
ar
X

iv
:2

50
6.

13
32

3v
1

 [
cs

.C
R

]
 1

6
Ju

n
20

25

Tady: A Neural Disassembler without Structural Constraint Violations

Siliang Qin1,2, Fengrui Yang3, Hao Wang3, Bolun Zhang1,2, Zeyu Gao 3, Chao Zhang 3∗, Kai Chen 1,2∗
1 Institute of Information Engineering, Chinese Academy of Sciences, China

2School of Cyber Security, University of Chinese Academy of Sciences, China
3Tsinghua University, China

{qinsiliang, zhangbolun, chenkai}@iie.ac.cn
{yangfr23, hao-wang20, gaozy22}@mails.tsinghua.edu.cn, chaoz@tsinghua.edu.cn

Abstract
Disassembly is a crucial yet challenging step in binary anal-
ysis. While emerging neural disassemblers show promise
for efficiency and accuracy, they frequently generate outputs
violating fundamental structural constraints, which signifi-
cantly compromise their practical usability. To address this
critical problem, we regularize the disassembly solution space
by formalizing and applying key structural constraints based
on post-dominance relations. This approach systematically
detects widespread errors in existing neural disassemblers’
outputs. These errors often originate from models’ limited
context modeling and instruction-level decoding that neglect
global structural integrity. We introduce Tady, a novel neural
disassembler featuring an improved model architecture and a
dedicated post-processing algorithm, specifically engineered
to address these deficiencies. Comprehensive evaluations
on diverse binaries demonstrate that Tady effectively elimi-
nates structural constraint violations and functions with high
efficiency, while maintaining instruction-level accuracy.

1 Introduction

Disassembly, the process of identifying instructions from raw
byte sequences, forms the foundation of binary analysis [16,
31, 33]. Its accuracy is paramount, as numerous subsequent
sophisticated analyses critically depend on its output. These
include decompilation [6, 22, 37], data flow analysis [45, 47],
program slicing [5], and binary code similarity detection [14,
35,40,41]. Errors introduced during disassembly can cascade,
potentially invalidating entire analytical efforts.

Traditional disassembly algorithms contend with funda-
mental ambiguities inherent in binary code. These challenges
include distinguishing code from data within the same mem-
ory space and precisely identifying instruction boundaries, es-
pecially in architectures featuring variable-length instructions.
Industry-standard disassemblers such as IDA Pro, Ghidra, and
Binary Ninja [13, 29, 38] employ sophisticated heuristics [48]

∗Corresponding authors.

to navigate these complexities. While often effective, their
reliance on heuristics limits their adaptability and can lead to
failures in corner cases [3, 8, 46] or obfuscations [24, 34].

Recent advancements in learning-based disassemblers [32,
43, 46] offer a promising data-driven paradigm, reducing de-
pendence on handcrafted heuristics. These models, trained
on extensive datasets of labeled binaries, first perform su-
perset disassembly, which assumes all addresses as potential
instruction starts and then categorizes them to find true code.
They achieve high accuracy at the individual instruction level.
However, a significant hurdle impedes their widespread adop-
tion: violation of fundamental constraints. For example, a
model might incorrectly identify a fall-through byte sequence
after a valid instruction as non-code, leading to an output
that represents an invalid execution trace. These violations
render the disassembly practically unusable for downstream
analyses, despite potentially high instruction-level metrics.

While individual instruction predictions might be locally
accurate, a valid disassembly necessitates that choices for
different byte sequences are consistent with each other. These
disassembly choices exhibit complex interdependence, which
can be broadly categorized into: mutual exclusions, where
one disassembly choice invalidates another (e.g., overlapping
instruction candidates cannot both be valid code), and struc-
tural implications, where the validity of one instruction choice
necessitates or is predicated upon the validity of another due
to inherent program structure (e.g., relationships dictated by
control flow). Effectively modeling and enforcing the interde-
pendence can significantly regularize the solution space of
the inherently ill-posed disassembly problem, thereby enhanc-
ing the reliability of the results. Building on this principle,
we present Tady, a novel approach designed to overcome key
technical challenges in leveraging these structural constraints.

A primary challenge lies in systematically characteriz-
ing and efficiently detecting violations of inter-instruction
constraints. While the concept of using interdependence to
regularize disassembly is not new, prior approaches like Pdis-
asm [28] and D-Arm [44] typically relied on formulating
explicit pairwise constraints between instruction candidates.

https://arxiv.org/abs/2506.13323v1

Although capable of capturing local relationships, this ap-
proach scales quadratically, becoming computationally in-
tractable when applied to superset disassembly where the
number of potential instructions can easily reach millions.

Our key insight is that the complex web of both mutual
exclusion and structural implication constraints can be sys-
tematically and efficiently captured within the framework
of post-dominance relations on a superset Control Flow
Graph (CFG). In compiler theory, an instruction A is said
to post-dominate an instruction B if every path from B to
any program exit point must pass through A. This structural
property is pivotal: for instance, if B is determined to be code,
then A must also be code, otherwise, executing B would lead
to executing data at A; conversely, if A is not valid code, then
B cannot be code, as this would imply an execution path that
eventually attempts to execute an invalid instruction at A.

Building upon this insight, Tady characterizes these global
constraints based on post-dominance. It leverages the post-
dominator tree (PDT, introduced in Section 2.2) derived from
the superset CFG to detect violations of these structural con-
straints. This method allows for an efficient, linear-time algo-
rithm to identify such inconsistencies, thereby avoiding the
prohibitive cost of exhaustive pairwise comparisons.

Another significant challenge is representing long-range
interdependence and execution-aware context. To satisfy
mutual exclusion and structural implication constraints, a dis-
assembler must understand relationships between instructions
that can be distant, both in memory addresses and execu-
tion paths. Existing learning-based approaches often prove
insufficient. Graph-based models like DeepDi [46], despite
using message passing, typically have a limited receptive field.
Sequence-based models like XDA [32] process bytes without
inherent awareness of execution order semantics.

To tackle this, Tady utilizes a neural architecture that pro-
cesses binaries by considering potential execution traces using
a hybrid local-global attention mechanism. Specifically, it
uses sliding window attention with special attention masks
indicating execution reachability to capture local sequential
information on the same trace, preventing focus on unre-
lated addresses. For global information, it adds a message-
passing layer using an attention mechanism to pass informa-
tion between jumps and calls, enabling the enforcement of
long-range dependencies. This results in more contextually
informed predictions aligned with CPU semantics.

The third challenge involves enforcing consistency over
probabilistic predictions. Learning-based models inherently
produce probabilistic outputs, assigning scores to potential
instructions. However, a valid disassembly result must be a
deterministic representation strictly adhering to the structural
constraints. Simply thresholding instruction-level probabili-
ties can lead to globally inconsistent results where individu-
ally plausible instructions collectively violate constraints.

Tady bridges this gap by incorporating a principled post-
processing step. This framework leverages the previously

characterized structural constraints (via the post-dominator
tree) and employs a dynamic programming algorithm to prune
inconsistencies from the model’s probabilistic outputs. This
reconciles neural scores with deterministic rules, ensuring a
globally coherent and valid disassembly.

Our extensive evaluation on diverse datasets reveals a sig-
nificant prevalence of structural constraint violations across
disassembly tools. Neural disassemblers are particularly sus-
ceptible, exhibiting violations on most of the disassembly
results. Surprisingly, even established rule-based disassem-
blers like IDA Pro and Ghidra are not immune, violating con-
straints on all binaries obfuscated with anti-disassembly tech-
niques [24]. Tady significantly improves the consistency of
disassemblers’ outputs by completely eliminating all the struc-
tural constraint violations while maintaining high instruction-
level accuracy.

Our primary contributions are as follows:
Systematic Characterization of Structural Constraints.
We introduce a framework for characterizing structural con-
straints in disassembly and an efficient, PDT-based algorithm
for detecting their violations without relying on the labels.
Context-Aware Neural Disassembly Architecture. We de-
sign a novel neural architecture that employs a hybrid at-
tention mechanism, leading to more structurally informed
disassembly results.
Robust Enforcement of Deterministic Constraints. We de-
velop a principled post-processing technique to enforce the
structural constraints. It applies to various disassemblers.
Comprehensive Evaluation and Broader Impact. Our ex-
tensive evaluation demonstrates that Tady maintains high ac-
curacy while enforcing consistency. Furthermore, our error
detection algorithm systematically locates many errors of
widely-used disassemblers and disassembly datasets.

2 Structural Constraints

2.1 Constraint Violations

We identify three primary types of constraint violations. Each
type is defined below, accompanied by an example identified
within the labels provided by the x86-sok [31] dataset.
Missing Post-Dominator (MPD). This violation occurs
when instruction IA identified as true code, but its post-
dominator, instruction IB, is missing from the disassembly.
By definition of post-dominance, if IA is executed, then IB
must also be executable. The incorrect labeling of IB thus con-
stitutes a violation. Figure 1(a) illustrates an example from
the binary clang_m32_O0/ld.gold. Here, the instruction at
address 0x85e7021 is marked as true code. However, this
unconditional jump instruction’s target, 0x85e7041 (which
is its post-dominator), is marked as non-code. This directly
contradicts the post-dominance relationship implied by the
jump instruction’s semantics.

T┌──< 0x85e7021 e91b000000 jmp 0x85e7041
T│└─< 0x85e7026 e9b3feffff jmp 0x85e6ede
T│ 0x85e702b 81c49c000000 add esp, 0x9c
T│ 0x85e7031 5e pop esi
T│ 0x85e7032 5f pop edi
T│ 0x85e7033 5b pop ebx
T│ 0x85e7034 5d pop ebp
T│ 0x85e7035 c3 ret
T│ 0x85e7036 8b459c mov eax, dword [ebp - 0x64]
T│ 0x85e7039 890424 mov dword [esp], eax
T│ 0x85e703c e83f41a6ff call sym.imp._Unwind_Resume
F└┌─< 0x85e7041 eb0d jmp 0x85e7050
T │ ; 13x nop (skipped)
T └─> 0x85e7050 55 push ebp
T 0x85e7051 89e5 mov ebp, esp
T 0x85e7053 53 push ebx

T 0xad1dcc 0001 add byte [rcx], al
T 0xad1dce 0000 add byte [rax], al
T 0xad1dd0 004889 add byte [rax - 0x77], cl
T 0xad1dd3 d84883 fmul dword [rax - 0x7d]
T 0xad1dd6 c4 invalid

 488b0579eb20008048010248
T 0xba5078 -------------- mov rax, qword [0xdb3bf8:8]
T 0xba5079 ------------ mov eax, dword [0xdb3bf8:4]
T 0xba507a ---------- add eax, 0x20eb79
T 0xba507b ---- jns 0xba5068
F 0xba507c ---- jmp 0xba509e
T 0xba507d ---- and byte [rax], al
F 0xba507e ------------ add byte [rax + 0x48020148], al
T 0xba507f -------- or byte [rax + 1], 2

(a)

(b)

(c)

Figure 1: Example of Constraint Violations discovered in the labels provided by x86-Sok dataset. (a) Missing Post-Dominator.
(b) Dead-End Sequence. (c) Overlapping Instructions.

