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Abstract—Phishing attacks remain one of the most prevalent
and persistent cybersecurity threat with attackers continu-
ously evolving and intensifying tactics to evade the general
detection system. Despite significant advances in artificial
intelligence and machine learning, faithfully reproducing the
interpretable reasoning with classification and explainability
that underpin phishing judgments remains challenging. Due
to recent advancement in Natural Language Processing,
Large Language Models (LLMs) show a promising direc-
tion and potential for improving domain specific phishing
classification tasks. However, enhancing the reliability and
robustness of classification models requires not only accurate
predictions from LLMs but also consistent and trustworthy
explanations aligning with those predictions. Therefore, a
key question remains: Can LLMs not only classify phishing
emails accurately but also generate explanations that are
reliably aligned with their predictions and internally self-
consistent? To answer these questions, we have fine-tuned
transformer-based models, including BERT, Llama mod-
els, and Wizard, to improve domain relevance and make
them more tailored to phishing specific distinctions, using
Binary Sequence Classification, Contrastive Learning (CL)
and Direct Preference Optimization (DPO). To that end,
we examined their performance in phishing classification
and explainability by applying the ConsistenCy measure
based on SHAPley values (CC-SHAP), which measures
prediction–explanation token alignment to test the model’s
internal faithfulness and consistency and uncover the ra-
tionale behind its predictions and reasoning. Overall, our
findings show that Llama models exhibit stronger predic-
tion–explanation token alignment with higher CC-SHAP
scores despite lacking reliable decision-making accuracy,
whereas Wizard achieves better prediction accuracy but
lower CC-SHAP scores. The code in available in the GitHub
repository 1.

Index Terms—Phishing, Large Language Models, Fine Tun-
ing, Human-like Models , Consistency, Faithfulness

1. Introduction

Phishing attacks are malicious activities where at-
tackers try to impersonate themselves as a trustworthy
source to get sensitive information from certain targeted
users [1]. Despite the massive technological shift over

1. https://github.com/PsyberSecLab/Fine-Tuning-and-Explainability-
for-Phishing-Detection

cybersecurity over several years, many organizations, in-
dividuals, and even security experts are becoming victims
of phishing emails. It has been reported by the Anti-
Phishing Working Group (APWG) that the number of
phishing emails exponentially grew from 44,008 in first
quarter of 2020 to 128,926 by the end of the year
[2]. The techniques such as rule-based detection, email
filters and blacklisting of malicious domains served as a
traditional anti-phishing measures. However, the dynamic
tactics of attackers like obfuscation, impersonation, and
personalized social engineering methodologies bypassed
the conventional strategies for defense [3],highlighting
the need for more advanced and sophisticated detection
methods.

To address this challenge, initially, scholars were fo-
cused towards Machine Learning methods with complex
and variety of dataset to comprehend the complex patterns
within emails which is often considered as indicative
measures in phishing attempt and detection [4]. These
models utilize the mathematical principles of weighted
feature analysis to make predictions. However, despite
their effectiveness in many cases in various domain, they
often struggle to generalize across evolving attack strate-
gies, lack of interpretability and failing to capture the
nuanced reasoning behind the deceptive tactics commonly
seen in phishing domain.

With the advancement of Large Language Models
LLMs, researchers have redirected their studies towards
innovative approaches in phishing detection [5] and anal-
ysis. The usage of LLMs includes developing detection
systems [6] [7] [8], creating LLM-generated emails to
assess the resilience of current phishing detection tools
[9] [10] and conducting experimental studies to determine
human susceptibility to LLM-crafted phishing emails [11].
Additionally, LLMs are used in explainable AI (XAI) to
translate technical outputs into natural language explana-
tions, as in EXPLICATE [12], enhancing user understand-
ing and trust in phishing detection systems. Likewise,
a fine-tuned models were used for phishing detection,
where explainability was achieved through LIME and
Transformer Interpret techniques [13]. Even though they
demonstrated the effectiveness of integrating explainabil-
ity into phishing detection, they primarily rely on post-hoc
methods where predictions are first generated by an ML
model and then interpreted separately.

