
ar
X

iv
:2

50
6.

14
05

5v
1

 [
cs

.S
E

]
 1

6
Ju

n
20

25

Characterising Bugs in Jupyter Platform

Yutian Tang∗

University of Glasgow
United Kingdom

Hongchen Cao
ShanghaiTech University

China

Yuxi Chen
University of Glasgow

United Kingdom

David Lo
Singapore Management University

Singapore

ABSTRACT

As a representative literate programming platform, Jupyter is widely

adopted by developers, data analysts, and researchers for replica-

tion, data sharing, documentation, interactive data visualization,

and more. Understanding the bugs in the Jupyter platform is essen-

tial for ensuring its correctness, security, and robustness. Previous

studies focused on code reuse, restoration, and repair execution

environment for Jupyter notebooks. However, the bugs in Jupyter

notebooks’ hosting platform Jupyter are not investigated. In this

paper,we investigate 387 bugs in the Jupyter platform. These Jupyter

bugs are classified into 11 root causes and 11 bug symptoms. We

identify 14 major findings for developers. More importantly, our

study opens new directions in building tools for detecting and fix-

ing bugs in the Jupyter platform.

CCS CONCEPTS

• Software and its engineering; • General and reference →

Empirical studies;

KEYWORDS

Bugs, Jupyter, Empirical software engineering

ACM Reference Format:

Yutian Tang, Hongchen Cao, Yuxi Chen, and David Lo. 2025. Characteris-

ing Bugs in Jupyter Platform. In Proceedings of The 29th International Con-

ference on Evaluation and Assessment in Software Engineering (EASE 2025).

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Literate programming is the style of programming by interleav-

ing executable code snippets, text descriptions, and computation

results [68]. The computation results are generated by executing

the code snippets. The text description explains the source code

and computation results. Such a diagram contributes to code un-

derstanding and makes the computation results explainable.

The Jupyter platform is the most widely used platform for in-

teractive literate programming [4, 85]. Upon the Jupyter platform,

developers and data analyzers can develop Jupyter notebooks.

They are mainly used for replication, sharing, documentation, inter-

active data visualization for data analysis [5, 10, 14]. The Jupyter

platformoffers the execution environment for running Jupyter note-

books, which are written by notebook authors or developers. As

shown by the statistics, in September 2018, there are more than

2.5 million Jupyter notebook repositories, which are 10 times more

than that in 2015 [82]. The Jupyter platformoriginated from IPython

∗Corresponding author. Email: yutian.tang@glasgow.ac.uk

[75]. By now, more languages are supported by the Jupyter plat-

form, such as R, JavaScript, and C.

Motivation.As all Jupyter notebooks are executedwith the Jupyter

platform, ensuring the correctness of the Jupyter platform is cru-

cial for using and developing Jupyter notebooks. Unfortunately,

the nature of bugs in the Jupyter platform is currently not well

understood. It is not clear what are the root causes of the bugs in

the Jupyter platform, the consequences of Jupyter bugs, and their

impacts. Such information can assist Jupyter platform developers

and researchers in (1) understanding the root causes of the bugs

in the Jupyter platform (Finding 1-4 in Sec.4.1); (2) understanding

the common symptoms caused by bugs in the Jupyter platform

(Finding 5-7 in Sec. 4.2); (3) quick localization and fixing of Jupyter

bugs (Finding 11-14 in Sec.4.4 and 4.5); and (4) the development of

Jupyter bug detection and testing tools (Sec. 5.1). Thus, it is time

to investigate the bugs in the Jupyter platform.

RelatedWork. The existing studies explored the code replication

and code reuse on Jupyter notebooks [69, 76, 83, 92], how to re-

store and repair Jupyter notebooks for reproduction [94, 99], code

quality on Jupyter notebooks [93]. Some other non-SE domain re-

searches care about interaction and data visualization in Jupyter

notebook [66, 67, 70, 71, 74, 79, 81, 96]. In summary, none of the

existing studies investigated the bugs on the Jupyter platform.

Our Study. To fill this gap, in this paper, we present the first sys-

tematic study of the bugs on the Jupyter platform. To understand

the nature of bugs in the Jupyter platform, in this paper, we aim at

answering the following research questions (RQ).

• RQ1: What are common root causes and how often do they oc-

cur?

• RQ2:What are common symptoms and how often do they occur?

• RQ3: What are the connections between root causes and symp-

toms of Jupyter platform bugs?

•RQ4:What are the challenges in detecting Jupyter platformbugs?

• RQ5: What are the challenges in fixing Jupyter platform bugs?

2 BACKGROUND

Knuth [68] introduced literate programming by interleaving the

code snippets and natural language to support developers in under-

standing the underlying thoughts behind the program segments.

As a practice of literate programming, the interactive literate pro-

gramming environment, Jupyter platform, is widely adopted by de-

velopers, data analyzers, and researchers.

Jupyter notebooks, the interactive literate programming docu-

ments, are designed and developed by developers to replicate, share,

and visualize data. To avoid ambiguity, in this paper, we use the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://arxiv.org/abs/2506.14055v1

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Yutian Tang, Hongchen Cao, Yuxi Chen, and David Lo

term Jupyter platform to refer to the interactive literate program-

ming environment. The terms Jupyter notebooks refer to the doc-

uments developed by developers and executed upon the program-

ming environment Jupyter platform.

2.1 Jupyter Notebook

A notebook is a sequence of cells [58]. The type of a cell can be

a code cell or a markdown cell. The code cell contains executable

source code and can be used to produce results. The markdown

cell contains rich formatted texts which support the markdown.

def insertionSort(nums):

 for i in range(len(nums) - 1):

 curNum, preIndex = nums[i+1], i

 while preIndex >= 0 and curNum <

nums[preIndex]:

 nums[preIndex + 1] =

nums[preIndex]

 preIndex -= 1

 nums[preIndex + 1] = curNum

 return nums

insertionSort([4,3,20,5,3,9,8,10])

IN [1]:

Out [1]: [3,3,4,5,8,9,10,20]

Let’s load an image

from IPython.display import Image

Image('cat.png')
IN [2]:

Out [2]:

Markdown Cell

Code

 Cell

Output

Execution

Counter

Figure 1: Jupyter Notebook Example

Fig. 1 illustrates a Jupyter notebook. It contains one markdown

cell and two code cells. On the left of cells, there are execution coun-

ters, which indicate the execution order of these cells. When these

cells are executed, the outputs are displayed afterward. However,

execution order only indicates the order of these cells rather than

any logical relationship between cells.

2.2 Jupyter Platform

The Jupyter platformcomposes of four parts: a web browser, a note-

book server, a notebook document, and a kernel [58]. The overall

architecture is shown in Fig. 2.

Web

Browser

Notebook

Server
Kernel

Notebook

Document

HTTP &

Websockets
ZeroMQ

Figure 2: Jupyter Architecture

WebBrowser.Users interact with theweb browser. Theweb browser

can be considered as the frontend for the user. With this, users can

manipulate notebooks.

Notebook document. A notebook is a file encoded with JSON,

whose extension is .ipynb. The notebook can be displayed with

the web browser. The code snippets, texts, and other markdown

notes are stored in the editable notebook.

Notebook Server.When users interact with the web browser, re-

quests are sent to the notebook server. Requests can be either HTTP

or WebSocket requests. When users require their code snippets to

be executed, the notebook server sends them to the kernel over Ze-

roMQ sockets [97]. The kernel executes the code snippets and re-

turns the results to the notebook server. Then, the notebook server

returns the updated HTML page to users [58].

Kernel.The kernel in the Jupyter platformnormally refers to IPython

kernel, which is in charge of running code. For other program-

ming languages, there are other kernels, such as IRKernel for R

[18] and IJulia kernel for Julia [15].

2.3 Code Repositories of Jupyter Platform

Table 1: The key Code Repositories in Jupyter

Code Repo. Functionality Component in Fig.2

Jupytercore [61] Core common functionality of Jupyter platform All

Jupyterclient [60] API for managing and communicating with kernels Kernel, Server

IPykernel [16] IPython kernel for Jupyter platform Kernel

Jupyterserver [62] Backend server for Jupyter notebook Server

Notebook(Rep) [59] User interface for Jupyter notebook Web browser

The key repositories in the Jupyter platform are shown in Ta-

ble 1, including Jupytercore [61], Jupyterclient [60], IPykernel

[16], Jupyterserver [62] and Notebook(Rep) [59]. The first column

shows the name of the repository. The second column describes

the functionality of the repository. The last column shows the rela-

tions between the code repositories and components in Fig. 2. For

example, Jupyterserver [62] is the repository for implementing

the server. It is worth mentioning that the term “Notebook(Rep)”

represents the code repository in the Jupyter platform for loading

and rendering a Jupyter notebook (i.e., a document). Furthermore,

we also leverage the pydeps [77], a Python dependency visualiza-

tion library, to display the dependencies of these repositories in-

side the Jupyter platform. Due to the size of the generated graph,

we make it accessible on our artifact [2].