Dead-End Sequence (DES). This violation arises when an
instruction IA is identified as true code, yet an undecod-
able byte sequence U post-dominates IA. Since every path
from IA to a program exit must pass through U , and U it-
self is not valid code, execution of IA would lead to an in-
valid state. Figure 1(b) presents an example from the bi-
nary clang_Of/libv8.so. The instruction sequence starting
from address 0xad1dcc is labeled as code. This sequence,
however, eventually leads to an undecodable byte sequence
starting at 0xad1dd6. This creates a dead-end, as execution
cannot validly proceed through an undecodable address.

Overlapping Instructions (OI). This violation occurs when
a disassembler proposes multiple distinct, valid instructions
whose byte representations in memory overlap. The assump-
tion that instructions do not overlap holds for most compiled
code, with known exceptions typically limited to manually
introduced lock prefixes via inline assembly or intentionally
obfuscated code. A violation of this type usually indicates
errors in the disassembly process. Figure 1(c) depicts an ex-
ample from clang_O3/libv8.so. The upper portion shows
the hexadecimal representation of raw bytes, with annotations
indicating the span of candidate instructions. In this instance,
the addresses 0xba5078, 0xba5079, 0xba507a, 0xba507b,
and 0xba507d are all marked as true code. However, their
byte sequences overlap. Manual investigation reveals that
only the instruction at 0xba5078 is the actual true code.

It is important to emphasize that a real ground-truth dis-
assembly should not exhibit these violations, as they funda-
mentally contradict the post-dominance relationships inherent
in control flow semantics and the standard structure of exe-
cutable code. However, correct disassembly can be complex
and involve many subtle cases. Consequently, the labels pro-
vided by many disassembly datasets may contain errors and
might not represent the real ground-truth. To avoid confusion,
we consistently refer to such dataset entries as labels rather
than ground-truth. Furthermore, the presence of these vi-

Virtual Exit

True Node

False Node

B

C

D

E

F

G

H

O

T

U

V

P

Q

R

S

M

N

J

I

K A W E

D

P

H

C

BM

AJK

I

N

Q

GO

F

T

U

XV

(a) (b)

X
W

Y

Z

ZZ

Y

R

S

Figure 2: Example of a superset Control Flow Graph and its
corresponding Post-Dominator Tree. (a) Superset Control
Flow Graph. (b) Post-Dominator Tree.

olations in the labels implies errors. This observation can
be leveraged to systematically locate errors and improve the
quality of disassembly datasets.

2.2 Post-Dominator Tree
The post-dominance relation, crucial for the constraints dis-
cussed previously, is effectively characterized by the Post-
Dominator Tree (PDT). In a PDT, nodes represent instruc-
tions from the Control Flow Graph (CFG), and the directed
edges represent immediate post-dominance relationships.

A node B is said to post-dominate node A if every path
from A to an exit node in the CFG must pass through B. The
immediate post-dominator of a node A is its closest strict
post-dominator. More formally, B is the immediate post-
dominator of A if: (1) B post-dominates A. (2) B ̸= A. (3)
There is no other node P (where P ̸= A and P ̸= B) such that
P post-dominates A and B post-dominates P.

Figure 2 provides an illustrative example of a CFG and
its corresponding PDT. In the depicted CFG, node A is
post-dominated by nodes B,C,D, and E. Among these post-
dominators, only node B is the immediate post-dominator of
A according to the previous definition.

Constructing a PDT for a general CFG, particularly a super-
set CFG, which considers every address as potential instruc-
tion start and links all known control flow edges, presents
unique challenges. Such CFGs may lack a single, common
exit point and might not even form a connected graph. There-
fore, a specialized construction process is necessary. Our
PDT construction process is as follows.
Handling Large-Scale Graphs with Weakly Connected
Components (WCCs). Superset CFGs can be exceptionally
large, potentially comprising millions of nodes, making di-
rect processing infeasible due to memory and computational
constraints. To manage this scale, we first segment the input
CFG into its WCCs. A WCC is a maximal subgraph where
a path exists between any two nodes if edge directions are
disregarded. Since WCCs are disjoint, they can be processed
independently and sequentially. This modular approach sig-
nificantly decreases the memory footprint and computational
burden, allowing our analysis to scale to very large binaries.
To restrict the size of each WCC, we do not connect the edges
from the call instructions to their targets even if they can be
determined statically. This approach restricts the sizes of the
WCCs at function level, which is acceptable in practice. Oth-
erwise, it is possible to find large WCCs consisting of almost
all the functions in the binary.
Establishing a Unified Exit Point for each WCC. After de-
composing the CFG into WCCs, each WCC is, by definition,
connected (when viewed as undirected). However, a WCC
may still possess multiple natural exit points, such as multiple
ret instructions or program termination syscalls. To ensure
that the post-dominance relation within each WCC forms a
tree structure with a single root, we introduce a virtual exit
node specific to that WCC. This virtual exit node becomes the
sole successor for all nodes within the WCC that originally
had an out-degree of zero.
Managing Cycles with Strongly Connected Compo-
nents (SCCs). A SCC is a maximal subgraph where there
is a directed path from any node to any other node within
that SCC. Infinite loops or complex cyclic structures within
a WCC present a challenge for post-dominance analysis, as
nodes within such cycles might not have a clear path to an
external exit if all their successors are also within the cycle.
We resolve this by identifying the SCCs of the WCC. The
WCC can then be conceptually regarded as a condensation
graph, where each SCC is collapsed into a single node; this
condensation graph is inherently acyclic.

Instead of connecting all original zero out-degree nodes of
the WCC directly to its virtual exit, we refine this for terminal
SCCs. A terminal SCC is one that has no outgoing edges to
nodes outside of itself within the WCC. It has an out-degree

of zero in the condensation graph of the WCC. For each such
terminal SCC, we connect designated representative nodes
from within that SCC to the WCC’s virtual exit node. For
our purposes, these representative nodes are the control-flow
transfer instructions within the respective SCCs that create
the loops, which are the jumps. This ensures that nodes
within terminal loops are properly anchored in the PDT. For
instance, in Figure 2, the rectangle enclosing E and Z are
single node terminal SCC, which are directly linked to the
virtual exit. Node W and X form a terminal SCC representing
an infinite loop, and the jump instruction X is chosen as the
representative node to link to the virtual exit.
PDT Generation. With each WCC preprocessed as described,
augmented with its own virtual exit node and with its ter-
minal SCCs appropriately linked to this exit, we then com-
pute the immediate post-dominators for all nodes within that
WCC. This is achieved using a standard algorithm, such as
the Lengauer-Tarjan algorithm [19] on the reversed graph,
since it is originally used to calculate immediate dominator
instead of immediate post-dominator. The collection of these
individual trees (one for each WCC, rooted at its virtual exit)
forms the overall PDT for the input CFG.

It is important to note that our PDT construction does not
require a fully reconstructed or perfectly complete CFG; it
can operate effectively even with partial control-flow infor-
mation, such as when the targets of some indirect jumps or
calls remain unresolved.

2.3 Detection of Structural Violations

The PDT derived from a superset CFG provides a powerful
structure for efficiently validating disassembly consistency.
A correctly disassembled program, when represented as a
PDT, exhibits specific structural properties. Primarily, all
nodes representing actual instructions (true nodes) must form
a connected subtree rooted at the virtual program exit. This
implies the following two fundamental conditions.
Path Integrity. For any true node, the entire path from that
node to the PDT root must consist exclusively of true nodes.
Consequently, no true node should be post-dominated by a
false node (decodable but classified as false) or an invalid
node (a byte sequence that is not decodable).
Non-Overlapping Assumption. Adhering to the standard
assumption that instructions do not overlap, a node in the
PDT cannot post-dominate multiple true child nodes if those
children represent non-control-flow (NCF) instructions. If it
did, it would imply that multiple distinct NCF instructions
fall-through to the same subsequent instruction, which is only
possible if they overlap in memory.

Violations of these properties appear as identifiable patterns
within the PDT. Figure 3 illustrates these patterns. Our
detection algorithm, presented in Algorithm 1, systematically
identifies these patterns through a single traversal of the PDT
and returns three error sets.

Virtual Exit Node

N NCF True Node

False Node

Direct Connection Hops of connections

True Node
I

(a) (b)

N N

(c)
I Invalid Node

Figure 3: Patterns of violations. (a) Missing Post-Dominator.
(b) Dead-End Sequence. (c) Overlapping Instructions.

Missing Post-Dominator (E1). This violation occurs when
a true node is post-dominated by a false node, as shown in
Figure 3(a). The true node’s path to the PDT root contains
a false node, violating the path integrity property. The algo-
rithm performs a BFS (lines 3, 8-26) to populate a visitedSet
with all true nodes reachable from the root r through paths of
true nodes. After the BFS, any true node v in the PDT that is
not visited is added to E1 (lines 27-31).
Dead-End Sequence (E2). This occurs if a true instruction is
post-dominated by an invalid node, as shown in Figure 3(b).
The helper function (lines 4-7) is called for each NCF child
c of the root node (line 15). All such NCF nodes are invalid
nodes, since otherwise they should be post-dominated by
their subsequent instruction and cannot be immediate post-
dominated by the virtual exit. This function performs a DFS
from c to collect all its true descendants to E2.
Overlapping Instructions (E3). This violation occurs if a
node has multiple true NCF children, as shown in Figure 3(c).
This implies that the instructions overlap with each other.
During the BFS, if a node (that is not the root) has a true NCF
child c, and the node has already visited a True NCF child,
then c is added to E3 (lines 16-18).

By identifying these characteristic patterns, our approach
detects violations of structural constraints from the PDT.

3 Tady

Figure 4 shows our disassembler’s workflow. We first con-
duct a superset disassembly over the executable section to
extract instructions and their address connections. They are
then fed into our model to assign scores to each address. Si-
multaneously, we construct a superset CFG connecting all
instructions. The nodes are all instructions from the superset
disassembly and the edges are the control flow edges, includ-
ing fall-through, jump, conditional-jump and call.

