach does not provide complete solutions but rather serves
as an effective approximation under high-frequency condi-
tions. The theory conceptualizes acoustic energy transmission
through rays, defined as wavefront normals that indicate
propagation direction. The superposition of these ray clusters
constitutes the observable acoustic field environment [66]. Two
fundamental equations govern ray acoustics:

(∇S)2 = n2(x, y, z), (3)

∇ · (A2∇S) = 0. (4)

Equation (3), termed the phase function, determines ray
trajectories by expressing path length as a function of path
endpoints. When these endpoints correspond to source and re-
ceiver positions, the resulting ray is designated as the intrinsic
ray. Equation (4), the intensity equation, quantifies individual
ray intensity [67].

Building upon these theoretical foundations, Lawrence [68]
effectively employed ray theory to model the interaction of
low-frequency sound waves with horizontally stratified ocean
floors, demonstrating its efficacy in analyzing complex acous-
tic field structures. Subsequently, Etter [69] expanded this
application to predict signal attenuation in underwater acoustic
communication systems, further validating the versatility of
this approach.

Recent advancements have further refined ray theory appli-
cations. Smirnov et al. [70] investigated nonlinear effects in
underwater acoustic propagation, identifying scenarios requir-
ing theoretical modifications through integration with com-
plementary approaches. Notably, Li et al. [71] developed a
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Underwater
Acoustic

Target
Tracking

Driven by
Machine
Learning

DL Paradigm
based

New Cluster Framework: Centralized training and distributed
execution [16]; Software-defined networking [17] [18]

Node Scheduling: End-to-end scheduling [19]; Aasynchronous
wake-up scheme [20]; Sensor network routing protocol [21], [22]

RL Paradigm
based

Filtering Model Improvement: Estimating the process and model
noise covariance [23]; Estimating the initial noise covariance [24]

Measurement data processing: Characterization of
azimuthally weighted time-frequency diagrams [25]; Multi-
beam low frequency analysis and recording (LOFAR) [26]

Collaboration
Mode

Cross-domain
Fusion

Sound Velocity Measurements: Acousto-optic
effet and Optical frequency comb [27], [28]

Proximity Detection and Tracking: Optical flow and mean shift
tracking [29];Overcome the shortcomings of visual tracking [30], [31]

Same-domain
Fusion Distributed Fusion: Feedback mechanism [32]; Autonomous

node selection (ANS) and wake-up/sleep (WUS) scheme [33]
[34]; Fusion of state estimation and covariance matrices [35], [36]

Centralized Fusion: Direct forward and process [37];Adaptive
forgetting factor [38];Optimal batch asynchronous fusion [39]

Perception
Method

Passive
Tracking Combination of Different Filtering Methods: Data association

technology and nonlinear filtering methods [40]; Integrated
filtering methods [41]; Target movement simplification [42]

Combination of Filtering Methods and Data Processing: Data
preprocessing applied to particle filtering [40], [43]; Factor graph

framework connects the observation and prediction parts [44]

Active
Tracking

Distance Measurement: Consensus estimation-based
tracking [45]; Fuzzy c-mean clustering (FCM) based [46]

Time Measurement: Non-myopic rolling horizon control strategy
[47];Consider the multipath effect of sound propagation [48]

Target
Scale

Multi Target
Tracking Random Finite Set Based: Cardinalized probability hypothesis

density (CPHD) [49];Gaussian mixture CPHD [50]; Multi-bernoulli
filtering [51]; Robust multi-sensor labeled multi-bernoulli [52]

Data Association Based: Probabilistic data association (PDA)
[53], [54]; Joint PDA [55], [56]; Joint integrated PDA [57], [58]

Single Target
Tracking Interacting Multiple Model: Adaptive factor [59];Recursive

implementation of the state sequence estimator [60];
Combined parameter identification with the IMM [61]

Asynchronous Fusion: Based on time registration and another
based on state prediction [62]; Based on delay estimation [63]

Fig. 3. Taxonomy of underwater acoustic target tracking methods. This survey categorizes the literature in the field from four perspectives: target scale,
perceptual approach, collaborative model, and machine learning driven, with the leaf nodes of the tree diagram listing the specifics and core methods of each
perspective.

physics-informed machine learning framework that synergizes
limited empirical data with ray theory principles, demon-
strating robust generalization capabilities in uncharacterized
regions. Most recently, Liao et al. [72] implemented dynamic
ray analysis coupled with hybrid parallel computing strategies,
effectively addressing computational bottlenecks in large-scale
multipath sound field simulations.

2) Normal Mode Theory: The normal mode method pro-
vides an effective approach for representing acoustic fields
through the superposition of discrete waveguide modes in
sound propagation calculations. As demonstrated in [73],
this theory has been successfully applied to solve sound
propagation problems in stratified ocean media. The acoustic

field generated by a harmonic point source can be effectively
characterized by these waveguide normal modes:

P =

√
8π

r
· eiπ

4

L∑
l=0

ϕl(z1) · ϕl(z2) ·
√
νl · exp(i · νl · r). (5)

While traditional normal mode theory assumes static and
homogeneous media conditions, this simplification poses lim-
itations when addressing complex marine sound propagation
scenarios. The adiabatic approximation of normal mode the-
ory addresses this by neglecting intermodal energy exchange
terms, thereby substantially reducing computational require-
ments [74]. In contrast, coupled normal mode theory employs
a system of mutually interacting modes to describe acoustic
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TABLE II
LIST OF SYMBOLS FOR CHAPTER II

Symbol Unit Definition
P N/m2 Sound pressure

C(r, t) m/s Spatiotemporal variation function of sound speed
j / Complex number unit
K rad/m−1 Wave number
fc Hz Acoustic frequency
∇ / Gradient operator
A Hz2 Amplitude of sound pressure
S rad phase function
r m Waveguide radial distance

ϕl(z) / The component of mode l in the vertical direction z

v rad/m Velocity factor of normal mode in mode l

ϕp(rp⊥, rp) Pa Complex amplitude of the sound pressure field
rp⊥ / Coordinates perpendicular to the direction of propagation
rp / Coordinates in the main propagation direction
k0 rad/m Reference wave number
∇2

⊥ / Transversal laplace operator
n(·) / Refractive index

f(xk, wk) / State transition function
wk Hz Process noise

h(xk, vk) / Measurement function
vk Hz Measurement noise

p(xk|z1:k) / Posterior probability density function at time step k

µ Hz Mean of the noise probability density function
σ / Variance of the noise probability density function
∇2 Hz2 Laplace operator

system dynamics. Through the incorporation of coupling coef-
ficients, this approach significantly improves both the accuracy
and stability of sound propagation solutions in complex marine
environments [75].

3) Parabolic Equation Theory: The parabolic equation
method serves as an efficient approximation approach for mod-
eling sound propagation, particularly in oceanic environments
where medium parameters demonstrate both range-dependent
and three-dimensional variations. The application of parabolic
theory to underwater acoustics was first established in [76].
The foundational parabolic equation for sound propagation is
expressed as Equation (6):

∂

∂rp
ϕp(rp⊥, r

p) = ik0{ − 1 +
√
k−2
0 ∇2

⊥ + n2(rp⊥, r
p)}

· ϕp(rp⊥, r
p).

(6)

In [77], a method for approximating the three-dimensional
Helmholtz equation was proposed, significantly enhancing the
capability to address wide-angle propagation issues. Claerbout
[78] developed an acoustic wave equation model based on
rational linear approximation, which characterizes underwater
acoustic propagation with seafloor interaction, enabling accu-
rate handling of large-angle propagation up to 40◦. Collins [79]
derived and numerically solved a higher-order elastic parabolic
equation to simulate sound wave propagation in fluid/solid
media with depth-dependent and weak lateral dependence,
particularly suited for environments with elastic seabeds.

B. Construction of Underwater Acoustic Target Models

Accurate underwater target tracking necessitates the estab-
lishment of a rigorous system model [80], as mathematically
formulated in Equation (7):{

xk+1 = f(xk, wk)
zk = h(xk, vk)

. (7)

In this model, f(·) represents the transition function, which
is determined by the target motion model, and h(·) represents
the measurement function, which is determined by the target
observation model. xk and zk represent the state vector and
measurement vector at time k respectively, while wk and vk
represent the process noise vector and measurement noise
vector at time k.

A commonly adopted model assumes both process noise and
measurement noise as Gaussian white noise. The amplitude of
Gaussian white noise follows a Gaussian distribution, with its
probability density function defined by Equation (8):

p(x) =
1√
2πσ

exp

(
− (x− µ)

2

2σ2

)
, (8)

where µ is the mean and σ2 is the variance. In underwater
acoustic channels, the noise mean is typically zero, i.e., µ = 0.

In practical underwater environments, noise typically orig-
inates from multiple independent small-scale random factors.
The Central Limit Theorem suggests that the summation of
numerous independent random variables converges to a normal
distribution [81]. Consequently, acoustic propagation noise in
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underwater scenarios often demonstrates near-Gaussian char-
acteristics. Even when individual noise sources deviate from
Gaussian distribution, their combined effect through multiple
independent sources yields an approximately Gaussian sum-
mation. Moreover, the favorable mathematical properties of
Gaussian distribution significantly simplify the state transition
and observation update processes in filtering algorithms. This
simplification not only ensures computational efficiency but
also accurately captures the statistical and spectral properties
of real-world noise.

The research framework for underwater target tracking
algorithms fundamentally relies on two model components:
(1) target motion model, describing the target’s kinematic
behavior; and (2) target observation model, characterizing
the measurement process.

1) Target Motion Model: Motion models can be classified
into two categories based on their structural complexity:
single-model and multi-model approaches. The single-model
approach employs a single motion model to describe the
target’s kinematic state, typically using either the constant
velocity (CV) or constant acceleration (CA) model [82]. Con-
sider a tracking interval denoted as t. The CV model assumes
linear motion at constant velocity, with its state transition
matrix FCV

k expressed as:

FCV
k =

[
1 ∆t
0 1

]
. (9)

The CA model assumes that the target moves in a straight
line with constant acceleration. The state transition matrix
FCA
k can be expressed as:

FCA
k =

 1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 . (10)

Other models include time-varying models (singer model)
[83], semi-markov models based on Markov processes [84],
current statistics models based on modified rayleigh-markov
processes [85], and jitter models incorporating acceleration
derivatives [86].

2) Target Observation Model: When developing the ob-
servation model, a thorough analysis of underwater acoustic
signal propagation is essential. As previously discussed, this
analysis must account for both signal attenuation and path
variations. Underwater acoustic sensor measurements can be
classified into three primary models: (1) TOA-based, (2) RSS-
based, and (3) angle-of-arrival (AOA)-based measurement
models [87]–[89].

The TOA-based approach encompasses both direct TOA
and TDOA methods. The TOA model calculates the dis-
tance between target and sensor by measuring acoustic signal
propagation time, while TDOA localization relies on time
differences observed across multiple receiving sensors [90].
Assuming the signal arrival times at two receivers are t1 and
t2, the distance difference ∆d between the target and the two
receivers is given by the formula in Equation (11):

∆d = c ·∆t, (11)

where c denotes the signal propagation speed. The difference
in distances from the target to the two receivers can be used
to construct a hyperboloid equation, which is expressed in the
form shown in Equation (12):

c·∆t =

√
(x− x2)

2
+ (y − y2)

2
+ (z − z2)

2

−
√

(x− x1)
2
+ (y − y1)

2
+ (z − z1)

2
,

(12)

where (x1, y1, z1)and (x2, y2, z2) represent the coordinates
of the receivers. For multiple receivers, similarly, multiple
hyperboloid equations can be obtained. By solving these
equations, the position of the target can be determined.

The RSS-based model exploits the energy attenuation
characteristics of propagating acoustic signals, where signal
strength exhibits a predictable relationship with propagation
distance. This framework incorporates measurement equations
derived from wave equation, ray theory, normal mode theory,
and parabolic equation theory.

The AOA-based model employs sensor arrays for spatial
sampling of acoustic signals. Through analysis of inter-sensor
phase or amplitude differences, this method estimates signal
incidence angles with high precision [91].

C. State Estimation of Underwater Acoustic Targets

Underwater acoustic target tracking employs various state
estimation methods, which can be primarily classified into two
categories: batch methods and recursive methods.

1) Batch Processing Method: Batch processing methods
process all observations collected during a specific time inter-
val as a single dataset to estimate the target state. Represen-
tative batch methods include maximum likelihood estimation
(MLE) [92], least squares estimation (LS) [93], gauss-newton
method (GN) [94], pseudo linear estimation (PLE) [95], and
monte carlo method (MC) [96].