3 METHODOLOGY AND CLASSIFICATION

3.1 Data Collection, Labelling and
Classification

To collect and label the data used in our study, we propose a semi-

automatic approach as shown in Fig. 3. Specifically, in step ➊, we

collect the closed and merged pull requests that fix bugs from the

aforementioned five repositories that were created on or before

March 15, 2022 via GitHub APIs. The closed and merged pull re-

quests (PR) indicate that the bugs have been fixed by developers.

To assist us in better understanding the fixed PRs, we also require

that the selected pull requests must be associated with Issues. To

filter out non bug-fixing PRs, we follow the guidance in the exist-

ing research [8, 13, 90, 98]. Thus, in step ➋, we reserve a list of

words that have similar meanings to “bugs”. The list contains: fix,

defect, error, bug, issue, mistake, incorrect, fault, and flaw. Next, we

search each word in both tags and titles. If a PR contains at least

one keyword, we consider it as a bug-fixing PR. As a result, we

Characterising Bugs in Jupyter Platform EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

GitHub Repo. Closed & Merged

Pull Requests
Bug-related

Pull Requests

Key

Words

Filter
Manual

Inspect

1 2 3

Commits

Contributors

Modified Files

Change
 Properties

Issues

4

Discussions

Discription

Involved Pull
Requests

Commits

Discussions

5

Labeled

Pull Requests

Figure 3: Overview of Data Collection and Labelling

obtain 510 bug-fix PRs in total. To eliminate false positives, in step

➌, we manually inspect these 510 PRs and related Issues to reduce

false positives. We remove some PRs that do not relate to bugs in

the project. We result in 387 PRs, with 10 PRs from Jupytercore; 30

from Jupyterclient; 56 from Jupyterserver; 57 from IPykernel; and

234 from Notebook(Rep). To characterize Jupyter bugs, we focus

on labeling them from two perspectives: (1) the root causes that

reflect the errors made by developers; (2) the symptoms that the

bugs exhibit as represented by incorrect behaviors. Thus, in step

➍, for each PR, we collect the following information: contributors,

modified files, change properties (e.g., how the files are modified),

Issues linked to this PR, all related commits, and discussions under

this PR. Furthermore, we also collect the data for any Issue linked

to this PR, including the Issue’s description, all PRs related to the

Issue, all related commits, and discussions under the Issue. As an

Issue can map to multiple PRs and a PR can be related to multiple

Issues, we iteratively crawl all related Issues and PRs. The collected

data can assist us in labeling and classifying these PRs.

Taxonomy. To reduce bias during classification, we ask two au-

thors of this paper to analyze PRs separately (step ➎) to label the

PRs’ root causes and symptoms. If there is a conflict, another au-

thor is required to label the bug. To label and classify PRs, in this

paper, we reference and adjust the taxonomy used in the existing

research [13, 84, 87] to suit the Jupyter platform. Furthermore, we

adopt an open-coding scheme [13] to expand the list of the root

causes. That is, if a bug does not fall into any category, the author

does a manual analysis to identify its label for the root causes. By

doing this, we can expand the list of root causes. A similar proce-

dure is conducted to set up the taxonomy of the symptoms.

Implementation.We implement Python scripts to automate step

➊, ➋, and ➍.

3.2 Root Causes

According to the process described in Sec. 3.1, the root causes are

the following 11 categories:

• Algorithm/Method (Alg/Meth): The logic in the implemen-

tation of an algorithm or method is incorrect. For example, [25]

shows an incorrect implementation of the code cell replacement

function.

• Assignment/Initialization (Ass/Ini): A variable is incorrectly

assigned, or mishandling of the initializations (e.g., class initializa-

tion function error, attribute assignment error in .css file). For ex-

ample, the bug [37] is caused by lacking of settings for padding-top

in an .less file which is responsible for page rendering.

•Checking: Lack of necessary checks that lead to an error. Check-

ing errors can be explicit (e.g., missing try...catch..,if...else

statements) or implicit. Taking the bug[38] as an example, as shown

in List. 1, the developer adds flush() instead of try...catch.. or

if...else in line#5 to check the status of the executed cells, which

belongs to this category.

Listing 1: An Implicit Checking Example from Ipyker-

nel#390

1 def dispatch_shell (self , stream. msg):

2 ...

3 self . _publish_status (...)

4 + // flush to ensure reply is sent before handling the request

5 + stream. flush (zmq.POLLOUT)

• Logic: Incorrect condition expressions lead to an error. For ex-

ample, the bug [31] is caused by using the incorrect variable (i.e.,

use the key of the dictionary instead of the corresponding value)

in the conditional expression.

• Data: Incorrect manipulation of data items, such as incompati-

ble types in assignments, inappropriate class inheritance, wrong

type conversions, and incorrect definitions of data structures. For

example, the bug [35] is caused by incorrect type conversion.

• External Interface (Exter-API):Misuse of third-party libraries

or interfaces from other systems, such as incorrect function pa-

rameters passing, and invocations of deprecated functions. For ex-

ample, the bug [48] is caused by using deprecated APIs from the

third-party library ZMQ [97].

• Internal Interface (Inter-API):Misuse of interfaces from other

components of the Jupyter platform, such as incorrect function pa-

rameters passing, and invoking inappropriate functions. For exam-

ple, the bug [55] is caused by passing incorrect parameters when

invoking an API in Notebook(Rep).

• Timing/Performance (Time/Perf): Timing or performance

problems, such as race condition,misuse of asynchronous/synchronous,

and inappropriate use of multi-threading. For example, the bug

[47] is caused by a race condition between the restart module and

the shutdown module in the Jupyterclient.

• Configuration (Config): Misconfiguration of files for compila-

tion, build, test, and installation (e.g., incompatible third-party li-

brary versions, and inappropriate package importation). For exam-

ple, the bug [54] is caused by using an outdated third-party library

anyio [1], which is incompatible with Python 3.6.

• Non-functional (Non): Non-functional errors that do not di-

rectly affect the use of the Jupyter platform (e.g., inappropriate de-

scription in error traceback and log). For example, the bug [44] is

caused by incorrect log messages which can make users confused.

• Others: Other root causes that cannot be classified into any

of the above categories. For example, the bug [20] is caused by

Datetime objects do not follow time data standard ISO8601 [11].

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Yutian Tang, Hongchen Cao, Yuxi Chen, and David Lo

3.3 Symptoms

The complete list of symptoms is in the following 11 categories:

• Crash: Critical errors that lead to a crash at runtime. For exam-

ple, Issue [22] reports that the web browser crashes after the user

uploads large files to the Jupyter platform.

• Hang: The kernel (i.e., IPykernel) or terminal (e.g., terminal in

Jupyterclient) is not responding (e.g., fails to kill the kernel, infinite

loop). For example, Issue [46] reports that running certain code (i.e.,

%gui tk) makes the IPykernel has no response and gets stuck.

• Build: The errors during installation or building. For example,

the installation failure reported in [45] is due to the lack of the

dependency library ipyparallel [17] in IPykernel.

• Display and GUI (DGUI): The GUI-related or display-related

errors (e.g., missing widgets, misalignment of the icons and fonts).

For example, a long line of code can be overlapped with the border

of the code cell [26].

• Launch: Any errors that occur during Launch. For example,

the user fails to open a notebook (i.e., .ipynb file) after setting the

environment variable (i.e., JUPYTER_PATH) to a custom value [42].

• IO: Incorrect behaviors when performing inputs/outputs to and

interacting with the Jupyter platform. For example, the user cannot

delete empty lines by pressing Backspace key on the keyboard [41].

• Security and Safety (SS): Errors cause security vulnerabilities

that can be exploited, such as incorrect permissions and informa-

tion leakage. For example, the exploitable vulnerability reported

in [23] can lead to the leakage of the user information.

•Test: Errors found during the testing phase by causing test suites

to fail, usually have no direct symptom description.

• Unreported (Un): Error in which bug reporters do not give a

clear symptom description. For example, the user only reports that

the Jupyter platformdoes notworkwith tornado6 [88] but does not

give any further description [39].

• Deprecation (De): The errors related to outdated third-party

libraries/modules. For example, PR [50] shows that using a depre-

cated regex API [78] triggers awarningmessage from Jupyterserver.

• Others: Other symptoms that cannot be regarded as one of the

above categories. For example, the notebook (i.e., .ipynb file) is

cleared after renaming the file [40].

3.4 Research Questions (RQ)

Our study aims to answer the following five research questions:

•RQ1:What are common root causes and how often do they

occur? Studying root causes contributes to the understanding of

the nature of bugs in the Jupyter platform. The classification of

root causes and the statistics of their distribution are the basis for

further analysis.

• RQ2: What are common symptoms and how often do they

occur? Symptoms are the intuitive expression of errors, which pro-

vide developers with a hint for solving the errors. Exploring symp-

toms helps developers understand the Jupyter platform’s bugs.

• RQ3: What are the connections between root causes and

symptomsof Jupyter platformbugs? Existing studies show that

the root causes and the symptoms of bugs are intrinsically related [3,

13, 19]. Learning whether a root cause can be linked to a symptom

can help developers to further understand and detect Jupyter bugs.

• RQ4: What are the challenges in detecting Jupyter plat-

form bugs? Detecting bugs is an essential prerequisite for bug

analysis and fixing. In this RQ, we analyze the challenges in bug

detection.