We convert this CFG into a PDT with the steps described in
Section 2.2. Each node is then assigned a weight based on the
model’s prediction, representing its likelihood of being a true

Algorithm 1 Structural Violations Detection
1: procedure ERROR DETECTION(PDT , r) ▷ r is the PDT root
2: Initialize error sets E1← /0, E2← /0, E3← /0 and visitedSet← /0

3: Start BFS from root r, add r to queue and visitedSet
4: function DETECTDEADEND(node)
5: Find all descendants of node marked true via DFS
6: Add them to E2 ▷ Dead-End Sequence
7: end function
8: while BFS queue not empty do
9: node← next node from queue

10: if node is True or is root then
11: for each child c of node do
12: Add c to visitedSet
13: if c is non-control-flow then
14: if node is root then
15: DetectDeadEnd(c)
16: else if c is True and node visited True NCF child then
17: Add c to E3 ▷ Overlapping Instructions
18: end if
19: else
20: if c is True and c /∈ visitedSet then
21: Add c to BFS queue
22: end if
23: end if
24: end for
25: end if
26: end while
27: for each node v in PDT do
28: if v /∈ visitedSet then
29: Add v to E1 ▷ Missing Post-Dominator
30: end if
31: end for
32: return (E1,E2,E3)
33: end procedure

push
pop
add

Superset
Disassembly

Superset Control
Flow Graph

Post Dominator
Tree

0101
1100
1011

Binary File

push
pop
mov

Result
Disassembly

(0, 4)
(1, 4)
(2, 5)

Edges

0.97
0.74
0.01
Scores

Pruned TreeWeighted Tree

Disassemble

Lengauer-Tarjan
Algorithm

Inference

Model

Provide
Structure

Prune

Collect
Result

Build
Graph

Assign
Weights

Figure 4: Overview of Tady.

instruction. After assigning the weights to PDT nodes, we
apply our post-processing algorithm to regularize the solution.
The inconsistent nodes are pruned and missing internal nodes
are recalled. The nodes that remain on the tree after pruning
form the final disassembly result.

In the following subsections, we first explain how our trace-
aware model design incorporate necessary context to prevent
constraint violations. Then, we introduce the algorithm for
post-processing the output of model to enforce the result to
satisfy the constraints.

3.1 Model Design
Satisfying the diverse constraints inherent in accurate instruc-
tion recognition, as detailed in Section 2, necessitates a model
capable of processing both local and global contextual in-
formation. While non-overlapping assumptions primarily
require local context regarding immediately adjacent instruc-
tions, constraints based on post-dominance demand a broader
understanding of instruction interdependencies, often span-
ning considerable distances within the code.

Previous approaches exhibit limitations in addressing these
multifaceted requirements. DeepDi [46], for instance, utilizes
a Graph Neural Network (GNN) to propagate information
along the execution trace. However, the GNN’s receptive field,
constrained by its layer-wise message passing, struggles to
capture long-range dependencies critical for post-dominance
constraints, where related instructions can be many hops apart.
Conversely, XDA [32] processes raw byte sequences without
explicitly leveraging control flow semantics. This makes it
difficult for the model to effectively reason about control-flow-
dependent constraints.

Our model introduces a novel architecture specifically de-
signed to overcome these challenges. It integrates two key
mechanisms. First, to capture fine-grained local context, we
employ a masked local attention mechanism. This involves a
transformer architecture equipped with a sliding window at-
tention mechanism, notably augmented by an attention mask.
This mask filters out instructions that, despite being within
the sliding window, are not relevant to the task, thereby ensur-
ing that local attention focuses only on semantically relevant
preceding and succeeding instructions.

Second, to address the limitations of purely local attention
and capture distant dependencies, we incorporate a global
message passing layer. This layer facilitates information ex-
change between instruction blocks that may be spatially dis-
tant in the static code but are connected through control flow.

+ xN

MLP

+

Output

Instruction
Embedding

Masked Local
Attention Layer

Message Passing
Layer

Masks Connections

Classification
Head

Figure 5: Overview of the Model Design.

This allows the model to effectively learn relationships critical
for satisfying constraints like post-dominance, which often
involve instructions far apart in the disassembly but proximate
on potential execution paths.

As illustrated in Figure 5, our model processes input as fol-
lows: First, an RNN layer generates initial instruction-level
embeddings from the input instruction sequence. These em-
beddings then pass through a series of transformer blocks.
Each transformer block uniquely combines the masked local
attention mechanism (for precise local context) and the global
message-passing layer (for capturing long-range, control-
flow-aware dependencies). Finally, a classification head pro-
cesses the refined hidden states from the transformer blocks,
outputting a score for each potential instruction start address,
indicating its likelihood of being a true instruction.

3.1.1 Instruction Embedding

Instruction-level embeddings are generated with efficiency
as a primary consideration, given that disassembly is a
performance-critical task. We have empirically found that us-
ing raw bytes directly, rather than more complex tokenization
over printable assembly, provides lightweight yet sufficiently
effective features for this purpose.

Initially, the model is provided with the raw byte sequence
of the input code and the decoded length of each instruction.
Within the model, the specific byte sequence for each individ-
ual instruction is recovered using this information.

These bytes are then converted into numerical IDs. To pre-
serve positional information within an instruction, the ID for a
byte at offset i within that instruction is augmented by adding
256i. Given that the maximum instruction length for x86-64
is 15 bytes, this scheme results in 256× 15 = 3840 unique
possible IDs. These numerical IDs are then passed through
an embedding layer to create dense vector representations
for each byte. This sequence of byte embeddings for each
instruction is then processed by an RNN layer to compute the
final instruction-level embedding.

3.1.2 Masked Sliding Window Attention

We introduce Masked Sliding Window Attention (MSWA) as
a mechanism for capturing local context information. This
approach constrains each instruction to attend only to a rele-

(a) (b) (c) (d)

Figure 6: Sliding Window Attention with an Example Reacha-
bility Mask. (a) Full Attention. (b) Sliding Window Attention.
(c) Masked Sliding Window Attention. (d) Flattened Mask.

vant subset of instructions within a sliding window, defined
by a specific attention mask, as shown in Figure 6(c).

Furthermore, this masking strategy can be applied hetero-
geneously within a single multi-head attention layer: different
attention heads can utilize distinct masks, allowing them to
specialize in capturing different types of relationships simulta-
neously. For instance, an execution-order context is captured
using a reachability mask, which limits attention to instruc-
tions within the same execution trace. Another application
is an overlapping relation context, where the mask allows an
instruction to attend to all other instructions it overlaps with.

Within each sliding window, as shown in Figure 6(b), an
instruction’s attention is restricted based on the applied mask.
For computational efficiency, the sliding window pattern is
typically flattened, as depicted in Figure 6(d), requiring much
less computation comparing to the full attention as shown in
Figure 6(a). The masked attention computation for a window
of instructions is defined as:

Attention(Q,Ks,Vs) = softmax
(

Q(Ks)
T

√
dk

+Mt

)
Vs

where Q, K, and V are the query, key, and value matrices
respectively. The subscript s indicates that keys and values
are selected within the sliding window. The mask Mt applies
large negative values to disallowed attention pairs, effectively
ensuring near-zero attention weights between instructions that
do not satisfy the specific contextual relationship t.

Two variants of attention mask are used in our model. The
reachability mask is derived from the connections informa-
tion parsed from the instructions’ semantics. To determine
reachability between instructions, we follow each instruc-
tion’s execution in parallel until it reaches maximum steps
and collect reachable instructions along the way. The collec-
tion stops when encountering conditional jumps for simplicity.
The overlapping mask is determined by identifying all in-
structions within the window that overlap with the current
instruction, which can be calculated based on the given input
length information as mentioned in Section 3.1.1.

Our MSWA framework offers significant advantages by
enabling focused attention based on defined local contexts. It
allows direct attention between all instructions on the same
execution path within a window, rather than requiring multiple
message-passing iterations as in GNNs. For instance, in a
sequence A→ B→ C, the reachability mask allows C to
directly attend to both A and B in a single layer.

The applied mask provides attention that is more focused
compared to naive sequence models by filtering out instruc-
tions irrelevant to the specific local context being modeled,
ensuring attention is concentrated on valid or pertinent rela-
tionships. The ability to assign different masks to different
attention heads further enhances this focused attention, al-
lowing the model to simultaneously learn diverse contextual
features within a single layer.

-1 3 5 3

3 -1 -1 3

4 -1 -1 4

-1 -1 -1 5

6 -1 -1 6

-1 7 9 7

8 -1 -1 8

9 -1 -1 9

4 -1 -1 9

-1 -1 -1 -1

Connections

0
1

2
3

4
5

6
7

8
9

H
idden States

3 5 3

3 3

4 4

5

6 6

7 9 7

8 8

9 9

4 9

Selected Key

Key Proj

3 5 3

3 3

4 4

5

6 6

7 9 7

8 8

9 9

4 9

Selected
Hidden States

Select

ProjectQuery Proj

0

1

2

3

4

5

6

7

8

9

Query

3 5 3

3 3

4 4

5

6 6

7 9 7

8 8

9 9

4 9

Selected Value

03 05 03

13 13

24 24

35

46 46

57 59 57

68 69

79 79

84 89

Weights

Dot
Product

0

1

2

3

4

5

6

7

8

9

Output

Weighted
Sum

Value Proj

Figure 7: Global Message Passing With Selective Attention.

3.1.3 Global Message Passing

To effectively capture the global structure of a program, we
introduce a global message passing mechanism. This mech-
anism leverages selective attention across various types of
instruction relationships. For each instruction node i, we
categorize its connections as follows:
Must Transfer (Mi): The unique successor instruction that is
guaranteed to execute immediately after instruction i.
May Transfer (Ti): Both the potential jump target and the
fall-through instruction of a conditional branch instruction.
Next (Ni): The instruction that sequentially follows instruc-
tion i in the program’s memory layout.

The total number of these connections for any given node
i is C = |Mi|+ |Ti|+ |Ni| = 4. These connections define an
adjacency structure, represented as a tensor of shape (B,L,C),
where B is the batch size and L is the sequence length.

As illustrated in Figure 7, for each instruction i, represented
by its hidden state hi, we compute attention scores over its
neighboring instructions using type-specific projections:

Qi =Wqhi

K j,t =W t
k h j for j ∈ {Mi∪Ti∪Ni}

Vj,t =W t
v h j for j ∈ {Mi∪Ti∪Ni}

Here, t denotes the specific connection type (M, T , or N). Wq,
W t

k , and W t
v are learnable projection matrices.

The attention weights αi, j,t between instruction i and a
neighbor j of type t are computed using a softmax function:

αi, j,t = softmax

(
QiKT

j,t√
dk

)

where dk is the dimension of the key vectors, used for scaling.
The updated hidden state h′i for instruction i is calculated

as a weighted sum of the value vectors from its neighbors:

h′i = ∑
t∈{M,T,N}

∑
j∈type t neighbors of i

αi, j,tVj,t

Some instructions lack certain connection types. For exam-
ple, an unconditional jump has no May Transfer edges. We
employ masked attention for them, setting the corresponding
attention weights αi, j,t to zero for non-existent connections,
effectively preventing information flow through those paths.

This selective attention mechanism facilitates efficient in-
formation propagation across the program’s control flow
graph. It is effective for relaying information between distant
instructions connected via jumps or calls. This contributes to
maintaining global consistency in the result.