MLE determines the optimal target state by maximizing
the likelihood function, which quantifies the probability of
observed data given state parameters [97]. LS estimation
minimizes the sum of squared residuals between observations
and model predictions through optimization [98]. The GN
method iteratively solves nonlinear least squares problems
by linearizing the model at each step [99]. PLE simplifies
nonlinear problems via linear transformations or auxiliary vari-
ables [100], while MC uses random sampling to approximate
posterior distributions and quantify uncertainty [101].

These batch methods are essential for high-precision under-
water acoustic tracking, with method selection depending on
task requirements, motion models, and data characteristics.

2) Recursive Method: However, batch methods exhibit two
main limitations. First, they require complete data collection
before processing, precluding real-time state updates. Second,
their computational efficiency decreases significantly with
large datasets. These limitations become particularly problem-
atic given recent advancements in monitoring technologies and
improvements in target maneuverability, which have increased
tracking uncertainties. Such uncertainties mainly arise from
three sources: (1) process noise in target motion modeling,
(2) measurement noise from sensors, and (3) false alarms in



8

multi-target and cluttered environments [12]. To address these
challenges while maintaining real-time tracking capability,
recursive methods have been widely adopted for underwater
acoustic target state estimation and filtering.

The key challenge in designing target tracking algorithms
is selecting an appropriate filtering algorithm or improving
existing algorithms to meet the specific requirements of under-
water target tracking, based on the established dynamic motion
model and observation model. Different filtering methods are
all based on a fundamental recursive theory, with Bayesian
filtering being the most commonly used recursive theory.

The core design concept of the Bayesian filter is to use
the observation data obtained at the current time to correct
the prior probability density function (PDF) [102], thereby
obtaining the posterior probability. Bayesian theory posits that
the posterior PDF, derived from the prior PDF and current
system information, better reflects the system’s characteristics,
and thus, system analysis should be based on the posterior
PDF. The Bayesian filter consists of two processes: prediction
and update. The prediction process aims to obtain the prior
PDF based on the target motion model. The update process
introduces the measurements obtained from the observation
model into the output of the prediction step to correct the
probability, thereby obtaining the posterior probability of the
target state.

Let z1:k = {z1, z2, · · · , zk} represent the measurements
obtained from time 1 to k, and p(x0:k|z1:k) represent the pos-
terior PDF before time k, assuming that the prior probability
of the target’s initial state is known. Since the state vector
xk follows a first-order Markov process, the posterior PDF
can be recursively obtained using the measurements z1:k =
{z1, z2, · · · , zk}. Given that p(xk−1|z1:k−1) has already been
obtained, the one-step prediction probability is as shown in
Equation (13):

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (13)

where p(xk|z1:k−1) represents the state transition probability.
The updating process uses the observations obtained at time
k to update the prior probability. The posterior probability
density function (PDF) can be derived from equations (14)
and (15):

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (14)

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk, (15)

where p(yk|y1:k−1) represents the normalization constant, and
p(yk|xk) represents the likelihood probability.

The kalman filter (KF) provides an optimal solution to
Bayesian filtering under linear gaussian conditions [103].
However, in nonlinear systems, obtaining an optimal solution
becomes intractable due to the computational complexity
of infinite-dimensional integrals. When nonlinear dynamics
can be locally linearized with negligible higher-order Tay-
lor expansion terms, the system exhibits weak nonlinearity;
when the higher-order Taylor expansion terms are not negli-
gible, the system exhibits strong nonlinearity. For such cases,

the extended kalman filter (EKF) employs first-order Taylor
approximation for state estimation [104]. Alternatively, the
unscented kalman filter (UKF) preserves higher-order statis-
tical information through sigma-point transformation [105],
whereas the particle filter (PF) utilizes Monte Carlo sampling
to approximate state probability distributions, demonstrating
superior performance in strongly nonlinear systems [106].

This chapter constructs a comprehensive theoretical frame-
work through the synthesis of analytical models and mathe-
matical derivations. This integrated approach not only provides
a robust foundation for subsequent methodological categoriza-
tion but also facilitates technological advancements in the field.
The systematic integration of these theoretical components
ensures logical coherence throughout the research process.

III. CLASSIFICATION OF UNDERWATER ACOUSTIC TARGET
TRACKING METHODS

Underwater acoustic target tracking constitutes a multi-
faceted and dynamic research domain, where classification
methods are typically based on diverse criteria. A system-
atic taxonomy and synthesis of these approaches provide an
essential foundation for in-depth investigations. This chapter
categorizes current methodologies through multiple analytical
lenses, including target scale, perception method, and col-
laboration mode.

A. Target Tracking Methods Based on Target Scale

Underwater acoustic target tracking involves analyzing two
key target characteristics: physical dimensions and sensor
interaction capabilities. In most practical scenarios, targets
exhibit non-cooperative behavior by avoiding active sensor
engagement. This section classifies tracking methodologies
according to target quantity, subsequently detailing both single
target and multi target tracking approaches.

1) Single Target Tracking: It is pivotal in underwater
acoustics, with research primarily aimed at improving tracking
accuracy and response speed for dynamic targets. Recent years
have witnessed significant advancements in single target track-
ing research. Due to the variability in target motion states, tra-
ditional single-model algorithms frequently encounter model
mismatch issues, resulting in substantial tracking errors. To
overcome this limitation, the interacting multiple model
(IMM) algorithm has been developed. This algorithm utilizes
multiple models to represent potential target motion states,
thereby enabling more accurate tracking of moving targets.
Additionally, measurement data from sensors often exhibit
asynchrony because of propagation delays and environmen-
tal interference, making asynchronous fusion techniques
essential for enhancing tracking performance. This section
comprehensively reviews the current state and technological
advancements in single target tracking, with a specific focus
on the application of IMM algorithms and the significance of
asynchronous fusion in improving tracking capabilities.

Recent years have witnessed extensive research on single-
target tracking by scholars and institutions worldwide. For
example, Liao et al. [107] explored DOA estimation and
tracking in uniform linear arrays with mutual coupling effects.
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The study proposed a subspace-based approach that treats
angle-independent mutual coupling as angle-dependent com-
plex array gain, enabling joint estimation of DOA and mutual
coupling matrix through full-array data analysis. Parallel to
this, Gao et al. [108] developed a novel sequential Bayesian
algorithm named “Simultaneous Angle-Signal Update”. This
innovative approach reformulates the target state update as a
joint optimization problem, calculating state estimates through
posterior probability maximization of measurement vectors at
each timestep.

Furthermore, Kong and Chun [109] introduced an EKF-
based fast adaptation method for dynamic targets, overcom-
ing the slow response limitations of conventional algorithms.
In a complementary study, Cevher et al. [110] integrated
target motion with Gaussian disturbances, deriving a sim-
plified likelihood function using mutual information priors
to manage signal and noise variance. Their implementation
of the Independent Partitioned PF algorithm demonstrated
superior flexibility and effectiveness compared to traditional
linear/Gaussian-based methods. Kumar et al. [111] achieved
performance enhancement under Gaussian measurements by
employing Fourier-Hermite polynomials as orthogonal bases
to optimize nonlinear hashing processes, outperforming con-
ventional Taylor series linearization approaches.

1-1) IMM algorithm
While single-model algorithms demonstrate satisfactory per-

formance when the target’s motion state remains relatively
stable, their effectiveness significantly diminishes in practical
applications where target motion is unpredictable and highly
variable. The inherent limitation of employing a single,
fixed model to describe dynamic target states often results
in model-actual state mismatches, consequently leading
to substantial tracking errors. To overcome this challenge,
IMM-based algorithms have emerged as a prominent solution
in maneuvering target tracking research [112].

The IMM algorithm employs multiple models to represent
potential target motion states, with Markov processes govern-
ing transitions between these models. During tracking, the
algorithm establishes parallel model filters corresponding to
possible target states for real-time maneuvering detection. By
assigning weight coefficients and model update probabilities
to each filter, the system generates optimal state estimates
through weighted computations, thereby achieving model-
adaptive tracking [113]. Figure 4 illustrates the operational
flowchart of this algorithm.

The development of IMM algorithms has substantially im-
proved maneuvering target tracking performance. Subsequent
research has yielded numerous enhanced variants:

A variable-structure IMM was proposed in [114], estab-
lishing theoretical foundations for optimal estimators. Chen
et al. [59] introduced adaptive factors enabling real-time
model state switching based on acceleration and velocity data,
simultaneously improving tracking accuracy while reducing
computational load. The recursive IMM algorithm [60] im-
plemented a state sequence estimator recursively, simplify-
ing computations by incorporating Kalman filter outputs in
weight calculations. A parameter-adaptive IMM [61] combines
parameter identification to enable real-time estimation of fil-

Traditional Filtering model

the change of 
the target state

combined
estimation

...

probability
update

model interaction
initialization

Probability
density
function

Initial state estimate

Optimal state estimate

Measurement
Predicted state

estimate

position

Interacting Multiple Model

optimal estimation

Fig. 4. Flowchart of The IMM-based filtering method. It utilizes multiple
base filtering models to estimate the target state, combines their estimation
results with certain weights, and adjusts the weights of each filtering model
according to the final estimation results.

tering parameters including mode transition probabilities and
model noise variance. Zuo et al. [115] replaced conventional
probability calculations with fuzzy logic reasoning, proposing
a Fuzzy-logic based maneuvering target tracking algorithm
that enhances model matching accuracy through normalization
processing, demonstrating significant practical utility.

1-2) Asynchronous fusion techniques
The acoustic signal’s slow propagation speed and high

susceptibility to marine environmental interference, com-
bined with communication latency between sensors, make
it challenging to achieve fully synchronized target mea-
surements. This asynchrony manifests in two distinct fu-
sion scenarios: in-sequence measurement (ISM) and out-of-
sequence measurement (OOSM) fusion [62]. ISM occurs when
the fusion center receives measurements in temporal alignment
with the target’s acoustic signal emission sequence, whereas
OOSM arises when these sequences are misaligned.

Despite existing asynchronous fusion localization algo-
rithms for underwater sensors [116], [117], research on
asynchronous fusion tracking remains limited. Current solu-
tions for measurement asynchrony caused by sampling fre-
quency disparities primarily employ time registration tech-
niques to synchronize data. For instance, Yang et al. [62]
compared time-registration-based and state-prediction-based
fusion algorithms, while Liu et al. [63] introduced a delay-
estimation asynchronous particle filter that improves weight
updating through backpropagation. Furthermore, Yan et al.
[118] presentd an innovative approach that establishes prop-
agation delay-position relationships to compensate for clock
offsets, subsequently developing a consensus Bayesian filter
for continuous target tracking. This solution enhances both
tracking accuracy and network longevity through combined
consensus fusion and duty-cycle mechanisms.

Single target tracking technology has evolved into a well-
established research framework in underwater acoustics. While
traditional single-model algorithms demonstrate robust perfor-
mance under stable target motion conditions, they frequently
exhibit tracking inaccuracies when confronted with maneu-
vering targets due to model mismatch. The IMM algorithm
substantially enhances tracking precision for maneuvering tar-
gets by employing parallel adaptive switching among multiple
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models. Additionally, techniques including time registration,
delay estimation, and consensus Bayesian filtering effec-
tively mitigate synchronization challenges in asynchronous
data fusion. Collectively, these developments indicate that
single-target tracking research is progressively advancing from
single-model methodologies to multi-model collaborative sys-
tems, and from idealized synchronous scenarios to complex
asynchronous environments. However, further optimization of
model switching efficiency and asynchronous fusion accuracy
remains imperative.

2) Multi Target Tracking: With the advancement of re-
search in underwater acoustic target tracking, multi-target
tracking has emerged as a critical research focus. Considering
current marine environment, future targets are expected to
predominantly appear in clustered formations with enhanced
maneuverability and improved concealment capabilities. Fur-
thermore, the complex marine environment and fluctuating
underwater acoustic channels often generate substantial clutter,
while measurements may be contaminated by uncertainties
including false alarms and ambient noise [119].

In these challenging underwater conditions, accurately esti-
mating both the number of targets and their respective states
based on sensor node measurements remains a fundamen-
tal challenge for underwater tracking systems. Consequently,
multi-target tracking technology has become a pivotal research
direction in this field. Presently, multi-target tracking method-
ologies can be broadly categorized into two approaches: data
association-based techniques and random finite set (RFS)-
based methods.

2-1) Data association-based tracking
This approach employs data association algorithms to es-

tablish correspondences between targets and measurements.
By integrating Bayesian filtering frameworks, the complex
multi-target tracking problem is decomposed into manageable
single-target tracking subproblems. The process fundamentally
comprises two sequential stages: (1) data association and (2)
state filtering [10].