However, this area of research is still fundamentally
under-explored and limited. In this research study, we
aim to systematically investigate different potential of
LLMs in phishing detection to explore its capabilities in
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classification, explanability, and self-consistency to bridge
the gap and develop a nuanced understanding of LLMs’
potential in cybersecurity. To achieve this goal from this
research study, we want to address the following inter-
connected research questions: 1) How accurate LLMs
are while performing phishing classification tasks?, The
mere accuracy of these models may not be enough to
make LLM models reliable and faithful, thus, we explore
the next question i.e. 2) Can LLMs provide internally
consistent and contextually grounded explanations that
align with their predictions ?

2. Dataset description

We collected the experimental dataset for this research
from various sources, as obtaining high-quality datasets
for phishing detection is a challenging task itself. Out
of three datasets, the Enron Email Corpus, a real-
world dataset comprising of 500,000 emails gathered from
158 employees of the Enron corporation, was the primary
source for our ham email dataset [14]. Similarly, we used
the Nazario dataset for phishing emails [15], which
comprised of phishing emails collected between 2004 to
2020 [16]. We used the phishing emails from 2015-2024
as we were only focused on certain attributes of an email
such as newer phishing tactics and strategies that have
evolved over recent years. As the Nazario dataset collects
a large number of phishing emails over a considerable
period of time, it is highly respected and often used in
phishing-related research. These two datasets were used
to fine-tune our various LLMs for phishing detection, and
a subset of the same data was also utilized to evaluate the
CC-SHAP method.

Source Email Type Count
Nazario [15] Phishing 2500
Enron [14] Ham 2500

TABLE 1. DATASET DESCRIPTION

In order to ensure cleanliness, consistency, and suit-
ability, the dataset we obtained underwent intensive data
pre-processing steps before actual training. The following
are the pre-processing steps that we applied on the dataset:

2.1. Data Cleaning

We removed the HTML tags, special symbols, emails
that were in different languages, decoded ASCII codes,
and unnecessary characters. We used the BeautifulSoup
library to parse the HTML email content to remove noise
and concentrate on extracting the necessary text from the
email.

2.2. Duplicate Removal Balanced Dataset

To avoid over-representation and maintain the dataset’s
diversity, redundant entries were identified and re-
moved.To balance the dataset and to ensure the model
does not bias towards any class of emails, we took the
same number of email counts (2500) from both Nazario
:phishing and Enron :ham for fine-tuning purposes.

2.3. Feature Extraction

Among multiple attributes and characteristics of an
email present in dataset, we were interested in certain
attributes of an email such as: Body, Sender, Subject and
Label. Here, our objective was to find the nuanced seman-
tic and contextual patterns in these extracted features to
distinguish between two types of emails that eventually
served as a distinct purpose in fine-tuning and evaluation
tasks.

3. Methodology

Transformer architecture-based LLMs are outstanding
at understanding complex linguistic patterns and relation-
ships, as well as text generation, as they are pre-trained
on massive corpora. These abilities help them achieve
the state-of-the-art performance in various Natural Lan-
guage Processing tasks such as text classification, text
summarization, language translation, sentiment analysis
and so on. Even though these models are proficient at
a wide range of Natural Language Processing tasks, their
performance as well as effectiveness in domain-specific
areas like cybersecurity remain a challenge with resource-
intensive training and domain-specific datasets. To resolve
the issues, one efficient approach is to leverage knowledge
by fine tuning LLMs with high-quality domain-related
data while minimizing the need of extensive pre-training
on a huge number of parameters [17].

Rather than starting from scratch, fine-tuning uses
the existing knowledge base of that particular pre-trained
LLM that it learned while training. During the fine-
tuning process, it updates only the required parameters
to adjust and fit to certain specific requirements of the
tasks [18]. With this underlying principle, we fine-tuned
different LLM models with our cyber domain-specific
dataset for binary email classification. The main purpose
was to get more contextualized embeddings vectors that
can effectively differentiate between two classes of emails:
phishing and ham. Considering the resources required,
we employed Parameter Efficient Fine-Tuning (PEFT)
techniques [19] such as Low-Rank Adaptation (LoRA)
which simply updates the small set of parameters with-
out requiring to update all the parameters in pre-trained
model.