• RQ5: What are the challenges in fixing Jupyter platform

bugs? After successfully locating the source of the bug, how to

fix it efficiently is the final hurdle. It allows developers to fix bugs

more efficiently.

4 RESULTS

4.1 RQ1: Root Causes

Methodology. The methodology is described in Sec. 3.

Table 2: Distribution of Root Causes

Root Cause J.core1 J.client1 IPykernel J.server1 Note.1)>C0;�0DB4
Alg/Meth 1 6 20 15 54 96(24.81%)

Ass/Ini 2 4 9 7 67 89(23.00%)

Checking 4 7 11 9 32 63(16.28%)

Logic 0 5 4 3 23 35(9.04%)

Data 0 0 2 0 1 3(0.78%)

Exter-API 1 2 3 2 2 10 (2.58%)

Inter-API 0 1 1 1 7 10 (2.58%)

Time/Perf 0 1 0 1 2 4 (1.03%)

Config 2 2 5 15 37 61 (15.76%)

Non 0 0 1 2 6 9 (2.32%)

Others 0 2 1 1 3 7 (1.81%)

)>C0;">3D;4 10 30 57 56 234 387

1 J.core for Jupytercore, J.clicent for Jupyterclient, J.server for Jupyterserver,

Note. for Notebook(Rep)

Results. Table. 2 shows the distribution of Jupyter platform bugs

by root cause categories. For each component of the Jupyter plat-

form, its most frequent root cause is as follows:

• For Jupytercore and Jupyterclient,Checking is the top root cause,

accounting for 40.00% of all bugs in Jupytercore and 23.33% of all

bugs in Jupyterclient;

• For IPykernel, Alg/Meth is the top root cause (35.08% of all bugs

in IPykernel).

• For Jupyterserver, Alg/Meth and Config are tied for first place

(both 26.79% of all bugs in Jupyterserver).

• For Notebook(Rep), Ass/Ini is the top root cause (28.63% of all

bugs in Notebook(Rep)).

•Overall, Alg/Meth, Ass/Ini, Checking, and Config are the top four

frequent root causes for the Jupyter, accounting for 24.81%, 23.00%,

16.28%, and 15.76% of all studied bugs, respectively.

Alg/Meth is the most frequently occurring category. We find

that for different components, the algorithms with bugs have dif-

ferent characteristics. Specifically, according to Fig. 2 and Table. 1,

every component has its main functionality. Algorithms with bugs

often have a strong relationship with the functionality of their

components. Recall that Alg/Meth is the top root cause of bugs

in Jupyterserver and IPykernel. For Jupyterserver, 8 out of 15 PRs

modify the file handlers.py, suggesting that algorithms related to

server handlers are prone to bugs. For IPykernel, half of the PRs

modify kernelbase.py or iostream.py, suggesting that algorithms

related to kernel read and write are not robust.

Characterising Bugs in Jupyter Platform EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Finding 1

Alg/Meth is the most frequent root cause, accounting for 24.81%

of Jupyter platform bugs.

Ass/Ini is the second most frequent root cause. As defined in

Sec. 3.2, this category involves the assignment or initialization er-

rors or mishandling of the initializations. Recall that Ass/Ini is the

top root cause of bugs in Notebook (Rep). Notebook(Rep) involves

front-end browser pages that interact with users and consist of files

in the format of .html, .css, .js, .less. It can be error-prone to

manually set up all attributes for front-end UI elements in Note-

book(Rep). Even simple mistakes (i.e., Ass/Ini bugs) can lead to

various errors, such as page rendering errors, front-end interaction

failures, and other problems. In addition, some page rendering er-

rors are difficult to find through tests and are often noticed by users

or other developers. Taking Notebook(Rep)’s PR#4236 [37] as an

example, an icon is overlaid on the docstring of the tooltip. Such

an incorrect layout prevents the user from reading the full descrip-

tion of the function signature. The difference between the normal

and incorrect UI is so subtle that it can be easily overlooked.

Finding 2

Ass/Ini is the second most frequent root cause, accounting for

23.00% of Jupyter platform bugs. This category of bugs is ram-

pant in Notebook(Rep) and sometimes hard to detect.

Checking is the third most frequent root cause. This category

of bugs is relatively trivial to fix, usually by adding if...else or

try...catch. Recall that Checking is the top root cause of bugs in

Jupytercore or Jupyterclient.

Jupytercore offers the core common functionality of the Jupyter

platform. Thus, it involves a significant amount of checks, such

as checks for inputs, configurations, and options. Lacking such

checks can make the Juypter platform fail to work properly. For

example, PR [43] reports a bug caused by lacking file permission

checks on Windows. Jupyterclient offers APIs for starting, man-

aging, and communicating with Jupyter kernels. When invoking

these APIs, developers have to pass arguments to these APIs. Inside

these APIs, sufficient checks must be conducted on these passed

arguments. Insufficient checks can lead to exceptions. For exam-

ple, PR [33] reports a bug due to the lack of checking whether the

meth.__doc__ is None or not.

Finding 3

Checking is the third most frequent root cause, accounting for

16.28% of Jupyter platform bugs. Under this category, exception-

related bugs are potentially detectable and fixable by existing

tools.

Config is also a serious root cause that occupies a significant

percentage. As defined in Sec. 3.2, this category involves miscon-

figuration of files, such as files for compilation and build. Recall

that Config is the top root cause of bugs in Jupyterserver. Accord-

ing to the dependency graph of the Jupyter platform (see our ar-

tifact [2]), Jupyterserver has 14 upstream dependencies. The most

common Config errors in Jupyterserver are the incorrect settings

of third-party libraries’ versions, such as traitlets [89], anyio [1].

As soon as the third-party dependency library conflicts occur, the

developer needs to change the configuration of the related libraries.

Modifying the configuration is not as thorny as fixing code-related

issues. However, it is hard to quickly locate the library causing the

conflict among the vast number of dependency libraries.

Finding 4

Config is another serious root cause, accounting for 15.76% of

Jupyter platform bugs. The incorrect settings of third-party li-

braries’ versions are the source of Config bugs.

4.2 RQ2: Symptoms

Methodology. The detailed methodology is described in Sec. 3.

Table 3: Distribution of Symptoms

Symptom J.core J.client IPykernel J.server Note.)>C0;(~<?C><

Build 2 1 4 2 13 22 (5.68%)

Crash 1 4 2 2 4 13 (3.36%)

DGUI 1 0 4 2 66 73 (18.86%)

Hang 0 3 6 6 2 17 (4.39%)

IO 2 6 21 8 78 115 (29.72%)

Launch 3 8 3 14 39 67 (17.31%)

SS 0 0 0 0 4 4 (1.03%)

Test 1 2 6 7 11 27 (6.98%)

Un 0 2 2 8 8 20 (5.17%)

De 0 2 3 2 2 9 (2.33%)

Others 0 2 6 5 7 20 (5.17%)

)>C0;">3D;4 10 30 57 56 234 387

1 J.core for Jupytercore, J.clicent for Jupyterclient, J.server for Jupyterserver,

Note. for Notebook(Rep)

Results. Table. 3 shows the distribution of different symptoms for

Jupyter platform bugs.

• For Jupytercore, Jupyterclient, and Jupyterserver, Launch is the

top frequent symptom, accounting for 30.00% of all bugs in Jupyter-

core, 26.67% of all bugs in Jupyterclient, and 25.00% of all bugs in

Jupyterserver.

• For IPykernel, Notebook(Rep), IO is the top frequent symptom,

accounting for 36.84% of all bugs in IPykernel and 33.33% of all

bugs in Notebook(Rep).

• Furthermore, IO, DGUI, and Launch are the top three frequent

symptoms, accounting for 29.72%, 18.86%, and 17.31% of all studied

bugs, respectively.

Among all symptoms, IO is the most frequently reported symp-

tom. Specifically, the IO symptom appears in all components. Re-

call that IO is the top symptom of bugs in Notebook(Rep) and IPyk-

ernel.

ForNotebook(Rep), it implements the frontend for the end-users.

As it directly interacts with users, the IO errors are mostly reported

in Notebook(Rep). For example, PR [32] reports a bug that the Ed-

it/View buttons are either not working or working incorrectly.

Sometimes, IOs can be complex. For example, users need to query

some information from a server and run a code snippet. Such com-

plex IO requests can only be processed with backend components

(e.g.,Jupterclient, IPykernel). An error in a backend component can

lead to an incorrect result, which is finally presented to end-users.