Since state estimation validity depends on accurate data
association, these techniques constitute the cornerstone of tra-
ditional multi-target tracking systems. Current methodologies
are broadly categorized into:

Maximum Likelihood Methods: joint maximum likelihood
(JML) and track splitting method (TSM) [120], which optimize
constructed likelihood functions through batch processing.

Bayesian Methods: global nearest neighbor (GNN) [121],
multiple hypothesis tracking (MHT) [122], probabilistic data
association (PDA) [53], and their derivatives (JPDA [55],
JIPDA [57]). These recursive approaches enable real-time state
estimation. Table III systematically compares the trade-offs
and applicability of these association techniques.

In the complex underwater acoustic environment with chal-
lenging signal processing conditions, Bayesian methods have
become predominant for multi-target tracking in underwater
acoustic applications. This part specifically examines PDA,
their derivatives, and MHT approach.

In [54], a method combining PDA and the cubature KF
(CKF) was proposed, demonstrating performance advantages
in nonlinear environments. Taking the algorithm proposed in

this paper as an example, the structure of the multi-target
tracking method based on data association is outlined as
follows:

In the data association stage, the probability βn,i
k that each

measurement zn,ik from sensor n originates from the target is
calculated, as shown in Equation (16):

βn,i
k =

N
(
zn,ik ; ẑn,ik ,Sk

)
Ik(n)∑
i=1

N
(
zn,ik ; ẑn,ik ,Sk

) , (16)

where ẑn,ik = H(x̂k|k−1) denotes the predicted measurement
and Sk = Pzz,k|k−1 represents the innovation covariance com-
puted by the CKF. Multiple measurements undergo probabilis-
tically weighted fusion to yield a comprehensive innovation
quantity vnk , as expressed in Equation (17):

vnk =

Ik(n)∑
i=1

βn,i
k

(
zn,ik − ẑn,ik

)
. (17)

The filtering stage employs the combined integrated inno-
vation metric vk from all sensors to update the system state:

x̂k|k = x̂k|k−1 +Kkvk. (18)

Additionally, this methodology addresses multiple mea-
surement uncertainties by substituting the conventional single
measurement with a PDA-weighted measurement during the
CKF update phase. The covariance matrix is accordingly
adjusted to account for association uncertainties through an
additional correction term KkWkK

T
k :

Pk|k = Pk|k−1 −Kk (Wk − Sk)K
T
k , (19)

where Wk = diag

(
Ik(n)∑
i=1

βn,i
k

(
vn,ik

)2
− (vnk )

2

)
represents

the PDA-weighted error matrix.
Building upon the two-step paradigm of association-based

filtering, Qiu et al. [124] proposed a PDA filter method
based on ship-radiated noise spectrum characteristics. This
approach integrates spectral features of ship-radiated noise by
introducing additional characteristic information to augment
conventional PDA filter, thereby enhancing tracking perfor-
mance in dense environments. Yao et al. [58] incorporated
target velocity components as supplementary measurements,
developing a Doppler data association algorithm. This method
was further extended to linear multi-target integrated PDA
techniques, with its superiority validated in marine environ-
ments.

However, as the number of targets and valid echo counts
increase, PDA algorithms exhibit exponential growth in com-
putational complexity. To mitigate this issue, researchers
have developed various suboptimal JPDA variants tailored
for different application scenarios. Representative approaches
include integrated JPDA [57], comprehensive JPDA [125],
and trajectory information-based JPDA [56]. As an exemplar
optimization method, TJPDA employs multi-frame trajectory
correlation analysis to screen valid measurement points [56].
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TABLE III
COMPARISON OF VARIOUS DATA ASSOCIATION BASED METHODS

Method JML
[120]

TSM
[120]

GNN
[121]

PDA
[53], [54]

MHT
[122], [123]

JPDA
[55], [56]

JIPDA
[57]

Advantages

Theoretical
optimization ✔ \ \ \ \ \ \

Low
computational

complexity
\ \ ✔ \ \ \ \

Track
management \ ✔ \ \ ✔ \ ✔

Robustness
in the presence
of dense targets

\ \ \ ✔ ✔ ✔ ✔

Adaptation
when target
are added

\ \ \ \ \ \ ✔

Disadvantages

High
computational

complexity
⃝ \ \ \ ⃝ ⃝ ⃝

High
storage

requirements
\ ⃝ \ \ ⃝ \ \

Weak
anti-interferenc

capability
\ \ ⃝ ⃝ \ \ \

Poor robustness
when targets

are dense
\ \ ⃝ ⃝ \ ⃝ \

Applicable Scenarios

Low noise with
well-aligned
observations

and trajectories

Temporarily intersect
trajectories or

high uncertainty

Few sparsely
distributed targets

Non-intersecting
trajectories with
low cluter ratio

Dense targets with
highly intersecting

trajectories

Dense targets under
moderate

noise conditions

Well-defined
parametric models
with limited targets

* The table summarizes the advantages, disadvantages, and applicability scenarios of the seven data association based approaches, where "✔" denotes
the method has this advantage ; "⃝" denotes the method has this disadvantage; "\" denotes does not have this advantage or disadvantage.

This approach not only optimizes association probability com-
putation but also reduces false alarm rates under low signal-
to-clutter ratio conditions.

Furthermore, MHT method has been significantly enhanced
for target tracking in complex environments. For instance, a
novel distributed fusion method combining MHT with data fu-
sion techniques was proposed in [126]. This method processes
individual sensor tracking states using supplementary MHT
trackers while eliminating the need for trajectory association,
thereby streamlining data processing and enhancing system
efficiency. Another study [127] integrated probabilistic MHT
(PMHT) with both EKF and UKF algorithms. Comparative
analysis with the GNN algorithm demonstrated their superior
performance in strong interference environments.

Building upon the model proposed in [127], Li et al. [128]
developed an enhanced PMHT algorithm capable of simul-
taneously resolving measurement-to-target and measurement-
to-emitter association uncertainties. To overcome limitations
of conventional PMHT algorithms - particularly convergence
to local maxima in target posterior probabilities and initial-
ization sensitivity - Li et al. [123] introduced a deterministic
annealing homothetic PMHT algorithm. This advanced variant
demonstrates reduced dependence on initial target states and
incorporates gaussian densities with identical means but dis-
tinct covariances to model measurements from single targets,
thereby improving tracking accuracy.

Current data association-based tracking methodologies are
fundamentally constrained by the requirement for prior knowl-
edge of the number of targets and by computational complexity
that increases exponentially with target density. These limita-
tions present significant barriers to technological advancement.
Consequently, the development of underwater multi-target
tracking algorithms with superior performance and enhanced
estimation precision carries both substantial practical value and

strategic importance.
2-2) RFS-based tracking
In multi-target tracking systems, the number of targets may

vary dynamically over time, leading to mismatched dimensions
between the state space and observation space. Notably, data
association—a core component of multi-target tracking—is
classified as an NP-hard problem [129]. Empirical studies
indicate that over 60 % of computational resources in tracking
algorithms are consumed by this process, underscoring the
necessity to optimize computational efficiency and enhance
real-time performance [130]. Furthermore, high clutter den-
sity poses significant challenges: traditional algorithms often
misinterpret false alarms outside association thresholds as
new targets, thereby exponentially increasing false tracks.
Consequently, conventional data association-based methods
frequently fail to satisfy practical demands for both computa-
tional efficiency and tracking accuracy [131].

To overcome the limitations of traditional multi-target track-
ing algorithms in computational efficiency and tracking perfor-
mance, particularly in complex scenarios, the authors of [131]
introduced the Finite Set Statistics (FISST) theory framework.
This framework, based on RFS theory, enables multisensor
multi target filtering. Specifically, they proposed an efficient
representation of the RFS probability density function, termed
the FISST probability density function, which is determined by
a symmetric joint probability density function P (x1, · · · ,xn)
and a potential distribution ρ(n), as shown in Equation (20):

p (X) = p ({x1, · · · ,xn}) = n!ρ (n)P (x1, · · · ,xn) , (20)

where X =
{

x1, · · · ,xn

}
represents the RFS variable.

The RFS-based multi-target tracking algorithm models the
multi-target density as an RFS. Within the Bayesian frame-
work, the FISST-based Bayesian filtering algorithm iteratively
propagates the RFS density, effectively transforming the multi-
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target tracking problem into a mapping problem between
random sets of target states and measurements. This approach
simultaneously estimates both the number of targets and their
states [132]. However, the combinatorial nature of multi-
target probability density and the multiple integrals in high-
dimensional multi target state spaces make the implementation
of an optimal RFS-based multi target Bayesian filter highly
challenging. Consequently, approximate filtering methods,
such as probability hypothesis density (PHD) filter and
multi-bernoulli (MB) filter, have been developed as prin-
cipled approximations.

The PHD filter assumes that the multi-target probability
density follows a Poisson RFS distribution, defined as:

πk|k (X) = e−λ
∏
x∈X

υk|k (x) , (21)

where λ represents the mean number of targets in the multi-
target state X , and the target number distribution ρ(n) follows
a Poisson distribution with parameter λ.

The PHD filtering algorithm employs the PHD function - a
first-order moment approximation of the multi-target probabil-
ity density - to estimate the complete multi-target probability
distribution. This approach achieves multi-target Bayesian
filtering through recursive propagation of the PHD function
[133]–[135]. To overcome the limitation of the PHD filter in
providing higher-order potential information, the multi-target
state set is modeled as a cluster point process instead of a
Poisson point process. Consequently, the simultaneous prop-
agation of both the PHD function and potential distribution
yields the Cardinalized PHD (CPHD) filter [49].

Addressing the performance degradation of conventional
CPHD filters under unknown clutter rates - a common scenario
in practical applications - Kim [136] proposed an enhanced
modeling approach. Their method assumes prior knowledge
of the maximum target count TM in the operational space.
By implementing a sliding window technique to compute the
discrepancy between measured values and TM , the algo-
rithm dynamically estimates the clutter rate. This innovative
approach leverages prior information about maximum target
counts, eliminates the need for explicit data association, and
maintains computational efficiency.

Further advancing the filter framework, Zhou et al. [50]
introduced a Gaussian Mixture CPHD (GM-CPHD) filter
that integrates threshold segmentation with the GM-CPHD
methodology. This improved technique extracts critical fea-
tures including target regions, topological factors, and edge
moments. Utilizing maximum likelihood estimation, it calcu-
lates feature contributions and selects optimal features, with
automatically determined thresholds effectively distinguishing
true targets from clutter.

The MB filter [137] employs a parametric approximation
method. Specifically, at each time step k, the multi-target state
can be mathematically represented as a union of multiple
independent Bernoulli RFS, as formalized in Equation (22):

X =

nk⋃
i=1

Xi. (22)

The density function of Xi is represented by the Bernoulli
RFS distribution:

πk|k (Xi) =

 1− rk|k,i, ifXi = ∅
rk|k,i · pk|k,i (x) , ifXi = {x}
0, else

, (23)

where rk|k,i ∈
(
0, 1

)
represents the probability of existence

for the i-th target. According to the definition above, the multi-
target probability density can be completely represented by the
MB parameter set

{
rk|k,i, pk|k,i(x)

}nk

i=1
. The standard MB

filtering algorithm recursively propagates the MB parameter
set to replace the full multi-target probability density, thereby
approximating the multi-target Bayesian filtering process.

To address the issue of target trajectory estimation, the
labeled multi-bernoulli (LMB) filter is derived based on the
theory of labeled RFS [141]. Notably, Zhang et al. [51]
enhanced the input to the LMB filter by processing raw
measurement data from the sensor array directly, eliminating
the need for a target detection step. This method preserves
more informative data, especially under low SNR conditions
or when tracking closely spaced targets, consequently im-
proving tracking accuracy. In a similar vein, Zheng et al.
[142] employed raw sensor array signals to construct the
sample covariance matrix as measurements, while integrating
the complex Wishart distribution and its inverse counterpart for
statistical modeling. In this case, the sample covariance matrix
Rzk = zkz

H
k is modeled as a complex Wishart distribution,

with the specific form given by Equation (24):

CWP (Rzk ;M,σ2
wIP +

∑
x∈Xk

h(x)), (24)

where P denotes the number of sensor elements, which
corresponds to the dimensionality of the sensor array’s output
signal, M represents the degrees of freedom, σ2

wIP represents
the noise covariance matrix, and h(x) represents the nonlinear
function of the target signal. The conjugacy between the com-
plex Wishart and complex inverse Wishart distributions simpli-
fies high-dimensional matrix integrals, reducing computational
complexity. This leads to a tractable filtering equation and
improves the performance of the filter in complex scenarios
such as low SNR.