We implemented LoRA [20] based fine-tuning of
LLMs. The fundamental idea behind LoRA is to freeze the
weights of the original model while adding a small subset
of trainable sub-modules to train with additional network
layers in transformer architecture. [17] found that fine-
tuning only the query and value matrices, rather than all
four attention matrices, achieves comparable performance.
By keeping only query and value as target modules for
LoRA, we fine-tuned our three different large language
models: Llama-2-7B, Llama-3-8B, Wizard-7B. Addi-
tionally, we also included BERT model for fine tuning
with general architecture as it is smaller model compared
to other models.



4. Experiments

4.1. Models

In this research study, we used various language
models to test different aspects of phishing email detec-
tion, including BERT: bert-base-uncased, Llama 7B:
meta-llama/Llama-2-7b-hf, Llama 8B: llama/Llama-3-
8B and Wizard 7B: dreamgen/WizardLM-2-7B.These
models were trained on different approaches of fine-tuning
to detect phishing and legitimate emails based on the
features.

Bidirectional Encoder Representations from Trans-
formers (BERT) [21] was first introduced by Google AI
in 2018,which is a ground breaking NLP model known
for its bidirectional understanding of text using Masked
Language Modeling (MLM) and Next Sentence Prediction
(NSP).The reason for choosing BERT for this study, is
for its established capabilities in capturing the nuanced
relationship between words and sentences in an emails
[22]. Llama 7B [23] and Llama 8B [24] are both open-
source language models developed by Meta AI and re-
leased in 2023 and 2024 respectively. These transformer
based models from Meta AI, were leveraged for their
ability to process long sequences and their pre-training
on large corpora, which is required for effective under-
standing of phishing strategies. Wizard 7B [25], as fine
tuned derivative of foundational LLM Mistral, was chosen
for its strong instruction-following abilities and advanced
attention mechanism with evol-instruct tuning allowing it
to capture phishing characteristics precisely.

4.2. Fine-Tuning Approach

We have employed three major approaches for fine
tuning: Binary Sequence Classification, Direct Pref-
erence Optimization, and Contrastive Learning using
different pre-trained large language models as explained
in above section.

4.2.1. Binary Sequence Classification. As one of our
fine-tuning approach, we employed general binary se-
quence classification for phishing detection treats each
email as a sequence of tokens, often combining sender,
subject, and body and uses a pretrained LLMs models to
produce contextualized embeddings for accurate decision.
During training, the model minimizes cross-entropy loss
on labeled examples. With the fine-tuning on a curated
dataset of phishing and ham emails, the model learns to
recognize textual patterns, explicit features and semantic
cues that distinguish phishing and legitimate emails.

4.2.2. Direct Preference Optimization. During the fine-
tuning process, we used the Nazario and Enron dataset
to train our LLM models to differentiate phishing emails
from the legitimate. We employed Direct Preference Op-
timization (DPO), a stable and computationally efficient
fine-tuning method that eliminates the need for reward
model fitting or extensive hyper-parameter tuning [26].
Rather than relying on explicit labels, our models aimed
to learn from the structured email comparisons, analyz-
ing key features such as sender, subject, and body to
detect phishing patterns. DPO learns by minimizing the

loss, while encouraging models to prefer email structures
that align with phishing or legitimate characteristics to
replicate its decision-making processes with human-like
preferences.

4.2.3. Contrastive Learning . We also employed Con-
trastive Learning approach to fine-tune the pre-trained
language model for the task of phishing email detection.In
Contrastive Learning based fine tuning [27], models learn
by comparing emails in structured triplets, where one
email serves as a reference, another is similar in intent,
and the third is the one with dissimilar intent. The email
input includes the key features of an email like sender,
subject and the body. In the process of training, the model
distills its understanding by pulling similar emails closer
in its learned representation. While the models push dif-
ferent ones apart, creating a subtle distinguished detection
scenario for phishing emails.