3.2 Pruning Algorithm

While our model’s rich feature set helps satisfy constraints,
it cannot guarantee full compliance with the hard constraints
of valid disassembly. Post-processing is therefore essential to
ensure validity of the final output. Since these constraints are
fundamentally tied to post-dominance relation, we develop
a post-processing algorithm based on PDT. As illustrated in
Figure 2, our goal is to find a subset of nodes in the PDT
that satisfies the properties discussed in Section 2.3, while
maximizing the sum of their confidence scores. This can be
viewed as finding the most probable self-consistent disassem-
bly solution. We formulate this as a dynamic programming
problem where we seek to find a maximum-weighted subtree
rooted at the original PDT root. The problem naturally decom-
poses into sub-problems of finding optimal subtrees rooted at
each child node. By solving these sub-problems recursively
and combining their solutions, we obtain the globally optimal
pruned tree. Our pruning algorithm consists of two phases.
Weight Propagation. The Weight Propagation phase, de-
tailed in Algorithm 2, aggregates instruction-level confidence
scores upward through the tree to compute subtree weights.
This prevents naive greedy pruning that might discard entire
subtrees due to a single negative-weighted node, even when
the subtree contains many high-confidence instructions.

As shown in Algorithm 2, we perform a post-order depth-
first traversal where each node’s weight is updated only after
processing all its children. The key insight is that we selec-
tively aggregate only positive weights from children (lines
6-8), ensuring the pruning decisions maximize the overall
confidence of the retained instructions. The final weight of
each node combines its own score with the aggregated child
weights, clamped to be non-negative (line 10).
Result Collection. The Result Collection phase, implemented
in Algorithm 3, constructs the final pruned tree through a
breadth-first traversal. Starting from the root, we build the

Algorithm 2 Weight Propagation in Post-Dominator Tree
1: procedure PROPAGATEWEIGHTS(tree,root)
2: function POSTORDERVISIT(node)
3: childW ← 0
4: for child ∈ Children(node) do
5: POSTORDERVISIT(child)
6: if weight[child]> 0 then
7: childW ← childW +weight[child]
8: end if
9: end for

10: weight[node]←max(0,weight[node]+ childW)
11: end function
12: POSTORDERVISIT(root)
13: end procedure

Algorithm 3 Pruning Post-Dominator Tree
1: procedure PRUNETREE(tree,root)
2: prunedTree← /0

3: Q← new Queue()
4: Q.push(root)
5: while Q is not empty do
6: node← Q.pop()
7: if weight[node]> 0 or node = root then
8: AddNode(prunedTree,node)
9: maxFT ← (0,null)

10: for child ∈ Children(node) do
11: if not IsControlFlow(child) then
12: if weight[child]> maxFT.w then
13: maxFT ← (weight[child],child)
14: end if
15: else if weight[child]> 0 then
16: AddNode(prunedTree,child)
17: AddEdge(prunedTree,node,child)
18: Q.push(child)
19: end if
20: end for
21: if maxFT.n ̸= null then
22: AddNode(prunedTree,maxFT.n)
23: AddEdge(prunedTree,node,maxFT.n)
24: Q.push(maxFT.n)
25: end if
26: end if
27: end while
28: return prunedTree
29: end procedure

pruned tree by selectively including nodes based on their
propagated weights and types.

The algorithm maintains two key invariants: (1) Control-
flow instructions are included only if they have positive
weights (lines 15-19). (2) For non-control-flow children of
each node, only the highest-weighted child is retained (lines
11-15, 21-25). This selective inclusion, combined with the
breadth-first traversal order, ensures the resulting tree main-
tains all constraints while pruning away low-confidence or in-
consistent instructions. The final pruned tree, returned on line
28, represents a valid disassembly solution that maximizes
confidence scores while satisfying all structural constraints.

4 Evaluation

In this section, we evaluate four key research questions:
RQ1 (Prevalence of Inconsistency). What is the frequency
and severity of structural constraint violations in disassem-
blers’ results and datasets’ labels?
RQ2 (Disassembly Performance). How well does our neural
disassembler perform compared to other approaches?
RQ3 (Efficiency). How efficient are our model, the error
detection and the pruning algorithms?
RQ4 (Ablation Study). How effectively do the aspects of our
model design contribute to the overall performance?

4.1 Implementation and Setup

Implementation. For instruction decoding and the extrac-
tion of associated metadata, including byte length, control
flow characteristics, and successor instructions, we utilize
the MCDisassembler from the LLVM compiler infrastruc-
ture [17]. To optimize for processing efficiency, we directly
use the internal representation of instructions rather than their
printable, objdump-style disassembly output. The error de-
tection and pruning algorithms are implemented in C++ and
leverage the Boost Graph Library. To facilitate integration
with Python-based workflows, these C++ implementations
are equipped with Python bindings that expose results as
NumPy arrays. Neural network models are implemented and
trained using Flax [12], which operates on top of JAX [4].
For operational deployment, trained models are exported to
the TensorFlow [27] SavedModel format. Serving is then
managed by TensorFlow-Serving [30], with a Python client
responsible for data preprocessing and gRPC communication
with the serving endpoint. All experiments were conducted
on a PC equipped with an Intel Core i9-12900K CPU, a single
NVIDIA RTX A6000 Ada generation GPU, 64GB of RAM,
and a 1TB NVMe SSD.
Deep Learning Model Settings. For the optimization of our
deep learning model, we utilize the AdamW optimizer [26]
with a learning rate of 1×10−3. To address the issue of class
imbalance in the training data, we employ Focal loss [23], a
variant of Binary Cross-Entropy loss [9] designed to prioritize
difficult examples. The specific hyper-parameters for the Fo-
cal loss are set to α = 0.8 and γ = 4.0. Our model architecture
consists of two transformer layers incorporating our custom
attention mechanism. The hidden size of the transformer lay-
ers is 16, and the intermediate size is 32. We use a sliding
window approach with a window size of 64 on both sides. We
use four attention heads for our MSWA, three of them use
reachability mask and the other one uses overlapping mask.
The input sequences are chunked into pieces of length 8192;
chunks shorter than this maximum are padded with zeros to
ensure consistent input dimensions.
Datasets. Our experiments utilize several public benchmarks.
For training, we primarily use Pangine [20], a dataset of

879 binaries compiled with clang (3.8, 6.0), gcc (5.4, 7.0),
icc (19.1.1.219), and msvc-cl (19.26.28806) across various
optimization levels (O0-O3, Os, Ofast) for x86 and x86-64
architectures. Its labels are derived from intermediate com-
pilation results. The model is trained on this dataset for one
epoch with a 9:1 train-validation split. The trained model
is evaluated on Assemblage [25] (large-scale open-source
Windows programs from GitHub, labels from PDB files) and
x86-sok [31] (Linux binaries, including complex ones like
openssl and mysqld, with labels from modified clang 6.0.0
and gcc 8.1). We excluded bap-corpora [2] as its compo-
nents are covered by x86-sok. Additionally, we created rw, a
real-world dataset mirroring DeepDi’s [46] protocol, using
the latest versions of their selected projects and x86-sok’s
modified compilers for labels and binaries. Acknowledg-
ing limitations in label generation (e.g., incomplete coverage
from external linking, ambiguity of padding bytes), we fol-
low ddisasm-WIS [7] by marking addresses without labels
as ignore, excluding them from training and evaluation. All
experiments focus on the .text section.

To assess robustness against obfuscation, we use OLLVM-
14.0 [15] (LLVM IR level), Tigress [1] (source code level),
and binobf [24] (binary-level anti-disassembly). For bi-
nobf, we use the 11 SPEC CPU 2000 binaries from the obf-
benchmark [24] dataset. For OLLVM and Tigress, we use
the quarks dataset [36], which includes variously configured
obfuscated binaries. There is a obfuscation ratio controlling
how many functions are obfuscated within the binary, and
we choose the subset of the dataset where this ratio is 100%,
indicating all the functions are obfuscated. Details of the
quarks dataset’s composition can be found in its documents.

Our final evaluation set includes 81,875 binaries from As-
semblage, 3,997 from x86-sok, 879 from Pangine, 526 from
rw, 1,298 from quarks, and 11 from obf-benchmark. To man-
age evaluation time, datasets with over 1,000 binaries are
randomly sampled (1,000 binaries, seed 0); smaller datasets
are used entirely. For rule-based disassemblers, a 60-second
timeout per binary is enforced; binaries causing failures or
timeouts are excluded from that disassembler’s results.
Baselines. We compare our approach against several state-of-
the-art rule-based and neural disassemblers. For rule-based
systems, we include IDA Pro (v9.1) [13], a widely adopted
commercial tool, from which we programmatically extracted
instruction addresses using its SDK (idalib). We also evalu-
ated Ghidra (v11.3.2) [29], a popular open-source suite, using
pyghidra to dump instruction addresses. Additionally, we
benchmarked against ddisasm (v1.9.0, commit 11d6ba92) [8],
a research disassembler based on Datalog; this version has al-
ready incorporated improvements post-dating their Weighted
Interval Scheduling (WIS) work [7], and we parsed its ex-
ported GTIRB files. Our comparison with neural network-
based disassemblers includes two key systems. We evaluated
XDA [32] by fine-tuning the pre-trained model provided by its
authors on the instruction boundary classification task for 30

Table 1: Comparison of Disassembly Tools Across Datasets and Error Metrics (F: File Error Rate, B: Errors per 1MB).

Dataset Err Labels IDA Ghidra Ddisasm DeepDi XDA Tady

F B F B F B F B F B F B F B

Pangine

M 0.03 0.6 0.01 0.0 0.01 0.1 0.00 0.0 0.94 60.9 1.00 7455.8 0.88 22.7
D 0.00 0.0 0.01 0.0 0.01 0.1 0.00 0.0 0.60 11.2 0.99 483.3 0.00 0.0
O 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.88 58.0 1.00 591.2 0.76 24.1
N 0.07 6.5 0.00 0.0 0.00 0.0 0.00 0.0 0.41 3.1 0.89 426.8 0.87 210.0
T 0.10 7.1 0.02 0.1 0.01 0.1 0.00 0.0 0.97 133.3 1.00 8957.1 0.99 256.9

Assemb

M 0.08 30.5 0.02 0.3 0.00 0.0 0.00 0.4 0.46 30.6 1.00 8251.1 0.77 70.5
D 0.00 0.0 0.01 0.1 0.01 0.3 0.02 0.5 0.16 6.1 0.83 181.6 0.00 0.0
O 0.00 0.1 0.00 0.0 0.00 0.0 0.00 0.0 0.28 21.3 0.75 186.7 0.87 177.7
N 0.22 9.4 0.02 0.3 0.00 0.0 0.01 0.2 0.07 1.2 0.50 82.2 0.46 49.3
T 0.26 39.9 0.04 0.7 0.01 0.3 0.03 1.1 0.54 59.3 1.00 8701.5 0.99 297.5