In their seminal work [138], the research team enhanced the
data association component of the LMB filter by introducing
a pre-association decision module. This innovative module
adaptively selects trajectory estimation strategies based on
target proximity: when targets are in close proximity, the
system utilizes the trajectory prediction from the preceding
time step to mitigate association errors; conversely, for distant
targets, it employs the nearest neighbor method for trajectory
generation. Building upon this foundation, Zhang et al. [52]
developed an advanced approximation of the multi-sensor
LMB filter through Kullback-Leibler divergence minimization,
ultimately formulating a robust multi-sensor LMB framework
that demonstrates superior performance in complex scenarios.

The poisson MB mixture (PMBM) filter [143], based on the
poisson MB mixture density model, introduces the conjugate
prior RFS into the update step, ensuring that the multi-target
density form remains unchanged after prediction and update
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TABLE IV
COMPARISON OF VARIOUS RFS BASED METHODS

Method PHD
[133]–[135]

CPHD
[49], [50], [136]

MB
[137]

LMB
[51], [138]

PMBM
[139], [140]

Advantages

Low
computational

complexity
✔ \ ✔ \ \

Quantity
estimates \ ✔ \ \ \

track
management \ \ \ ✔ ✔

High
computational

efficiency
\ \ \ \ ✔

Adaptation
when target
are added

\ \ \ \ ✔

Disadvantages

High
computational

complexity
\ ⃝ \ ⃝ ⃝

Poor robustness
when targets

are dense
⃝ \ ⃝ \ \

Difficulty in
dealing with

nascent targets
\ ⃝ \ \ \

Applicable Scenarios

Scenarios with
dynamic target count

and low computational
resources

Scenarios requiring
stable target

count and precise
estimation

Scenarios with
sparse targets

requiring identity
distinction

High-precision scenarios
with dense targets

and crossing trajectories

Scenarios with clutter
and newly

emerging targets

* The table summarizes the advantages, disadvantages and applicability scenarios of the five RFS based approaches, where "✔" denotes the
method has this advantage ; "⃝" denotes the method has this disadvantage; "\" denotes does not have this advantage or disadvantage.

steps. This eliminates the need for the minimization ap-
proximation used in PHD-type filters, reducing computational
complexity while maintaining algorithm stability. Furthermore,
the PMBM filter models detected targets using a MB mixture,
while undetected targets are modeled as Poisson RFS, making
it suitable for multi-target tracking scenarios where prior
information about new targets is unavailable [139], [140].

Table IV compares the advantages, disadvantages, and limi-
tations of various multi-target tracking methods based on RFS.

B. Target Tracking Methods Based on Perception Method

Sensor perception modalities are primarily classified into
active and passive perception. Active perception involves sen-
sors emitting detection signals and receiving the corresponding
echoes, whereas passive perception entails solely receiving
signals emitted by targets for non-contact sensing. Based
on these two perception modalities, tracking algorithms can
be categorized into active tracking algorithms and passive
tracking algorithms.

Active tracking algorithms aim to estimate the target state
by utilizing sensors such as active sonar, which provide
information on the azimuth and range of the target based on the
echoes received. These echoes originate from the system itself
[144]. Passive tracking utilizes sensors such as passive sonar
to receive and analyze signals radiated by the target in order to
track it, without transmitting detection signals. This approach
avoids issues such as exposing the tracker’s information and
the energy consumption associated with signal transmission
[145]. The schematic of active and passive sonar perception
is shown in Figure 5.

1) Active Tracking: Active sonar systems play a pivotal
role in underwater target detection and tracking, compris-
ing three essential components: a transmitter, a receiver,

and a signal processing unit. The transmitter periodically
emits designed acoustic pulses, while the receiver captures
the corresponding echoes. Subsequently, the processing unit
analyzes these echoes to extract critical target parameters
including position, velocity, and range [146]. Nevertheless,
active tracking presents significant operational risks as the
emitted signals may reveal the sensor’s location, particularly in
complex combat scenarios, potentially compromising system
security [147]. This inherent vulnerability has resulted in
limited research attention in this domain.

The dual-static sonar configuration represents the most
prevalent implementation for active tracking, featuring spa-
tially separated transmitters and receivers. In this system, the
transmitter emits a calibrated acoustic signal toward the target,
which reflects back to the receiver. Target range estimation is
then achieved through analysis of signal intensity variations,
as mathematically described in Equation (25):

SE = SL− TL1 − TL2 + TS − Le −Nrdn, (25)

where SE and SL represent the signal strength received
by the receiver and the signal strength transmitted by the
transmitter, respectively. Le denotes the noise level output by
the beamformer, while Nrdn is related to the receiver’s ability
to identify noise. TL1 and TL2 represent the transmission
losses from the transmitter to the target and from the target
to the receiver, respectively, with the distance information
implicitly embedded in the transmission losses.

In [47], Ferri et al. developed a dual-static sonar sys-
tem comprising a buoy-mounted transmitter and a mobile
autonomous underwater vehicle (AUV) receiver. To enhance
tracking performance, they implemented a non-myopic rolling
horizon control strategy that predicts heading decisions over
a five-step horizon. This approach dynamically optimizes the
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Fig. 5. Schematic diagram of active and passive tracking. The left is the process of active tracking, active tracking will actively emit acoustic signals, the
tracking process starts from the sending node and ends from the receiving node; the right is the process of passive tracking, passive tracking will not actively
emit acoustic signals, and only use the receiving node to receive acoustic signals from the outside world.

AUV’s position by minimizing target distance while pre-
serving wide-angle orientation, thereby reducing positioning
errors. The methodology further incorporates decision tree
simplification and branch-and-bound techniques to address
computational constraints inherent to AUV systems.

Parallel to this work, Son et al. [46] presented a fuzzy
c-means (FCM) clustering-based algorithm for underwater
target tracking in bi-static sonar configurations. The proposed
method processes residuals between predicted states and actual
measurements through FCM clustering, decomposing them
into noise, acceleration, and deceleration components. After
eliminating acceleration/deceleration perturbations, the linear
dynamic components are retained as corrected measurements
for subsequent KF.

Dehnavi et al. [48] and Yan et al. [45] proposed two
distinct approaches to target tracking in underwater wireless
sensor networks (UWSNs). The work in [48] developed an
innovative tracking method focusing on sensor network col-
laboration. This study systematically analyzed challenges in
three-dimensional underwater acoustic wave propagation, in-
cluding multipath effects, low propagation speeds, bandwidth
limitations, and sensor corrosion. By employing both EKF and
UKF techniques, the method effectively filters measurement
noise, thereby improving dynamic target tracking accuracy and
enhancing system robustness under nonlinear measurement
models. To address energy consumption issues in UWSNs,
the authors introduced an intelligent sensor selection scheme
that activates only sensors within a specific radius of the
target, significantly reducing both energy consumption and
interference.

In contrast, Yan et al. [45] proposed a consensus estimation-
based tracking algorithm to simultaneously improve track-
ing accuracy and energy efficiency. This approach integrates
position information from multiple sensors through an ad-
vanced data fusion mechanism, enabling more precise target
localization. The algorithm not only accounts for underwater
environmental factors and sensor noise but also implements
a novel duty cycling strategy based on predicted target states.
Sensors remain in low-power sleep mode until target detection
occurs, substantially improving network energy efficiency and
prolonging operational lifetime. Different from the active
pulse transmission mechanism of designated projection nodes
used in [48], this method allows each hydrophone sensor to
autonomously initiate acoustic signal transmission upon target

detection.
2) Passive Tracking: Passive tracking systems exhibit three

notable advantages: extended detection range, enhanced oper-
ational safety, and reduced energy consumption. Nevertheless,
underwater target tracking faces considerable challenges due
to dynamic environmental variables, particularly water depth,
salinity variations, and ocean currents [148].

Recent advancements in traditional tracking methods (e.g.,
KF) have led to three primary research focuses: (1) enhancing
tracking accuracy in noisy marine environments through
the integration of filtering methods with advanced data
processing techniques; (2) optimizing multi-target tracking
performance by combining multiple filtering approaches;
and (3) improving tracking capability in complex dynamic
environments through real-time noise covariance matrix
estimation and adjustment under uncertain noise condi-
tions. These developments not only advance target tracking
technology but also provide both theoretical foundations and
practical guidance for achieving more efficient and secure
underwater target monitoring.

2-1) Filtering methods combined with data processing
techniques

Kumar et al. [43] implemented a preprocessing framework
where raw measurements were substituted with filtered outputs
before being fed into multiple UKF branches. This preprocess-
ing stage effectively attenuates measurement noise, thereby
stabilizing the input for estimation algorithms and improving
tracking precision in noisy marine environments. Another
significant development appears in [40], where researchers in-
troduced an improved unscented PF featuring adaptive Kalman
gain adjustment based on prediction residuals. This modifi-
cation addresses the inherent latency problems of fixed-gain
approaches in nonlinear systems, substantially boosting track-
ing performance under severe nonlinear conditions. Cheng et
al. [44] proposed a novel approach that unifies the prediction
and observation components of the EKF within a factor graph
framework. This innovative integration connects the EKF’s
observer and predictor through the factor graph methodology,
enabling sensors to transmit only a minimal set of parameters
that characterize their probability density function (PDF) at-
tributes. Consequently, this approach significantly reduces both
latency and power consumption while maintaining superior
tracking performance.

2-2) Hybrid filtering approaches
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Another approach to algorithm integration involves combin-
ing different filtering methods. For instance, Kumar et al. [41]
proposed an integrated UKF that merges estimates from mul-
tiple UKFs and processes multisensor data from towed arrays
in parallel. By applying the least squares method to integrate
measurements from different towed array sensors, this filter
retains the nonlinear processing capabilities of the UKF while
significantly reducing position and velocity estimation errors.

Similarly, Luo et al. [40] explored the combination of
filtering techniques by integrating the improved unscented PF
with JPDA method. This hybrid approach leverages particle
filtering to address nonlinearities and employs data association
to resolve multi target conflicts, making it suitable for multi
target tracking in complex scenarios.

Furthermore, although many studies employ the EKF or
UKF to account for the nonlinear relationship between azimuth
measurements and target states, underwater target motion often
follows a simple linear model. This is because underwater
targets typically exhibit limited velocities, traverse long dis-
tances, and undergo minimal angular changes during signal
sampling intervals.

Building on this observation, Qian et al. [42] introduced a
single-dimensional and double-sided constant false alarm rate
method. This technique enhances target detection at crossover
points by analyzing energy differences on both sides of the
target cell. By combining traditional azimuth gates with radia-
tion intensity gates and utilizing target radiation noise intensity
as a distance metric, it constructs multidimensional tracking
gates to optimize measurement association. Integrating these
methods with standard KF substantially reduces computational
complexity.

2-3) Filtering methods under uncertain noise conditions
As discussed in Chapter II, numerous studies on underwater

acoustic target tracking have traditionally assumed Gaussian-
distributed environmental noise due to its favorable math-
ematical properties and close approximation of real-world
conditions. However, actual marine environments are subject
to dynamic factors such as ocean currents and temperature
variations, resulting in significant temporal fluctuations that
challenge this assumption.

Consequently, developing robust and accurate target track-
ing methods under uncertain noise conditions becomes im-
perative. Recent approaches to address measurement noise
uncertainty have focused on integrating real-time covariance
matrix estimation and updates within tracking filter algorithms.

The Sage-Husa adaptive filter is a recursive filtering method
that dynamically estimates and adjusts the statistical properties
of both system noise and observation noise in real time. This
approach is particularly effective for underwater acoustic target
tracking in scenarios with uncertain noise conditions. The
algorithm’s core mechanism involves iterative updates to the
observation error covariance matrix and the model error noise
covariance matrix, as formalized in Equations (26) and (27):

Rk =(1− d)Rk−1+

d(eke
T
k −HkPk|k−1H

T
k ),

(26)

Qk =(1− d)Qk−1+

d(Kkeke
T
kK

T
k+Pk|k−1 − FkPk−1|k−1F

T
k ),

(27)

where Rk and Qk represent the observation error noise
and model error noise at time K, respectively. Hk and Fk

represent the observation model and the target state model,
respectively. Kk denotes the Kalman gain, and d is the
forgetting factor, which is used to assign weight to historical
data. When d approaches 0, the algorithm tends to fully
trust historical data, at which point the Sage-Husa algorithm
degenerates into a standard Kalman filter.