That is the reason why IO errors can also be reported in backend

components. For IPykernel, as shown in Fig. 2, the users’ requests

are sent by Notebook Server via ZeroMQ. The iostream.py in the

IPykernel is in charge of parsing the ZeroMQ messages. Error in

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Yutian Tang, Hongchen Cao, Yuxi Chen, and David Lo

Table 4: Connections between Root Causes and Symptoms

Crash Hang Build Launch IO DGUI SS Test Un De Others)>C0;�0DB4B
Alg/Meth 4 10 1 14 40 (41.67%) 13 1 4 4 0 5 96

Ass/Ini 1 1 3 13 24 41 (46.07%) 0 2 2 0 2 89

Checking 5 4 4 15 19 (30.16%) 3 3 5 1 0 4 63

Data 0 0 0 0 0 2 0 0 1 0 0 3

Exter-API 1 0 0 0 0 0 0 0 0 9 0 10

Inter-API 1 0 0 2 5 1 0 0 1 0 0 10

Logic 1 0 1 9 15 3 0 2 2 0 2 35

Non 0 0 1 1 0 2 0 0 1 0 4 9

Time/Perf 0 0 0 1 2 0 0 1 0 0 0 4

Config 0 2 12 (19.67%) 11 9 8 0 10 7 0 2 61

Others 0 0 0 1 1 0 0 3 1 0 1 7

)>C0;(~<?C><B 13 17 22 67 115 73 4 27 20 9 20 387

the IPykernel (i.e., iostream.py) can return the incorrect results to

users, which results in the IO symptom.

Finding 5

IO is the most frequently reported symptom, accounting for 115

out of 387. The IO symptom appears in all components of the

Jupyter. IO is the top frequent symptom in Notebook(Rep) and

IPykernel.

DGUI is the second most frequent symptom. Most DGUI er-

rors appear in Notebook(Rep) as it is mainly in charge of interac-

tion with end-users. Many front-end errors and rendering errors

(i.e., DGUIs) are rooted in Notebook(Rep). Some DGUI problems

come from the back-end components (e.g., Jupytercore, IPykernel,

Jupyterserver). The reason for this is that these components are in

charge of processing the requests (e.g., compiling a code segment)

from the front end. Then, the final results are returned to the front

end for rendering. The DGUI symptom can appear when there

are some wrong implementations in these components. For exam-

ple, when a user wants to query files, this request is processed by

FileManager in the Juptercore and returned to the user via the web

browser. Incorrect implementation of FileManager in the Jupter-

core can lead to an unexpected display for the user (i.e., a DGUI

symptom).

Finding 6

DGUI is the second most frequent symptom, accounting for

18.86% of all bugs. The DGUI symptom appears in Jupytercore,

IPykernel, Jupyterserver, and Notebook(Rep), with the most oc-

currence in Notebook(Rep).

The thirdmost prominent symptom is Launch. The Launch symp-

tom appears in all components of Jupyter. The reason for this is

that the execution of the Jupyter platform involves launching all

the components of Jupyter. Besides, it is worth noting that Launch

is the top frequent symptom in Jupytercore, Jupyterclient, and Jupyterserver.

• The Launch errors are reported in Jupytercore mainly due to the

lacks of checks in command-line options. In general, users can

leverage the jupyter notebook command to launch the Jupyter

platform. This command (i.e., jupyter notebook) offers some op-

tions (e.g.,–port, –no-browser) to support specific needs [56]. Such

options are processed in Jupytercore. The lacks of checks in invalid

command options can lead to a Launch error when the user exe-

cutes the Jupyter with such options.

• In Jupyterclient, Launch is the top frequent symptom. Accord-

ing to Table. 1, Jupyterclient is in charge of managing and com-

municating with IPykernel. Thus, the errors in the Jupyterclient

can affect the usage and launch of IPykernel (e.g., IPykernel can-

not start at launch). Launching the Jupyter platform requires the

IPykernel to be launched as well. The launching problem in IPyk-

ernel causes the Launch symptom. For example, PR [49] reports a

bug that the errors in the Jupyterclient make that the Jupyterclient

sends multiple requests to restart the IPykernel. This is because

the Jupyterclient fails to check the status (e.g., starting, closed) of

the IPykernel. As a result, the Jupyter platform fails to launch.

• In Jupyterserver, the most frequent symptom is also Launch. In

general, we find two possible reasons:

(1) The Jupyterserver offers the backend server for the Jupyter

platform. In the Jupyterserver, the ServerApp (i.e.,serverapp.py

in Jupyterserver) is the core part, which connects all components

in the Jupyterserver [63]. When starting the Jupyter platform, the

Jupyterserver is launched as well [64]. The errors (e.g., incorrect as-

signment, failure to process command-line options) in the Server-

App (the serverapp.py) can halt the launch process of the Jupyterserver.

As a result, users encounter a Launch error. The examples can be

found in PR [52] and PR [51].

(2) When users open a Jupyter notebook with the command

jupyter notebook <target>.ipynb, the frontend of the Jupyter

platform sends a POST request to the Jupyterserver [57, 65]. The

detailed introduction of the POST request can be found in [57].

When receiving this request, the Mapping Kernel Manager (MKM)

inside the Jupyterserver calls the Kernel Manager (KM) inside the

Jupyterclient to launch the IPykernel [65] to parse the input note-

book file. The errors in the MKM can make the IPykernel fails to

connect and communicate with the Jupyterserver (e.g., IPykernel

cannot be launched, IPykernel stops responding). As a result, an er-

ror (e.g., time out error) is reported during the launching process

of the Jupyter platform. An example can be found in [53].

Finding 7

Launch is the third most prominent symptom, accounting for

67 out of 387 symptoms. The Launch symptom appears in ev-

ery component. In Jupytercore, Jupyterclient, and Jupyterserver,

Launch is the top frequent symptom that occurs most frequently.

Characterising Bugs in Jupyter Platform EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

4.3 RQ3: Connections between Root Causes
and Symptoms

Methodology. Based on the statistics in RQ1 and RQ2, we further

calculate relationship between root causes and symptoms. Further-

more, we combine the four most significant root causes with their

highest number of symptoms into four groups. We only regard

these four groups as noteworthy connections.

Results. Table 4 shows the frequency relationship between root

causes and symptoms. The top four noteworthy connections are:

(1) The connection between Alg/Meth and IO.

(2) The connection between Ass/Ini and DGUI.

(3) The connection between Checking and IO.

(4) The connection between Config and Build.

For (1) and (3), IO bugs are observed in the frontend (i.e.,web

browser), as the user interacts with Jupyter through this compo-

nent.

For (1), Alg/Meth can be the root cause of the IO symptom.When

users interact with the Jupyter platform, algorithms, and methods

in the Jupyter platform are in charge of processing users’ requests

and returning results to users. Thus, errors in Alg/Meth can make

users fail to get the correct results or even crash when interact-

ing with the Jupyter platform. For example, PR [21] reports a bug

in copying and pasting multiple cells. Such a bug is due to the in-

correct implementation of the corresponding algorithm. Thus, Al-

g/Meth can be the root cause of the IO symptom.

For (3), Checking can also be the root cause of IO symptoms.

When interacting with users, the Jupyter platform needs to per-

form a series of checks to ensure correctness, such as whether

users’ inputs are valid and acceptable. Lacking such checks can

lead to unexpected outputs or errors (i.e., the IO symptom). Tak-

ing Notebook PR#1011 [27] as an example, the user discovers a bug

when using Jupyter in the Firefox browser. The user reports that

two same consecutive pop-ups ask users to confirm whether they

want to exit after clicking the "Close and Halt" button. The rea-

son is that the browser fires the beforeunload event in Javascript

after clicking the button. Once the event is detected, a pop-up win-

dow appears. Firefox triggers this event twice when a browser win-

dow with unsaved content is about to close. While other browsers

only fire the event once. Jupyter platform fails to check the user’s

browser type, which causes the bug. Thus, Checking can be the

root cause of the IO symptom.

Finding 8

For IO sympotoms, Alg/Meth and Checking can be themain root

causes.

Listing 2: An Ass/Ini Example from Notebook#4236

1 .tooltiptext{

2 padding-right:30px

3 + /*avoid the ui-icon(s) from overlapping the tooltip*/

4 + padding-top:30px;}

For(2), functional modules responsible for the display and GUI

rely on front-end programming languages, which involve a huge

volume of settings for the properties and attributes in UI elements.

Such settings are implemented with a series of assignment state-

ments and initializations (Ass/Ini) in files (e.g., .html, .css, .js).

Thus, the errors in Ass/Ini can result in page rendering errors. Tak-

ing Notebook(Rep)’s PR#4236 [37] in Sec. 4.1 as an example, the

commit for fixing this bug is shown in List. 2. The source of the

bug is that the attribute padding-top is not set. As a result, such

errors can lead to the DGUI symptom. In summary, for the DGUI,

Ass/Ini can be the root cause.

Finding 9

The bugs whose symptom is DGUI can be closely related to As-

s/Ini. The massive and easily overlooked attribute assignments

in front-end programming contribute to the strong connection.

For (4), the Config refers to the misconfiguration of files. The

functions responsible for the installation and building rely onmany

configuration files. Wrong settings in such configuration files can

cause Jupyter to behave incorrectly during the installation or build-

ing process, resulting in the Build symptom. For example, in Note-

book(Rep) Issue#1977 [30], a user fails to deploy the Dev. version of

the Jupyter. Bymanually inspecting the Issue in theNotebook(Rep),

we find that the incorrect configuration files lead to this error. Also,

in Notebook(Rep) Issue#52 [24], incorrect configuration of Dock-

erfile leads to the failure of building Notebook(Rep) images. Thus,

there is a relation between the Config and Build.

Finding 10

Most bugs with symptoms reported as Build are related to im-

proper configuration. Incorrect settings of the configuration files

lead to the errors during the Build. It suggests a relation between

the Config and Build.