X86-Sok

M 0.25 102.2 0.01 0.0 0.00 0.0 0.00 0.1 0.80 106.0 1.00 7414.6 0.70 51.5
D 0.00 0.1 0.00 0.0 0.00 0.0 0.04 0.4 0.34 33.1 0.96 334.6 0.00 0.0
O 0.00 0.1 0.00 0.0 0.00 0.0 0.00 0.0 0.66 72.9 0.88 447.0 0.49 44.6
N 0.78 538.5 0.00 0.0 0.00 0.0 0.01 0.1 0.22 4.0 0.85 612.9 0.76 250.9
T 0.82 640.9 0.01 0.0 0.00 0.0 0.05 0.5 0.90 216.0 1.00 8809.1 0.95 347.0

RW

M 0.27 65.8 0.00 0.0 0.02 0.1 0.00 0.0 0.83 345.6 0.99 6903.4 0.81 73.4
D 0.01 0.8 0.00 0.0 0.00 0.0 0.00 0.0 0.55 33.8 0.86 550.3 0.00 0.0
O 0.01 6.2 0.00 0.0 0.00 0.0 0.00 0.0 0.76 81.9 0.87 213.1 0.61 45.7
N 0.67 487.2 0.00 0.0 0.00 0.0 0.02 0.1 0.31 4.1 0.83 484.9 0.82 228.4
T 0.70 560.1 0.00 0.0 0.02 0.1 0.02 0.1 0.88 465.4 0.99 8151.7 0.95 347.5

Obf-Ben

M 1.00 12918.9 1.00 17.2 1.00 456.4 1.00 41.1 1.00 3879.5 1.00 23003.2 1.00 2487.0
D 1.00 2129.7 1.00 50.7 1.00 488.8 1.00 186.6 1.00 330.8 1.00 2643.0 0.00 0.0
O 0.73 2.3 0.00 0.0 0.00 0.0 0.00 0.0 1.00 1074.1 1.00 1241.8 1.00 430.3
N 0.00 0.0 0.00 0.0 0.64 0.8 0.80 1.4 1.00 6.2 1.00 72.9 1.00 3.8
T 1.00 15050.9 1.00 67.9 1.00 946.0 1.00 229.0 1.00 5290.6 1.00 26960.8 1.00 2921.1

Quarks

M 0.29 2.8 0.30 2.6 0.30 4.9 0.21 0.9 1.00 489.6 1.00 3448.9 0.96 332.0
D 0.13 1.1 0.13 1.3 0.16 1.4 0.05 0.2 0.72 35.2 1.00 1753.9 0.00 0.0
O 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.98 134.8 1.00 339.1 0.86 104.9
N 0.03 0.1 0.03 0.1 0.02 0.2 0.00 0.0 0.48 4.4 0.79 815.8 1.00 317.1
T 0.32 4.0 0.33 4.0 0.33 6.5 0.25 1.1 1.00 663.9 1.00 6357.7 1.00 753.9

epochs, adhering to their original paper’s setup. We also in-
cluded DeepDi [46], for which we utilized the official model
due to the absence of a publicly available implementation.

Evaluation Metrics. To evaluate the performance of our ap-
proach, we employ several metrics to assess both instruction-
level accuracy and the frequency of constraint violations. For
characterizing instruction-level accuracy, we utilize standard
metrics: Precision, Recall, and the F1 score. These are cal-
culated based on the reference labels and provide a compre-
hensive measure of how accurately individual instructions
are identified. To quantify the frequency of constraint vio-
lations, we use two distinct metrics: File-Level Error Rate:
This metric represents the proportion of files that contain at
least one constraint violation relative to the total number of
files analyzed. It provides an overview of how widespread
errors are across the disassembly results. Byte-Normalized

Error Rate: To account for the varying sizes of binary files,
this metric characterizes errors by dividing the total number
of detected errors by the total number of bytes in the code
section of all analyzed files. This normalization allows for a
more fine-grained comparison of error propensity, irrespective
of file size. To make the number more readable, we report the
average errors per 1MB(1024×1024), instead of per byte.

4.2 Violations of Constraints

This section evaluates the prevalence of constraint violations
in dataset labels and disassembler outputs. Since our pruning
algorithm eliminates all of the violations, we report the error
rate before pruning. While our error detection algorithm
can operate without boolean labels, we implemented a score-
based approach to align with our pruning algorithm. For

Table 2: Errors Detected in Dataset Labels.
Stats Pangine Assemb X86-Sok RW Obf-Ben Quarks

M 391 294,670 135,156 14,801 160,287 2,825
D 0 351 85 185 26,424 1,122
O 12 689 192 1,397 28 4
N 4,423 90,760 712,429 109,577 0 133
T 4,826 386,470 847,862 125,960 186,739 4,084

Files 879 81,875 3,997 526 11 1,298

rule-based disassemblers and dataset labels, we assign a score
of 1 to addresses labeled as instructions (true) and−1 to those
labeled as non-instructions (false). For binary classification
models, including ours and DeepDi, we use their output logits
as scores. For XDA, a multi-class classification model, we
use the probability of an address being an instruction start
and apply an inverse sigmoid function to derive the score.

Table 1 presents the evaluation results for constraint viola-
tions, where M denotes Missing Post-Dominator (MPD), D
signifies Dead-End Sequence (DES), and O represents Over-
lapping Instructions (OI). A significant portion of detected
MPD errors involve instructions post-dominated by a NOP
instruction not recognized as code. These instances often
indicate missing padding bytes within a basic block or mark
a virtual exit and are effectively dead code. We list these
as N (NOP), separate them from other, more critical, MPD
violations. T denotes total of all errors. The detailed statistics
for error counts in dataset labels are shown in Table 2.

Several key conclusions emerge from these results:
All dataset labels contain constraint violations. This finding
aligns with previous research [7], where errors were manu-
ally identified. Our approach systematically locates these
violations without requiring manual intervention or another
referencing tool’s results. The errors often have common
patterns, such as missing NOPs within basic blocks or miss-
ing jump targets, indicating false negatives. The errors not
belonging to any such patterns usually indicate false posi-
tives. These findings can help identify bugs in the dataset
construction scripts, enhancing the quality of the resulting
datasets. Tady has more NOP related errors but fewer errors
of other types than DeepDi. After investigation, we found
that its training set Pangine wrongly labels many NOPs within
basic blocks as false, resulting in the wrong behavior of the
model. This shows the necessity of high-quality training sets.
Rule-based disassemblers (IDA, Ghidra, ddisasm) still ex-
hibit errors. Although these tools are designed to enforce
constraints, leading to relatively better performance, viola-
tions were identified in their outputs. Manual investigation
verified these as genuine disassembler errors. This finding
indicates that they might be tricked into invalid intermedi-
ate states without effective rollback mechanisms, particularly
when encountering obfuscated code.
Neural disassemblers struggle to enforce consistency
through architectural design alone. For instance, DeepDi
does not prevent all overlapping instructions though utilizing

overlapping edges in its design. Our model, Tady, success-
fully prevents DES but does not fully mitigate MPD and OI
issues, this highlights the importance of a rule based regular-
ization upon neural disassemblers’ outputs.
Obfuscation significantly increases consistency violations.
Code from the Obf-Benchmark and Quarks datasets caused
all disassemblers to generate substantially more violations
compared to other datasets. This indicates that the obfuscation
techniques effectively confused the disassemblers, leading
them to incomplete or incorrect intermediate states. This
observation offers insight into why even rule-based disassem-
blers produce constraint violations.

4.3 Accuracy Evaluation

In this section, we evaluate the instruction-level performance
of various disassemblers using labels provided by the datasets.
While these dataset labels may contain errors, meaning abso-
lute performance cannot be precisely determined, the relative
performance metrics remain valuable for comparative analy-
sis of the disassemblers.

We evaluated the disassemblers on both common and ob-
fuscated binaries. For this experiment, in addition to the
previously introduced Tady model (trained on the Pangine
dataset), we constructed another model, named TadyA, which
was trained for one epoch on the training portion of a com-
posite dataset created from all available datasets to simulate a
train-validation split. Specifically, this composite dataset was
generated by sampling 2 files from obf-benchmark and 100
files from each of the other five datasets. We then performed
a 9:1 train-validation split on this mixed dataset.
Overall Performance. As shown in Table 3, neural disassem-
blers, despite potentially lower precision, usually outperform
rule-based disassemblers in terms of recall. Our TadyA model,
trained on a small portion of the combined datasets, gen-
eralized well to the remaining data, often yielding the best
performance among all evaluated disassemblers, achieving
the best performance on three of the six benchmarks and per-
forms competently on others. Furthermore, our Tady model,
trained exclusively on the Pangine dataset, demonstrated ro-
bust performance on other datasets featuring unseen compilers
and binaries, consistently outperforming its direct competitor,
DeepDi, on all Linux benchmarks.
Pruning. In most cases, the pruning algorithm has a positive
impact on the F1 score. This is particularly evident for XDA,
which assigns appropriate weights in general but does not
explicitly considers the interdependence between instructions.
For other disassemblers, either internal nodes are recalled
as positive or the successors of negative-weighted nodes are
pruned. How the F1 score changes depends on the quality of
the assigned weights. Since the purpose of the pruning algo-
rithm is to enforce constraints, an improvement in accuracy
is not guaranteed, though often observed.
Anti-Obfuscation. Notably, despite no prior training on ob-

Table 3: Comparison of Precision, Recall, and F1 Before and
After Pruning for Various Datasets and Disassemblers.
Dataset Metric State IDA Ghidra Ddisasm DeepDi XDA TadyA Tady