5. Explainability and Self-Consistency of
LLMs

The explainability is crucial in phishing classifica-
tion to ensure that model predictions and explanations
are transparent and replicate with human-like reasoning.
Quantifying natural language explanations is challenging
and an emerging research area. We employ the concept of
Consistency Measured based on SHAPley Values (CC-
SHAP) derived from the prior research [28], and adapt it
for phishing classification. In our implementation, to quan-
tify how well the model’s prediction aligns with its core
reasoning and decision-making processes, we extended the
original CC-SHAP methodology by computing the SHAP
values from the input email text for both the classification
and explanation.

The classification SHAP values measure how much
each token in the email contributes to that particular
decision- PHISHING or LEGITIMATE by evaluating
probability shift when individual tokens are masked. To
compute SHAP values, we used a perturbation-based
masking strategy that selectively replaces tokens with the
padding token and evaluates the probability shift in classi-
fication outcomes. Specifically, for each token j equation
(1) in the input, its contribution is approximated using
Monte Carlo sampling as:

ϕj =
1

N

∑
s∈Sj

(
P
(
s ∪ {j}

)
− P (s)

)
(1)

where:

• N is the total number of Monte Carlo samples,
• Sj is the set of sampled token coalitions that do

not include token j,
• P

(
s∪{j}

)
denotes the model’s output probability

when token j is unmasked together with the tokens
in coalition s,

• P (s) denotes the model’s output probability when
only the tokens in coalition s are visible (all other
tokens, including j, are masked).

During implementation, we randomly select coalitions
of tokens, create masked inputs preserving only those



coalition tokens, compute each token’s marginal con-
tribution as the difference between the model’s output
probability when token j is included in the coalition and
the model’s output probability when only the coalition
tokens are present. Then, accumulate these contributions
across all samples. These SHAP values are normalized by
computing a contribution ratio for each token as:

cj =
ϕj∑
i |ϕi|

(2)

which scales the contributions to values within the range
of −1 to 1. The shap values are obtained for both the
prediction and the explanation. Subsequently, the cc-shap
score is obtained by computing the cosine distance be-
tween normalized SHAP vectors for both prediction and
explanation, ensuring both vectors are of equal length by
re-normalizing them with L1 norm.

CC-SHAP = 1− cosine-dist(ϕ(p)
norm, ϕ

(e)
norm) (3)

6. Results

6.1. Accuracy of LLM Models in Predicting
Ground Truth in Phishing Datasets

We evaluated different LLM models with our com-
bined dataset (Nazario and Enron) and compared the
models performance using three types of fine-tuning ap-
proaches such as: binary classification, contrastive learn-
ing and direct preference optimization. It is observed from
Table 2 that binary classification based fine -tuning yielded
the good performance across all the models, with BERT
achieving 98.89 training accuracy and 98.55 validation ac-
curacy. The results revealed that Llama 7B and Llama 8B
also showed strong performance in binary classification
with validation accuracies of 90.90 and 93.30 respectively.
However, Wizard 7B consistently underperformed, with
83.68 validation accuracy with higher loss of 0.98. This
results suggest that Wizard 7B has the weaker generaliza-
tion compared to other models.

Additionally, with an intention of learning more nu-
anced semantics involved in the phishing detection which
can be reflected in the embeddings, we employed the
contrastive based learning. This approach allowed our
models to develop more refined contextual representations
by comparing positive and negative examples rather than
simply predicting the class labels. With this, resulting in
embeddings that better reflect the semantic nuances that
differentiate the legitimate emails from deceptive signal as
phishing emails.The results from Table 3 showed us BERT
again has the lowest training and validation losses: 0.003
and 0.007 respectively. Similarly, the Llama 7B and Llama
8B performed comparably low under contrastive learning
with training losses of 0.101 and 0.090 and validation
losses of 0.137 and 0.088, respectively. Wizard 7B, in
contrast to the LLaMA models, exhibited a training loss
of 0.451 and a validation loss of 0.463, suggesting that
its embeddings may be less reflective and effective in
clustering phishing and legitimate emails.