Table 5: Ranking of Symptoms for Bug Detection

Symptom
Issues

#Comment #Participant Contributor(%) External(%) Ranking

Crash 6.92 3.85 38% 31% 3

Hang 4.18 2.47 59% 29% 7

Build 5.91 2.95 50% 0% 8

Launch 10.24 5.01 39% 15% 2

IO 5.93 3.34 55% 10% 6

DGUI 6.37 3.33 41% 14% 4

SS 8.25 4.75 25% 25% 1

Test 4.96 2.26 85% 7% 9

Un 2.30 1.95 80% 0% 11

De 6.67 4.67 33% 0% 15

Others 2.55 2.10 70% 5% 10

Average 6.33 3.42 52% 11% -

4.4 RQ4: Challenges in Bug Detection

Methodology. To detect a bug, developers first need to reproduce

the symptoms reported in the Issues. Then, developers locate pos-

sible faulty code snippets based on the reported symptoms. Next,

developers analyze the root cause of the bug and finally proceed

to bug fixing. To find the challenge of detecting Jupyter bugs, we

leverage four indicators adopted by previous studies [13, 91] on

Issues to quantify the difficulty in detecting bugs.

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Yutian Tang, Hongchen Cao, Yuxi Chen, and David Lo

• Comments Num (#Comment): The average number of com-

ments under Issues. A high #Comment indicates that a bug re-

quires many discussions among users and developers.

• Participants Num (#Participant): The average number of par-

ticipants under Issues. A high #Participant indicates that a bug re-

quires the combined efforts of multiple users and developers to be

discovered and solved.

• Contributor Raised Issue Rate (%Contributor): The rate of

Issues raised by developers. A high rate means a bug is more likely

to be detected by the developers, suggesting it is easier to detect

the bug; and

• External Issue Rate (%External): The rate of Issues located in

external repositories (e.g., PR in Jupytercore but the related Issues

in Jupyterserver). A high rate suggests that the bug crosses differ-

ent components. It indicates the complexity of the bug.

In summary, #Comment and #Participant are positively related

to the difficulty of detecting bugs. Furthermore, %External is posi-

tively related to the complexity of bugs. %Contributor is negatively

related to the complexity of bugs. We adopt the non-dominated

ranking [7, 72] to sort the difficulty in bug detection. Compared to

sorting algorithms that aggregate objects using linear or nonlinear

functions, non-dominated ranking orders multiple objects without

aggregation (i.e., no weights need to be tuned). The only parameter

to set in the non-dominated ranking is the optimal value of each

indicator. To eliminate the effect of different magnitudes of indica-

tors, we first normalize each indicator as follows:

8=3820C>A 89 − 8=3820C>A 8<8=

8=3820C>A 8<0G − 8=3820C>A 8<8=

,

where 1 ≤ 8 ≤ 4 and 1 ≤ 9 ≤ 11. For example, #Comment of

Launch in Table. 5 is 8=3820C>A14 . Thus, for positively related indi-

cators, the optimal value is 1, and vice versa is 0. Non-dominated

ranking sorts by calculating the euclidean distance from the nor-

malized indicators to their optimal values.

Results. From the perspective of symptoms, SS-related bugs rank

first in Table. 5, with 8.25 for #Comment, 4.75 for #Participant, 25%

for Contributor, and 25% for External of all SS Issues.

◮Challenge 1: Reproducing and locating SS-relatedbugs based

on abstract symptom description. By manually analyzing the

Issues on SS, we find that half of the Issues on SS do not have

the specific error message and reproduce method. Taking Note-

book(Rep) Issue#2503 [34] as an example, a user requests that Jupyter

should support binding to Unix sockets to avoid exposing IP and

port information. Such security concern makes it difficult for de-

velopers to reproduce the bugs, especially when there is no error

message reported. Thus, developers first attempt to reproduce the

SS-related bugs based on their background knowledge.

After reproducing the SS-related bugs, developers need to locate

the relative buggy code. However, it is hard to define the “buggy

code” for an SS-related bug. Different from a traditional bug de-

tection and fixing process, an SS-related bug may not have unique

solutions. Normally, developers have to inspect all feasible solu-

tions before determining the “buggy code”. For example, in Note-

book(Rep) Issue#1074 [28], to avoid running the web browser in

the root mode, developers propose different possible solutions:

• Solution (1): When a user opens the web browser in root mode,

the web browser can send a warning message to the user;

• Solution (2): The kernel can deny users from running in root

mode; and

• Solution (3): When the user launches the web browser, the front-

end checks whether the Jupyter platform is running in root mode.

If so, it can raise an assertion error and shut down the web browser.

Among these three possible solutions, (1) is considered to be

ineffective and is abandoned by developers. (2) can restrict users

from using IPykernel in many scenarios. For example, some users

need to run the console in root mode in IPykernel. (3) successfully

prevents users from running the web browser in root mode with-

out any side effects. As a result, solution (3) is selected. Then, the

developer locates buggy code snippets and fixes this Issue.

Finding 11

According to the rank in Table. 5, SS-related bugs are challeng-

ing to detect. Reproducing and locating SS-related bugs based

on abstract symptom descriptions is a challenge for SS-related

bugs because there can be multiple solutions for an SS-related

bug. Normally, developers have to inspect all feasible solutions

before determining the “buggy code”.

As shown in Table. 5, bugs related to Launch rank second. It

is worth noting that Launch has the highest value of #Comment

and #Participant, which suggests that detecting a Launch-related

bug requiresmuch effort among users and developers. Bymanually

inspecting the conversations in the Issues and the commits in the

pull requests, we conclude the second challenge in bug detection:

Multiple root causes can lead to the same symptom.

◮ Challenge 2: Multiple root causes can lead to the same

symptom. For some Launch-related bugs, we find that multiple

root causes can lead to the same symptom. For example, in Note-

book(Rep) Issue#448, users encounter the error ”the Jupyter is not a

command” when launching the web browser. Two root causes can

lead to this symptom. On the one hand, this symptom can be trig-

gered by the Alg/Meth-related bug in the third-party library IJulia,

which makes the conflicts between IJulia and Notebook(Rep). On

the other hand, it can also be triggered by the Checking-related bug

in Jupytercore, which leads to theMac OSX does not add Jupyter to

the system path when installing. These two root causes indepen-

dently cause the same symptom. Developers can only solve this

Issue completely when they find both root causes. Thus, it is chal-

lenging for developers to systematically find all root causes and

detect bugs based on a single symptom.

Finding 12

Launch ranks second in Table. 5. The same symptom can be

related to multiple root causes is the challenge for detecting

Jupyter’s bugs. Developers can only solve the Issue completely

by finding all the root causes leading to the same symptom.

4.5 RQ5: Challenges in Bug Fixing

Methodology. Bugs are mostly raised in Issues and fixed by devel-

opers in PRs. So to figure out the challenges in the bug fixing, we

utilize the four indicators under PRs [13, 91] as follows:

Characterising Bugs in Jupyter Platform EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Table 6: Ranking of Root Causes for Bug Fixing

Root Cause
Pull Requests

#Conversation #Commit LOCA LOCD Ranking

Alg/Meth 8.46 3.32 76.26 27.08 1

Ass/Ini 4.90 1.71 11.15 7.39 8

Checking 4.62 1.81 21.63 4.46 7

Logic 5.89 1.86 25.57 7.71 6

Data 2.67 1.67 39.33 20.00 9

Exter-API 3.30 1.50 9.40 20.50 11

Inter-API 3.90 2.40 32.30 14.40 5

Time/Perf 3.75 3.75 32.75 9.5 4

Config 4.8 2.88 21.65 41.05 2

Non 3.56 1.44 5.67 41.56 10

Others 6.17 1.83 50.5 11.3 3

Average 5.71 2.35 33.48 18.60 -

• Conversations Num (#Conversation): The average number

of conversations under PRs. A complex fix requires developers to

work together to discuss plans and details. The higher the #Con-

versation, the more difficult the bug is to fix;

• Commits Num (#Commit): The average number of commits

under PRs. The higher the #Commit, the more attempts it requires

to fix the bug;

• Lines of Code Added (LOCA): The average number of added

lines of code under PRs. The higher the LOCA, the more effort is

needed to modify the code; and

• Lines of CodeDeleted (LOCD): The average number of deleted

lines of code under PRs. Similar to LOCA, the higher the LOCD, the

more effort is needed to modify the code.

Therefore, all four indicators are positively related to the diffi-

culty of bug fixing. Non-dominated ranking described in Sec. 4.4

is also employed here for ranking. Note that for LOCA and LOCD,

we use their sum rather than independently in sorting.

Results. Table. 6 suggests that bugs caused by Alg/Meth require

the most effort to fix, which is consistent with finding 1 in Sec. 4.1.