Pangine

P
B 1.0000 1.0000 1.0000 0.9985 0.9613 0.9988 0.9996
A 1.0000 0.9999 1.0000 0.9991 0.9893 0.9994 0.9999

R
B 0.9884 0.9332 0.9996 0.9995 0.9630 0.9994 0.9999
A 0.9884 0.9332 0.9996 0.9998 0.9906 0.9990 0.9999

F1
B 0.9942 0.9654 0.9998 0.9990 0.9621 0.9991 0.9997
A 0.9942 0.9654 0.9998 0.9995 0.9900 0.9992 0.9999

Assemb

P
B 0.9959 0.9999 0.9996 0.9990 0.9747 0.9965 0.9980
A 0.9962 0.9999 0.9996 0.9997 0.9897 0.9979 0.9992

R
B 0.9859 0.9559 0.9915 0.9954 0.9252 0.9956 0.9935
A 0.9864 0.9562 0.9916 0.9956 0.9679 0.9953 0.9939

F1
B 0.9909 0.9774 0.9955 0.9972 0.9493 0.9960 0.9957
A 0.9912 0.9776 0.9956 0.9976 0.9787 0.9966 0.9966

X86-Sok

P
B 0.9955 0.9950 0.9889 0.9704 0.9575 0.9907 0.9792
A 0.9954 0.9944 0.9890 0.9716 0.9795 0.9909 0.9791

R
B 0.9860 0.9773 0.9999 0.9994 0.9584 0.9996 0.9989
A 0.9859 0.9788 0.9999 0.9985 0.9918 0.9996 0.9991

F1
B 0.9908 0.9861 0.9944 0.9847 0.9580 0.9951 0.9890
A 0.9906 0.9865 0.9944 0.9849 0.9856 0.9953 0.9890

RW

P
B 0.9963 0.9958 0.9856 0.9767 0.9531 0.9925 0.9843
A 0.9963 0.9958 0.9856 0.9786 0.9776 0.9925 0.9848

R
B 0.9908 0.9227 0.9998 0.9981 0.9533 0.9995 0.9906
A 0.9908 0.9228 0.9998 0.9838 0.9911 0.9996 0.9906

F1
B 0.9936 0.9578 0.9926 0.9873 0.9532 0.9960 0.9874
A 0.9935 0.9579 0.9926 0.9812 0.9843 0.9961 0.9877

Obf-Ben

P
B 0.8452 0.6828 0.6945 0.8643 0.6641 0.9237 0.9040
A 0.8674 0.7106 0.7064 0.8702 0.8053 0.9008 0.8934

R
B 0.0912 0.4465 0.1550 0.9317 0.8005 0.9783 0.9624
A 0.0894 0.4324 0.1514 0.8930 0.8221 0.9278 0.9197

F1
B 0.1646 0.5399 0.2534 0.8967 0.7260 0.9502 0.9323
A 0.1620 0.5376 0.2494 0.8815 0.8136 0.9141 0.9064

Quarks

P
B 1.0000 0.9982 0.9984 0.9948 0.9436 0.9975 0.9952
A 1.0000 0.9990 0.9983 0.9971 0.9849 0.9978 0.9966

R
B 1.0000 0.9191 0.9982 0.9972 0.9700 0.9994 0.9958
A 0.9999 0.9433 0.9981 0.9880 0.9946 0.9995 0.9974

F1
B 1.0000 0.9570 0.9983 0.9960 0.9566 0.9984 0.9955
A 0.9999 0.9704 0.9982 0.9926 0.9897 0.9986 0.9970

fuscated data, Tady exhibited significant robustness against
anti-disassembly obfuscators in the Obf-Benchmark dataset.
It outperformed rule-based disassemblers by a large margin;
for instance, ddisasm and IDA identified only a few instruc-
tions. Ghidra, while achieving better results than IDA Pro and
ddisasm, required over an hour to disassemble these binaries.
This finding aligns well with DeepDi’s experiments [46].
Indirect Jumps. The robustness of our disassembler against
indirect jumps was demonstrated with its performance against
obfuscators. The Tigress obfuscator, employed in the Quarks
dataset, implements several techniques that introduce com-
plex indirect jumps, including virtualization, Control Flow
Flattening (CFF), mix1, and mix2. To confirm that these ob-
fuscations indeed introduce indirect jumps, we compared the

ratio of indirect jumps in binaries before and after applying
obfuscation. Our analysis revealed that indirect jumps were at
least five times more frequent post-obfuscation. Specifically,
CFF applied at the O0 optimization level increased the ratio of
indirect jumps by a factor of 17.32. Tady’s accuracy remained
high in these scenarios, achieving F1 scores above 0.999,
which demonstrates its robustness against indirect jumps.

4.4 Efficiency Evaluation
This section evaluates the efficiency of our proposed disassem-
bler, Tady, including the model and the subsequent pruning
algorithm. Our evaluation consists of time/memory consump-
tion, and a detailed breakdown of computational costs.

To create a representative dataset, we first sorted binaries
in x86-sok by their code section size. We then sampled bina-
ries by selecting from exponentially increasing size intervals,
choosing up to three samples from each interval where avail-
able. The disassembly script, previously employed in our
analyses, was run in headless mode. We recorded the execu-
tion time for each disassembler to facilitate a comparative effi-
ciency analysis. Rule-based disassemblers were benchmarked
on a single Core i9-12900K CPU, while neural network-based
disassemblers utilized an NVIDIA A6000 Ada GPU.
Disassembly Efficiency. Figure 8 shows the relationship be-
tween code section size and disassembly time for various dis-
assemblers. The results show that Tady achieves the second-
fastest performance, surpassed only by DeepDi. Notably,
Tady is significantly faster than the widely-used rule-based
disassembler, IDA Pro.

0 5 10 15 20
Size of code bytes (MB)

0

20

40

60

80

100

120

R
un

tim
e

(s
ec

on
ds

)

IDA
DEEPDI
DDISASM
XDA
TADY
GHIDRA

Figure 8: Run time comparison of the disassemblers.

To further quantify Tady’s efficiency and analyze its time
consumption components, we conducted a rigorous bench-
mark. This involved recording a detailed breakdown of the
time consumed by each disassembly step. These steps include
the Preprocessing phase, which involves superset disassembly
executed on a single CPU, and the Model Inference phase,
which is performed on the GPU with the batch size and se-
quence length empirically set to 32 and 8192, respectively.

0 5 10 15 20
Size of code bytes (MB)

0

1

2

3

4

Ti
m

e
(s

ec
on

ds
)

y = 0.19x

y = 0.12x

y = 0.07x

Total Time
Inference Time
Preprocess Time

Figure 9: Time Consumption of Disassemble runtime.

0 5 10 15 20
Size of code bytes (MB)

0

2

4

6

8

10

Ti
m

e
(s

ec
on

ds
)

y = 0.43x

y = 0.31x

y = 0.20x

y = 0.04x

PDT Construction
Pruning
Error Calculation
Disassembly

Figure 10: Time Consumption of the Algorithms.

As depicted in Figure 9, Tady’s total throughput is 5.26
MB/s. The CPU-bound preprocessing step accounts for a sig-
nificant portion (37%) of the total time. Despite this, Tady’s
overall performance remains considerably faster than IDA
Pro, highlighting its substantial efficiency and practical appli-
cability for large-scale binary analysis.

Beyond the disassembly phase including the preprocessing
and model inference, we also evaluated the time and memory
efficiency of our error detection and pruning algorithm.
Time Consumption. Figure 10 shows how the algorithms’
execution time correlates with the binaries’ code section size.
The processing time exhibits a linear relationship with code
size, which aligns perfectly with our theoretical analysis pre-
dicting linear time complexity for these algorithms in Ap-
pendix A. The pruning components are also efficient, achiev-
ing throughputs of 2.33 MB/s for the PDT construction pro-
cess and 3.23 MB/s for the pruning algorithm itself. Even
when factoring in the time for these post-processing steps,
Tady maintains its high overall speed.
Memory Usage. Figure 11 shows the linear relationship
between peak memory usage and the size of the code sec-
tion. Processing the PDT at the WCC level effectively re-

0 5 10 15 20
Size of code bytes (MB)

0

200

400

600

800

1000

1200

1400

Pe
ak

 M
em

or
y

(M
B

)

Peak Memory

Figure 11: Peak Memory Usage for PDT Construction.

duces memory requirements for tree construction. Since
most WCCs are concentrated within a comparatively small
size range, memory usage is primarily dominated by storing
edges. Consequently, the memory needed to process individ-
ual WCCs is comparatively small. This finding underscores
the effectiveness of our approach in managing WCC size by
strategically omitting call edges during their construction.

4.5 Ablation Study
To evaluate the impact of our core design choices, we con-
ducted an ablation study focusing on masked sliding window
attention (MSWA) and message passing (MP). We assessed
their effects on accuracy and constraint violations by train-
ing four model variants with different combinations of these
mechanisms on the same dataset. Performance was evaluated
on our test datasets (Tables 4 and 5).

Table 4: Ablation Study: Comparison of Model Configura-
tions Across Datasets and Error Metrics (F: Total File Error
Rate, B: Total Errors per 1MB).

Dataset
MSWA + MP MSWA SWA + MP SWA

F B F B F B F B

X86-Sok 0.946 347.0 0.924 337.9 1.000 12326.9 1.000 2528.4
Pangine 0.991 256.9 0.973 223.6 1.000 14180.8 1.000 1639.7
RW 0.951 347.5 0.899 352.2 1.000 11970.7 0.990 1954.9
Assemb 0.987 297.5 0.999 267.5 1.000 17479.5 1.000 2587.1
Obf-Ben 1.000 2921.1 1.000 3779.7 1.000 17398.7 1.000 12524.6
Quarks 1.000 753.9 1.000 499.2 1.000 14566.6 1.000 3456.8

The variants, each trained for one epoch on the Pangine
dataset, were: (1) Full Model: MSWA + MP; (2) MSWA only;
(3) SWA + MP: Standard sliding window attention (SWA)
with MP; (4) SWA only (Baseline). SWA utilizes a full at-
tention mask within the sliding window, contrasting with
MSWA’s specialized reachability masks.

Results in Table 4 and Table 5 show that MSWA signif-
icantly outperforms SWA, consistently yielding higher ac-

Table 5: Ablation Study: Comparison of Model Configura-
tions Across Datasets (Precision, Recall, F1-Score - Pruned).
Dataset MSWA + MP MSWA SWA + MP SWA

P R F1 P R F1 P R F1 P R F1

X86-Sok 0.979 0.999 0.989 0.977 0.999 0.988 0.957 0.943 0.950 0.972 0.998 0.985
Pangine 1.000 1.000 1.000 1.000 1.000 1.000 0.977 0.956 0.966 0.997 0.999 0.998
RW 0.985 0.991 0.988 0.982 0.991 0.987 0.965 0.936 0.950 0.978 0.991 0.984
Assemb 0.999 0.994 0.997 0.999 0.994 0.996 0.961 0.914 0.937 0.991 0.988 0.990
Obf-Ben 0.893 0.920 0.906 0.857 0.917 0.886 0.895 0.855 0.875 0.849 0.914 0.880
Quarks 0.997 0.997 0.997 0.996 0.999 0.997 0.951 0.863 0.905 0.985 0.995 0.990

curacy and fewer constraint violations. This indicates our
reachability attention mask effectively injects execution se-
mantics, enhancing performance. The MP mechanism’s im-
pact was conditional: detrimental with SWA but beneficial
with MSWA, particularly improving accuracy on the obfusca-
tion dataset while largely preserving performance elsewhere.
This supports the idea that while local context often suffices
for disassembly, global information from MP is advantageous
for complex cases like obfuscated code.

5 Discussion

Our pruning and error detection algorithm assumes an in-
struction with fall-through semantics is immediately post-
dominated by its subsequent instruction. This generally holds,
except for signal-based hardware exceptions (e.g., segmenta-
tion faults, division-by-zero errors). If an instruction triggers
such an exception, control may transfer to an exception han-
dler rather than the next instruction in memory. This scenario,
particularly when exceptions are deliberately engineered for
obfuscation as seen in techniques like [34], represents a cur-
rent limitation of Tady. High-level language exceptions such
as try-catch blocks typically use mechanisms like function
calls and do not violate this post-domination assumption.