To further enhance the Sage-Husa algorithm, Qu et al.
[149] integrated a decay memory mechanism into the EKF
framework. This modification improves the accuracy of both
state and measurement equations by utilizing local dynamic
statistical features derived from residual analysis. Their pro-
posed adaptive algorithm combines azimuth and time-delay
measurements for underwater target tracking, supplemented
by a fixed sensor. This sensor configuration simplifies system
design by leveraging sonar-based azimuth data and time-delay
information between the sonar and sensor, thereby reducing
the complexity of target tracking in challenging environments.
Compared to conventional towed array systems, this method
demonstrates superior implementation flexibility and practical
applicability.

In [150], the Sage-Husa algorithm was further improved by
dynamically adjusting the forgetting factor d ,as described in
Equation (28):

dk =
1− b

1− bk
, (28)

where the parameter b ranges from 0 to 1. The authors also
integrated the improved Sage-Husa algorithm with a circular
array EKF, thereby enhancing the stability of the linearized
filtering process.

Building on this work, Hou et al. [151] employed the
same dynamic forgetting factor to optimize historical data
weighting, thereby improving the estimation of process and
measurement noise moments. The study further integrated an
adaptive PF utilizing Bayesian posterior probability and Monte
Carlo techniques, demonstrating significant improvements in
tracking accuracy and convergence speed under non-Gaussian
conditions.

Subsequently, Sarkka [152] developed a variational bayesian
approximation-based adaptive KF (VB-AKF) that estimates
the joint posterior distribution of states and noise parameters
via separable variational approximation. Parallel to this, Huang
et al. [153] proposed an Expectation-Maximization-based
Adaptive KF capable of estimating non-diagonal covariance
matrices, substantially expanding VB-AKF’s applicability to
complex systems. An alternative approach involving auxiliary
filters was presented in [154], where an online process noise
variance estimator enabled adaptive performance adjustment
based on target maneuvering intensity, enhancing filter perfor-
mance across both uniform and maneuvering motion scenarios.

Table V compares the two perceptual modes and also lists
the corresponding articles in order to give the reader a quick
overview of the characteristics of the different perceptual
modes and the general application scenarios of each paper.
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TABLE V
COMPARISON OF THE CHARACTERISTICS AND SPECIFIC METHODS OF ACTIVE AND PASSIVE TRACKING

Mode Advantages Disadvantages Literature Tracking Method

Active tracking
High precision,

controllable signal frequency,
long-range detection

Prone to location exposure,
high energy consumption

[47]
Control strategy

for AUV a branch
and bound technique

[46] FCM,KF
[48] EKF,UKF
[45] CEUTT

Passive tracking
Strong concealment,

low energy consumption

Low precision,
susceptible to environmental

interference

[43]
Pre-processing of noise,

UKF, IUKF
[40] JPDA,IUPF
[44] EKF,factor graph

[41]
consensus estimation,

IUKF
[40] EKF,UKF
[42] SD-CFAR,KF

[149], [150] Sage-Husa,EKF
[151] Sage-Husa,APF
[152] VB,KF
[153] EF,EKF

* The table describes the advantages and disadvantages of active and passive tracking, along with a list of relevant literature
and a summary of the tracking methods used in the literature.

C. Target Tracking Methods Based on Collaborative Mode

When utilizing sensors for hydroacoustic target tracking, a
single sensor can process the signals emitted by the target and
estimate the target state, but the tracking accuracy is limited
due to the very limited energy resources, bandwidth resources,
and data processing capabilities of a single sensor. Therefore,
it is considered to utilize the collaboration between multiple
sensors to improve the tracking performance of the system and
make the system more robust and reliable. The collaboration
modes of sensors can be classified into same-domain fusion
and cross-domain multimodal fusion based on the type
of sensors. Table VI provides a detailed comparison of the
characteristics of these three collaborative modes.

1) Same-domain Fusion: Same-domain fusion encom-
passes two primary approaches: (1) Centralized fusion, which
involves transmitting measurement data from individual sen-
sors to a central processing unit (fusion node) for unified
processing and analysis; and (2) Distributed fusion, where
multiple autonomous sensors or nodes share and process
information while maintaining independent computing and
decision-making capabilities.

1-1) Centralized fusion
This collaborative approach maximizes the utilization of sig-

nal source information, thereby minimizing system informa-
tion loss and achieving relatively high tracking performance.
However, this architecture demands substantial communication
bandwidth and exhibits reduced system reliability [10].

In underwater acoustic target tracking applications, the im-
plementation of centralized fusion faces significant challenges
due to the inherent limitations of underwater sensors, including
constrained communication capabilities, limited operational
endurance, and restricted computational resources. Conse-
quently, research on centralized fusion-based target tracking
in underwater environments remains relatively scarce.

Previous studies have employed various centralized fusion
approaches for underwater target tracking. In [37], sensor
nodes directly transmit collected measurement data to a fusion
center, where algorithms such as the EKF are utilized for
high-precision state estimation through measurement model
correction and node depth adjustment mechanisms. A similar
centralized processing architecture is adopted in [155], where
all sensor measurements are aggregated at the fusion node
and processed using Gaussian orthogonal basis linearization
of nonlinear functions to achieve accurate state estimation.

Qiu et al. [38] introduced two significant improvements to
the conventional Centralized Fusion KF : (1) an adaptive for-
getting factor was incorporated to enhance filter performance,
and (2) an IMM approach was integrated with the adaptive
KF. This combined approach leverages the advantages of IMM
in maneuvering target tracking, the data utilization efficiency
of centralized fusion, and the noise robustness provided by
adaptive factors, thereby improving algorithm adaptability in
complex underwater environments.

Addressing the challenge of asynchronous measurements,
Hu et al. [156] developed a novel fusion algorithm suitable
for general asynchronous multi-rate sensor systems. Their
methodology involves: (1) deriving a centralized fusion al-
gorithm based on the optimal batch asynchronous fusion
approach [39], and (2) extending this to a distributed fusion
framework. Notably, their proposed algorithm imposes no con-
straints on sensor quantity, sampling rates, or initial sampling
times.

While centralized fusion architectures theoretically offer
comprehensive data utilization by transmitting all measure-
ments to a fusion node, practical implementation in underwater
acoustic target tracking faces significant limitations. These
include constrained communication bandwidth, limited sen-
sor endurance, and restricted computational resources, which
collectively result in reduced tracking accuracy and poor
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TABLE VI
COMPARISON OF THE FEATURES OF THREE COLLABORATIVE MODES

Collaborative mode Centralized Fusion Distributed Fusion Cross-domain Multimodal Fusion

literature
[10] [37] [155]
[38] [156] [39]

[10] [32] [33] [34]
[35] [36] [147]

[10] [157] [29] [30]
[31] [158] [27] [28]

Feature

Data
Processing

All data converges to fusion
node for centralized processing

Nodes independently process &
partially fuse data, share final results

Fuses multi-type sensor data,
requires solving spatiotemporal

alignment &feature fusion challenges

Communication
Needs

High: Full raw data
transmission to center

Low: Only local estimates &
essential info exchange

Medium: Requires synchronized
multimodal streams &

protocol/format conversion

Scalability
Low: Computational/communication
load increases with sensor expansion

High: Easy node addition with
strong local processing

Medium: New sensor types require
algorithm adaptation & hardware

compatibility

Fault Tolerance
Low: System failure upon
central node malfunction

High: Single node failure has
minimal system impact

Medium: Relies on redundant
modalities with modality missing

robustness algorithms

Real-time
Performance

Low: Centralized processing
induces latency

High: Local decision-making
with low fusion delay

Medium: Additional computation
time for multimodal fusion

(hardware-dependent)
Computational

Load
High: Demands high-performance

computing at central node
Low: Distributed computation

across nodes
High: Requires complex algorithms

on fusion nodes/edge devices

Management
Centralized control for unified

optimization
Decentralized coordination with

synchronization complexity

Hybrid management requiring
multimodal sensor parameter

synchronization

Data Consistency
Easily maintains global

consistency
Requires feedback mechanisms to

calibrate local estimation deviations

Demands strict timestamp
synchronization & coordinate
alignment across modalities

* The table compares the characteristics of centralized fusion, distributed fusion, and cross-domain multimodal fusion and gives the rank, and also lists
the literature corresponding to the three fusion approaches.

engineering feasibility.
1-2) Distributed Fusion
To improve the applicability of data fusion in practical en-

gineering while minimizing requirements for sensor commu-
nication capabilities, endurance, and computational resources,
distributed fusion methods have been developed for under-
water acoustic target tracking. In this framework, multiple
independent sensors or nodes with autonomous computing and
decision-making capabilities share and process information
collectively. Each node performs local filtering based on
obtained measurement data to generate a target state estimate,
which is then transmitted to a fusion center [159]. The fusion
center subsequently applies an optimal fusion algorithm to
produce a global state estimate.

Notably, some distributed fusion systems incorporate a
feedback mechanism that distributes the fused estimate back
to individual sensors, thereby reducing the error covariance of
local estimates. Due to its low channel capacity requirements,
enhanced system survivability, and ease of engineering imple-
mentation, this approach has attracted considerable research
attention in the field of information fusion.

Distributed fusion systems are distinguished by their feed-
back mechanisms and operational efficiency. As illustrated in
[32], researchers developed a feedback-based underwater dis-
tributed fusion algorithm that integrates radar system feedback
mechanisms, allowing local sensors to receive information
from the fusion center. Similarly, Yu et al. [33] proposed a
distributed target tracking algorithm utilizing an IMM filter
with a wake-up/sleep scheme, which selectively activates only
those sensors within the target’s activity area. These activated
sensors conduct local state estimation and subsequently gen-
erate globally optimal estimates through the IMM method.

The core of distributed fusion lies in integrating node data to
form local estimates. For instance, Hare et atl. [34] describeed

how sensor nodes utilize a collaborative decision processing
algorithm to fuse target state estimates, covariance matrices,
and classification information from neighboring nodes, thereby
producing local fusion results. Subsequently, EKF is applied
to predict target states for the next time step, while the
autonomous node selection algorithm determines the optimal
sensor set. This local information exchange enables distributed
decision-making, effectively reducing energy consumption
without compromising tracking accuracy.

Further developments include [35], where sensor nodes
receive broadcast signals via acoustic modems and employ
track-to-track fusion to integrate state estimates and covariance
matrices from multiple sensors. By combining the covariance
matrices and cross-covariances of all neighboring nodes, a
global covariance matrix is constructed. Subsequently, the
fused covariance matrix Σ̂(k|k) and the state estimate x̂(k|k)
are computed using the global covariance matrix and the state
estimates from neighboring nodes:

Σ̂(k|k) =

[ I1 · · · In
]
Σ−1

 I1
...
In




−1

, (29)

x̂(k|k) = Σ̂(k|k) ·
[
I1 · · · In

]
Σ−1

 x̂1(k|k)
...

x̂n(k|k)

 . (30)

Finally, based on the fused state and covariance, the target’s
state and covariance at the next time step are predicted. This
fusion approach does not rely on a central node; instead,
each sensor node independently performs the fusion using
only local information, thereby embodying the principles of
distributed data fusion.

Additionally, Braca et al. [36] proposed two distinct dis-
tributed information fusion schemes: detection sharing and
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track sharing. The former updates the target state’s posterior
probability using detection data, while the latter utilizes tra-
jectory association test statistics to determine whether two
trajectories originate from the same target. When exceed-
ing a threshold, trajectories are considered distinct, enabling
network-wide information sharing that enhances overall detec-
tion and tracking capabilities.

A notable advancement appears in [147], which introduces
dynamic clustering into distributed fusion algorithms. Here,
nodes dynamically select cluster heads and members based on
real-time energy consumption and target states. This strategy
significantly reduces energy consumption while maintaining
tracking accuracy. The cluster head collects member node
information and applies the Linear Minimum Variance fusion
criterion to perform weighted data fusion, yielding more
accurate target state estimations.

2) Cross-domain Multimodal Fusion: Acoustic sensors
demonstrate excellent long-range detection capabilities with
strong penetration performance even in turbid water. Nev-
ertheless, they suffer from relatively low resolution and are
susceptible to interference from marine biological noise and
multipath effects. In contrast, optical sensors can capture high-
resolution images at close ranges, allowing for detailed target
feature extraction [157]. However, their performance is heavily
dependent on lighting conditions and deteriorates significantly
in turbid water or low-light environments.

Consequently, integrating optical and acoustic sensors for
underwater target tracking can effectively leverage the comple-
mentary advantages of both modalities. This fusion approach
enables a balanced combination of long-range and close-
range detection capabilities, thereby mitigating the inherent
limitations of each individual sensing technology.