◮ Challenge 1: Fixing one bug in a muti-module platform

can introduce extra bugs. Alg/Meth is the most difficult cate-

gory of bugs to fix. This is especially the case for a muti-module

platform, such as the Jupyter. The Jupyter platform is a complex

software composed of many modules and functions. Fixing a bug

in one function can interference the functionality of other relative

modules in the Jupyter platform (e.g., incorrect output, hang, throw

an error). As a result, such a fix can introduce new bugs to the

Jupyter platform. Even worse, sometimes these new bugs can not

be captured by running regression tests. It is because the executing

traces of newly introduced bugs can not be covered by the regres-

sion test suites. To capture these new bugs, extra test cases are re-

quired. However, developers may not be aware of these new bugs,

which makes the bug fixing process hard and challenging. It sug-

gests that the Jupyter platform needs a more comprehensive and

automated testing tool to help developers maintain their software

efficiently.

Finding 13

Alg/Meth is the most difficult category of bugs to fix in a muti-

module platform like Jupyter. This is because fixing one bug can

interference the functionality of other relative modules. As a re-

sult, extra bugs can be introduced. Evenworse, some of them (i.e.,

extra bugs) cannot be captured with the regression test suite.

The ranking in Table. 5 suggests that Config can be another root

causeworth studying in-depth. Recall the finding 4 in Sec. 4.1, bugs

caused by Config often have a close connection with third-party

libraries.

◮Challenge 2: Resolving third-party library conflicts inCon-

fig.A third-party library can conflict with its repository (e.g., Note-

book(Rep)) or another third-party library in the Jupyter platform.

The former conflict represents that the repository uses an incor-

rect version of the third-party library, which results in the modules

in the repository working abnormally. This can lead to a variety

of symptoms, such as front-end page rendering errors and user-

entered code not displayed properly. The bug in Notebook(Rep) Is-

sue#3629 [36] is an example. The user cannot open any notebook

due to lack of the module nbconvert.exporters.base. Such mod-

ule is introduced in nbconvert 5.0.0 [73] library, but Jupyter plat-

form fails to set the minimum version of nbconvert, which make

users with outdated nbconvert encounter this bug.

The latter conflict arises because both libraries contain files, mod-

ules, or executables with the same name but different contents. Us-

ing the incorrect files or modules can lead to errors. Taking Note-

book(Rep) PR#1547 [29] as an example, the root of the bug is the

existence of two codemirror.js. One is imported by the developer

and another one is bundled byWebpack [95]. The Jupyter platform

uses the bundled version, which results in the bug.

Currently, developers resolve dependency conflicts only by fol-

lowing a guess-and-check strategy. Specifically, developers first

presume the potential problematic third-party library based onwhich

modules work incorrectly. Next, they manually check the relevant

code to verify whether this library is the culprit of the bug. This

process is time-consuming and often requires multiple developers

to work together to figure out the source of the conflict. A tool that

can automatically detect which dependency libraries conflict can

help developers fix these bugs more efficiently.

Finding 14

Config bugs are the second most difficult to fix, with the main

challenge being identifying and resolving third-party depen-

dency library conflicts. Incorporating an automated dependency

conflict monitoring tool into Jupyter can help developers over-

come this challenge.

5 DISCUSSION

5.1 Implications for Further Research

In September 2018, more than 2.5 million Jupyter notebook repos-

itories are hosted on GitHub, which are 10 times more than that

in 2015 [82]. Ensuring the robustness of the Jupyter platform not

only benefits the Jupyter developers but also benefits the users’ ex-

perience of the Jupyter platform. Thus, we propose the following

suggestions for stakeholders.

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Yutian Tang, Hongchen Cao, Yuxi Chen, and David Lo

For Jupyter developers, the suggestions are:

• Finding 2 and 9 suggest that developers should be careful when

editing the front-end UI attributes. Mistakes in these attributes can

lead to DGUI errors. Such mistakes can be easily overlooked.

• Finding 4 and 14 suggest that developers should continuously

pay attention to configurations, especially for configuring third-

party dependencies. Furthermore, downstream components (e.g.,

Notebook(Rep)) can be more likely to have Config bugs and de-

pendency conflicts, which can be hard to detect.

• Finding 12 reveals that multiple root causes can lead to the same

symptom. It suggests that developers should enhance the debug-

ging and logging systems inside the Jupyter platform. Such en-

hancement can assist developers in exploring and fixing all bugs

that can lead to a symptom.

For tool builders and researchers, the suggestions are:

•Automation Testing Tools for Repairs: Finding 13 implies that some

bug fixes can introduce extra bugs to the Jupyter platform as the

executing traces of some extra bugs can be excluded from the cur-

rent regression test suites in the Jupyter. Thus, tool builders are

supposed to build test case generators based on repairs.

•Detecting and Fixing Tools for Dependency Conflicts: Jupyter has

a great number of third-party dependency libraries (e.g., CodeMir-

ror [6], Tornado [88]). According to finding 14, dependency con-

flicts bugs are plentiful in Config bugs. Developers can currently

only determine the source of conflicts withmanual checking, which

is time-consuming and unreliable. Therefore, tool builders can help

maintain Jupyter by developing tools for detecting and fixing de-

pendency conflicts.

•Tools for detecting front-end page rendering errors: Finding 2 and

9 suggest that errors in setting attributes for front-end UI elements

can lead to various page rendering errors. Such errors can be easily

overlooked. Thus, developers can build tools to detect such page

rendering errors.

5.2 Threats to Validity

Threats to internal validity. The most dominant internal valid-

ity stems from deviations and errors in bug classification. To min-

imize bias, we follow the data collection procedure presented in

an ICSE’20 paper [13]. To ensure that we can focus on the real

bugs and their fixes, we identify closed and merged PRs with a

list of words that have the meaning of bugs, as stated in detail in

sec. 3.1. Finally, we manually checked all PRs and their related is-

sues to filter out the irrelevant parts. To ensure the reliability of

the bug classification results, two authors analyze the bugs sepa-

rately and discuss the discrepancy with another author until reach-

ing unification. We adopt the taxonomy used in the existing re-

search [13, 84, 87] to label the bugs. Through these efforts, we mit-

igate the threats to internal validity to the greatest extent possible.

Threats to external validity. We select the closed and merged

pull requests with their relevant issues until March 15, 2022. The

opened pull requests and their related issues are not counted in

statistics, making us miss some bugs that are continuously tracked.

Also, the result of the symptoms can deviate from facts because

some issues may have been updated recently. Therefore, readers

should be cautious when applying our findings.

6 RELATED WORK

Despite Jupyter’s popularity, research works on Jupyter and Jupyter

notebooks are still limited. The existing research can be grouped

into the following categories:

Code Reproducibility and Reuse on Jupyter notebooks. Pi-

mentel et al. conducted a large-scale study on the quality and re-

producibility of Jupyter notebooks [76]. They studied 1.4 million

notebooks from GitHub, showing that only 24.11% of Jupyter note-

books can be executed without exception, and only around 4% of

notebooks can be reproduced with the same results. Koenzen et al.

[69] explored the way of code duplications in Jupyter notebooks

and identified the potential barriers to code reuse. Besides, Wang

et al. [92] first studied whether existing notebooks can be executed

successfully (i.e., reproducibility). Then, they proposed a prototype

named Osiris, which takes a notebook as an input and outputs the

possible execution schemes to reproduce the notebook.

Restore/Repair and Code Quality on Jupyter notebook. Zhu

et al. [99] proposed RELANCER, which is an automatic technique

that can restore the executability of broken Jupyter notebooks by

upgrading deprecated APIs. Wang et al. [94] developed SnifferDog

to restore the execution environments for executing Jupyter note-

books. Specifically, SnifferDog first collects the APIs of Python

packages to build the database and then analyzes the notebooks to

determine the candidate packages and versions. Wang et al. ’s work

[93] conducted a preliminary study on code quality for Jupyter

notebooks. They found that the existing notes are with poor qual-

ity codes, which requires quality control on Jupyter notebooks.

Empirical Study on Software Bugs. Franco et al. [8] classified

269 numerical bugs from five famous numerical libraries and fur-

ther analyzed their occurrence frequency, symptoms, and fixes. Ro-

mano et al. [80] analyzed 1054 bugs in three widely-used open-

sourceWebAssembly compilers, includingAssemblyScript, Emscripten,

and Rustc/Wasm-Bindgen. Garcia et al. [13] categorized the root

cause and symptom of 499 bugs in two representative autonomous

vehicle software (i.e., Apollo and Autoware). Shen et al. [86] classi-

fied the root cause, symptom, and occurrence stage of 603 bugs in

three popular deep learning (DL) compilers (i.e., TVM, Glow, and

nGraph). Gao et al. [12] analyzed and classified 103 crash recov-

ery bugs in four open-source distributed systems. Eghbali et al. [9]

conducted a comprehensive analysis of 204 string-related bugs in

a dataset containing 13 top-starred JavaScript projects on GitHub.

In summary, the existing research works are more focused on

restoring Jupyter notebooks’ environment and making code repro-

ducible. However, the bugs on the Jupyter are not researched. Our

study fulfills this gap and assists Jupyter developers in bug detec-

tion and fixing on the Jupyter.