6 Related Work

Regularizing Disassembly Results. Previous works have
explored regularizing disassembly output using constraints.
Pdisasm [28] used an iterative algorithm with control-flow and
data-flow features. Ddisasm [7, 8] employed logic program-
ming and later modeled disassembly as a weighted interval
scheduling problem. D-Arm [44] used data-flow logic, fram-
ing it as a maximum weight independent set problem solved
with approximate algorithms. These approaches often assign
weights and solve optimization problems but can struggle
with the complexity of intricate constraints. Our work aligns
with this trend but introduces the post-dominator tree as a
novel backbone for efficient error detection and constraint
enforcement, addressing this complexity.
Neural Disassemblers. Neural network-based disassemblers
aim to reduce manual rule creation through data-driven learn-
ing. Early efforts like ByteWeight [2] focused on func-
tion boundary identification. Subsequent models, such as

XDA [32] using transformers and DeepDi [46] employing
Graph Neural Networks, advanced instruction classification
from raw bytes. While promising, these neural approaches
often produce outputs violating fundamental disassembly con-
straints. Our work specifically addresses these consistency
issues to facilitate more reliable neural disassembly.
Assembly Models. Various neural architectures have been
applied to binary analysis. Instruction2Vec [18] and Deep-
VSA [10] used word2vec and RNNs for instruction embed-
dings, while PalmTree [21], jTrans [42], and HermesSim [11]
utilized transformers or graph-based methods on intermediate
representations. However, these models are unsuitable for
our problem because they typically: (1) presuppose already
accurate disassembly with known instruction boundaries, but
we need to identify valid instructions from a superset; (2) pro-
cess single, valid instruction sequences, whereas we must
distinguish valid instructions among multiple potential traces;
and (3) are not designed to process multiple potential traces
in parallel, which is required in our superset scenario.

7 Conclusion

In this work, we systematically regularize the solution space
of the disassembly problem with the structural constraints de-
rived from post-dominance relation and the non-overlapping
instructions assumption. We propose an efficient error detec-
tion algorithm based on the post-dominator tree over the su-
perset CFG. This error detection algorithm successfully iden-
tified various errors from neural disassemblers, rule-based
disassemblers and those disassembly datasets’ labels without
relying on ground truth. We mitigate the constraint violations
by providing a better model design, exploiting both local se-
quential feature and global graph structure of the problem. In
addition, we provide a pruning mechanism to post-process
the output of the model and completely eliminate the viola-
tions from the final disassembly result. Our proposed method
can serve as a general post-processing step that enhances the
usability of all neural network-based disassemblers.

Acknowledgments

We would like to sincerely thank all the reviewers for their
insightful feedback that greatly helped us to improve this pa-
per. Additionally, special thanks are extended to Miaoqian
Lin for her invaluable comments. The authors from Institute
of Information Engineering are supported in part by NSFC
(U24A20236, 92270204) and CAS Project for Young Scien-
tists in Basic Research (Grant No. YSBR-118). The authors
from Tsinghua University are supported in part by NSFC
(U24A20337) and the Joint Research Center for System Secu-
rity, Tsinghua University (Institute for Network Sciences and
Cyberspace) - Science City (Guangzhou) Digital Technology
Group Co., Ltd..

Ethical Considerations

Our research was conducted with careful consideration of
ethical implications, following the principles outlined in The
Menlo Report and USENIX Security’s ethical guidelines. We
identified and analyzed potential impacts on all stakehold-
ers, including end users, system administrators, and security
practitioners. Our methodology prioritized minimizing risks
while maximizing benefits to the security community. We
maintained compliance with relevant terms of service and
legal requirements throughout the study. We acknowledge the
dual-use potential of our findings and have carefully balanced
research transparency with potential misuse concerns.

Open Science

In accordance with USENIX Security’s open science policy,
the research artifacts associated with this paper are made
publicly available at https://doi.org/10.5281/zenodo.
15541311, including datasets, models, and source code. The
latest version of the code will be maintained and updated at
https://github.com/5c4lar/tady.

References

[1] Sebastian Banescu, Christian S. Collberg, Vijay Ganesh,
Zack Newsham, and Alexander Pretschner. Code obfus-
cation against symbolic execution attacks. In Stephen
Schwab, William K. Robertson, and Davide Balzarotti,
editors, Proceedings of the 32nd Annual Conference on
Computer Security Applications, ACSAC 2016, Los An-
geles, CA, USA, December 5-9, 2016, pages 189–200.
ACM, 2016.

[2] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael
Turner, and David Brumley. BYTEWEIGHT: Learn-
ing to Recognize Functions in Binary Code. In Kevin
Fu and Jaeyeon Jung, editors, Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, Au-
gust 20-22, 2014, pages 845–860. USENIX Association,
2014.

[3] Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs,
Jude O’Kain, Derron Miao, Tiffany Bao, Adam Doupé,
Yan Shoshitaishvili, and Ruoyu Wang. Ahoy SAILR!
There is No Need to DREAM of C: A Compiler-Aware
Structuring Algorithm for Binary Decompilation. In Da-
vide Balzarotti and Wenyuan Xu, editors, 33rd USENIX
Security Symposium, USENIX Security 2024, Philadel-
phia, PA, USA, August 14-16, 2024. USENIX Associa-
tion, 2024.

[4] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas,

Skye Wanderman-Milne, and Qiao Zhang. JAX:
Composable transformations of Python+NumPy
programs. http://github.com/jax-ml/jax, 2018.

[5] Cristina Cifuentes and Antoine Fraboulet. Intraprocedu-
ral Static Slicing of Binary Executables. In 1997 Inter-
national Conference on Software Maintenance (ICSM

’97), 1-3 October 1997, Bari, Italy, Proceedings, page
188. IEEE Computer Society, 1997.

[6] Cristina Cifuentes and K. John Gough. Decompilation
of Binary Programs. Softw Pract Exp, 25(7):811–829,
1995.

[7] Antonio Flores-Montoya, Junghee Lim, Adam Seitz,
Akshay Sood, Edward Raff, and James Holt. Disas-
sembly as Weighted Interval Scheduling with Learned
Weights. In 2025 IEEE Symposium on Security and Pri-
vacy (SP), pages 3033–3050. IEEE Computer Society,
April 2025.

[8] Antonio Flores-Montoya and Eric M. Schulte. Datalog
Disassembly. In Srdjan Capkun and Franziska Roesner,
editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1075–1092.
USENIX Association, 2020.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016.

[10] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and
Dawn Song. DEEPVSA: Facilitating Value-set Analy-
sis with Deep Learning for Postmortem Program Anal-
ysis. In Nadia Heninger and Patrick Traynor, editors,
28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, pages
1787–1804. USENIX Association, 2019.

[11] Haojie He, Xingwei Lin, Ziang Weng, Ruijie Zhao,
Shuitao Gan, Libo Chen, Yuede Ji, Jiashui Wang, and
Zhi Xue. Code is not natural language: Unlock the
power of semantics-oriented graph representation for
binary code similarity detection. In USENIX Security
Symposium. USENIX Association, 2024.

[12] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin
Ritter, Bertrand Rondepierre, Andreas Steiner, and Marc
van Zee. Flax: A neural network library and ecosystem
for JAX. http://github.com/google/flax, 2024.

[13] Hex-Rays. IDA Pro. https://hex-rays.com, 2025.

[14] Yikun Hu, Hui Wang, Yuanyuan Zhang, Bodong Li,
and Dawu Gu. A Semantics-Based Hybrid Approach
on Binary Code Similarity Comparison. IEEE Trans.
Software Eng., 47(6):1241–1258, 2021.

https://doi.org/10.5281/zenodo.15541311
https://doi.org/10.5281/zenodo.15541311
https://github.com/5c4lar/tady
http://github.com/jax-ml/jax
http://github.com/google/flax
https://hex-rays.com

[15] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie
Michielin. Obfuscator-LLVM - Software Protection
for the Masses. In Paolo Falcarin and Brecht Wyseur,
editors, 1st IEEE/ACM International Workshop on Soft-
ware Protection, SPRO 2015, Florence, Italy, May 19,
2015, pages 3–9. IEEE Computer Society, 2015.

[16] M. Ammar Ben Khadra, Dominik Stoffel, and Wolf-
gang Kunz. Speculative disassembly of binary code.
In Daniel Große and Rolf Drechsler, editors, Methoden
Und Beschreibungssprachen Zur Modellierung Und Ver-
ifikation von Schaltungen Und Systemen, MBMV 2017,
Bremen, Germany, February 8-9, 2017, pages 51–52.
Shaker Verlag, 2017.

[17] Chris Lattner and Vikram S. Adve. LLVM: A Com-
pilation Framework for Lifelong Program Analysis &
Transformation. In 2nd IEEE / ACM International Sym-
posium on Code Generation and Optimization (CGO
2004), 20-24 March 2004, San Jose, CA, USA, pages
75–88, San Jose, CA, USA, 2004. IEEE Computer
Society.

[18] Yongjun Lee, Hyun Kwon, Sang-Hoon Choi, Seungho
Lim, Sung Hoon Baek, and Ki-Woong Park. Instruc-
tion2vec: Efficient preprocessor of assembly code to
detect software weakness with CNN. Applied Sciences,
9(19):4086, 2019.

[19] Thomas Lengauer and Robert Endre Tarjan. A fast
algorithm for finding dominators in a flowgraph. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 1(1):121–141, 1979.

[20] Kaiyuan Li, Maverick Woo, and Limin Jia. On the
generation of disassembly ground truth and the evalua-
tion of disassemblers. Proceedings of the 2020 ACM
Workshop on Forming an Ecosystem Around Software
Transformation, 2020.

[21] Xuezixiang Li, Qu Yu, and Heng Yin. PalmTree: Learn-
ing an assembly language model for instruction embed-
ding. Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2021.

[22] Ruigang Liang, Ying Cao, Peiwei Hu, and Kai Chen.
Neutron: An attention-based neural decompiler. Cyber-
security, 4(1):5, 2021.

[23] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming
He, and Piotr Dollár. Focal loss for dense object detec-
tion. 2017 IEEE International Conference on Computer
Vision (ICCV), pages 2999–3007, 2017.

[24] Cullen Linn and Saumya K. Debray. Obfuscation of
executable code to improve resistance to static disassem-
bly. In Conference on Computer and Communications

Security, CCS ’03, pages 290–299, New York, NY, USA,
2003. Association for Computing Machinery.

[25] Chang Liu, Rebecca Saul, Yihao Sun, Edward Raff,
Maya Fuchs, Townsend Southard Pantano, James Holt,
and Kristopher K. Micinski. Assemblage: Automatic
binary dataset construction for machine learning. ArXiv,
abs/2405.03991, 2024.

[26] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations, 2017.

[27] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-
delion Mané, Rajat Monga, Sherry Moore, Derek Mur-
ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015.

[28] Kenneth A. Miller, Yonghwi Kwon, Yi Sun, Zhuo
Zhang, X. Zhang, and Zhiqiang Lin. Probabilistic
disassembly. 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE), pages 1187–
1198, 2019.