This section systematically examines optical tracking
methodologies for underwater targets, followed by an anal-
ysis of current applications involving acousto-optic sensing
mechanisms in underwater target tracking. Specifically, the
discussion focuses on seawater sound velocity measurement
techniques employing acousto-optic sensing principles.

In the field of close-range underwater target tracking, op-
tical sensors have been extensively employed, predominantly
utilizing visual analysis and underwater imaging techniques.
As demonstrated in [29], researchers have evaluated the appli-
cability of two prevalent visual tracking algorithms—optical
flow tracking and mean shift tracking—in underwater envi-
ronments. While optical flow tracking exhibits satisfactory
performance in scenarios with abundant feature points, its
effectiveness significantly diminishes when feature points are
scarce. Conversely, mean shift tracking, which relies on the
color histogram of the target region, proves more efficient for
non-rigid target tracking, though it may encounter difficulties
during target overlap situations.

Subsequent studies have focused on addressing these limita-
tions [30], [31]. Chuang et al. [30] introduced a novel multi-
fish tracking algorithm incorporating feature-based temporal
matching and Viterbi data association, a technique originally
developed for extended single-target tracking. This approach
effectively resolves challenges posed by rapid fish movements
and frequent occlusions in low-frame-rate conditions. Further-

more, the authors propose a computationally efficient block
matching method that successfully accomplishes stereo match-
ing. This innovation enables automatic compensation for the
fish’s tail region, substantially reducing segmentation errors
and facilitating precise length measurements. Additionally, the
stereo matching results are utilized to compensate for the
lower reflectivity of the fish tail, thereby minimizing associated
measurement inaccuracies.

While in [31], a novel tracking filter algorithm is proposed,
which integrates ultra-short baseline (USBL) and sonar image
measurements by fusing multimodal data as input to a KF.
Moreover, the algorithm specifically adapts to the region of
interest (ROI) in sonar images by dynamically adjusting the
ROI based on covariance values Dx, Dy and target dimensions
Sx,Sy as shown in Equation (31):

ROIi =

[
Ti −

Si

2
− 3
√
Di, Ti +

Si

2
+ 3
√
Di

]
(i = x, y).

(31)
Acoustic sensors, when sonar is available, utilize high-

precision measurements to reduce covariance, shrink the ROI,
and improve positioning accuracy. When sonar is unavailable,
the system relies on low-frequency measurements from the
USBL, where covariance increases due to process noise, caus-
ing the ROI to expand, while maintaining tracking continuity.

To address nighttime tracking challenges, Snyder et al. [158]
proposed an innovative imaging technique as an alternative
to acoustic cameras for underwater tracking. This method
employs electrical impedance tomography (EIT) with self-
generated electric fields. The study systematically compares
two approaches: a computationally efficient cross-correlation
method and a more accurate yet complex EIT-based technique.
Both simulation and experimental results demonstrate the
superior performance of the EIT method in estimating object
velocity and position, especially when utilizing self-generated
electric fields.

Acousto-optic sensing has become prevalent in precision
marine measurements, particularly for sound velocity deter-
mination. As reported in [27], researchers achieved seawater
sound velocity measurement with <5 cm/s uncertainty by
implementing an optical frequency comb sensor based on
acousto-optic principles. Further advancing this technology,
Liu et al. [28] developed a dual-Michelson interferometer
system combined with optical frequency comb technology,
attaining remarkable measurement precision of 0.023 m/s. This
system represents a significant advancement in high-precision
underwater sound velocity calibration devices.

The exceptional measurement accuracy and non-contact
nature of acousto-optic sensing offer substantial potential for
oceanographic applications. Currently, there have been audio-
optical fusion remotely operated vehicles (ROV) fabricated as
shown in Figure 6. Integrating acousto-optic methods into un-
derwater target tracking presents not only technical challenges
but also interdisciplinary system engineering opportunities,
opening new possibilities for deep-sea exploration. Continued
progress in data fusion technologies, sensor development, and
computational power will undoubtedly enhance and promote
wider adoption of acousto-optic hybrid underwater tracking
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(a) Orthogonal arrangement of two sonars (b) The installation of the
sonars on the ROV

Fig. 6. Installation of the pair of orthogonal arranged sonars on the ROV
[160]. In (a), except for the sonars, two cameras and two LEDs with adjustable
brightness are also mounted to sense the environment and calculate the
position of the target based on the visual information in the short range; in
(b), the sensors are installed below the ROV and a piece of buoyancy material
is fixed to the top of the ROV to adjust the uneven buoyancy caused by the
sensors.

systems.

D. Summary

This chapter provides a systematic classification and sum-
mary of underwater acoustic target tracking methods from
three different perspectives: target scale, perception approach,
and collaboration mode.

From the perspective of target scale, tracking methods
can be divided into single-target tracking and multi-target
tracking. Single-target tracking performs excellently in stable
scenarios, but when dealing with maneuvering targets, its
adaptability must be improved through multi-model cooper-
ation and dynamic switching. Multi-target tracking, on the
other hand, faces challenges such as dynamic changes in the
number of targets and environmental clutter interference. It
can be further categorized into deterministic methods based
on association matching and stochastic set methods based on
probabilistic models. The former relies on efficient association
strategies, while the latter reduces computational complexity
through probability modeling. Both methods focus on different
aspects such as target density, computational efficiency, and
environmental adaptability.

From the perspective of perception approach, tracking meth-
ods can be divided into active tracking and passive tracking.
Active tracking depends on actively transmitted detection sig-
nals, offering advantages of high precision and long-range de-
tection, but it faces risks of exposure and energy consumption.
Passive tracking, on the other hand, achieves covert detection
by receiving target radiation signals, though it is susceptible
to environmental noise and nonlinear interference. In dynamic
and complex environments, both methods have their unique
characteristics and require the integration of adaptive filtering
techniques to address the time-varying and uncertain nature of
marine environmental noise. By dynamically adjusting model
parameters, the robustness of the system can be enhanced.

From the perspective of collaboration mode, tracking meth-
ods encompass centralized, distributed, and cross-domain mul-
timodal fusion approaches. Centralized fusion benefits from

high information utilization but faces heavy communication
burdens. Distributed fusion improves system fault tolerance
and scalability through local processing and information shar-
ing. Cross-domain multimodal fusion combines the advantages
of heterogeneous sensors such as acoustic and optical sensors,
compensating for the limitations of single modalities and
balancing long-range detection with close-range accuracy. This
approach represents an important direction for addressing
complex underwater tracking scenarios in the future.

In conclusion, this chapter reveals the core characteristics
and applicable boundaries of different methods through multi-
dimensional classification, forming a multi-layered and multi-
dimensional methodological system. This helps readers to
better understand the current state of underwater acoustic
target tracking technology and its future trends, providing a
theoretical foundation and directional guidance for practical
applications and technological innovation.

IV. EMERGING TRENDS IN TRACKING METHODS DRIVEN
BY MACHINE LEARNING

In recent years, machine learning techniques have intro-
duced a paradigm shift in the field of underwater acoustic
target tracking due to their powerful nonlinear modeling and
adaptive learning capabilities. Traditional tracking methods,
which rely on precise physical models and manually designed
features, face challenges such as model mismatches and noise
sensitivity in complex, dynamic ocean environments.

Machine learning techniques enhance the robustness of
algorithms in scenarios involving multi-target intersections and
environmental disturbances by leveraging data-driven feature
extraction and strategy optimization to effectively uncover
hidden patterns in low signal-to-noise ratio signals. This
chapter focuses on two major branches: deep neural networks
(DNNs) and deep reinforcement learning (DRL)-analyzing
their theoretical advancements and practical implementations
in underwater acoustic target tracking. We further explore the
potential for synergistic integration between machine learning
approaches and conventional signal processing techniques.

A. Deep Neural Network Optimized Tracking Method

DNNs have demonstrated remarkable effectiveness in un-
derwater acoustic target recognition and localization [161],
indicating their substantial potential for underwater acous-
tic target tracking applications. This potential stems from
DNNs’ ability to process complex acoustic signals and extract
discriminative features from underwater environments.

1) Application of DNN in Target Recognition and Lo-
calization: The rapid evolution of sensor technologies and
intelligent information systems has revealed significant lim-
itations in conventional approaches for intelligent underwa-
ter detection and information processing. To address these
challenges, deep learning has emerged as a transformative
theoretical framework that significantly enhances underwater
target recognition and localization capabilities.

In the area of underwater target recognition, as demonstrated
in [162], convolutional neural networks (CNNs) were inte-
grated with auditory perception models, where Mel-frequency
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cepstral coefficients [163] were employed to extract features
from target radiation noise. This approach simulated the
full functionality of the auditory system, achieving effective
recognition of ship-radiated noise. The results substantiate the
applicability of deep learning in underwater acoustic research.

Further innovations are evident in [164], where a data
augmentation technique combined with a residual CNN archi-
tecture was proposed. The authors leveraged a Deep Convo-
lutional Generative Adversarial Network to augment training
datasets, significantly improving recognition accuracy. Com-
plementing this, [165] addressed shipwreck identification in
side-scan sonar (SSS) imagery through a Gentle AdaBoost
model. The study introduced a systematic workflow for the
automated and precise detection of shipwrecks in SSS water-
fall images.

Deep learning has demonstrated significant potential in
underwater acoustic target localization, owing to its robust
modeling capabilities and minimal reliance on prior environ-
mental knowledge. For instance, Niu et al. [166] proposed
a two-stage deep residual neural network approach: first
identifying range intervals, then resolving source range and
depth through interval-specific models trained on large-scale
datasets, effectively mitigating uncertainties in environmental
parameter acquisition.

Similarly, Huang et al. [167] developed a two-stage model
utilizing simulated data, where feature vectors derived from
covariance matrix-based modal signal space decomposition
served as DNN inputs for range/depth regression. Further
advancing this field, Liu et al. [168] implemented a Multi-Task
Learning framework with adaptive weighted loss in a CNN
architecture to enhance deep-sea sound source localization.

These advancements underscore deep learning’s growing
adoption in underwater acoustic tasks. Notably, traditional
tracking models’ heavy mathematical dependencies often in-
troduce irreducible errors, whereas deep learning’s superior
feature extraction capabilities have spurred its recent integra-
tion into underwater target tracking methodologies [169].

2) The Promising Future of DNN-based Target Tracking:
The underwater acoustic target tracking process comprises two
primary phases: (1) data preprocessing, which includes data
input and processing; and (2) target state estimation, in-
volving model construction and state estimation (as illustrated
in Figure 7). Notably, deep learning techniques demonstrate
applicability in both phases.

2-1) Application of DNNs in the data processing stage
During the data processing phase, the recognition and anal-

ysis of acoustic signals constitute critical factors influencing
tracking performance. Deep learning demonstrates remarkable
feature extraction capabilities, which can substantially improve
the processing efficiency of tracking systems [170]. To mit-
igate target loss in conventional tracking systems, Wang et
al. [25] developed a hybrid approach combining deep convo-
lutional neural networks with Kalman filtering. This method
enhances tracking robustness in challenging scenarios (e.g.,
weak signals or azimuthal target overlap) by integrating target
azimuth information into time-frequency maps and employing
azimuth-weighted feature learning alongside Kalman-based
prediction-correction.

Wang et al. [26] proposed a passive underwater acoustic
target tracking method, which integrates multi-beam Low-
Frequency Analysis and Recording (LOFAR) data [171] with
an improved LeNet-5 CNN, and further enhances tracking
accuracy through an EKF. The multi-beam LOFAR spectrum is
used as the CNN input, and a dropout mechanism is employed
to prevent overfitting. The model performs target recognition
and azimuth estimation, followed by EKF-based correction of
the prediction results. The entire process can be represented
by the Equation (32):

ỹ = Pre(ω ⊗ S), thenF (L, θ) = P (cnn(ỹ)), (32)

where S represents the raw sonar array signal, and ỹ is the
resulting image data used for training the CNN model. Pre(·)
refers to azimuthal weighting applied to the sonar signal. The
weighted data is transformed from the frequency domain to
the time domain to generate a multi-beam LOFAR spectrum.
During this process, a colormap mapping converts spectral
energy values into grayscale or RGB values, which serve as
inputs for CNN training and recognition. The symbol cnn(·)
denotes the trained CNN model, while P (·) indicates the
model trained on azimuth-weighted data. This model identifies
target data to obtain the target state vector F (L, θ), which
includes the classification label L and azimuth θ.