7 CONCLUSION AND FUTUREWORK

Given the fact that Jupyter is the most widely used platform for de-

veloping Jupyter notebooks, it is critical that software-engineering

researchers build a robust and secure Jupyter platform. In this pa-

per, we conduct a systematic study on bugs for the Jupyter plat-

form.We identify 11 root causes and 11 symptoms across five com-

ponents in the Jupyter platform from 387 Jupyter bugs. Both re-

searchers and developers can benefit from this study. For develop-

ers, we summarize 14 findings to help them deal with bugs. For

Characterising Bugs in Jupyter Platform EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

researchers, we distill the challenges which require additional re-

search effort (see Sec.5.1). In the future, we plan to propose tech-

niques for automatic test suite generation for the Jupyter platform,

especially for testing program repairs. Additionally, we plan to re-

fine our study’s results to build a benchmark dataset for automatic

program repair techiques for the Jupyter platform.

8 DATA AVAILABILITY

The results and data can be found at: [2].

REFERENCES
[1] Anyio. 2022. AnyIO: an asynchronous networking and concurrency library.

https://github.com/agronholm/anyio.
[2] Online Artifact. 2022. Online Artifact. https://sites.google.com/view/jupyter-bugs/.
[3] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From symptom to

cause: localizing errors in counterexample traces. In Proceedings of POPL. 97–
105.

[4] LorenaA. Barba. 2021. The Python/Jupyter Ecosystem: Today’s Problem-Solving
Environment for Computational Science. Computing in Science & Engineering 23,
3 (2021), 5–9.

[5] Marijan Beg, Juliette Taka, Thomas Kluyver, Alexander Konovalov, Min Ragan-
Kelly, Nicolas M. Thiéry, and Hans Fangohr. 2021. Using Jupyter for Repro-
ducible Scientific Workflows. Computing in Science & Engineering 23, 2 (2021),
36–46.

[6] codemirror. 2022. CodeMirror. https://github.com/codemirror/CodeMirror.
[7] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. 2002. A fast

and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput.
6, 2 (2002), 182–197.

[8] Anthony Di Franco, Hui Guo, and Cindy Rubio-González. 2017. A comprehen-
sive study of real-world numerical bug characteristics. In Proceedings of ASE.
509–519.

[9] Aryaz Eghbali and Michael Pradel. 2020. No Strings Attached: An Empirical
Study of String-related Software Bugs. In Proceedings of ASE. 956–967.

[10] Hans Fangohr, Thomas Kluyver, and Massimo DiPierro. 2021. Jupyter in Com-
putational Science. Computing in Science & Engineering 23, 2 (2021), 5–6.

[11] International Organization for Standardization(ISO). 2022. ISO8601: Date and
time format. https://www.iso.org/iso-8601-date-and-time-format.html.

[12] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui
Huang, Li Zhou, and Yongming Wu. 2018. An empirical study on crash recov-
ery bugs in large-scale distributed systems. In Proceedings of ESEC/FSE, Gary T.
Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). 539–550.

[13] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Al-
fred Chen. 2020. A Comprehensive Study of Autonomous Vehicle Bugs. In Pro-
ceedings of ICSE. 385–396.

[14] Brian E. Granger and Fernando Pérez. 2021. Jupyter: Thinking and Storytelling
With Code and Data. Computing in Science & Engineering 23, 2 (2021), 7–14.

[15] IJuliaKernel. 2022. IJuliaKernel: Julia kernel for Jupyter.
https://juliapackages.com/p/ijulia.

[16] IPykernel. 2022. IPykernel. https://github.com/ipython/ipykernel.
[17] IPython. 2022. IPython Parallel. https://github.com/ipython/ipyparallel.
[18] IRkernel. 2022. IRkernel: R kernel for Jupyter.

https://github.com/IRkernel/IRkernel.
[19] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A Com-

prehensive Study on Deep Learning Bug Characteristics. In Proceedings of ES-
EC/FSE. 510–520.

[20] Jupyter. 2015. Ipykernel pull#18. https://github.com/ipython/ipykernel/pull/18.
[21] Jupyter. 2015. Jupyter Notebook Issue#792.

https://github.com/jupyter/notebook/issues/792.
[22] Jupyter. 2015. Jupyter Notebook Issue#96.

https://github.com/jupyter/notebook/issues/96.
[23] Jupyter. 2015. Jupyter Notebook PR#22.

https://github.com/jupyter/notebook/pull/22.
[24] Jupyter. 2015. Notebook issue#52. https://github.com/jupyter/notebook/issues/52.
[25] Jupyter. 2015. Notebook pull#799. https://github.com/jupyter/notebook/pull/799.
[26] Jupyter. 2016. Jupyter Notebook Issue#1003.

https://github.com/jupyter/notebook/issues/1003.
[27] Jupyter. 2016. Jupyter Notebook PR#1011.

https://github.com/jupyter/notebook/pull/1011.
[28] Jupyter. 2016. Notebook issue#1074. https://github.com/jupyter/notebook/issues/1074.
[29] Jupyter. 2016. Notebook issue#1547. https://github.com/jupyter/notebook/issues/1547.
[30] Jupyter. 2016. Notebook issue#1977. https://github.com/jupyter/notebook/issues/1977.
[31] Jupyter. 2016. Notebook pull#1652. https://github.com/jupyter/notebook/pull/1652.
[32] Jupyter. 2017. Jupyter Notebook Issue#2203.

https://github.com/jupyter/notebook/issues/2203.

[33] Jupyter. 2017. Jupyterclient pull#254. https://github.com/jupyter/jupyter_client/pull/254.
[34] Jupyter. 2017. Notebook issue#2503. https://github.com/jupyter/notebook/issues/2503.
[35] Jupyter. 2017. Notebook pull#2159. https://github.com/jupyter/notebook/pull/2159.
[36] Jupyter. 2018. Notebook issue#3629. https://github.com/jupyter/notebook/issues/3629.
[37] Jupyter. 2018. Notebook pull#4236. https://github.com/jupyter/notebook/pull/4236.
[38] Jupyter. 2019. Ipykernel pull#390. https://github.com/ipython/ipykernel/pull/390.
[39] Jupyter. 2019. Jupyterserver Issue#42. https://github.com/jupyter-server/jupyter_server/issues/42.
[40] Jupyter. 2020. Jupyter Notebook Issue#5190.

https://github.com/jupyter/notebook/issues/5190.
[41] Jupyter. 2020. Jupyter Notebook Issue#5502.

https://github.com/jupyter/notebook/issues/5502.
[42] Jupyter. 2020. Jupyterclient Issue#591. https://github.com/jupyter/jupyter_client/issues/591.
[43] Jupyter. 2020. JupytercorePR#183. https://github.com/jupyter/jupyter_core/pull/183.
[44] Jupyter. 2020. Notebook pull#5136. https://github.com/jupyter/notebook/pull/5136.
[45] Jupyter. 2021. Ipykernel Issue#694. https://github.com/ipython/ipykernel/issues/694.
[46] Jupyter. 2021. Ipykernel Issue#742. https://github.com/ipython/ipykernel/issues/742.
[47] Jupyter. 2021. Jupyterclient pull#607. https://github.com/jupyter/jupyter_client/pull/607.
[48] Jupyter. 2021. Jupyterclient pull#703. https://github.com/jupyter/jupyter_client/pull/703.
[49] Jupyter. 2021. Jupyterclient pull#717. https://github.com/jupyter/jupyter_client/pull/717.
[50] Jupyter. 2021. Jupyterserver Issue#591. https://github.com/jupyter-server/jupyter_server/issues/591.
[51] Jupyter. 2021. Jupyterserverpull#380. https://github.com/jupyter-server/jupyter_server/pull/380.
[52] Jupyter. 2021. Jupyterserverpull#473. https://github.com/jupyter-server/jupyter_server/pull/473.
[53] Jupyter. 2021. Jupyterserverpull#482. https://github.com/jupyter-server/jupyter_server/pull/482.
[54] Jupyter. 2021. Jupyterserverpull#521. https://github.com/jupyter-server/jupyter_server/issues/521.
[55] Jupyter. 2021. Notebook pull#6160. https://github.com/jupyter/notebook/pull/6160.
[56] Jupyter. 2022. Basic Steps to Run Jupyter.

https://docs.jupyter.org/en/latest/running.html#basic-steps.
[57] Jupyter. 2022. Detailed POST Inofrmation of Jupyterserver.

https://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/jupyter_server/master/ju
[58] Jupyter. 2022. Jupyter. https://jupyter.org/.
[59] Jupyter. 2022. Jupyter Notebook. https://github.com/jupyter/notebook.
[60] Jupyter. 2022. jupyterclient. https://github.com/jupyter/jupyter_client.
[61] Jupyter. 2022. jupytercore. https://github.com/jupyter/jupyter_core.
[62] Jupyter. 2022. Jupyterserver. https://github.com/jupyter-server/jupyter_server.
[63] Jupyter. 2022. Jupyterserver Architecture.

https://jupyter-server.readthedocs.io/en/latest/developers/architecture.html.
[64] Jupyter. 2022. Launching a bare Jupyterserver.

https://jupyter-server.readthedocs.io/en/latest/users/launching.html.
[65] Jupyter. 2022. Workflow in Jupyterserver.

https://jupyter-server.readthedocs.io/en/latest/developers/architecture.html#create-session-workflow
[66] DaYe Kang, Tony Ho, Nicolai Marquardt, Bilge Mutlu, and Andrea Bianchi. 2021.

ToonNote: Improving Communication inComputational Notebooks Using Inter-
active Data Comics. In Proceedings CHI.