[29] National Security Agency. Ghidra. https://github.
com/NationalSecurityAgency/ghidra, 2025.

[30] Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
TensorFlow-serving: Flexible, high-performance ML
serving. ArXiv, abs/1712.06139, 2017.

[31] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Kosk-
inen, Georgios Portokalidis, Bing Mao, and Jun Xu.
SoK: All you ever wanted to know about x86/x64 bi-
nary disassembly but were afraid to ask. 2021 IEEE
Symposium on Security and Privacy (SP), pages 833–
851, 2020.

[32] Kexin Pei, Jonas Guan, David Williams-King, Jun-
feng Yang, and Suman Sekhar Jana. XDA: Accu-
rate, robust disassembly with transfer learning. ArXiv,
abs/2010.00770, 2020.

[33] Marius Popa. Binary code disassembly for reverse engi-
neering. Journal of Mobile, Embedded and Distributed
Systems, 4:233–248, 2012.

https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra

[34] Igor V. Popov, Saumya K. Debray, and Gregory R.
Andrews. Binary obfuscation using signals. In USENIX
Security Symposium, 2007.

[35] Meng Qiao, Xiaochuan Zhang, Huihui Sun, Zhen Shan,
Fudong Liu, Wenjie Sun, and Xingwei Li. Multi-level
cross-architecture binary code similarity metric. Ara-
bian Journal for Science and Engineering, 46:8603–
8615, 2021.

[36] Quarkslab. Diffing_obfuscation_dataset.
https://github.com/quarkslab/diffing_
obfuscation_dataset, 2025.

[37] Zachary D. Sisco, Jonathan Balkind, Timothy Sher-
wood, and Ben Hardekopf. Loop rerolling for hardware
decompilation. Proceedings of the ACM on Program-
ming Languages, 7:420–442, 2023.

[38] Vector 35 Inc. Binary Ninja. https://binary.ninja,
2025.

[39] VMProtect Software. VMProtect. https://vmpsoft.
com/vmprotect/overview, 2025.

[40] Hao Wang, Zeyu Gao, Chao Zhang, Zihan Sha,
Mingyang Sun, Yuchen Zhou, Wenyu Zhu, Wenju Sun,
Han Qiu, and Xiangwei Xiao. CLAP: Learning transfer-
able binary code representations with natural language
supervision. Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Anal-
ysis, 2024.

[41] Hao Wang, Zeyu Gao, Chao Zhang, Mingyang Sun,
Yuchen Zhou, Han Qiu, and Xiangwei Xiao. CEBin:
A cost-effective framework for large-scale binary code
similarity detection. Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing
and Analysis, 2024.

[42] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu
Gao, Han Qiu, Jianwei Zhuge, and Chao Zhang. jTrans:
Jump-aware transformer for binary code similarity de-
tection. Proceedings of the 31st ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis,
2022.

[43] Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat
Kantarcioglu, and Bhavani M. Thuraisingham. Differ-
entiating code from data in x86 binaries. In ECML/P-
KDD, 2011.

[44] Yapeng Ye, Zhuo Zhang, Qingkai Shi, Yousra Aafer,
and X. Zhang. D-ARM: Disassembling ARM binaries
by lightweight superset instruction interpretation and
graph modeling. 2023 IEEE Symposium on Security
and Privacy (SP), pages 2391–2408, 2023.

[45] Li Yong-cheng. Program understanding approach for
binary code based on data flow analysis. Computer
Engineering, 2010.

[46] Sheng Yu, Yu Qu, Xunchao Hu, and Heng Yin. DeepDi:
Learning a relational graph convolutional network
model on instructions for fast and accurate disassem-
bly. In USENIX Security Symposium, pages 2709–2725.
USENIX Association, 2022.

[47] Wu Zhi-yong. Method based on data flow analysis to
understanding binary program. Computer Engineering
and Applications, 2010.

[48] Li Zhoujun. Disassembly method based on control flow
refining. Journal of Tsinghua University, 2011.

Appendix

A Complexity Analysis

Our pre-processing step involves a superset disassembly,
where decoding occurs at every possible address. Although
this step can be parallelized or GPU-accelerated, we observed
it does not represent a computational bottleneck unless print-
able disassembly output is required. Decoding to the internal
representation is efficient, even for large binaries, and exhibits
linear time complexity, O(L), where L is the size of the binary.

For our model, each instruction attends to a fixed-size local
context (via a sliding window) and a fixed number of global
connections. Consequently, the computational cost scales lin-
early with the sequence length, O(S), where S is the number
of instructions in the sequence. This linear scaling enables
the model to process long sequences effectively. The sliding
window size determines the number of neighboring instruc-
tions to which each instruction attends, directly influencing
the total computation in a linear fashion.

The PDT construction process comprises several key steps:
WCC computation, SCC computation, and the calculation
of immediate post-dominators within each WCC using the
Lengauer-Tarjan algorithm.

Classical algorithms for WCC and SCC detection have a
complexity of O(N +E), where N is the number of nodes (in-
structions) and E is the number of edges in the Control Flow
Graph CFG. In our specific CFGs, each node has at most two
outgoing edges (for conditional branches), meaning E ≤ 2N.
Therefore, the complexity for WCC and SCC computation
simplifies to O(N).

The Lengauer-Tarjan algorithm for computing immediate
post-dominators exhibits a time complexity of O(E ·α(N)),
where α is the extremely slowly growing inverse Ackermann
function [19]. Given that E ≤ 2N in our case, and α grows
so slowly it is considered nearly constant for practical input
sizes, this complexity is effectively linear.

https://github.com/quarkslab/diffing_obfuscation_dataset
https://github.com/quarkslab/diffing_obfuscation_dataset
https://binary.ninja
https://vmpsoft.com/vmprotect/overview
https://vmpsoft.com/vmprotect/overview

Since we perform these computations within individual
WCCs, and call edges are not connected during this phase
(resulting in smaller WCCs), the actual runtime for PDT con-
struction is determined by the size of the largest WCC and
remains, in practice, linear with respect to the total number of
nodes. Thus, the overall time complexity for PDT construc-
tion can be considered O(N).

Following PDT construction, the error detection and prun-
ing algorithms involve straightforward traversals of the PDT.
Error detection requires a single pass. Pruning utilizes two
passes: one for weight propagation up the tree and another
for result collection down the tree. In a tree structure like
the PDT, each node has at most one parent. Therefore, these
traversals are also O(N).

Based on the preceding analysis, the entire Tady work-
flow, including the error detection and pruning algorithms (as
discussed in Section 2), demonstrates an overall linear time
complexity and is expected to scale efficiently with the size
of the input binaries.

B Evaluation on Commercial Obfuscator

In addition to open-source obfuscators, we evaluated the disas-
semblers against a prominent commercial obfuscator, VMPro-
tect [39]. This obfuscator supports several protection methods,
including mutation, virtualization, or "Ultra" (a combination
of the previous two). Mutation obfuscates the binary using
instructions from the same Instruction Set Architecture (ISA).
Virtualization, on the other hand, introduces a virtual ma-
chine and encodes the protected function into byte sequences
specific to that virtual machine. Such potent obfuscation
techniques, particularly virtualization, are beyond the scope
of our current work. Consequently, our evaluation focused
on the mutation capabilities of VMProtect. To simplify the
evaluation and maintain a focus on static analysis, we dis-
abled VMProtect’s "Pack the output file" option. This option
typically compresses the output binary, with decompression
occurring only at runtime, effectively acting as an anti-static
analysis measure. Analyzing such packed binaries is outside
the scope of our current research. Our primary interest in this
work is the analysis of statically obfuscated code.

Under this configuration, we obfuscated an example binary
provided with the VMProtect Demo: Licensing/BCB. Rec-
ognizing that obfuscation patterns are often repetitive, we
focused our efforts by obfuscating only the first protected
function, btTryClick, and then manually analyzing it to es-
tablish the ground truth for this function. The results for this
test case are presented below:

Our manual investigation of this obfuscated binary revealed
a comparatively straightforward obfuscation methodology:
the basic blocks of the protected function were scattered to
distant locations in memory. Apart from this scattering, the in-
structions themselves appeared standard. However, IDA and
Ghidra failed to correctly identify the function’s entry point,

Table 6: Performance on the VMProtect Example case.

Disassembler P R F1

IDA 1.000 0.013 0.026
Ghidra 0.000 0.000 0.000
DeepDi 1.000 1.000 1.000
Ddisasm 1.000 1.000 1.000
TadyA 1.000 1.000 1.000
Tady 1.000 0.974 0.987
Tady(pruned) 1.000 1.000 1.000
XDA 0.896 0.789 0.839
XDA(pruned) 0.972 0.921 0.946

resulting in exceptionally low recall. In contrast, DeepDi,
ddisasm, and our TadyA model, which utilize superset disas-
sembly incorporating global graph information (due to con-
trol flow edges between these spatially distant instructions),
successfully recalled them. Tady missed two instructions,
but successfully recalled them after pruning. XDA, despite
achieving higher recall than IDA Pro, was still constrained by
its reliance on local sequential context. However, applying
our post-processing algorithm to XDA effectively propagated
information along the execution trace, boosting its recall from
0.789 to 0.921. This serves as a clear example of how our
post-processing algorithm can enhance model performance.

C Generalizability to Unseen Settings

To further evaluate our models’ ability to generalize to un-
seen settings, we conducted additional experiments. While
their ability to handle unseen binaries can be inferred from
the preceding experiments, here we specifically investigate
generalization to unseen compilers and optimization levels.
We explicitly splitted the Pangine dataset (used for training
in previous experiments) by compiler and optimization level.
We then conducted cross-validation to assess whether a model
trained under one specific setting (e.g., a particular compiler
and optimization level) could generalize to others. Specifi-
cally, we selected two compilers (clang-6.0.0 and gcc-7.5.0)
and four optimization levels (O0-O3). For each combination,
we trained the Tady model for five epochs on the correspond-
ing dataset partition. The increased epoch count was chosen
to compensate for the smaller size of these individual train-
ing datasets. Detailed results are omitted for brevity, as the
models generally generalized well across settings, achieving
F1 scores close to 1.0 when tested on configurations different
from their training set. The only notable exception was the
model trained on clang-6.0.0 with O0 optimization; while its
precision remained near 1.0, its recall on other settings was
slightly lower, but still achieved around 0.98. These results
demonstrate Tady’s robust generalization capabilities.

	Introduction
	Structural Constraints
	Constraint Violations
	Post-Dominator Tree
	Detection of Structural Violations

	Tady
	Model Design
	Instruction Embedding
	Masked Sliding Window Attention
	Global Message Passing

	Pruning Algorithm

	Evaluation
	Implementation and Setup
	Violations of Constraints
	Accuracy Evaluation
	Efficiency Evaluation
	Ablation Study

	Discussion
	Related Work
	Conclusion
	Complexity Analysis
	Evaluation on Commercial Obfuscator
	Generalizability to Unseen Settings