2-2) Application of DNNs in the target state estimation
stage

During the target state estimation phase, filtering models
utilize recursive algorithms to predict the target’s state at sub-
sequent time steps, enabling continuous tracking. Key param-
eters within these models—including noise characteristics and
motion model parameters—significantly determine tracking
accuracy. The adaptive learning capacity of deep learning can
optimize these parameters effectively, consequently improving
overall tracking performance [172]. Xu et al. [23] proposed
EKFNet, an innovative learning framework for automated
estimation of process and measurement noise covariance pa-
rameters in EKF. While retaining the fundamental EKF ar-
chitecture (state prediction, measurement prediction, and state
update), EKFNet integrates a recurrent neural network (RNN)
trained with backpropagation through time to optimize noise
covariance matrices.

EKFNet supports both supervised and unsupervised learning
modes of backpropagation, each with distinct loss functions.
The state estimation error, x̄k = xG

k − gk(x̂k|k) represents
the difference between the true state and the estimated state
from filtering. The measurement residual ỹk = zk−h(x̂k|k−1)
denotes the difference between the measured value and the
result of the measurement model. The loss function for su-
pervised learning consists of the state estimation mean square
error and the posterior log-likelihood. The loss function for
unsupervised learning comprises the measurement residual
error and the measurement log-likelihood. The loss function
for unsupervised learning consists of the measurement residual
error and the measurement log-likelihood.

Traditional target tracking methods exhibit high sensitivity
to initial mean square error, where improper initialization may
result in tracking divergence. To address this limitation, Hou et
al. [24] proposed an attention-based deep convolutional neural
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Fig. 7. Schematic diagram of the application of deep learning to underwater acoustic target tracking methods. The upper part of the figure represents deep
learning applied to improve the state estimation model for target tracking, which can adaptively learn the parameters of the model using unsupervised or
supervised learning, making the state estimation model more adaptable to the complex and dynamic underwater acoustic environment; the lower part of the
figure represents deep learning applied to the feature extraction of measurement data for target tracking.

network (DCNN) for robust estimation of the initial noise co-
variance matrix, which extends the variational Bayesian EKF
framework. This approach significantly enhances the stability
and precision of subsequent DOA tracking performance.

The attention-based DCNN consists of ResNet and Squeeze-
and-Excitation modules. The squeezing operation can be ex-
pressed as Equation (33):

zc = Fsq(uc) =
1

H ×W

i=1∑
H

j=1∑
W

uc(i, j), (33)

where uc represents the c-th channel of the feature map U ,
and Fsq denotes the compression. From the above equation, it
can be seen that the squeezing is applied to each feature map
of size H × W . After compression, each feature map U is
reduced to a real number, thus maximizing the compression of
the information. Subsequently, the features are excited through
a fully connected layer and activation function to calculate the
weight vector s for each feature map. The final output of the
model is the weighted multiplication of the channel weights
sc and the channels uc of the feature map.

In conclusion, by autonomously extracting hierarchical fea-
tures from the data, deep learning’s powerful nonlinear mod-
eling capability effectively distinguishes targets from back-
ground noise, enhancing adaptability to dynamic environ-
ments. This overcomes the limitations of traditional methods
that rely on handcrafted features and exhibits superior robust-
ness in challenging conditions such as noise interference, weak
signals, and overlapping targets.

When combined with conventional filtering techniques, deep
learning further improves the stability of state estimation,

reduces sensitivity to initial parameters, and mitigates the risk
of tracking divergence. This presents a promising solution for
underwater acoustic target tracking. Future research should
further explore the application of deep learning in more
complex scenarios characterized by low signal-to-noise ratios
and missing signal data.

B. Deep Reinforcement Learning Optimized Tracking Strategy

The control strategies for underwater acoustic sensor net-
works are one of the critical factors determining the effec-
tiveness of tracking strategies. The collaborative relationships
within a sensor network encompass scheduling strategies and
cooperative control strategies among sensors.

The necessity for scheduling within a sensor network arises
from the challenge of recharging battery-powered sensors
in the ocean’s depths, which severely limits the operational
duration of the sensor network. Moreover, an excessive number
of sensors or the frequent transmission of measurement data
can significantly deplete energy resources [173].

Conversely, to free sensors from the constraints of fixed
positions, they can be deployed on AUVs. This approach
also reduces the overall deployment and maintenance costs.
However, the substantial burden of controlling AUV swarms
presents significant challenges for their coordinated control
[174].

Consequently, developing efficient and rational scheduling
strategies along with cooperative control mechanisms for sen-
sor networks and AUV swarms becomes imperative to strike
an optimal balance between tracking accuracy and energy
efficiency [175].
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As a paradigm of machine learning, reinforcement learning
optimizes an agent’s strategy by maximizing long-term cu-
mulative rewards through interactions between the agent and
the environment. Compared to traditional methods,DRL does
not require precise prior knowledge of the environment and
possesses a strong capability to adapt to dynamic environmen-
tal changes, making it particularly suitable for the complex
and variable underwater environment [20]. Consequently, the
application of reinforcement learning is gradually becoming
a new trend in researching control strategies for underwater
acoustic sensors.

1) Sensor Scheduling Optimization: Throughout the pro-
cess of underwater acoustic target tracking, the scheduling of
acoustic sensors is integral and subject to continuous dynamic
adjustment, as depicted in Figure 8. At time step k, the
cluster head (CH) sensor selects appropriate sensors within
its communication range as cluster members (CM) based on
a specific strategy to perform the tracking task at that time.
Concurrently, the CH sensor, using the tracking results from
time step k, selects the next CH sensor, thereby repeating the
process of tracking and selection.

1-1) Traditional scheduling strategy
Recent years have witnessed significant advancements in

underwater target tracking sensor scheduling methods within
UWSNs. As demonstrated in [176], an adaptive sensor
scheduling scheme dynamically optimizes sensor selection
and sampling intervals to achieve an optimal trade-off be-
tween tracking accuracy and energy efficiency. Building upon
this, Liu et al. [177] proposed a distributed intelligent node
scheduling approach that quantifies the influence of node
deployment on tracking performance through the Posterior
Cramér-Rao Lower Bound. This method employs the Group-
Based Forward Orthogonal Search algorithm combined with
greedy search, effectively reducing computational complexity
without compromising tracking precision.

To address the challenge of positional drift, Tian [178]
developed a node selection algorithm that models location
fluctuations as drift noise. By integrating particle filtering,
the study derives the fisher information matrix (FIM) and
mutual information (MI) under drift conditions as node se-
lection criteria, with multi-objective optimization achieved
through NSGA-II and TOPSIS algorithms. Further innovations
include non-cooperative target tracking method in [179], which
combines MI with the IMM-UKF. This approach not only
dynamically activates tracking nodes using MI to conserve
energy but also incorporates ray tracing to mitigate ranging
errors induced by ocean stratification.

1-2) DRL-driven scheduling strategies
Traditional scheduling methods generally exhibit disadvan-

tages such as limited flexibility and poor adaptability to
complex environments. In recent years, reinforcement learning
techniques have gradually been applied to the research of
underwater sensor scheduling strategies. In [19], an end-to-
end sensor scheduling algorithm based on dueling double
deep Q network (D3QN) is proposed. This algorithm mod-
els the scheduling strategy as a markov decision process
(MDP), where the underwater passive tracking-based energy-
efficient sensor scheduling process is treated as a sequential

decision problem. Since it is unrealistic to obtain ground
truth for performance evaluation in non-cooperative target
tracking scenarios, the authors introduce a simulation-based
training approach, which does not require the true trajectory
information of the target, thus addressing the issue of missing
information for non-cooperative targets.

Considering the energy consumption due to the continu-
ous operation of the sensor, Su et al. [20] investigated an
asynchronous wake-up scheme for underwater sensor networks
and propose an adaptive asynchronous wake-up scheme based
on DRL. The idle listening strategy selection is modeled as
an MDP, where the state space consists of four components:
remaining energy, queue length, idle time, and traffic inter-
val. The reward function balances energy consumption and
delay costs, selecting long periods to save energy under low
traffic and short periods to reduce delay under high traffic.
Additionally, long short-term memory (LSTM) networks are
used to predict network traffic characteristics, assisting nodes
in dynamically adjusting their wake-up strategies.

The issue of high transmission latency in UWSNs poses
significant challenges for sensor scheduling [180]. Jin et al.
[21] introduced a reinforcement learning-based underwater
acoustic sensor network routing protocol and introduced the
additional cost terms: congestion-related cost co(c), delay-
related cost co(t), and energy-related cost co(en) as the reward
function, which is defined in Equation (34):

R
ai→nj
sinj

= −R0−φ×[φc×co(c)+φt×co(t)+co(en)]. (34)

Furthermore, to strike a balance between convergence speed,
energy balancing, and congestion avoidance, the study in-
corporates a dynamic virtual routing pipe with a variable
radius. The radius of the virtual routing pipe is directly
proportional to the average residual energy of the sending
node’s neighbors. This design accelerates the convergence of
the algorithm, mitigates congestion, and facilitates a more
uniform distribution of energy across the network.

To address the problem of void regions—areas lacking
effective relay nodes due to the sparse deployment of UWSNs,
Wang et al. [22] proposed an opportunistic routing protocol
named DROR. This protocol integrates receiver-based routing
decisions with Q-learning and incorporates a void recovery
mechanism to bypass void nodes. The implementation of void
recovery mechanism is as follows:
• When a node detects that no candidate forwarding set exists

(CS(i) = ∅), it sets voidflag = 1 and recovflag = 1.
• The receiving node allows downward forwarding (i.e., depth

difference ≥ 0) and uses Q-learning to select non-void nodes
as relays.

• A penalty term associated with the voidflag(C = 2) is
incorporated into the reward function to prevent repeated
selection of void nodes.
In addition, a dynamic scheduling strategy is devised based

on the holding time regulated by the hyperbolic tangent (Tanh)
function. By associating the holding time with the Q-value,
nodes with relatively higher Q-values are enabled to forward
packets earlier. Through dynamic adjustment of relative Q-
values, DROR effectively reduces packet collisions and avoids
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Fig. 8. Schematic diagram of the underwater acoustic sensor scheduling process. On the left is the sensor cluster head at moment k, its selected cluster
members and the cluster head at the next moment, and on the right is the selection and tracking process of the cluster head at moment k + 1.

unnecessary increases in holding time caused by decreasing Q-
values. This strategy significantly minimizes both end-to-end
delay and energy consumption during data transmission.

2) AUV Cooperative Control Optimization: Allowing
AUVs to carry sensors makes the sensors independent of
fixed locations, while reducing the overall deployment and
maintenance costs. In recent years, the use of reinforcement
learning techniques to reduce the burden of cooperative control
of AUV clusters has gradually become a research priority.
A major application of deep reinforcement learning to
optimize the cooperative control of AUVs is the use of
the centralized training and distributed execution (CTDE)
framework for training and control of AUVs. In addition,
the emerging software-defined networking (SDN) archi-
tecture provides new ideas for the application of deep
reinforcement learning.

2-1) The CTDE framework
CTDE is the classical training and implementation frame-

work for DRL, which guarantees that the training phase takes
place in a secure private network and the execution phase does
not require communication between agents.

In [16], a secure collaborative underwater target tracking
scheme based on Multi-Agent Reinforcement Learning was
proposed. It employs the CTDE architecture. Each AUV
generates control signals solely based on its own sensor data,
thereby avoiding the risks of communication link attacks and
ensuring the security of task execution.

Moreover, the method also designs a reward function that
includes swarm consistency, target tracking, and collision
avoidance. Group consistency treats AUV groups as graphs
with algebraic connectivity, i.e., the second smallest eigenvalue
of the Laplace matrix λ. When λ is too large, the reward func-
tion is truncated to avoid collisions due to over-aggregation.

To address the challenges of reward function design and
high environmental interaction costs in DRL methods, Xu
et al. [181] proposed the FISHER framework, a two-stage
learning paradigm that combines imitation learning (IL) and
offline reinforcement learning (ORL). This framework avoids
the complexities of reward function design in traditional RL
methods while enhancing sample efficiency and the general-
ization capability of the policy.

In the IL stage, generative adversarial imitation learning is

improved by introducing the multi-intelligent body condition
and the Nash equilibrium condition to generate offline datasets
using generative adversarial networks (GANs) while the Nash
equilibrium constraint ensures that the strategies are locally
optimal in concert by optimizing the pairwise form of the
problem and the explicit condition. In the ORL stage, the
multi-agent independent generalized decision transformer is
proposed to extract future state features through an anti-causal
attention mechanism to match potential representations of
expert trajectories without relying on reward functions.