The Direct Preference Optimization (DPO) learns a
preference ordering between responses by encouraging the
model to assign higher probabilities to preferred responses

and lower probabilities to rejected responses [26]. Like-
wise, we employed DPO to refine the model’s ability to
capture the subtle preference differences, while ensuring
a enhanced understanding of phishing and ham emails.
However,direct preference optimization (DPO) resulted in
significantly worse performance across all models, with
losses substantially higher than both the binary classifica-
tion and contrastive learning. We can see from the Table
3 that Llama 7B and Llama 8B both has training losses
more than 1.4, suggesting that they struggled to opti-
mize preference-based ranking for phishing classification.
Moreover, the Wizard 7B performed the worst beside the
types specific models we used with training and validation
losses of 10.98 and 11.58 respectively, suggesting this
model is not well-suited for this training methodology.

Overall, binary classification results suggests that this
is the most effective approach for phishing detection, with
BERT outperforming all models in accuracy and loss
reduction.

6.2. LLM Model’s Explanability, Consistency,
and Faithfulness

Building upon our previous findings, where we ex-
plored the classification performance and learning capa-
bilities of fine-tuned model, we extended our research
to test the explanability, consistency, and faithfulness of
these models. To assess model performance, we con-
structed a dataset consisting of 20 phishing emails from
Nazario and 20 legitimate emails from Enron. The results
presented in Table 4 highlighted the trade-off between
classification accuracy and model’s explanation and self-
consistency across different LLM model architectures us-
ing the baseline models. Llama 7B and Llama 8B model
exhibited high CC-SHAP scores suggesting stronger self-
consistency in their prediction-explanation token align-
ment with 0.9659 ± 0.030 for phishing, 0.977 ± 0.0169
for ham in Llama 7B and 0.9549 ± 0.052 for phishing
and 0.974 ± 0.013 for ham in Llama 8B. However, their
phishing accuracy remained low 40 and 30 for Llama
7B and Llama 8B. This suggest that while these models
may be consistent in their prediction-explanation token
alignment, internal faithfulness, they often struggle to
differentiate phishing classification effectively. In contrast,
Wizard 7B demonstrated a lower CC-SHAP score for
phishing 0.123± 0.0906 and ham emails 0.1925± 0.123,
yet attained a higher phishing accuracy of 80. This can be
implied that Wizard 7B implements the different approach
in decision making, and shows lower consistency in their
token alignment, prioritizing detection with higher accu-
racy. Meanwhile, all models performed well in classifying
ham emails, with Llama models obtaining 100 accuracy
and Wizard 7B 95. This finding suggest that there might
be a possible bias towards legitimate emails, potentially
introducing the false negatives (False Alarm) in phishing
classification.

To gain a better understanding of how different models
interpret phishing emails, we applied CC-SHAP explan-
ability and consistency analysis to compare their classi-
fication ability and reasoning style across different LLM
models using a phishing email as an input as shown in
Figure 1. It can be observed that two of these models
Llama 8B and Wizard 7B predicted as phishing, while



Model Training Accuracy (%) Validation Accuracy (%) Training Loss Validation Loss
BERT 98.89 98.55 0.03 0.04
LLaMA 7B 92.15 90.90 0.18 0.19
LLaMA 8B 94.37 93.30 0.15 0.19
Wizard 7B 84.68 83.68 0.87 0.98

TABLE 2. BINARY CLASSIFICATION RESULTS FOR DIFFERENT MODELS AGAINST GROUND TRUTH OF EMAILS

Fine-Tuning Approach Model Training Loss Validation Loss

Contrastive Learning

BERT 0.003 0.007
LLaMA 7B 0.101 0.137
LLaMA 8B 0.090 0.088
Wizard 7B 0.451 0.453

Direct Preference Optimization

BERT 0.063 0.068
LLaMA 7B 1.493 1.683
LLaMA 8B 1.405 1.563
Wizard 7B 10.98 11.58

TABLE 3. CONTRASTIVE LEARNING AND DIRECT PREFERENCE OPTIMIZATION FINE-TUNED RESULTS

Figure 1. Snapshot of Model Input, Generated Explanation, and CC-SHAP Scores, with SHAP Values for Top Contributing Tokens During Prediction
and Their Corresponding Values in the Explanation