[67] Mary Beth Kery and Brad A. Myers. 2018. Interactions for Untangling Messy
History in a Computational Notebook. In Symposium on VL/HCC. 147–155.

[68] D. E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984), 97–111.
[69] Andreas P. Koenzen, Neil A. Ernst, and Margaret-Anne D. Storey. 2020. Code

Duplication and Reuse in Jupyter Notebooks. In Symposium on VL/HCC. 1–9.
[70] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and tracking

dependencies of cells. In 9th USENIX Workshop on TaPP.
[71] Xingjun Li, Yuanxin Wang, Hong Wang, Yang Wang, and Jian Zhao. 2021. NB-

Search: Semantic Search and Visual Exploration of Computational Notebooks.
In Proceedings of CHI.

[72] George Mathew and Kathryn T. Stolee. 2021. Cross-language code search using
static and dynamic analyses. In Proceedings of ESEC/FSE. 205–217.

[73] nbconvert. 2022. nbconvert: Jupyter Notebook Conversion.
https://github.com/jupyter/nbconvert.

[74] Hai Nguyen, David A Case, and Alexander S Rose. 2018. NGLview–interactive
molecular graphics for Jupyter notebooks. Bioinformatics 34, 7 (2018), 1241–
1242.

[75] Fernando Perez and Brian E. Granger. 2007. IPython: A System for Interactive
Scientific Computing. Computing in Science Engineering 9 (2007), 21–29.

[76] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study About Quality and Reproducibility of Jupyter Note-
books. In Proceedings of MSR. 507–517.

[77] pydeps. 2022. pydeps. https://pydeps.readthedocs.io/.
[78] Python. 2022. Python regex library. https://docs.python.org/3/library/re.html.
[79] Mohammed Suhail Rehman. 2019. Towards understanding data analysis work-

flows using a large notebook corpus. In Proceedings of ICMD. 1841–1843.
[80] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021. An Em-

pirical Study of Bugs in WebAssembly Compilers. In Proceedings of ASE. 42–54.
[81] Adam Rule, Ian Drosos, Aurélien Tabard, and James D Hollan. 2018. Aiding col-

laborative reuse of computational notebooks with annotated cell folding. Pro-
ceedings of CHI (2018), 1–12.

[82] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and expla-
nation in computational notebooks. In Proceedings of CHI. 1–12.

[83] Sheeba Samuel and Birgitta König-Ries. 2021. ReproduceMeGit: A Visualization
Tool for Analyzing Reproducibility of Jupyter Notebooks. In Proceedings of IPAW,

https://github.com/agronholm/anyio
https://sites.google.com/view/jupyter-bugs/
https://github.com/codemirror/CodeMirror
https://www.iso.org/iso-8601-date-and-time-format.html
https://juliapackages.com/p/ijulia
https://github.com/ipython/ipykernel
https://github.com/ipython/ipyparallel
https://github.com/IRkernel/IRkernel
https://github.com/ipython/ipykernel/pull/18
https://github.com/jupyter/notebook/issues/792
https://github.com/jupyter/notebook/issues/96
https://github.com/jupyter/notebook/pull/22
https://github.com/jupyter/notebook/issues/52
https://github.com/jupyter/notebook/pull/799
https://github.com/jupyter/notebook/issues/1003
https://github.com/jupyter/notebook/pull/1011
https://github.com/jupyter/notebook/issues/1074
https://github.com/jupyter/notebook/issues/1547
https://github.com/jupyter/notebook/issues/1977
https://github.com/jupyter/notebook/pull/1652
https://github.com/jupyter/notebook/issues/2203
https://github.com/jupyter/jupyter_client/pull/254
https://github.com/jupyter/notebook/issues/2503
https://github.com/jupyter/notebook/pull/2159
https://github.com/jupyter/notebook/issues/3629
https://github.com/jupyter/notebook/pull/4236
https://github.com/ipython/ipykernel/pull/390
https://github.com/jupyter-server/jupyter_server/issues/42
https://github.com/jupyter/notebook/issues/5190
https://github.com/jupyter/notebook/issues/5502
https://github.com/jupyter/jupyter_client/issues/591
https://github.com/jupyter/jupyter_core/pull/183
https://github.com/jupyter/notebook/pull/5136
https://github.com/ipython/ipykernel/issues/694
https://github.com/ipython/ipykernel/issues/742
https://github.com/jupyter/jupyter_client/pull/607
https://github.com/jupyter/jupyter_client/pull/703
https://github.com/jupyter/jupyter_client/pull/717
https://github.com/jupyter-server/jupyter_server/issues/591
https://github.com/jupyter-server/jupyter_server/pull/380
https://github.com/jupyter-server/jupyter_server/pull/473
https://github.com/jupyter-server/jupyter_server/pull/482
https://github.com/jupyter-server/jupyter_server/issues/521
https://github.com/jupyter/notebook/pull/6160
https://docs.jupyter.org/en/latest/running.html#basic-steps
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/jupyter_server/master/jupyter_server/services/api/api.yaml#/sessions/post_api_sessions
https://jupyter.org/
https://github.com/jupyter/notebook
https://github.com/jupyter/jupyter_client
https://github.com/jupyter/jupyter_core
https://github.com/jupyter-server/jupyter_server
https://jupyter-server.readthedocs.io/en/latest/developers/architecture.html
https://jupyter-server.readthedocs.io/en/latest/users/launching.html
https://jupyter-server.readthedocs.io/en/latest/developers/architecture.html#create-session-workflow
https://github.com/jupyter/nbconvert
https://pydeps.readthedocs.io/
https://docs.python.org/3/library/re.html

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Yutian Tang, Hongchen Cao, Yuxi Chen, and David Lo

Vol. 12839. 201–206.
[84] Carolyn B. Seaman, Forrest Shull, Myrna Regardie, Denis Elbert, Raimund L.

Feldmann, Yuepu Guo, and Sally Godfrey. 2008. Defect Categorization: Mak-
ing Use of a Decade of Widely Varying Historical Data. In Proceedings of ESEM.
149–157.

[85] Helen Shen. 2014. Interactive notebooks: Sharing the code. Nature 515, 7525
(2014), 151–152.

[86] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Che-
ung, and Xiang Chen. 2021. A comprehensive study of deep learning compiler
bugs. In Proceedings of ESEC/FSE, Diomidis Spinellis, Georgios Gousios, Marsha
Chechik, and Massimiliano Di Penta (Eds.). 968–980.

[87] FerdianThung, ShaoweiWang, David Lo, and Lingxiao Jiang. 2012. An Empirical
Study of Bugs in Machine Learning Systems. In Proceedings of ISSRE. 271–280.

[88] Tornado. 2022. Tornado: a Python web framework.
https://www.tornadoweb.org/en/stable/.

[89] Traitlets. 2021. Traitlets framework. https://github.com/ipython/traitlets.
[90] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous Inte-
gration in GitHub. In Proceedings of ESEC/FSE. 805–816.

[91] DinghuaWang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021. An
exploratory study of autopilot software bugs in unmanned aerial vehicles. In

Proceedings of ESEC/FSE. 20–31.
[92] Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Assessing and

Restoring Reproducibility of Jupyter Notebooks. In Proceedings of ASE. 138–149.
[93] JiaweiWang, Li Li, and Andreas Zeller. 2020. Better Code, Better Sharing: On the

Need of Analyzing Jupyter Notebooks. In Proceedings of the ICSE-NIER. 53–56.
[94] JiaweiWang, Li Li, and Andreas Zeller. 2021. Restoring Execution Environments

of Jupyter Notebooks. In Proceedings of ICSE. 1622–1633.
[95] webpack. 2022. Webpack: a module bundler for JavaScript.

https://webpack.js.org/.
[96] Nathaniel Weinman, Steven M Drucker, Titus Barik, and Robert DeLine. 2021.

Fork It: Supporting stateful alternatives in computational notebooks. In Proceed-
ings of CHI. 1–12.

[97] ZeroMQ. 2022. ZeroMQ. https://zeromq.org/.
[98] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.

2018. An Empirical Study on TensorFlow Program Bugs. In Proceedings of IS-
STA. 129–140.

[99] Chenguang Zhu, Ripon K. Saha, Mukul R. Prasad, and Sarfraz Khurshid. 2021.
Restoring the Executability of Jupyter Notebooks by Automatic Upgrade of Dep-
recated APIs. In Proceedings of ASE. 240–252.

https://www.tornadoweb.org/en/stable/
https://github.com/ipython/traitlets
https://webpack.js.org/
https://zeromq.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Jupyter Notebook
	2.2 Jupyter Platform
	2.3 Code Repositories of Jupyter Platform

	3 Methodology and Classification
	3.1 Data Collection, Labelling and Classification
	3.2 Root Causes
	3.3 Symptoms
	3.4 Research Questions (RQ)

	4 Results
	4.1 RQ1: Root Causes
	4.2 RQ2: Symptoms
	4.3 RQ3: Connections between Root Causes and Symptoms
	4.4 RQ4: Challenges in Bug Detection
	4.5 RQ5: Challenges in Bug Fixing

	5 Discussion
	5.1 Implications for Further Research
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	8 Data Availability
	References