2-2) SDN architecture
SDN represents an innovative network architecture that

decouples control plane functions from data plane operations,
thereby enabling programmable network management [182],
[183]. This architecture has gained significant traction in un-
derwater multi-agent network applications in recent years, of-
fering novel solutions for underwater exploration and research
operations. Within underwater acoustic sensor networks, the
SDN framework distinctly segregates sensor nodes into two
functional modules: a data processing unit and a decision-
making unit. This architectural separation not only improves
network flexibility but also simplifies configuration procedures
while reducing dependence on costly specialized hardware
[184]. As demonstrated in Figure 9, these characteristics
establish clear differentiators between SDN and conventional
distributed/centralized network architectures.

Lin et al. [185] proposed an SDN-based underwater wireless
network architecture for AUVs, designed to support coopera-
tive multi-AUV search missions. This architecture integrates
software-defined beacons, hierarchical localization, coopera-
tive control, and a software-defined hybrid data transmission
framework to enable network information synchronization,
node localization, multi-AUV cooperative control, and intelli-
gent data transmission scheduling.

DRL-based routing method for SDN is proposed in [186].
This method utilizes path state indicators and demonstrates
superior efficiency and intelligence compared to traditional
algorithms. It dynamically adjusts routing strategies based on
network traffic changes, showcasing both practical feasibility
and outstanding performance in SDN routing.

In [17] and [18], the authors developed a tracking strategy
framework for AUV clusters based on SDN. In this framework,
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Fig. 9. Schematic diagram of SDN architecture, centralized architecture, and distributed architecture. In centralized and distributed architectures, sensors
directly interact with the processor or other sensors for data and concrete Strategies; in SDN architecture, strategy generation and data processing are
decoupled through the control layer and data layer, which makes the network computation burden shared and network configuration and management easier
and more convenient.

the central controller is a surface-deployed unmanned surface
vehicle, which is responsible for generating globally optimal
strategies and decomposing complex tracking tasks into sub-
regional assignments.

The local-training control Layer, functioning as the data
layer, has as its core component the local training controller
for AUVs. This controller allocates specific actions to sub-
cluster AUVs based on the global strategy and uploads training
samples (such as state, action, and reward) to the Global
Training Control Layer. The application execution layer is
composed primarily of ordinary AUVs, which autonomously
adjust their motion parameters according to the strategies
assigned by the Local-Training Control Layer.

Under this hierarchical architecture, Zhu et al. [17] intro-
duced an advantage attention mechanism and an advantage
resampling method. The advantage attention mechanism dy-
namically selects the most effective AUVs and expands their
experiences, thereby compressing the input dimensionality in
large-scale AUV clusters and enhancing the system’s scal-
ability. The advantage resampling method prioritizes high-
reward samples to address the inefficiency of conventional
experience replay buffers in utilizing advantageous samples,
thus improving training efficiency.

Similarly, Wang et al. [18] propose mechanisms called dy-
namic switching attention and dynamic switching resampling.
These methods focus on adaptively adjusting the sample selec-
tion strategy to increase the proportion of high-reward sam-
ples, thereby accelerating convergence while avoiding local
optima. This approach is particularly suited for complex and
interference-prone environments. In contrast, [17] emphasized
architectural scalability, making it more applicable to large-
scale AUV clusters.

In summary, the introduction of reinforcement learning tech-
nology provides an intelligent solution for the efficient control
of underwater sensor networks. By dynamically optimizing

sensor scheduling strategies and AUV collaborative control, it
significantly enhances the energy efficiency and robustness of
target tracking. These collaborative strategies complement the
sensor cooperation models presented in Chapter III, together
forming a multi-layered sensor cooperation tracking system.

In the future, with the advancement of multi-modal sensor
technologies and the improvement of reinforcement learning
algorithms, underwater acoustic target tracking systems will
exhibit greater adaptability in communication-limited and en-
vironmentally dynamic underwater scenarios, offering more
reliable technological support for ocean monitoring and re-
source development.

C. Summary

This chapter systematically explores the cutting-edge ap-
plications of machine learning technologies in underwater
acoustic target tracking. Deep learning leverages the powerful
feature extraction capabilities of neural networks to achieve
adaptive extraction of complex signal features and dynamic
calibration of state estimation parameters, significantly en-
hancing tracking accuracy in low SNR environments. Re-
inforcement learning, with intelligent decision-making at its
core, optimizes sensor scheduling strategies and multi-agent
cooperative control to achieve globally optimal tracking per-
formance under energy constraints and dynamic environments.

The introduction of these two technologies not only breaks
through the theoretical limitations of traditional methods but
also drives the transition of tracking systems from passive
adaptation to active optimization. In the future, with the
advancement of multimodal data fusion and lightweight model
design, machine learning technologies will further empower
underwater acoustic target tracking systems, providing more
efficient solutions for their practical deployment in complex
marine environments.
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V. CHALLENGES AND FUTURE AVENUES

This chapter systematically examines the key challenges
in underwater acoustic target tracking research, focusing on
four critical aspects: environmental modeling, SNR, energy
efficiency, and data sharing. Furthermore, potential solutions
leveraging emerging technologies (e.g., physics-informed ma-
chine learning and federated learning) are proposed. The in-
terrelationship between current challenges and future research
directions is illustrated in Figure 10.

A. Current Challenges

1) Insufficient Modeling of Complex Ocean Environ-
ments: Contemporary underwater acoustic target tracking
algorithms predominantly rely on oversimplified environmen-
tal assumptions, significantly limiting their effectiveness in
dynamic marine environments. The underwater acoustic chan-
nel exhibits distinct time-varying characteristics influenced
by multiple factors, including temperature variations, salinity
gradients, depth changes, and pressure fluctuations. These
environmental variables collectively affect sound propagation
through four primary mechanisms: (1) restricted commu-
nication bandwidth, (2) prolonged propagation delays, (3)
increased interference and clutter levels, and (4) elevated
bit error rates. However, conventional modeling approaches
inadequately address the complex interactions among these
variables, resulting in suboptimal performance of tracking
algorithms in practical scenarios.

2) Low Signal-to-Noise Ratio of Target Radiated Signals:
The continuous advancement of noise reduction technologies
has paradoxically exacerbated detection challenges. While
vessel radiated noise and echo intensity have progressively de-
creased, anthropogenic activities have concurrently amplified
ambient ocean noise. This inverse relationship has precipitated
a substantial decline in target SNR. Under such conditions,
conventional signal processing methods prove inadequate for
reliable feature extraction, as target signals become indis-
tinguishable from background noise, thereby compromising
detection and tracking efficacy.

3) Trade-off between Tracking Accuracy and Energy
Consumption: Underwater target tracking inherently involves
a trade-off between tracking accuracy and energy efficiency.
Achieving higher tracking accuracy generally necessitates data
fusion from multiple sensors, which substantially elevates
energy consumption. However, both stationary sensors and
mobile AUVs are subject to energy constraints, making pro-
longed high-energy tracking operations unsustainable.

4) Limited Underwater Acoustic Data Sharing: The field
suffers from severe data fragmentation due to three primary
barriers: (1) exorbitant data acquisition costs, (2) domain sensi-
tivity, and (3) lack of standardized protocols. These constraints
hinder cross-institutional and international data integration, re-
sulting in duplicated research efforts and inadequate algorithm
training datasets. Consequently, the generalization capacity of
tracking algorithms remains severely limited, stifling techno-
logical progress in the field.

B. Future Avenues
1) Ocean Environment Modeling Integrating Graph Neu-

ral Networks (GNNs) and Physics-Informed Neural Net-
works (PINNs): To address the challenges of modeling com-
plex ocean environments, the integrated approach combining
GNNs and PINNs is feasible. GNNs, with their powerful
capability to process graph-structured data, effectively char-
acterize intricate spatiotemporal relationships among nodes
(e.g., sensors measuring sound speed and temperature at
different locations). By constructing a graph representation of
the ocean environment, GNNs can identify latent associations
between environmental variables and capture dynamic patterns
of environmental changes.

Meanwhile, PINNs incorporate the physical laws governing
acoustic propagation as regularization terms within the neural
network architecture. This integration ensures that the model
simultaneously learns data features while adhering to funda-
mental physical constraints.

The synergy of these two methodologies establishes a
physics-informed, data-driven framework that accurately sim-
ulates acoustic propagation characteristics in complex ocean
environments. Consequently, it provides reliable environmen-
tal priors for underwater target tracking algorithms.

2) Weak Signal Enhancement and Feature Extraction
Based on Transformer Architecture: To address the lim-
itations of target detection under low SNR conditions, the
Transformer architecture demonstrates unique advantages in
underwater acoustic signal processing. Its self-attention mech-
anism and capability to model long-range dependencies enable
effective feature extraction from noisy signals.

Specifically, variants like the Swin Transformer utilize a
hierarchical sliding window mechanism, which facilitates ef-
ficient extraction of subtle features from underwater acoustic
signals while capturing long-range dependencies across both
temporal and frequency domains. Furthermore, by integrating
Conditional Generative Adversarial Networks (CGANs), this
framework can augment low-SNR signals through the gen-
eration of virtual samples containing target features, thereby
expanding the training dataset.

The proposed pipeline consists of two key stages: (1)
CGAN-based generation of diverse enhanced signals, followed
by (2) Transformer-based feature extraction. This combined
approach significantly improves weak target signal enhance-
ment and boosts the accuracy of target detection and tracking
systems.

3) Collaborative Design of Lightweight Models and En-
ergy Optimization Strategies: In the context of the pre-
vailing trend toward large-scale models, lightweight tech-
niques—including model pruning and knowledge distilla-
tion—have emerged as pivotal solutions to address the energy
constraints of underwater nodes. Model pruning eliminates
redundant connections and parameters within tracking algo-
rithm models, whereas knowledge distillation facilitates the
transfer of knowledge from complex large-scale models to
compact lightweight models, thereby preserving performance
while significantly reducing model size.

Moreover, reinforcement learning is employed to formulate
dynamic sensor scheduling strategies, empowering underwater
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Fig. 10. Current challenges and future avenues. The first half of the picture describes the current challenges, including four aspects: modeling, SNR, energy,
and sharing, and the second half provides corresponding future avenue in conjunction with deep learning, reinforcement learning, federated learning, and large
model techniques.

nodes to adaptively adjust sensor operating modes and data
transmission frequencies in response to target movement and
environmental variations. Additionally, the sparse attention
mechanism inherent in Transformer architectures can sub-
stantially mitigate computational demands, effectively mini-
mizing energy consumption without compromising tracking
performance. This integrated approach ultimately achieves
an optimal balance between tracking accuracy and energy
efficiency.

4) Construction of an Underwater Acoustic Data Sharing
Ecosystem Driven by Federated Learning and Blockchain:
To address the challenges in underwater acoustic data sharing,
federated learning presents a novel approach. Participating
institutions can locally train target tracking models using their
proprietary datasets while uploading only encrypted model
parameters or data summaries to the platform. This methodol-
ogy effectively safeguards the confidentiality of sensitive raw
data. By employing aggregation strategies such as federated
averaging, these distributed models can be collaboratively
optimized across multiple institutions, ultimately yielding a
high-performance global tracking model.

The integration of blockchain technology with federated
learning further enhances this ecosystem. All data usage
records and model training processes are immutably recorded
on the blockchain. Smart contracts autonomously execute data-
sharing protocols and benefit-distribution mechanisms, thereby
ensuring data credibility, traceability, and regulatory compli-
ance. This synergistic technological framework not only facil-
itates international collaboration in underwater acoustic data
utilization but also provides extensive datasets for algorithm
training. Consequently, it improves model generalizability and
robustness, significantly advancing the field of underwater
acoustic target tracking.

VI. CONCLUSION

This comprehensive survey proposed a novel multi-
dimensional taxonomy for underwater acoustic target tracking,
categorizing recent advances by target scale, sensing modal-
ity, and collaboration strategy, while systematically reviewing
both theoretical foundations and algorithmic developments.
Emphasizing the integration of machine learning, especially

deep learning and reinforcement learning, we highlighted how
these methods are driving significant progress in tracking
accuracy, adaptability, and intelligence. However, challenges
persist, including constrained communication bandwidth, pro-
longed propagation delays, intensified interference and clutter,
and elevated bit error rates. To address these issues, further
application of artificial intelligence approaches—including
GNNs, PINNs, transformer architectures, and embodied in-
telligence—is crucial for enhancing modeling accuracy and
algorithm performance. Additionally, it is essential to fully
leverage federated learning and blockchain technology to
strengthen the security and comprehensiveness of data sharing.
We hope this survey will deepen understanding within the field
and steer future research towards developing more intelligent,
reliable, and versatile underwater target tracking systems.
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