Llama 7B predicted as legitimate for the same email.
Along with these prediction, the explanation from each of
these models are very different, each prioritizing different
features as an major reason for their decisions, demon-
strating differences in their underlying decision processes.
The CC-SHAP score from different models varies even for
same email ranging from 0.991 for Llama 7B and 0.900
for Llama 8B to 0.285 for Wizard 7B. The variance in CC-
SHAP scores implies how model perceives and weighs
different semantic and contextual cues while making clas-
sification and explanation reasoning. The different models
identified different high-influencing tokens for their pre-
dictions and explanations. In case of Llama 7B and Llama
8B words such as “bank”, “card” , “protect”, ”quality”,
and “security” were prioritized and which aligns with
phishing tactics which creates urgency. Likewise, Wizard
7B focused on “participate”, “subscribe” and “update”, as
an indication of different weighting approach.

Based on the interpreted results, the findings align with
our previous observation that high cc-shap score does not
always correlate with accurate decision making.

7. Conclusion

This research study provides a comprehensive eval-
uation of LLM models highlighting the challenges in
phishing detection, particularly in their explanability, con-
sistency, and classification. We systematically evaluated
the efficacy of three fine-tuning techniques: Binary Clas-
sification, Contrastive Learning, and Direct Preference
Optimization (DPO), across multiple transformer-based
architectures (BERT, LLaMA 7B, LLaMA 8B, and Wizard
7B) on combined Nazario and Enron phishing datasets.
We found that binary classification was by far the most
reliable approach, achieving the highest accuracy and low-
est loss,whereas Wizard 7B lagged in generalization. Sim-



Model Phishing CC-SHAP (Mean ± Std Dev) Ham CC-SHAP (Mean ± Std Dev) Phishing Accuracy (%) Ham Accuracy (%)
LLaMA 7B 0.9659 ± 0.0304 0.9779 ± 0.0169 40.0 100.0
LLaMA 8B 0.9549 ± 0.0523 0.9742 ± 0.0137 30.0 100.0
Wizard 7B 0.1231 ± 0.0906 0.1924 ± 0.1283 80.0 95.0

TABLE 4. AVERAGE CC-SHAP SCORE FOR EMAILS WITH THEIR PREDICTION ACCURACY
HIGHER THE CC-SHAP VALUES, BETTER THE TOKENS ALIGN

ilarly, Contrastive learning demonstrates minimal losses
for BERT and for LLaMA 8B,yet delivers no accuracy
gain over binary classification. DPO fine-tuning incurs
very high losses for LLaMA 7B and for Wizard 7B and
underperformed in phishing detection. These results show
that rich embedding objectives alone must be paired with
explicit classification supervision for reliable performance.
In our CC-SHAP analysis, it is observed that LLaMA
models score high on explanation-prediction token align-
ment (> 0.95), yet low on phishing accuracy ( 30% and
40%) , whereas Wizard has lower token alignment but
higher accuracy of 80% highlighting that explanation
confidence alone doesn’t predict real-world performance.

Our findings raise two crucial questions: “Should
LLMs be designed to replicate human-like uncertainty,
adopting the complexities of human decision-making?
Or is it better they prioritize deterministic behavior to
ensure consistency, reliability, and predictability? ” [29].
With these questions as part of future direction, research
should be more focused on developing LLMs that balance
human-like uncertainty with reliability, ensuring both con-
sistency and adaptability in decision making. Moreover,
exploration on human-centric fine-tuning techniques and
dynamic integration of LLMs and Cognitive models with
improved evaluation metrics can help to understand the
human perspective. This approach can facilitate more
individualized training modules for phishing detection in
the future.
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